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Abstract: When examinees are classified into groups based on scores from educational assessment,
two indices are widely used to gauge the psychometric quality of the classifications: accuracy and
consistency. The two indices take correct classifications into consideration while overlooking incor-
rect ones, where unbalanced class distribution threatens the validity of results from the accuracy
and consistency indices. The single values produced from the two indices also fail to address the
inconsistent accuracy of the classifier across different cut score locations. The current study proposed
the concept of classification quality, which utilizes the receiver operating characteristics (ROC) graph
to comprehensively evaluate the performance of classifiers. The ROC graph illustrates the tradeoff
between benefits (true positive rate) and costs (false positive rate) in classification. In this article, a
simulation study was conducted to demonstrate how to generate and interpret ROC graphs in educa-
tional assessment and the benefits of using ROC graphs to interpret classification quality. The results
show that ROC graphs provide an efficient approach to (a) visualize the fluctuating performance of
scoring classifiers, (b) address the unbalanced class distribution issue inherent in the accuracy and
consistency indices, and (c) produce more accurate estimation of the classification results.
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1. Introduction

The purpose of classification based on test results is to produce useful information
regarding examinees. Since the use of cut scores to classify examinees is widely used,
particularly in educational assessment, estimating the statistical performance of classifiers
is a vital part of psychometric analysis. Classifications resulting from test cut scores
can be dichotomous (e.g., pass or fail) or polytomous (e.g., far below benchmark, below
benchmark, at benchmark, above benchmark) depending on the purpose and characteristics
of the tests. Regardless, the essential purpose of the assessments is to produce interpretive
meaning based upon an examinee’s obtained score with reference scores (e.g., cut-off
score) [1]. For widely used licensure tests (e.g., the Praxis tests, General Educational
Development tests), pass/fail distinctions are often the final form of score reporting upon
which stakes are based. High stakes decisions are also part of primary and secondary
education. For example, the federal grant program entitled “Race to the Top” [2] emphasizes
the accountability and instructional improvement of K-12 assessments, which typically
result in classifying students by achievement and reflects the growing importance of
improving the quality of classification and the interpretations based on classifications
in education.

Classification using examinees’ observed scores is an attempt to accurately catego-
rize continuous quantities into several different groups, dependent on the cut-off scores.
Classifying different groups of students in educational settings based on academic or so-
cial/behavioral assessments is critical in order to identify students in need of additional
supports. For example, research suggests that students performing well below established
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achievement benchmarks, such as those used in the Dynamic Indicators of Early Literacy
Skills (DIBELS) [3], are at risk for long-term negative outcomes, including grade retention
and school drop-out [4]. Therefore, educators need accurate and reliable classification sys-
tems, based on assessment cut scores, to prevent negative outcomes and deliver necessary
remediation to increase the likelihood of student success [5].

Cut-off scores have been successfully identified and used in educational assessments
through various procedures [6–8]. Traditionally, the quality of the cut-off score has been
evaluated by the use of accuracy and consistency of classification results with two indices:
(a) classification accuracy (CA) and (b) classification consistency (CC) [9]. While reporting
CA and CC is becoming a common practice, there has been limited research addressing
some of the inherent limitations of the two indices. One of the most important threats to
the appropriate use of CA and CC indices is unbalanced class distribution. In practice, the
numbers of individuals in different classes can vary greatly, which causes problems when
focusing exclusively on correct classes, as do the CC and CA indices [10].

Another limitation of the CA and CC indices is that they fail to show the varying
performance of the classifier across the whole group. Let us consider the illustrated example
in Table 1. In Case 1, a small number of examinees have actual failing status according to
the cut score and yet the classifier placed all examinees into the passing group. CA would
equal 80%, and this may be misleading because all examinees who should have been in
the failing category were misclassified. In other words, the classifier does not perform well
for examinees with lower abilities. In Case 2, the CA is again 80% and the distribution of
actual classification groups is more balanced. However, the classifier does not perform well
for examinees with higher abilities. Given that the goal of many educational assessments
is to classify and identify a small group of students at risk, often to deliver necessary
intervention, CA indices are concerning because the value can be the same even when the
pattern of results are different, as was the circumstance in Case 1 and Case 2.

