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Abstract: In this paper, we study the periods of interval exchange transformations. First, we
characterize the periods of interval exchange transformations with one discontinuity. In particular,
we prove that there is no forcing between periods of maps with two branches of continuity. This
characterization is a partial solution to a problem by Misiurewicz. In particular, a periodic structure
is not possible for a family of the maps with one point of discontinuity in which the monotonicity
changes. Second, we study a similar problem for interval exchange transformations with two
discontinuities. Here we classify these maps in several classes such that two maps in the same class
have the same periods. Finally, we study the set of periods for two categories, obtaining partial
results that prove that the characterization of the periods in each class is not an easy problem.
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1. Introduction and Basic Results

This paper deals with periods of maps called interval exchange transformations. Given
a map f : X → X on a space X, as usual f 0 = Id, and for any integer m ∈ N = {1, 2, 3, . . . }
we set f 1 = f , f m = f ◦ f m−1. We say that x ∈ X is periodic if there is m ∈ N such that
f m(x) = x and f i(x) 6= x for all 0 < i < m. In that case m is the period of x. When m = 1
we have fixed points. By Per( f ) we denote the set of all the periods of periodic points of f .

Since Keane’s paper [1], interval exchange transformations are an active area of re-
search. We will denote an interval exchange transformation by the acronym IET. First, the
interest was focused on oriented IETs without flips. However, later on, Nogueira, among
others, studied IETs with flips [2].

Analyzing IETs is interesting from a theoretical point of view and a lot of work has
been made in this direction, see e.g., [3] for a nice review. However, it is also interesting
because of the quantity of applications, for example to the mechanical systems called
polygonal billiards [2,4] or to surface flows [5], among others. Below, we introduce some
basic notation and definitions to understand our framework.

According to [4], a polygonal billiard is a connected open set U in the plane (not
necessarily simply connected), whose boundary ∂U is the union of finitely many rectilinear
segments. This billiard is called a rational polygonal billiard when the angle of the directions
of two whatsoever segments which form ∂U is a rational multiple of π. To this respect, let
us mention that the main result in [6] establishes that, for rational polygons, periodic orbits
are dense in the phase space of the billiard flow. In this direction, our study clarifies the
value of the minimal periods for these dense orbits when we relate rational billiards with
IETs. To relate polygonal billiards and oriented IETs, the reader interested can consult, for
instance, ref. [7], where, from a polygonal billiard, the authors construct an oriented IET in
which the discontinuity points correspond to the vertices of the original polygon suitably
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normalized. Furthermore, the construction of flipped IETs from polygonal billiards can be
consulted in [2].

When the shape of the bounded region is allowed to have an arbitrary boundary, we
face the subject of dynamical billiards, an active area of research at the present day. In this
sense, concerning the mechanical applications of dynamical billiards, we can mention [8],
where the author gives a general scope about the relationship between chaos and quantum
mechanics and the connection of the chaotic motion with billiards through the dynamics
of light rays for certain types of laser cavities. The dynamics of general billiards is also
applied to modelling the movement of particles inside some nanodevices as p-n junctions,
which is a structure of electronic components or semiconductor materials having different
type (p-type, n-type). These components allow the movement of electrons through the
junction between the two types of semiconductor materials (for some models, consult [9]
and references therein; to obtain basic information on p-n junctions, the reader is referred,
for instance, to [10]).

Let N be the set of natural numbers and n ∈ N. An n-IET is an injective map T : D ⊂
(0, l)→ (0, l) such that:

1. D is the union of n pairwise disjoint open intervals, D =
⋃n

i=1 Ii. Moreover,
Ii = (ai, ai+1), 0 = a1 < a2 < a3 < · · · < an+1 = l.

2. T|Ii is an affine map of constant slope equals to 1 or −1, i = 1, 2, . . . , n.

In what follows we will always assume that l = 1, although notice that we may also
assume D ⊂ [0, 1] when necessary.

We say that an IET T has flips if there are k subintervals where the slope is −1.
Otherwise, we say that T has no flips. We will write (n,k)-IET to denote an IET with k-flips
and n discontinuities. When T has no flips we say that it is an oriented interval exchange
transformation of n intervals. If there are not fake discontinuities we say that T is a proper
IET. Note that a discontinuity a ∈ [0, 1] is fake when the map is in fact continuous in a. For
instance, the identity map on [0, 1] can be regarded as a 2-IET with permutation (1, 2) and a
fake discontinuity at any point a ∈ [0, 1]. The notions of circle exchange transformation of n
intervals with k flips or circle exchange transformation of n intervals without flips are obtained
by replacing [0, 1] with S1 = [0, 1]/ ≡, (0 ≡ 1). We will denote this map by the acronym
(n, k)-CET or simply CET.

IETs and CETs are easily related by means of the universal standard covering e : R→
S1 given by e(x) = e2πix. For a given proper (n, k)-IET defined on D ⊂ [0, 1], T, we can
define a unique (n, k)-CET, Tc, such that the diagram

D ⊂ [0, 1] T−→ R
e ↓ ↓ e

Dc ⊂ S1 Tc
−→ S1

commutes (see e.g., [11] for more information on the standard covering of the circle).
Although the discontinuities of Tc become discontinuities of T using e, T can have two
extra discontinuities. If there is a point of continuity of Tc, w = e2πit with t ∈ [0, 1], such
that Tc(w) = e2πi, then t is a discontinuity of T. In addition, if e2πi is in an interval of
continuity of Tc, let us say Ic

j , then e−1(Ic
j ) decomposes into two intervals of continuity of

T. Then:

Remark 1.

• If Tc is a proper (n, k)-CET, then T is a proper (n′, k′)-IET for some n ≤ n′ ≤ n + 2,
k ≤ k′ ≤ k + 2.

• Conversely, if T is a proper (n, k)-IET , then Tc is a proper (n′, k′)-IET for some n− 2 ≤
n′ ≤ n, k− 2 ≤ k′ ≤ k.
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For example, any (6, 4)-IET with permutation (−3, 5,−1,−6, 2,−4) becomes a (4, 2)-
CET while the (4, 2)−IET associate to (−4, 2, 1,−3) continues being a (4, 2)-CET.

The orbit of x ∈ (0, 1) is given by

OT(x) := {Tn(x) : n ∈ Z and Tn−1(x) ∈ Dom(T)}.

Moreover, we also define the orbits OT(0) = {0} ∪ OT(limx→0+ T(x)) and OT(1) =
{1} ∪ OT(limx→1− T(x)). Similarly, the right and left orbits at discontinuity points can be
defined. T is said to be minimal if OT(x) is dense in [0, 1] for any x ∈ [0, 1]. Transitivity is a
weaker condition; namely, T is said to be transitive if there exists some x ∈ [0, 1] such that
OT(x) is dense in [0, 1]. An n-IET is said to be uniquely ergodic if it only admits the Lebesgue
measure and its multiples as invariant measures (recall that a probabilistic measure µ is
invariant by T if µ(A) = µ(T−1(A)) for all Borel sets A).

The simplest IETs, oriented 2-IETs T with slope 1 on their two pieces of continuity,
show that a dichotomic behavior exists. T is either a rational or non-rational rotation.
Thus, either T is minimal or all the points, except for the ones in the orbit of the point of
discontinuity, are periodic of the same period (see, e.g., [11]). The behavior of oriented and
non-oriented, i.e., with flips, IETs differs. Roughly speaking, almost all oriented n-IETs are
minimal while almost all (n, k)-IETs with k ≥ 1 have at least one periodic point and are not
minimal. To precise these facts, we will introduce the way of codifying IETs in Section 1.1.

We are motivated by the longstanding problem of obtaining the set of periods of
functions defined on one interval into itself. It is known that the celebrated Sharkovsky’s
Theorem gives the solution when the map is continuous [12,13]. Many works in this
direction have appeared by changing the phase space or by considering non-autonomous
dynamical systems. A wide review on this subject can be found in [14]. This paper aims to
advance the study of the periodic structure of IETs. We will give a complete classification
of the periods of 2-IETs, introduce a framework to study the periodicity of general IETs and,
as an application, analyze the periods of a particular case of 3-IETs. Of course, there is a
lot of work to be done to characterize the periods of this family of maps. It is important to
highlight that in [15], in the open problems session of the conference “Thirty Years after
Sharkovskiı̆’s Theorem: New Perspectives” (Murcia, 1994), M. Misiurewicz proposed the
following question: “Characterize all possible sets of periods of periodic orbits of interval
maps f : [0, 1

2 ) ∪ ( 1
2 , 1] → [0, 1] such that f is continuous and strictly increasing on [0, 1

2 )

and is continuous and strictly decreasing on ( 1
2 , 1]”. Our results on (2, 1)-IETs give a partial

solution to this problem that was also studied in [16].
The next subsections present well-known facts on IETs and prove some interesting

properties on Poincaré maps of IETs. In Section 2 we characterize completely the periods of
2-IETs. In Section 3 we present the general framework to study the periods of IETs which is
applied to a case study of 3-IETs in Section 4. The next section contains two case studies for
two fixed permutations that show that characterizing the periods of general IETs is not an
easy task. A section of conclusions ends the paper.

1.1. Coordinates in the Set of IETs

A signed permutation is an injective map

π : Nn = {1, 2, . . . , n} → Nσ
n = {−n,−(n− 1), . . . ,−1, 1, 2, . . . , n}

such that |π| : Nn → Nn is bijective, that is, a standard permutation. Let Sσ
n be the set of signed

permutations. A non standard permutation will be a signed permutation π whenever π(i) < 0
for some i. We represent π by (π(1), π(2), . . . , π(n)) ∈ (Nσ

n )
n. A permutations is irreducible

if |π({1, 2, . . . t})| 6= {1, 2, . . . , t} for any 1 ≤ t < n. The set of irreducible permutations is
denoted by Sσ,∗

n . The subset Sσ,+
n of standard permutations π with |π|(n) 6= n will play an

important role. Observe that Sσ,∗
n ( Sσ,+

n .
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Fix R+ = (0, ∞), Λn = Rn
+. We establish a one to one map between the set of n-IETs

and Cn = Λn × Sσ
n . Let T : D =

⋃n
i=1 Ii ⊂ (0, 1) → (0, 1) be an n-IET. Then its associated

coordinates in (λ, π) ∈ Cn are defined by:

• λi = ai+1 − ai for all i ∈ Nn.
• π(i) is positive (resp. negative) if T|Ii has slope 1 (resp. −1). Moreover |π(i)| is the

position of the interval T(Ii) in the set {T(Ii)}n
i=1 with the usual order in R.

These coordinates allow us to identify T = (λ, π). For a fixed permutation π we
can consider the Lebesgue measure of the cone Λn on the set of n-IETs having associated
permutation π. Then we can state the following result.

Theorem 1. Let π : Nn → Nn be an irreducible permutation. Then:

• If π is standard, then almost all (with respect to the Lebesgue measure induced on Λn) n-IETs
of the form (λ, π) are minimal. Moreover if T = (λ, π) is oriented, π irreducible and the
components of λ are rationally independent then T is minimal (Keane [1]).

• If π is standard, then almost all n-IETs of the form (λ, π) are uniquely ergodic (Masur [17]
and Veech [18]).

• If π is not standard, then almost all (n, k)-IETs, k ≥ 1, of the form (λ, π) have periodic orbits
(Nogueira [2]).

Remark 2. Assume that π is reducible, T = (λ, π) and t < n satisfying |π|(Nt) = Nt. Then,
the dynamics of T decomposes in the (independent) dynamics of T1 = T|⋃t

i=1 Ii
and T2 = T|⋃n

i=t+1 Ii

which are IETs of less than n intervals and Per(T) = Per(T1) ∪ Per(T2). Moreover, if T is
transitive then π is irreducible.

It is well known that IETs decompose into periodic and minimal components [2,19–21].
This decomposition is essential to analyze the set of periods. Each periodic component
has either two or one associated periodic orbits depending on whether it reverses the
orientation or not. An open interval J is said to be rigid if all positive iterates Tm are
defined; that is, these iterates do not contain discontinuity points. When a rigid interval J
does not admit any other rigid interval containing it, then we say that J is a maximal rigid
interval. Observe that for any maximal rigid interval J there is a minimal positive integer m
such that Tm(J) = J and then all points in J have either period 2m or m. Both periods exist
when (Tm)′(x) = −1 for any x ∈ J, and only m if (Tm)′(x) = 1 for any x ∈ J.

Let J be a maximal rigid interval and let m be positive as above. Then
⋃m−1

j=0 T j(J) is said
to be a periodic component of T. A minimal component of T is a non-empty set M ⊆ Dom(T)
such that M = Cl(OT(x)) for any x ∈ M having either full forward or full backward orbit
(here, Cl(A) denotes the topological closure of the set A). Similarly, a transitive interval is
defined. The next result has an obvious relevance for us (see [22], Th. A).

Theorem 2 (Nogueira, Pires, Troubetzkoy). The numbers nper of periodic components and nmin
of minimal components of an n-IET satisfy the inequality nper + 2ntran ≤ n.

Also, the Main Theorem in [23] gives an important information.

Theorem 3 (Gutierrez, Lloyd, Pires, Zhuzhoma). Given n ≥ k ≥ 1, there exists a transitive
proper (n, k)-CET if and only if n + k ≥ 5.

It is also remarkable the next result from [24].

Theorem 4 (Linero, Soler). Given n ≥ k ≥ 1, with n ≥ 4, there exist proper minimal uniquely
ergodic (n, k)-IETs.

Combining Theorems 2 and 3, since transitive components of (2, k)-CET are related
to transitive components of an (n, k′)-IETs with n ≤ 2 and k′ ≤ k. Observe that T has
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transitive components if and only if Tc also has transitive components and any periodic
orbit of T is mapped by e to a periodic orbit of Tc. Then, we have the following corollary.

Corollary 1. Let k ∈ {1, 2} and let be T a (2, k)-IET. Then T does not admit transitive components,
and the number of periodic components is bounded by two.

Proof. Any (2, k)-IET can be seen as a (n′, k′)-CET, Tc, with 1 ≤ n′ ≤ 2. Moreover
1 ≤ k′ ≤ k ≤ 2 and n′ + k′ ≤ 4, then Tc is not transitive by Theorem 3 and so is not T.

Also, by Theorem 2, the number of transitive components, ntran, satisfies nper +
2ntran ≤ n = 2. Then either nper = 0 and ntran = 1 (which is not possible by the above
paragraph), or nper ≥ 1 and ntran = 0.

Remark 3. There exist 3-IETs with flips and transitive components. For instance take T = (λ, π)
with π = (2, 1,−3). Then the dynamics of T decomposes independently in the dynamics of T|I1∪I2

and the dynamics of T|I3 . Observe that I3 is a periodic component with points of periods 1 and 2. In
addition, for appropriate values of λ1 and λ2 T|I1∪I2 is a non rational rotation and then I1 ∪ I2 is a
transitive component.

To investigate the notion of minimality only irreducible permutations must be are con-
sidered. However, for this paper we have to take into account all the IETs with associated
permutation in Sσ

n . Observe that an IET, T, associated to a permutation in Sσ
n\Sσ,+

n decom-
poses into two IETs: one without discontinuities, T1 = T|In , and the other one, T2 = T|∪n−1

j=1 Ij
,

having one less discontinuity than T. Observe that, then, Per(T) = Per(T1) ∪ Per(T2) and
Per(T1) = 1 or Per(T1) = {1, 2} depending on whether T1 is oriented or not. In particular,
if T = (λ, π) is a 2-IET then Per(T) = {1, 2} for any π ∈ {(−1, 2), (1,−2), (−1,−2)}.

1.2. Poincaré Map

Let T = (λ, π) be an n-IETswith π ∈ Sσ,+
n and λn = λ|π|−1(n). Then we can define

the Poincaré map in the set I\In, T1 such that T1(x) = T(x) if x ∈ I\(In ∪ I|π|−1(n)) and
T1(x) = T2(x) if x ∈ I|π|−1(n). Figures 1 and 2 show the graphs of 3-IETs and their Poincaré
maps. This map T1 has less discontinuities than T but the set of periods is different. In
particular, any periodic orbit of T1 of period p intersecting I|π|−1(n) becomes (adding some
points) a periodic orbit of T of period p + np where np denotes the times that the orbit visits
In (or equivalently I|π|−1(n)). A similar reasoning can be made when λ1 = λ|π|−1(1). We
obtain the following results.

Figure 1. Graph of a (3, 1)-IET with permutation (3, 1,−2) and a = 0.3 (left). On the (right), the
graph of the Poincaré map.



Mathematics 2022, 10, 1487 6 of 32

Figure 2. The graph of a (3, 3)-IET with permutation (−3,−1,−2) and a = 0.25 (left). On the (right),
the graph of its Poincaré map.

Proposition 1. Let T = (λ, π), π ∈ Sσ,+
n and assume that λn = λ|π|−1(n). Let T1 be the Poincaré

map of T on I\In, let x ∈ I|π|−1(n) and assume that x is a periodic point of T1 of period p. Then x is
a periodic point of T of period p + np, where np is the cardinality of OT1(x) ∩ I|π|−1(n).

Proposition 2. Let T = (λ, π), π ∈ Sσ
n , |π|(1) 6= 1 and assume that λ1 = λ|π|−1(1). Let T1 be

the Poincaré map of T on I\I1, x ∈ I|π|−1(1) and assume that x is a periodic point of T1 of period p.
Then x is a periodic point of T of period p + np, where np is the cardinality of OT1(x) ∩ I|π|−1(1).

These results allow us to analyze the set of periods of some 3-IETs as we show in
Section 4.

1.3. Inverse and Conjugate

To simplify the characterization of the set of periods of (n, k)-IETs we will study how
this set behaves under conjugation and inverse.

Let us fix an (n, k)-IET, T = (λ, π), and consider its inverse T−1 = (λi, πi). In addition,
we introduce the homeomorphism h : [0, 1] → [0, 1], h(x) = 1− x, which holds h2 = Id.
We define the conjugated map of T by means of h, Th, by Th := h ◦ T ◦ h−1. Th is also an
IET(since h is an isometry), and Th = (λh, πh).

Theorem 5. Let T = (λ, π) be a (n, k)-IET. Then:

(a) T−1 = (λi, πi) with λi
j = λ|π|−1(j) and πi(j) = σ(|π−1|(j))|π|−1(j).

(b) Th = (λh, πh) with λh
j = λn−j and πh(j) = σ(π(n− j))(n− |π|(n− j)).

(c) Per(T) = Per(T−1) = Per(Th).