Table 1. An example showing the limitation of CA and CC indices.

Case 1 Predict:Pass Predict:Fail Case 2 Predict:Pass Predict:Fail

Actual:Pass 80 0 Actual:Pass 30 20
Actual:Fail 20 0 Actual:Fail 0 50

Since CC and CA are often poor metrics for measuring classification quality, other
indices have been developed as alternatives. Specifically, the use of receiver operating
characteristics (ROC) graphs is increasingly being used for estimating and visualizing the
performance of classifiers [11,12]. Applying the ROC approach to educational assessment
not only mitigates the limitations of CA and CC, but also provides more information
about the performance of classifiers beyond CA and CC. However, few research have been
conducted applying ROC despite the advantage of giving quality information regarding
the classification. It is not as widely used to evaluate students’ knowledge and skills [13]
though the ROC has been widely used in various disciplines including medical or clinical
settings for diagnostic purposes [14–17]. As such, the goal of this paper is to introduce the
ROC graph as a means to overcome the limitations of CA and CC indices in educational
assessment. Specifically, this study will demonstrate how the ROC approach is able to
depict the tradeoff between benefits (i.e., true positive rate) and costs (i.e., false positive rate)
in classification through simulation study. Below, the author will provide the theoretical
background and use simulated data to show that the ROC functions well across various
test conditions, including test length, sample size, and distribution of students’ ability.
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2. Theoretical Background
2.1. Classification Accuracy and Classification Consistency
Definition of Classification Accuracy and Classification Consistency

Classification accuracy (CA) is the rate at which the classifications based on observed
cut scores agree with classifications based on true cut scores [9,18]. Classification consis-
tency (CC) is the rate at which examinee classifications based on repeated independent and
parallel test forms agree with each other [19]. There are two approaches that are commonly
used to estimate CA and CC—the Livingston and Lewis approach [18], using the beta
distribution, and the Lee approach [9], using the IRT framework—provided in Figure 1.
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The most widely used approach to estimate CA and CC is the Livingston and Lewis
(LL) approach [9,20–24]. This approach has been used in a number of high stakes education
assessment systems, including the California Standards Tests, the Florida Comprehensive
Assessment Test, and the Washington Comprehensive Assessment Program.

Another way of estimating CA and CC is the Lee’s approach developed using the item
response theory (IRT) framework [18,19,22,25,26]. Lee’s approach has also been used in
high stakes assessment systems, including the Connecticut Mastery Test. This approach
first employs a compound multinomial distribution [27] to model the conditional summed-
score distribution and aggregate the probabilities of scoring with a given category. Then,
CA and CC are calculated using an n by n contingency table, similar to the LL approach.

2.2. Classification Matrix and ROC Graph
2.2.1. Classification Matrix

Classification matrix is constructed by using two classes, positive and negative, which
can be regarded as “pass” and “fail” in real cases. The information on the true positive
rate and the false positive rate can be computed using a 2-by-2 confusion matrix. Figure 2
shows a classification matrix and equations for several commonly used metrics that can be
calculated from it. True positive signifies that a positive examinee is correctly classified as
positive. False negative indicates that a positive examinee is misclassified as negative. False
positive means that a negative examinee is misclassified as positive. Finally, true negative
means that a negative examinee is correctly classified as negative.