Proof. (a) Assume that the intervals of continuity of T are {Ij}n
j=1 and the interval of

continuity of T−1 are {Lj}n
j=1. Then T(Ij) = L|π|(j) and λj = λi

|π|(j) for any 1 ≤ j ≤ n, also

Lj = T(I|π|−1(j) and λi
j = λ|π|−1(j).

|πi|(j) denotes the position of the interval Lj after applying T−1, observe that
T−1(Lj) = T−1(T(I|π|−1(j))) = I|π|−1(j). Hence |πi|(j) = |π|−1(j). Moreover, the slope
of T−1|Lj coincides with the one of T|I|π|−1(j)

, therefore πi(j) = σ(|π−1|(j))|π|−1(j).

(b) For Th = h ◦ T ◦ h, we name the interval of continuity by {Lj}n
j=1 and the interval of

continuity of T are {Ij}n
j=1. Observe that {h(Ij)}n

j=1 = {Lj}n
j=1, moreover Lj = h(In−j) and

λh
j = λn−j. Now we are going to see the order of the intervals Th(Lj) = h ◦ T ◦ h(h(In−j))

and h ◦ T ◦ (In−j), observe that the interval In−j is placed by T in the position |π|(n− j)
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and then h carries it to the position n− |π|(n− j). Moreover the slope of Th|Lj is the same
that the one of T|In−j . Thus: πh(j) = σ(π(n− j))(n− |π|(n− j)).

(c) It is immediate to see that x is a periodic point of T of period p if and only if Tp−1(x)
is a periodic point of T−1. Therefore, Per(T) = Per(T−1). On the other hand, taking into
account that (Th)k = (h ◦ T ◦ h)k = h ◦ Tk ◦ h for any k ∈ N, it is easily seen that x is a
periodic point of Th of order p if and only if h(x) is a periodic point of T, and consequently
Per(T) = Per(Th).

We finish this introductory section with the following corollary.

Corollary 2. Let T = (λ, π) with π = (2,−1) and λ = (λ1, λ2). Then T−1 = (λi, πi) with
πi = (−2, 1) and λ = (λ2, λ1) and Per(T) = Per(T−1).

2. Set of Periods of 2-IETs

Thorough this section we will assume that any IET is a 2-IET. The possible generalized
permutations are π1 = (1, 2), π2 = (−1, 2), π3 = (1,−2) and π4 = (−1,−2) for the
reducible case and π5 = (2, 1), π6 = (−2, 1), π7 = (2,−1) and π8 = (−2,−1). Of course,
there are some trivial cases here. If T1 is an IET with generalized permutation π1, then
it is the identity and hence Per(T1) = {1}. Similarly, the IET T8 with permutation π8 is
in fact the map 1− x, with periods Per(T8) = {1, 2}. For an IET Ti with permutation πi,
i = 2, 3, 4, note that they have one invariant subinterval where the map is 1− x and then
{1, 2} ⊂ Per(Ti). Since the maps are the identity or again 1− x on the other subinterval,
we conclude that {1, 2} = Per(Ti), i = 2, 3, 4.

Now, we set a = λ1. For an IET T5 with permutation π5, note that it can be identified
with a rotation on the circle S1. It is well-known, see e.g., [11], that in this case, if T5(x) =
x + 1− a on [0, a) and T5(x) = x− a on (a, 1], then Per(T5) = ∅ if a is not a rational number,
and Per(T5) = {n} if a = m/n, with m < n, gcd(n, m) = 1.

So, the difficult case appears when Ti is an IET with associated generalized permutation
πi, with i = 6, 7. Taking into account that λ1 = a, the 2-IET for π7 is given by

Ta(x) =
{

x + 1− a i f x ∈ [0, a),
1− x i f x ∈ (a, 1].

Next result simplifies the problem.

Lemma 1. The map ϕ(x) = 1− x is a conjugacy between suitable IETs T6 = T̃a and T7 = Ta
with a ∈ (0, 1).

Proof. Let

T̃a(x) =
{
−x + 1 i f x ∈ [0, 1− a),

x− 1 + a i f x ∈ (1− a, 1],

be an IET with associated permutation π6. It is a straightforward computation that

Ta(x) = (ϕ ◦ T̃a ◦ ϕ)(x) =
{

x + 1− a i f x ∈ [0, a),
1− x i f x ∈ (a, 1],

which concludes the proof.

The above lemma yields that Per(Ta) = Per(T̃a). Next result characterizes the periods
of Ta with associated generalized permutation π7.

Theorem 6. Let T0(x) = 1− x and for a given a ∈ (0, 1) let

Ta(x) =
{

x + 1− a i f x ∈ [0, a),
1− x i f x ∈ (a, 1].
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Then:

(a) If a = n
n+1 for some n ∈ N∪ {0}, then Per(Ta) = {n + 1, 2(n + 1)}.

(b) If a ∈ (aL, aR), with aL = n−1
n and aR = n

n+1 for some n ∈ N, then Per(Ta) = Per(TaL) ∪
Per(TaR), that is, Per(Ta) = {n, 2n, n + 1, 2(n + 1)}.

Proof. (a) For n = 0 the result is trivial. Let n ≥ 1 and notice that 1− a = 1
n+1 . Define the

subintervals

Ij := (j(1− a), (j + 1)(1− a)) =
(

j
n + 1

,
j + 1
n + 1

)
, j = 0, 1, . . . , n.

Note that
I \ {T−i

a (a) : i ≥ 0} = ∪n
j=0 Ij. (1)

Figure 3 shows an example a map with a = 11
12 .

Figure 3. Graph of Ta with a = 11
12 . The displayed grid is made with the endpoints of the intervals Ij,

j = 1, . . . , 12.

Then, it is easy to check that Ta(Ij) = Ij+1 for j = 0, 1, . . . , n− 1, and Ta(In) = I0. As
a consequence, we have that Tn+1

a (Ij) = Ij for j = 0, 1, . . . , n. Moreover, (Tn+1
a |Ij)(x) =

(2j + 1)(1− a)− x for x ∈ Ij. The fact that Per(Tn+1
a |Ij) = {1, 2} for j = 0, 1, . . . , n, jointly

with the property that the intervals Ij are periodic with period n + 1 allow us to conclude
that Per(Ta) = {n + 1, 2(n + 1)}.

(b) Define the subintervals

I2j := (j(1− a), (j− n)(1− a) + 1),

I2j+1 := ((j− n)(1− a) + 1, (j + 1)(1− a)),

for j = 0, 1, . . . , n− 1 and
I2n := (n(1− a), 1).

Note that
I \ {T−i

a (a) : i ≥ 0} = ∪n
j=0 I2j. (2)

We have that Ta(I2j) = I2(j+1) for j = 0, 1, . . . , n− 1 and Ta(I2n) = I0. In addition,
(T2n+2

a |I2j)(x) = x for x ∈ I2j for j = 0, 1, . . . , n. Reasoning as in part (a), we have
that {n + 1, 2(n + 1)} ⊂ Per(Ta). Similarly, Ta(I2j+1) = I2(j+1)+1 and (T2n

a |I2j+1)(x) = x
for x ∈ I2j+1 for j = 0, 1, . . . , n − 1. Then {n, 2n} ⊂ Per(Ta). By (2) we conclude that
Per(Ta) = {n, 2n, n + 1, 2(n + 1)}, and the proof concludes.
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Remark 4. It is important to realize the next fact. Following the proof of Theorem 6 we can see that
any periodic orbit of Ta of period n + 1 in (0, a) contains n elements from (0, a) and just one from
(a, 1). If the periodic orbit has 2n + 2 elements, then only two of them are in (a, 1). It is easy to see
from the conjugacy that the opposite situation happens with the conjugate map T̃a, that is, a periodic
orbit of period n + 1 has one element in (0, 1− a), and two when the period is 2n + 2.

Remark 5. Fix a = n
n+1 , n ≥ 0. If we denote by T−a (resp. T+

a ) the left continuous (resp. right
continuous) by defining T−a (a) = limx→a,x<a Ta(x) (resp. T+

a (a) = limx→a,x>a Ta(x)), then it
is easy to see that a is a periodic point of period n + 2 for T−a (resp. n for T+

a ). The periodic orbit of
a under T−a is

{a, 1, 0, 1− a, 2(1− a), . . . , n(1− a)}

while under T+
a is

{a, 1− a, 2(1− a), . . . , n(1− a)}.

Then, we conclude that Per(T−a ) = Per(Ta) ∪ {n + 2} and Per(T+
a ) = Per(Ta) ∪ {n}.

Remark 6. Now, fix a ∈ (aL, aR), with aL = n−1
n and aR = n

n+1 for some n ∈ N. Defining T−a
and T+

a as in the previous remark, we check that the periodic orbit of a under T+
a is

{a, 1, 0, 1− a, 2(1− a), . . . , n(1− a), 1− n(1− a), 1− (n− 1)(1− a), . . . , 1− 2(1− a)}

and T+
a is

{a, 1− a, 2(1− a), . . . , n(1− a), 1− n(1− a), 1− (n− 1)(1− a), . . . , 1− 2(1− a)}.

Then, we conclude that Per(T−a ) = Per(Ta) ∪ {2n + 4} and Per(T+
a ) = Per(Ta).

Remark 7. Theorem 6 partially solves a question posed by M. Misiurewicz in [15]. The question
reads as follows: assume a map f which is increasing and continuous on [0, 1/2) and decreasing and
continuous on (1/2, 1]. Characterize the periods of f . Theorem 6 proves that no forcing relationship
similar to, e.g., that of Sharkovsky’s theorem, is possible. To check this, note that the conjugacy

φa(x) =

{
x
2a i f x ∈ [0, a),

x+1−2a
2(1−a) i f x ∈ (a, 1],

takes the map Ta into the map φa ◦ Ta ◦ φ−1
a fulfilling the hypothesis of the question.

Remark 8. As we mentioned before, in [16] the Misiurewicz’s problem is studied under some
hypothesis. Our results state that there will not be a forcing theorem of periods in general. Still, it is
unclear whether the situation with IETs with permutation (2,−1) is analogous to continuous circle
maps in the following sense. Rotations of the circle can also be seen as IETs with permutation (2, 1)
that establish that a forcing relationship is not possible for circle maps. However, the set of periods
and the cases where forcing relationships exist are well-known for circle maps [11].

We finish this section by summarizing the periods for 2-IETs in Table 1 and Theorem 7.

Theorem 7. Let n ≥ 0 be an integer and let A be one of the following sets: {n + 1, 2(n + 1)},
{n, 2n, n + 1, 2(n + 1)}, ∅ or {n + 1}. Then:

• If T is a 2-IET we have Per(T) = A for some of the above sets.
• Conversely, given a set A there exists a 2-IET, T, with Per(T) = A.
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Table 1. For 0 < a < 1, n ∈ N, and the 2-IET Ta with discontinuity at a, it is summarized the set of
periods according to the permutation π.

π Per(Ta) π Per(Ta)

(1, 2) {1} (1,−2) {1, 2}

(−1,−2) {1, 2} (2, 1) {n} if a = p
n , with p and n coprime naturals,

∅ if a is not rational,

(−1, 2) {1, 2} (2,−1)
{n + 1, 2(n + 1)} if a = n

n+1 ,
{n, 2n, n + 1, 2(n + 1)} if n−1

n < a < n
n+1 ,

(−2,−1) {1, 2} (−2, 1)
{n + 1, 2(n + 1)} if a = 1

n+1 ,
{n, 2n, n + 1, 2(n + 1)} if 1

n+1 < a < 1
n .

3. An Advance of the 3-IETs Case

For 3-IETs, the situation is more complex than in the 2-IET case. We have 48 possible
signed permutations jointly with their length vector λ = (λ1, λ2, λ3). As one can expect,
the set of periods of a 3-IET will be determined by its signed permutation and its length
vector. So, we denote a 3-IET T by (π, λ). Below, we show how to simplify this problem.

First, we identify the reducible signed permutations π. Note that if |π| = (|π|1, |π|2,
|π|3), then π is reducible if either |π|1 = 1 or |π|3 = 3. In this case, for i = 1, we have
that either T|[0,λ1)

(x) = x and 1 ∈ Per(T) or T|[0,λ1)
(x) = λ1 − x and 1, 2 ∈ Per(T). Note

that then [λ1, 1] is invariant by T, and hence it is a 2-IET on this interval, and therefore its
periods can be computed as in the 2-IET case. We obtain a similar result for the case i = 3.

Next, we check what permutations may have a fake discontinuity. For instance, the
permutation π = (2, 3, 1) gives us a 3-IET which can be defined continuously at λ1 in such
a way that T|[0,λ1+λ2)

is continuous. Then T can be seen as a 2-IET with permutation (2, 1)
and length vector (λ1 + λ2, λ3), and then its periods can be computed. A similar scenario is
found for the permutation π = (−3,−2, 1). So, we can remove this kind of permutations.

Finally, for a fixed 3-IET T, note that its inverse T−1 and its conjugate Th are also 3-IETs
which hold the relationship

Per(T) = Per(T−1) = Per(Th).

So, in Tables 2–5, obtained by straightforward computations, we list the suitable 3-IETs
T ≡ (π, λ) and their inverses and conjugates. These are the permutations that have to be
considered to obtain the set of periods.

Table 2. 3-IETs without flips.

T T−1 Th

(3, 2, 1)
(λ1, λ2, λ3)

(3, 2, 1)
(λ3, λ2, λ1)

(3, 2, 1)
(λ3, λ2, λ1)

If the signed permutation is fixed, as λ3 = 1− λ2 − λ1, the set of periods must depend
on two parameters λ1 and λ2. First we assume that λ1, λ2 ∈ Q and such that λ1 = k1

m ,
λ2 = k2

m and λ3 = m−k1−k2
m , with k1 + k2 < m, m, k1, k2 ∈ N. Note that ki and m need not

be relatively prime, for instance λ =
(

2
6 , 1

6 , 3
6

)
. Note also that one element of the triple

{k1, k2, m− k1 − k2} must be relatively prime with m, i.e., λ =
( 2

6 , 2
6 , 2

6
)

is not possible, it is

λ =
(

1
3 , 1

3 , 1
3

)
. Fix Ij =

(
j−1
m , j

m

)
, for j = 1, . . . , m.



Mathematics 2022, 10, 1487 11 of 32

Table 3. 3-IETs with one flip.

T T−1 Th

(−3, 2, 1)
(λ1, λ2, λ3)

(3, 2,−1)
(λ3, λ2, λ1)

(3, 2,−1)
(λ3, λ2, λ1)

(3,−2, 1)
(λ1, λ2, λ3)

(3,−2, 1)
(λ3, λ2, λ1)

(3,−2, 1)
(λ3, λ2, λ1)

(3, 2,−1)
(λ1, λ2, λ3)

(−3, 2, 1)
(λ3, λ2, λ1)

(−3, 2, 1)
(λ3, λ2, λ1)

(3,−1, 2)
(λ1, λ2, λ3)

(−2, 3, 1)
(λ2, λ3, λ1)

(2,−3, 1)
(λ3, λ2, λ1)

(3, 1,−2)
(λ1, λ2, λ3)

(2,−3, 1)
(λ2, λ3, λ1)

(−2, 3, 1)
(λ3, λ2, λ1)

(−2, 3, 1)
(λ1, λ2, λ3)

(3,−1, 2)
(λ3, λ1, λ2)

(3, 1,−2)
(λ3, λ2, λ1)

(2,−3, 1)
(λ1, λ2, λ3)

(3, 1,−2)
(λ3, λ1, λ2)

(3,−1, 2)
(λ3, λ2, λ1)

Table 4. 3-IETs with two flips.

T T−1 Th

(−3, 2,−1)
(λ1, λ2, λ3)

(−3, 2,−1)
(λ3, λ2, λ1)

(−3, 2,−1)
(λ3, λ2, λ1)

(−3,−1, 2)
(λ1, λ2, λ3)

(−2, 3,−1)
(λ2, λ3, λ1)

(2,−3,−1)
(λ3, λ2, λ1)

(−3, 1,−2)
(λ1, λ2, λ3)

(2,−3,−1)
(λ2, λ3, λ1)

(−2, 3,−1)
(λ3, λ2, λ1)

(3,−1,−2)
(λ1, λ2, λ3)

(−2,−3, 1)
(λ2, λ3, λ1)

(−2,−3, 1)
(λ3, λ2, λ1)

(−2,−3, 1)
(λ1, λ2, λ3)

(3,−1,−2)
(λ3, λ1, λ2)

(3,−1,−2)
(λ3, λ2, λ1)

(−2, 3,−1)
(λ1, λ2, λ3)

(−3,−1, 2)
(λ3, λ1, λ2)

(−3, 1,−2)
(λ3, λ2, λ1)

(2,−3,−1)
(λ1, λ2, λ3)

(−3, 1,−2)
(λ3, λ1, λ2)

(3,−1,−2)
(λ3, λ2, λ1)

Table 5. 3-IETs with three flips.

T T−1 Th

(−3,−1,−2)
(λ1, λ2, λ3)

(−2,−3,−1)
(λ2, λ3, λ1)

(−2,−3,−1)
(λ3, λ2, λ1)

(−2,−3,−1)
(λ1, λ2, λ3)

(−3,−1,−2)
(λ3, λ1, λ2)

(−3,−1,−2)
(λ3, λ2, λ1)

Let A be the n× n matrix such that aij = 1 if T(Ii) ⊆ Ij and the slope in Ii is positive,
aij = −1 if T(Ii) ⊆ Ij and the slope in Ii is negative, and aij = 0 otherwise. Note that there
is one no zero entry in each row (resp. column). It is easy to see that Tn has associated
matrix An. The following facts are easy to check:

(P1) If ajj = 1 for some j ∈ {1, . . . , n}, then 1 ∈ Per(T).
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(P2) If ajj = −1 for some j ∈ {1, . . . , n}, then 1, 2 ∈ Per(T).
(P3) If ajj+1 = aj+1j = −1 for some j ∈ {1, . . . , n}, then 1, 2 ∈ Per(T).

Hence, we can state the following algorithm to compute the periods of T. We find
the first integer n such that An has entries holding one of the properties (P1)-(P3). Then,
either n or n and 2n are in Per(T). We repeat this process until we find n such that An is a
diagonal matrix. In this process, we find all the periods of T.

The matrix A allows us to construct a directed graph as follows. The set of vertices is
{1, 2, . . . , m} and there is an arrow from vertex i to vertex j (i→ j) if T(Ii) ⊆ Ij, i.e., aij 6= 0.
We add the sign ± to the arrow to stress that the slope of T|Ii is positive or negative. We

will write either i +→ j or i −→ j. A sequence of vertices and arrows starting and ending at
the same vertex is a loop. Loops characterize the periods of T. Below, an example.

Example 1. Fix π = (3, 1,−2) and λ =
(

1
5 , 1

5 , 3
5

)
. The shape of T can be seen in Figure 4.

Figure 4. Graph of T with π = (3, 1,−2) and λ =
(

1
5 , 1

5 , 3
5

)
. Note the intervals (j/5, (j + 1)/5) for

j = 0, 1, 2, 3, 4.