There are more indices that can be estimated using the classification matrix, including
negative predictive value, miss rate, false discovery rate and so on. This study focuses
on the true positive rate TP

(TP+FN)
and the false positive rate FP

(FP+TN)
here as they are

typically the values of interest. The true positive rate can be interpreted as the probability
of positives that are correctly classified among all the positives, and the false positive rate
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can be interpreted as the probability of negatives that are incorrectly classified as positives
among all the negatives.
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2.2.2. ROC Graph

ROC graphs are built with the true positive rate plotted on the y-axis and treated as a
benefit, and false positive rate plotted on the x-axis and treated as a cost [28]. To estimate
the classification quality in a test, it is necessary to plot costs and benefits in the ROC space.
When examinees are classified in a test, only a single classification matrix can be generated
based on the cut score, which corresponds to one single point in the ROC space. The single
point represents the overall performance of a classifier.

In addition to the single point, this study also focuses on plotting a curve to reflect the
performance of the classifier across different cut score locations. The ROC curve consists of
the entire set of false positive rate and true positive rate pairs (i.e., cost–benefit) resulting
from the continually changing cut scores over the range of test results, plotting the changing
cut scores, and therefore it has been recognized as a global measure of a test’s accuracy [29].

The cost–benefit approach uses the ROC graph to generalize information from the
tradeoffs between false and true positives. Figure 3 shows the ROC graph where each point
in the ROC space represents a classifier’s performance.

A classifier at the lower left point O (0, 0) means that both cost and benefit are equal
to 0. A classifier at the upper right point C (1, 1) means that both cost and benefit are equal
to 1. A classifier at the upper left point B (0, 1) means that the cost is 0 and the benefit
is 1, representing perfect classification. Intuitively, a classifier has better performance if its
points in the ROC space are close to point B, where benefits are high, and costs are low.
The diagonal line represents random performance because it means the classifier has a 50%
chance of correctly classifying examinees into either positive or negative.

2.3. Use of the ROC to Estimate Classification Quality in Practice

The development of classification quality was inspired by the idea that both correctly
classified examinees and those who are incorrectly classified should be considered to
evaluate the performance of the classifier. Classification quality is the attribute of a classifier
that portrays the relationship between the classifications based on observed cut scores
and the classifications based on true cut scores. Accuracy and consistency indices have
been computed for decades in the context of educational assessment, and the newly
proposed classification quality serves as an alternative to alleviate some problems of
the traditional indices.
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One of the inherent problems of the accuracy and consistency indices is their unbal-
anced class distribution. In fact, any performance metric that uses values from multiple
columns (e.g., “pass” and “fail”) is inherently sensitive to class skews [30,31]. Even if the
performance of the classifier does not change, the variation in class distribution changes the
accuracy index because it is computed across multiple columns. ROC curves are different
from other indices because they use a row-parallel computation using the classification. The
true and false positive rates are ratios from two columns without crossing rows; therefore,
the ROC curve is insensitive to class distributions. In practice, it is not unusual to see that
less than 15% of respondents are classified into “fail” in many assessments based on a cut
score [32], and this causes unbalanced class distribution. Another attractive feature of using
ROC graphs is that they provide a tradeoff between costs and benefits across all cut scores
in the sample. ROC graphs can uncover potential reasons behind the varied classification
quality with the change in cut scores and can provide a visual display of the variation.

In this study, the area under the curve (AUC) is used to quantify cost–benefit. The
AUC is the probability that a classifier will rank a randomly chosen positive instance higher
than a negative one [33]. AUC is also equal to the value of the Wilcoxon-Mann–Whitney U
test statistic. Basically, AUC is calculated based on the true positive rate and false positive
rate. Formally, AUC given a cut score at i can be computed as Equation (1).

AUC =
TPR ∗ FPR + TPR(TPR+1)

2 − R
TPR ∗ FPR

(1)

where TPR denotes true positive rate TP
(TP+FN)

, FPR denotes false positive rate FP
(FP+TN)

, Ri

denotes the sum of ranks. The AUC can be easier to calculate using the Gini coefficient [34]
by G1 = 2AUC− 1, given G1 is computed as

G1 = 1−
n

∑
k=1

(FPRk − FPRk−1)(TPRk + TPRk−1) (2)

Although AUC has a range between 0 to 1 in the ROC space, it is mentioned that a
classifier should perform no worse than random guessing, which means that a classifier
in real practice is expected to have an AUC > 0.5. In general, an AUC of 0.7 to 0.8 is
considered acceptable, 0.8 to 0.9 is considered excellent, and more than 0.9 is considered
outstanding [35].