It is easy to see that the matrix

A =


0 0 0 0 1
1 0 0 0 0
0 0 0 −1 0
0 0 −1 0 0
0 −1 0 0 0

.

Note that a43 = a34 = −1, so {1, 2} ⊂ Per(T) by (P3). It is easy to check that

A2 =


0 −1 0 0 0
0 0 0 0 1
0 0 1 0 0
0 0 0 1 0
−1 0 0 0 0

, A3 =


−1 0 0 0 0
0 −1 0 0 0
0 0 0 −1 0
0 0 −1 0 0
0 0 0 0 −1


and A6 is the identity matrix. Since, e.g., the position (1, 1) of A3 is −1, by (P2), we have that
1, 2 ∈ Per(T3), and hence 3, 6 ∈ Per(T). So, Per(T) = {1, 2, 3, 6}.

Alternatively, the loops
1 +→ 5 −→ 2 +→ 1

and
3 −→ 4 −→ 3
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gives periods 3, 6 for the first case, and 2 for the second one. Noticing that vertices 3 and 4 are
associated to intervals [2/5, 3/5] and [3/5, 4/5] whose intersection 3/5 is a continuity point of T,
we check that 1 is also a period.

In the next section, we will apply all these notions to the particular case λ1 = λ3. Hence,
the 3-IET depends on one parameter, and it is easier to characterize the set of periods.

4. 3-IETs: The Case λ1 = λ3

As a first step in studying the set of periods for 3-IETs, we consider that the lengths λ1
and λ3 are equal. We distinguish several cases, according to the associated permutation π
and the number of flips. Of course, we consider the cases of Tables 2–5 described before.
From now on, we set a := λ1 so that λ2 = 1− 2λ1 = 1− 2a. Note that a ∈

(
0, 1

2

)
. We define

I1 := (0, λ1) = (0, a),

I2 := (λ1, λ1 + λ2) = (a, 1− a),

and
I3 := (λ1 + λ2, 1) = (1− a, 1).

4.1. 3-IETs without Flips

Here the unique permutation we have to consider is (3, 2, 1). As λ1 = λ3 it is easy to
see that Per(T) = {1, 2}, where the fixed points are in I2 and the periodic points of period
2 are located in I1 ∪ I3.

4.2. 3-IETs with One Flip

We consider the permutations described in Table 3, so that we have to distinguish
several cases.

4.2.1. Permutations (−3, 2, 1) and (3, 2,−1)

We fix the permutation (−3, 2, 1). Figure 5 shows the graph of the map for a = 1
4 .

Figure 5. Graph of a (3, 1)-IET with permutation (−3, 2, 1) and a = 0.25.

Note that T|I2 is the identity therefore 1 ∈ Per(T). On the other hand,

I1
−→ I3

+→ I1,

which implies that Per(T) = {1, 2, 4}.
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4.2.2. Permutation (3,−2, 1)

An example of IET with this permutation and a = 1
5 can be seen in Figure 6.

Figure 6. Graph of a (3, 1)-IET with permutation (3,−2, 1) and a = 0.2.

Note that T leaves the interval I2 invariant with negative slope, so 1, 2 ∈ Per(T). On
the other hand,

I1
+→ I3

+→ I1,

which implies that Per(T) = {1, 2}.

4.2.3. Permutations (3, 1,−2) and (−2, 3, 1)

By Table 3, both IETs associated with permutations (3, 1,−2) and (−2, 3, 1) have the
same periods when λ1 = λ3. So we fix (3, 1,−2). The 3-IET with a flip with associated
permutation (3, 1,−2) is

Ta(x) :=


x + 1− a, if x ∈ I1,
x− a, if x ∈ I2,
−x + 2(1− a), if x ∈ I3.

(3)

Its graph for a = 0.3 and the graph of its Poincaré map can be seen in Figure 1.

Lemma 2. Let T be the IET of Equation 3. Then, its Poincaré map T1 is given by

T1(x) =
{

1− x i f x ∈
(
0, a

1−a
)
,

x− a
1−a i f x ∈

( a
1−a , 1

)
.

Proof. It is a straightforward computation.

Theorem 8. Let Ta be the IET of (3). Then:

(a) If a = 1
n+2 for some n ≥ 1, then Per(Ta) = {n + 2, 2(n + 2)}.

(b) If a ∈
(

1
n+2 , 1

n+1

)
for some n ≥ 1, then Per(Ta) = {n + 1, 2(n + 1), n + 2, 2(n + 2)}.

Proof. First, note that limx→1−a−x + 2(1− a) = 1− a, and since I3 is an open interval,
1 6∈ Per(T). By Lemma 2, we consider the Poincaré map T1. Let A = 1− a

1−a = 1−2a
1−a . By

Lemma 1 and Theorem 6, we have that the periods of T1 are either Per(T1) = {n + 1, 2(n +
1)} if A = n

n+1 , which is equivalent to a = 1
n+2 , or Per(T1) = {n, 2n, n + 1, 2(n + 1)} if

n−1
n < A < n

n+1 , which is equivalent to 1
n+2 < a < 1

n+1 . It follows from the proof of
Theorem 6 that any periodic orbit of T1 visits the interval

(
0, a

1−a
)

one or two times. So, the
number of times np that any periodic orbit of T visits I3 is just one or two. As a consequence,
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by Proposition 1, we have that the periods of T are either Per(Ta) = {n + 2, 2(n + 2)} if
a = 1

n+2 , or Per(Ta) = {n + 1, 2(n + 1), n + 2, 2(n + 2)} if 1
n+2 < a < 1

n+1 , which concludes
the proof.

4.2.4. Permutations (3,−1, 2) and (2,−3, 1)

By Table 3, both IETs associated with permutations (3,−1, 2) and (2,−3, 1) have the
same periods when λ1 = λ3. So we fix (3,−1, 2) and note that the 3-IET reads as follows

Ta =


x + 1− a, if x ∈ I1,
−x + 1− a, if x ∈ I2,
x− a, if x ∈ I3.

(4)

Lemma 3. Let Ta be the IET of Equation (4). Then, its Poincaré map T1 is given by

T1(x) =
{

x + 1−2a
1−a i f x ∈

(
0, a

1−a
)
,

1− x i f x ∈
( a

1−a , 1
)
.

Proof. It is a straightforward computation. Note that the Poincaré map is normalized to
interval [0, 1].

Figure 7 shows the graphs of Ta and its Poincaré map for a = 0.4.

Figure 7. The graph of IET Ta with permutation (3,−1, 2) and a = 0.4 (left). On the (right), the graph
of its Poincaré map.

Theorem 9. Let Ta be the IET given by (4). Then:

(a) If a < 1
3 , then Per(Ta) = {1, 2, 3, 6}.

(b) If a ≥ 1
3 , then Per(Ta) = {2n + 1, 2(2n + 1)} if a = n

2n+1 and Per(Ta) = {2n− 1, 2(2n−
1), 2n + 1, 2(2n + 1)} if n−1

2n−1 < a < n
2n+1 .

Proof. First, it is straightforward to check that Ta has a fixed point in I2 whenever a < 1
3 .

Note that, in addition, 2 ∈ Per(Ta). By Lemma 3, we consider the Poincaré map T1. Let
A = 1− 1−2a

1−a = a
1−a . By Lemma 1 and Theorem 6, we have that the periods of T1 are either

Per(T1) = {n + 1, 2(n + 1)} if A = n
n+1 , which is equivalent to a = n

2n+1 , or Per(T1) =

{n, 2n, n + 1, 2(n + 1)} if n−1
n < A < n

n+1 , which is equivalent to n−1
2n+1 < a < n

2n+1 . It
follows from the proof of Theorem 6 that any periodic orbit of T1 visits the interval

( a
1−a , 1

)
one or two times. So, the number of times np that any periodic orbit of period n + 1 T
visits I3 is n, and 2n times if the period is 2(n + 1). As a consequence, by Proposition
1, we have that the periods of T are either Per(Ta) ⊂ {2n + 1, 2(2n + 1)} if a = n

2n+1 ,
or Per(Ta) ⊂ {2n− 1, 2(2n− 1), 2n + 1, 2(2n + 1)} if n−1

2n+1 < a < n
2n+1 . Note that when
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n = 1, then n
2n+1 = 1

3 . In addition, the sequence n
2n+1 is increasing, so 1

3 is its minimum
value. Then (b) follows. To check (b), note that if a ∈ (0, 1/3), Per(T1) = {2, 4}, and so
Per(Ta) = {1, 2, 3, 6}.

4.3. 3-IETs with Two Flips

In this subsection, we consider 3-IETs with two flips and λ1 = λ3. We consider the
permutations showed in Table 4. It is easy to see that for the permutation (−3, 2,−1) the
set of periods is Per(T) = {1, 2}. We study the other cases.

4.3.1. Permutations (−3,−1, 2) and (2,−3,−1)

By Table 4, both IETs with permutations (−3,−1, 2) and (2,−3,−1), respectively, have
the same periods when λ1 = λ3. So, we fix (−3,−1, 2) and note that the IET Ta, showed in
Figure 8, is given by

Ta =


1− x, if x ∈ I1,
−x + 1− a, if x ∈ I2,
x− a, if x ∈ I3.

(5)

Figure 8. Graph of the (3, 2)-IET with permutation (−3,−1, 2) and a = 0.3.

Theorem 10. Let Ta be the IET given by (5). Then:

(a) If a < 1
3 , then Per(Ta) = {1, 2, 3}.

(b) If a = 1
3 , then Per(Ta) = {3}.

(c) If a > 1
3 , then Per(Ta) = {2, 3, 4}.