In summary, ROC graphs overcome the shortcomings of using accuracy indices and
produce more detailed information on classification quality. In addition, multiple indices
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can be generated using classification matrices. Of those, AUC is a useful and informative
indicator in cost–benefit analysis.

3. Method

A simulation study was conducted to investigate factors that might influence classifi-
cation quality. Based on the literature reviews in psychometric simulation studies, factors
were manipulated including sample size, test length, and distribution of ability [36–40]. In
this study, the factors are specified as follows: test length (i.e., 20, 40, and 60 items), ability
distributions (i.e., a normal distribution, a skewed distribution, and a mixed distribution),
and sample size (i.e., 500, 1000, and 3000). Each condition was replicated 50 times.

In order to reflect practical settings, the true item parameters for the various simulated
tests were taken from an operational, high-stakes test in the state of Florida. All items
are binary scored, and the relationship between item parameters and the probability of
correct response followed a 3-parameter logistic (3PL) model with difficulty, discrimina-
tion, and lower-asymptote parameters, Pj(θ) = cj +

(
1− cj

)
/[1+ exp

(
−1.7αj

(
θ − β j

)]
[41].

Specifically, 6th grade mathematic results are used to generate the simulated item parame-
ters. The parameter estimation results are reported in an annual technical report (Florida
Comprehensive Assessment Test, 2006), and item parameter estimate is summarized in
Table 2.

Table 2. Operational item parameter and five-point summary and range.

Parameter Min 25th Percentile 50th Percentile 75th Percentile Max

discrimination 0.44 0.72 0.95 1.10 1.39
difficulty −1.82 −0.73 −0.20 0.55 1.60

lower-asymptote 0.07 0.17 0.20 0.24 0.33

The range of the item discrimination estimates is from approximately 0.44 to 1.39. For
difficulty parameters, the range is from −1.82 to 1.6. For lower-asymptote parameter, the
range is 0.07 to 0.33. Using these parameter estimates, we generated the item parameters
for the simulation. Specifically, the discrimination parameter was sampled from a uniform
distribution with a range of (0.44, 1.39). The difficulty parameter was sampled from a
uniform distribution with a range of (−1.82, 1.60). For the lower-asymptote parameter, the
parameter was sampled from a uniform distribution with a range of (0.07, 0.33).

Abilities were drawn from three types of different ability distributions: (a) normal
distribution, (b) Fleishman distribution, and (c) mixed distribution. Under the normal
distribution, true ability followed a standard normal distribution. The data generation
under the skewed condition followed Fleishman [37], where the ability distribution has
mean 0, standard deviation 1, skewness 0.75, and kurtosis 0. In the mixed condition,
ability came from two normal distributions N (−0.25, 0.61) and N (2.19, 1.05) with mixing
proportion of 90% and 10%, respectively, which also has a mean 0 and standard deviation 1,
as used in Woods [40].

To form ROC curves, results within each individual data set were aggregated across
the 50 replications for each condition. Threshold averaging was used to aggregate across
replications where both true positive rates and false positive rates were averaged at fixed
intervals [42]. AUC were also calculated and reported for all ROC graphs.

Using generated item parameters and abilities, the response vectors were generated
using the R package cacIRT. Using generated response vectors, we performed AUC calcula-
tion and ROC construction in the R package ROCR. R version 4.0.2 was used to perform
the simulation [43].