Proof. For a = 1
3 , it is a simple matter to see that the only period is 3, since the third iterate

is equal to the identity map and the map Ta itself does not have fixed points.
For a < 1

3 , we find a fixed point given by x0 = 1
2 (1− a). Moreover, (0, a) and (a, 1− 2a)

are rigid intervals whose orbits are described in this way

(0, a) −→ (1− a, 1) +→ (1− 2a, 1− a) −→ (0, a)

and
(a, 1− 2a) −→ (a, 1− 2a) −→ (a, 1− 2a),

where we have used that a < 1− 2a < 1− a. Being the closure of the periodic components
equal to the unit interval, we deduce that the set of periods in this case is {1, 2, 3}.

When a > 1
3 , it holds 1− a < 2a < 1, and it is immediate to check that (0, 1− 2a) and

(1− 2a, a) are rigid intervals whose periodic components are given by

(0, 1− 2a) −→ (2a, 1) +→ (a, 1− a) −→ (0, 1− 2a)
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and
(1− 2a, a) −→ (1− a, 2a) +→ (1− 2a, a),

respectively. Therefore, the set of periods is {2, 3, 4}. (Observe that the closure of the
periodic components recover all the unit interval).

Remark 9. We can reach the same result using a different argument. Note that the Poincaré map
is T1(x) = 1− x, which has set of periods {1, 2}. Taking this fact into account, it is easy to obtain
the result of Theorem 10.

4.3.2. Permutations (−3, 1,−2) and (−2, 3,−1)

By Table 4, both IETs with permutations (−3, 1,−2) and (−2, 3,−1), respectively, have
the same periods when λ1 = λ3. So we fix (−3, 1,−2). The analytical description of the
(3, 2)-IET with two flips and signed permutation (−3, 1,−2), graph showed in Figure 9, is

Ta =


1− x, if x ∈ I1,
x− a, if x ∈ I2,
−x + 2− 2a, if x ∈ I3.

(6)

Figure 9. The graph of a (3, 2)-IET with permutation (−3, 1,−2) and a = 0.15.

Theorem 11. Let Ta be the IET given by (6). Assume that a ∈ Q, a = p
q , with gcd(p, q) = 1.

Then Per(Ta) = {q}. Otherwise, Per(Ta) = ∅.

Proof. The Poincaré map of Ta is a rotation of the circle. We define

r :=
λ2

λ1 + λ2
=

1− 2a
1− a

=
q− 2p
q− p

and
s :=

λ1

λ1 + λ2
=

a
1− a

=
p

q− p
.

Note that since gcd(p, q) = 1, we have that gcd(q− 2p, q− p) = 1. Then, the Poincaré
map T1 is the circle map given by

T1(x) = x + r = x +
q− 2p
q− p

.

Now two possibilities arise depending on r. First, if r is not rational, then Per(T1) =
∅ = Per(T) and T is transitive. Second, if r ∈ Q, then Per(T1) = {q − p}, T1 has a
periodic component which decomposes in q− p intervals, (q− p)s = p in

(
0, a

1−a
)

and
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(q− p)r = q− 2p in
( a

1−a , 0
)
. Remark that the p intervals in I1 unfold in 2p intervals in

I1 ∪ I3 and we receive for T a periodic component with 2(q− p)s + (q− p)r = q intervals.
Therefore Per(T) = {q}.

4.3.3. Permutations (3,−1,−2) and (−2,−3, 1)

By Table 4, both IETs with permutations (3,−1,−2) and (−2,−3, 1), respectively, have
the same periods when λ1 = λ3. So, we fix (3,−1,−2). The analytical description of the
(3, 2)-IET with two flips and signed permutation (3,−1,−2), graph showed in Figure 10, is

Ta =


x + 1− a, if x ∈ I1,
−x + 1− a, if x ∈ I2,
−x + 2(1− a), if x ∈ I3.

(7)

Figure 10. The graph of a (3, 2)-IET with permutation (3,−1,−2) and a = 0.25.

Clearly, if λ2 = λ1, that is a = 1
3 , we easily see that Per(Ta) = {3}. In general, the

normalized Poincaré map T1(x) = 1− x and so Per(T1) = {1, 2}. If λ2 > λ1, that is,
a < 1

3 , then the interval I∗2 = (a, 1− 2a) is invariant with negative slope, so 1, 2 ∈ Per(Ta).
Three subintervals with the same length remain, so any orbit outside I∗2 visits I3 once. By
Proposition 1, we conclude that Per(T) = {1, 2, 3}. Conversely, we assume that λ2 < λ1,
i.e., a > 1

3 . Again, it is easy to see that any orbit visits I3 once and by Proposition 1, we
conclude that Per(T) = {2, 3}.

4.4. 3-IETs with Three Flips

By Table 5, both IETs with permutations (−3,−1,−2) and (−2,−3,−1), respectively,
have the same periods when λ1 = λ3. So, we fix (−3,−1,−2). The analytical description
of the (3, 2)-IET with two flips and signed permutation (3,−1,−2), graph showed in
Figure 2, is

Ta =


−x + 1, if x ∈ I1,
−x + 1− a, if x ∈ I2,
−x + 2(1− a), if x ∈ I3.

(8)

In addition, it can be checked easily that the Poincaré map is that of Lemma 3. Then,
we can state the following result.

Theorem 12. Let Ta be the IET given by (7). Then:

(a) If a < 1
3 , then Per(Ta) = {1, 2, 3, 6}.

(b) If a ≥ 1
3 , then Per(Ta) = {2n + 1, 2(2n + 1)} if a = n

2n+1 and Per(Ta) = {2n− 1, 2(2n−
1), 2n + 1, 2(2n + 1)} if n−1

2n−1 < a < n
2n+1 .
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Proof. We use Lemma 3 and Theorem 6 and proceed as in the proof of Theorem 9.

5. Two Case Studies of 3-IETs

This section will study the set of periods of 3-IETs for two different permutations with
one flip, namely (3, 1,−2) and (3,−2, 1). Our study shows that one must use different
techniques to compute the periods of T. Of course, this fact is an additional problem for
the characterization of periods of general IETs.

5.1. The Permutation π = (3, 1,−2)

Note that this map is defined as

T(x) =


x + 1− λ1 i f x ∈ [0, λ1),

x− λ1 i f x ∈ (λ1, λ1 + λ2),
−x + 1 + λ2 i f x ∈ (λ1 + λ2, 1].

First, we prove the following result.

Lemma 4. The 3-IET T with permutation π = (3, 1,−2) has a fixed point if and only if λ3 > λ1.

Proof. T has a fixed point is −x + 1 + λ2 = x. The fixed point is

x =
1 + λ2

2
,

but note that it has to be greater than λ1 + λ2. This condition reads as

1 + λ2

2
> λ1 + λ2,

which implies easily
λ3 > λ1.

Since the proof works in both directions, it concludes.

Assume that λ3 > λ1 so that T has a fixed point. Then, the interval

J =
(

λ1 + λ2, lim
x→(λ1+λ2)+

T(x)
)

and contains the fixed point of T. In addition,

lim
x→(λ1+λ2)+

T(x) = 1− λ1,

and so, the length of |J| = 1− 2λ1 − λ2. Let λ∗3 = λ3 − |J| = λ1. Normalizing λ′1 = λ1
1−|J| ,

λ′2 = λ2
1−|J| and λ′3 =

λ∗3
1−|J| , we define T′ to have permutation (3, 1,−2) and length vector(

λ′1, λ′2, λ′3
)
. Then, we have the following result.

Theorem 13. Under the above notation, assume that λ3 > λ1. Then

1. If λ′1 = 1
n+2 for some n ∈ N, then Per(T) = {1, 2, n + 2, 2(n + 2)}.

2. If λ′1 ∈
(

1
n+2 , 1

n+1

)
, then Per(T) = {1, 2, n + 1, 2(n + 1), n + 2, 2(n + 2)}.

Proof. Note that all the points of J are periodic with period one or two. Since J is invariant
by T so are the subintervals of I \ J. Then, the map T′ is well defined and we have that
Per(T) = {1, 2} ∪ Per(T′). In addition, T′ is given by the expression
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T′(x) =


x + 1− λ1 i f x ∈ [0, λ′1),

x− λ1 i f x ∈ (λ′1, λ′1 + λ′2),
−x + 2(1 + λ′1) i f x ∈ (λ′1 + λ′2, 1].

By Theorem 8, we check that the periods of T′ are either Per(T′) = {n + 2, 2(n + 2)}
when λ′1 = 1

n+2 for some n ∈ N or Per(T′) = {n + 1, 2(n + 1), n + 2, 2(n + 2)} when

λ′1 ∈
(

1
n+2 , 1

n+1

)
. Then, the proof concludes.

Theorem 13 characterizes the set of periods of T when λ3 > λ1 even when the
components λ1, λ2 and λ3 are not rationally dependent. Now, we assume that λ1 = k1

m ,
λ2 = k2

m and λ3 = k3
m = m−k1−k2

m , for some k1, k2, m ∈ N. If gcd(k1, k2, m) = l 6= 1, then we

can find k′1, k′2, m′ ∈ N such that write λ1 =
k′1
m′ , λ2 =

k′2
m′ and λ3 =

m′−k′1−k′2
m′ .

Since Theorem 13 characterizes the periods of T such that k3 > k1, we focuss our
attention to the case k3 ≤ k1. It is easy to realize that T is a variation of the rotation of the
circle (x + 1− λ1)mod1. Only the interval I3 is modified to reverse the orientation. We
consider the map T defined on (0, m) as follows

T(x) =


x + m− k1 i f x ∈ [0, k1),

x− k1 i f x ∈ (k1, k1 + k2),
−x + m + k2 i f x ∈ (k1 + k2, m].

Note that this can be done by the conjugacy that carries [0, 1] into [0, m] in a linear
way. We label the subinterval (j, j + 1) by j, j = 0, 1, . . . , m− 1. It is immediate to see that if
j < k1 + k2, then

j +→ (j + 1− k1)modm.

On the other hand, for 1 ≤ i ≤ k3 we check that the iteration of the interval labeled
with m− i is given by

m− i −→ [(m− i) + (m− k1 + 2i− 1− k3)]modm = (m + i− k1 − k3 − 1)modm.

Recall that m = k1 + k2 + k3 and note that

T(m− i) = R(m− k3 + i− 1)

for 1 ≤ i ≤ k3, whew R is the rotation R(x) = (x + m− k1)modm.
Now, fixed i, for any j ∈ {1, . . . , k3} we consider the equation

(m + i− k1 − k3 − 1) + (m− k1)X = (m− j)modm,

which tells us the time X needed for the rotation R to go from interval (m + i− k1 − k3 − 1)
to m− j, which reads as

(m− k1)X = (k1 + k3 + 1− i− j)modm. (9)

In the following, we will use a series of fundamental results on congruences. First, the
reader is referred to ([25], Chapter 5) for an account of the topic and the resolution of linear
congruences. The Equation (9) has solution Xij if and only if gcd(m, k1) = gcd(m− k1, m)
divides k1 + k3 + 1− i− j. Clearly, Xij = Xi′ j′ when i + j = i′ + j′. We construct the matrix
X = (Xij), where Xij is either the solution of the equation or the symbol ∗, here used to
state that there is not solution and therefore the intervals m + i− k1 − k3 − 1 and m− j are
not map one into the other by the rotation R.

Now, we distinguish two cases. If gcd(m, k1) = 1, then the Equation (9) always have a
unique solution given by

Xij = (k1 + k3 + 1− i− j)(m− k1)
ϕ(m)−1modm,
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where ϕ : N→ N is the Euler function given by

ϕ(m) = Card{n ≤ m : gcd(n, m) = 1}.

If gcd(m, k1) = d > 1, then the Equation (9) has a solution if and only if d divides
k1 + k3 + 1− i− j. It has d different solutions, the smaller one can be computed by solving
the equation

m− k1

d
X =

k1 + k3 + 1− i− j
d

mod
m
d

,

that is, the solution will be

Xij =
k1 + k3 + 1− i− j

d

(
m− k1

d

)ϕ(m
d )−1

mod
m
d

.

Hence, we can compute the set of periods of T in some particular cases as follows.

Theorem 14. Let k1 ≥ k3 = 1. Then:

(a) If gcd(m, k1) = 1, then Per(T) = {m, 2m}.
(b) If gcd(m, k1) = d > 1, Per(T) = {m/d, 2m/d}.

Proof. With the notation above,

m− 1 −→ [(m− 1) + (m− k1)]modm = [m− (1 + k1)]modm,

and therefore, T moves the intervals (j, j + 1), j = 0, 1, . . . , m − 1 like the rotation R :
[0, m]→ [0, m] given by R(x) = (x + m− k1)modm. Note that T(m− 1, m) = R(m− 1, m).
See Figure 11 to see the differences between the map T and the rotation R.

Figure 11. The graph of a (3, 1)-IET with permutation (3, 1,−2) and λ = (8, 2, 1). The dotted line in
interval I3 is the graph of the rotation R.

Note that i = j = 1 and thus Equation (9) reads as

(m− k1)X = k1modm,

which obviously has always solution. If gcd(m, k1) = 1, then the solution is unique and
equal to m− 1 because

(m− k1)(m− 1)modm = k1modm.
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Then m ∈ Per(T), and since the image of interval m− 1 has negative slope, we have
that 2m ∈ Per(T). This finishes the proof of (a). To prove (b), we take the equation

m− k1

d
X =

k1

d
mod

m
d

.

Reasoning as above, we find that X11 = m
d − 1. Finally, for the rest of intervals j in

I1 ∪ I2 not included in the orbit of m− 1 note that T acts as the rotation R and therefore
the period associated to the interval j is m/d. Then, Per(T) = {m/d, 2m/d} and the
proof concludes.

Theorem 15. Let k1 ≥ k3 = 2. Then:

(a) If gcd(m, k1) = 1, then Per(T) = {m1, 2m1, m2, 2m2}, where

m1 = −kϕ(m)−1
1 modm,

and
m2 = kϕ(m)−1

1 modm.

In addition, m1 + m2 = m, with m1 6= m2.
(b) If gcd(m, k1) = d > 1, Per(T) = {m/d, 2m/d}.

Proof. We can see T on [0, m− 2] as the rotation R(x) = (x + m− k1)modm. Figure 12
shows the differences between the maps T and R.

Figure 12. The graph of a (3, 1)-IET with permutation (3, 1,−2) and λ = (8, 1, 2). The dotted line in
interval I3 is the graph of the rotation R.

Note that i, j ∈ {1, 2} and thus Equation (9) gives us three equations, namely

(m− k1)X = (k1 + 1)modm, for i = j = 1, (10)

(m− k1)X = k1modm, for i + j = 3, (11)

and
(m− k1)X = (k1 − 1)modm, for i = j = 2. (12)

Now, we prove (a). Reasoning as in Theorem 14, we know that Equation (11) has
solution X12 = X21 = m− 1. Thus, since the numbers Xij are generated in function of
the dynamics of rotation R(x) = (x + m− k1)modm, which moves the indices forming a
periodic orbit of period m, necessarily the solutions X11 and X22 are smaller than m− 1.
Then, m1 = X11 + 1 and m2 = X22 + 1 have to be in Per(T). As the slope of T on the
subintervals m− 1 and m− 2 is negative, then 2m1, 2m2 ∈ Per(T). Note also that m1 6= m2
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(if m1 was equal to m2, then X11 would be equal to X22 and the two linear congruences
(10) and (11) would be satisfied. Then, subtracting these equations we would obtain
0 = 2modm, which is impossible because m ≥ 3). To check that m1 + m2 = m, note that

m1 = 1 + X11 = 1 + (k1 + 1)(m− k1)
ϕ(m)−1modm

= 1 + (k1 + 1)(−1)ϕ(m)−1kϕ(m)−1
1 modm

= 1− (k1 + 1)kϕ(m)−1
1 modm

= 1−
(

kϕ(m)
1 + kϕ(m)−1

1

)
modm

= −kϕ(m)−1
1 modm,

where we have used the development of Newton’s binomial, and the facts that ϕ(m) is
even for all m ≥ 3 and kϕ(m)

1 = 1modm. Similarly

m2 = 1 + X22 = kϕ(m)−1
1 modm.

Thus

m1 + m2 = −kϕ(m)−1
1 modm + kϕ(m)−1

1 modm = m.

Now, we prove (b). Equation (11) has solution because d divides k1. However, d does
not divide k1 − 1 and k1 + 1 and thus Equations (10) and (12) do not have any solution.
Then the matrix

X =

(
∗ m

d − 1
m
d − 1 ∗

)
.

Then, the subinterval formed with subintervals m− 1 and m− 2 is periodic of period m
d

and with negative slope, which implies that m/d, 2m/d ∈ Per(T). For the rest of intervals
outside of I3, since no other periods are possible for the rotation x + m

d , we conclude
the proof.

Theorem 16. Let k1 ≥ k3 = 3. Then:

(a) If gcd(m, k1) = 1, then Per(T) = {m1, 2m1, m2, 2m2}, where either

m1 = −kϕ(m)−1
1 modm,

and
m2 = 2kϕ(m)−1

1 modm,

or
m1 = 2kϕ(m)−1

1 modm,

and
m2 = −kϕ(m)−1

1 modm.

In addition, either 2m1 + m2 = m or m1 + 2m2 = m.
(b) If gcd(m, k1) = d > 1, then:

(b1) If d 6= 2, then Per(T) = {m/d, 2m/d}.
(b2) If d = 2, then Per(T) = {m1, 2m1, m2, 2m2, m3, 2m3} where

m1 = −
(

k1

2

)ϕ(m
2 )−1

mod
m
2

,

m2 =
m
2

,
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and

m3 =

(
k1

2

)ϕ(m
2 )−1

mod
m
2

.

Proof. Note that i, j ∈ {1, 2, 3} and thus Equation (9) gives us three equations, namely

(m− k1)X = (k1 + 2)modm, for i = j = 1, (13)

(m− k1)X = (k1 + 1)modm, for i + j = 3, (14)

(m− k1)X = k1modm, for i + j = 4, (15)

(m− k1)X = (k1 − 1)modm, for i + j = 5, (16)

(m− k1)X = (k1 − 2)modm, for i = j = 3. (17)

Now, we prove (a). We know that Equation (15) has the unique solution X13 = X22 =
X31 = m− 1. Then the matrix X = (Xij) has the form

X =

 X11 X12 m− 1
X21 m− 1 X23

m− 1 X32 X33

.