4. Results

Figure 4a–i show how the ROC curves change with different test lengths (i.e., 20, 40,
and 60 items) and sample size (i.e., 500, 1000, and 3000) when the ability distributions are
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normal, skewed, and mixed, respectively. Further, the figures show the performances of the
different classifiers, and since 50 replications per each condition were performed, 50 graphs
are depicted for each condition because each graph represents a single replication. Thus,
graphs are depicted in each plot.
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Figure 4a–c show the trend of ROC curves with different test lengths under different
ability distributions. The three graphs show the effects of test length by comparing the
performance among the classifiers. Figure 4d–f show the trend of ROC curves with differ-
ent ability distributions under different test lengths. The three graphs show the effects of
the ability distribution by comparing the performance among the classifiers. Figure 4g–i
show the trend of ROC curves with different sample sizes under different ability distribu-
tions. The three graphs show the effects of sample size by comparing performance among
the classifiers.

Specifically, the results of the comparison of the performances of the classifiers based
on AUC and cut-off score with sensitivity and specificity are reported in Tables 3 and 4 in
the following section.

Results for average AUCs through replications and how the AUC changes with test
length, sample size, and ability distribution are presented in Table 3. Table 3 shows that the
use of ROC works outstanding for all conditions with AUC as Han, Pei, and Kamber’s [35]
suggestions (i.e., all AUCs > 0.9). AUC is the largest when the ability distribution is
skewed, the second largest when examinees’ ability distribution is normal, and the smallest
when the ability distribution is mixed. This suggests that the classifier works best when
the ability distribution is skewed. Results also shows that AUC increases with longer
test length, as confirmed with ANOVA through 50 replications. However, the impact of
sample size was indistinguishable (which was, again, confirmed with ANOVA procedures).
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Although AUC indices give us the comprehensive performance of the classifier under each
condition, the specific differences under each condition can be better seen in Table 4 in the
following section.

Table 3. AUC indices by test length, sample size, and ability distribution.

Test Length Sample Size Normal Skewed Mixed

20
500 0.938 (0.012) 0.949 (0.011) 0.909 (0.019)
1000 0.939 (0.012) 0.945 (0.011) 0.902 (0.016)
3000 0.937 (0.011) 0.948 (0.010) 0.904 (0.014)

40
500 0.959 (0.010) 0.972 (0.009) 0.934 (0.015)
1000 0.961 (0.010) 0.972 (0.007) 0.931 (0.012)
3000 0.960 (0.005) 0.971 (0.006) 0.932 (0.009)

60
500 0.973 (0.005) 0.981 (0.005) 0.949 (0.010)
1000 0.972 (0.005) 0.981 (0.003) 0.946 (0.007)
3000 0.972 (0.004) 0.980 (0.003) 0.948 (0.007)

Table 4. Cut-off score with sensitivity and specificity by test length, sample size, and ability distribution.

Test
Length

Sample
Size

Normal Skewed Mixed

Cut-Off
Score Sensitivity Specificity Cut-Off

Score Sensitivity Specificity Cut-Off
Score Sensitivity Specificity

20
500 0.582 0.861 0.854 0.589 0.875 0.859 0.586 0.831 0.801
1000 0.588 0.867 0.842 0.590 0.888 0.859 0.584 0.830 0.820
3000 0.589 0.868 0.847 0.591 0.883 0.862 0.588 0.839 0.810

40
500 0.554 0.906 0.887 0.556 0.916 0.902 0.552 0.872 0.841
1000 0.554 0.900 0.889 0.558 0.916 0.900 0.554 0.864 0.839
3000 0.553 0.897 0.883 0.558 0.916 0.900 0.556 0.864 0.837

60
500 0.542 0.924 0.904 0.542 0.935 0.923 0.543 0.881 0.860
1000 0.542 0.921 0.907 0.543 0.930 0.921 0.543 0.881 0.865
3000 0.542 0.917 0.901 0.542 0.929 0.918 0.544 0.886 0.861

The results in Table 4 provide the cut-off score, sensitivity, and specificity. One of the
most distinctive trends is that when the number of items is increased, the cut-off score tends
to decrease. Additionally, sensitivity and specificity are increased. This trend is applicable
to all ability distributions. However, when the number of items is the same, the effect of
sample size is indistinguishable. Nonetheless, sensitivity and specificity are the highest
when the ability distribution is skewed, and lowest when the ability distribution is mixed.

5. Discussion and Conclusions

Assessment is the systematic process of implementing empirical data to measure
knowledge, skills, attitudes, and beliefs. This study introduces a cost–benefit approach that
overcomes the problems of using CC and CA methods, as well as provides practitioners
with more information about classification quality. The author demonstrated two ways of
using the cost–benefit approach to estimate classification quality: (a) plot the ROC point
generated by the classification in the ROC space to show the classification performance,
and (b) build the ROC curve to show the classification performance across all cut score
locations. It is worth mentioning that neither way requires additional statistical analysis of
the original dataset, and practitioners with the classification results can easily carry it out.
A simulation study was conducted on classification quality. The results show that (a) the
use of ROC methodology works well for classification, and (b) longer tests usually produce
higher classification quality.

It should be noted that true classification distinctions should be given to applying
ROC for evaluating classification quality in practice. For example, one can identify true
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classification results in marketing settings (e.g., whether or not a customer purchases a
product) that are directly observable. This can also happen in medical or clinical settings
where one can confirm that a patient has a disease or not through surgery or a pre-existing
valid diagnostic instrument. Given a priori decision on classification, ROC can be used in
education for evaluating the performance of classifiers under various conditions or among
several different methods, as well as determining the optimal cut-point of a particular
test. However, unlike other fields, such as marketing, it is challenging to know for cer-
tain whether or not examinees truly possess the trait that is intended to be measured in
educational or psychological settings. Since many of these traits (e.g., language ability)
are unobservable, it is not always possible to know true classification results a priori in
practice unless the data come from simulated datasets. This is the fundamental problem of
applying ROC in situations of educational assessment or licensure tests.

Notwithstanding the limitations of applying ROC in practice, there are additional re-
search questions to address the usefulness of using ROC in education testing contexts. First,
true classification specification might be achieved through cognitive diagnostic modeling
(CDM), which leads to the potential use of ROC in determining the optimal cutoff scores of
a particular assessment. As long as we can specify reliable confirmed diagnostic results,
ROC can be used for evaluating the performance of the assessment as well as determining
cutoff scores depending on the purpose of the assessment. Second, in the field of vocational
education, it is quite feasible to determine whether a person has a particular skill (i.e.,
psycho-motor skills) or not regardless of those licensure tests. Based on judgment from true
classification results, ROC can be used for evaluating the performance of the assessment
as well as determining cutoff scores. In sum, when we want to apply ROC dealing with a
latent trait for both scenarios, the core factor is to determine how one can specify whether
people truly possess the trait. Future research should consider these aspects and conduct
research on the performance of ROC in relation to CDM or psycho-motor skills and how
and to what extent we can assure the accuracy of those results.

There are other directions that we would like to address in future research as well.
Since there are multiple ways to generate the ROC curve, future research should consider
other ways to fit a curve that better estimates classification quality. Another is that binary
classification is used to illustrate the ROC curve in this study. Multi-class AUC and
ROC curves have been developed in the area of machine learning. It is worth expanding
current research to multi-class instances because many educational assessments use multi-
classification approaches.

As noted, classifying different groups of students in educational settings based on
academic or social/behavioral assessments is critical in order to identify students in need
of additional supports. It is believed that the cost–benefit approach described here can
help educational researchers and practitioners increase the accuracy of their classification
approaches when assessing student performance. Classification of students and teachers
is important for making educational and professional decisions, particularly with regard
to identification of those in need of early intervention to increase the likelihood of pos-
itive future outcomes. By using a ROC approach, educators can ensure that they are
correctly identifying those in need and increase broader confidence in the accuracy of
their assessments.
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