Since the rotation R moves the intervals j in a periodic manner, with period m, we
deduce that max{X11, X12, X23, X33} < m− 1. Since T(m− 2, m− 1) = R(m− 2, m− 1)
and R is m-periodic, the orbit of the subinterval m− 2 under T must be combined with
either m − 1 or m − 3. Thus, either X11 > X12 or X33 > X32 (note that since T(m −
1, m) = R(m− 3, m− 2) and T(m− 3, m− 2) = R(m− 1, m), otherwise it would imply that
subintervals m− 1 and m− 3 would be periodic without any combination with subinterval
m− 2, and this is not possible). If X11 > X12, then the subintervals m− 1 and m− 2 form
a periodic subinterval with period m1 = X11 + 1 and negative slope, which implies that
m1, 2m1 ∈ Per(T). Then, the subinterval m− 3 is periodic with period m2 = 1 + X33 and so
Per(T) = {m1, 2m1, m2, 2m2}. Similarly, we reasoning with the case X33 > X23 to conclude
that Per(T) = {m1, 2m1, m2, 2m2}. Note that it is not possible to have periodic intervals
outside I3 because they would have to have period m. Then, either 2m1 + m2 = m (if
X11 > X12) or m1 + 2m2 = m (if X33 > X23). The values of m1 and m2 are obtained as in
the proof of Theorem 15, and the proof of (a) concludes.

Now, we prove (b). If gcd(k1, m) = d > 1, then, solving the linear congruences we
obtain the matrix

X =

 X11 ∗ m
d − 1

∗ m
d − 1 ∗

m
d − 1 ∗ X33

.

Note that Equations (13) and (17) have solution if and only if d = 2. This is the case
(b2), in which Per(T) = {m1, 2m1, m2, 2m2, m3, 2m3}, where

m1 = 1 + X11 = 1 +
k1 + 2

2

(
m− k1

2

)ϕ(m
2 )−1

mod
m
2

,

m2 =
m
2

,

and

m3 = 1 + X33 = 1 +
k1 − 2

2

(
m− k1

2

)ϕ(m
2 )−1

mod
m
2

.

On the other hand,

m1 + m3 = −
(

k1

2

)ϕ(m
2 )−1

mod
m
2
+

(
k1

2

)ϕ(m
2 )−1

mod
m
2

=
m
2

,
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and thus m1 + m2 + m3 = m.
In the case (b1), d 6= 2, the matrix is

X =

 ∗ ∗ m
d − 1

∗ m
d − 1 ∗

m
d − 1 ∗ ∗

,

and thus Per(T) = {m/d, 2m/d}, and the proof concludes.

The case k3 = 4 presents a variation. By Theorem 2, we can have at most three sets
of the form {m, 2m}, for some positive integer m, belonging to the set of periods of T.
However, now we have four subintervals with a negative slope, and we must figure out
how they join. The procedure is as before. Here, we can see T on [0, m− 4] as the rotation
R(x) = (x + m− k1)modm. However, now, in the interval I3, we have four subintervals
with a negative slope, so that we write the matrix

X =


X11 X12 X13 X14
X21 X22 X23 X24
X31 X32 X33 X34
X41 X42 X43 X44


Assume first that gcd(m, k1) = 1. The smallest entries of the matrix will provide the

periods of T. Below, we show several examples.

Example 2. Let m = 13 and the length vector (8, 1, 4). Figure 13 shows the graph of T in which
one can check the loops that give rise to the set of periods. We write the matrix

X =


10 2 7 12
2 7 12 4
7 12 4 9
12 4 9 1

.

The element X44 = 1 gives us a loop of length 2 with a negative slope, so 2, 4 ∈ Per(T). The
elements X12 = X21 = 2 gives us a loop of length 6 with a positive slope, so the period 6. However,
note that subintervals 11 and 12 are contiguous. Both forms a loop of [11, 12] of length 3 and
negative slope, and so the set of periods {3, 6}. Finally, the element X33 = 4 forms a loop of length
5 and negative slope, and so the set of periods {5, 10}. Thus Per(T) = {2, 4, 3, 6, 5, 10}.

Figure 13. The graph of a (3, 1)-IET with permutation (3, 1,−2) and λ = (8, 1, 4).

Example 3. Let m = 13 and the length vector (7, 2, 4). Figure 14 shows the graph of T in which
one can check the loops that give rise to the set of periods. We write the matrix
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X =


6 8 10 12
8 10 12 1
10 12 1 3
12 1 3 5

.

The element X33 = 1 gives us a loop of length 2 with a negative slope, so 2, 4 ∈ Per(T). The
elements X24 = X42 = 1 gives us a loop of length 4 with a positive slope, so the period 4. However,
the subintervals 9, 10 and 11 are contiguous and hence, they form a loop of [9− 11] of length 2
and negative slope, and so 2 ∈ Per(T). We use 6 subintervals to create this loop. The elements
X34 = X43 = 3 informs us of the existence of a loop of length 6 and positive slope, and so the period
6 ∈ Per(T). However, we use six subintervals, and one would remain, which is impossible because
it has to be periodic. The element X44 = 5 gives again a loop of length six, which is not possible.
Anyway, note that we cannot use these values because we already used the intervals 9, 10 and 11.
So, the next element available is X11 = 6, which gives a loop of length 7 with a negative slope. Thus
Per(T) = {2, 4, 7, 14}.

Figure 14. The graph of a (3, 1)-IET with permutation (3, 1,−2) and λ = (7, 2, 4).

Example 4. Let m = 13 and the length vector (6, 3, 4). Figure 15 shows the graph. We write
the matrix

X =


5 3 1 12
3 1 12 10
1 12 10 8
12 10 8 6

.

Figure 15. The graph of a (3, 1)-IET with permutation (3, 1,−2) and λ = (6, 3, 4).
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The element X22 = 1 gives us a loop of length 2 with a negative slope, so we obtain the
periods {2, 4}. On the other hand, the elements X13 = X31 = 1 gives us a loop of length 4 with
a positive slope, so the period 4. However, note that subintervals 10, 11 and 12 are contiguous.
Thus, they form a loop of [10− 12] of length 2 and negative slope, and so the set of periods {2, 4}.
The next element available is X44 = 6, which gives a loop of length 7 with a negative slope. Thus
Per(T) = {2, 4, 7, 14}.

In a similar way, we can check that the 3-IET with vector (5, 4, 4) has matrix

X =


1 9 4 12
9 4 12 7
4 12 7 2

12 7 2 10


and set of periods Per(T) = {2, 4, 3, 6, 5, 10}, and that with vector (4, 5, 4) has matrix

X =


8 5 2 12
5 2 12 9
2 12 9 6

12 9 6 3


and set of periods Per(T) = {3, 6, 4, 8}.

Next we will show an example with gcd(m, k1) > 1.

Example 5. Let m = 24 and the length vector (15, 5, 4). Note that clearly, gcd(m, k1) = 3. We
write the associated matrix

X =


2 ∗ ∗ 7
∗ ∗ 7 ∗
∗ 7 ∗ ∗
7 ∗ ∗ 4

.

Reasoning as in the previous examples Per(T) = {3, 6, 5, 10, 8, 16}.

The same argument can be repeated with k4 > 4, adding rows and columns to the
matrix X. For i ∈ {1, 2, . . . , k3} let mi = 1 + min{Xij : 1 ≤ j ≤ k3}. Then, we can prove the
following result.

Theorem 17. Let k1 ≥ k3 ≥ 4. Then, there are at most three mi1 ≤ mi2 ≤ mi3 , with ij ∈
{1, 2, . . . , k3}, j = 1, 2, 3, and mi1 + mi2 + mi3 ≤ m such that the following hold:

(a) If mij = 1 + Xijij , then mij ∈ Per(T). If, in addition, the slope of T
mij is negative, then

2mij ∈ Per(T).
(b) If mij = 1 + Xij ,ij+1 = 1 + Xij+1,ij , then 2mij ∈ Per(T). If, in addition, the map T is

continuous on the orbit of the interval [ij, ij + 1], then mij ∈ Per(T).
(c) If mij = 1 + Xij ,i = 1 + Xij+1,i, with |i− ij| ≥ 2, then 2mij ∈ Per(T).

Proof. By Theorem 2, the number of periodic components of T is at most three, so we just
need to consider three mi1 ≤ mi2 ≤ mi3 and such that mi1 + mi2 + mi3 ≤ m. The rest of the
proof is analogous to that of Theorems 15 and 16 and the ideas of the above examples.

Remark 10. In Theorem 17, we have that mi1 ≤ mi2 ≤ mi3 must hold a more restricted inequality
if cases (a) or (c) happen. For instance, if we can have mi1 + 1 + 2(mi2 + 1) + 2(mi3 + 1) ≤ m. In
any case, the sum of the smallest periods in each periodic component cannot be greater than m. This
restriction can help sometimes to describe the set of periods of T.

Table 6 shows an example of the set of periods for m = 7.
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Table 6. Periods of T with m = 7.

λ Per(T) λ Per(T) λ Per(T)

(5, 1, 1) {7, 14} (4, 2, 1) {7, 14} (3, 3, 1) {7, 14}
(1, 5, 1) {7, 14} (4, 1, 2) {2, 4, 5, 10} (3, 2, 2) {2, 4, 5, 10}
(2, 3, 2) {3, 6, 4, 8} (1, 4, 2) {1, 2, 6, 12} (3, 1, 3) {2, 4, 3, 6}
(2, 2, 3) {1, 2, 3, 6} (1, 3, 3) {1, 2, 5, 10} (2, 1, 4) {1, 2, 4, 3, 6}
(1, 2, 4) {1, 2, 4, 8} (1, 1, 5) {1, 2, 3, 6}

Remark 11. We have characterized the periods of T when λ1, λ2 and λ3 are rationally dependent.
However, this method is not useful to study what happens when they are rationally independent.

We can see in Table 3 that the permutation (3, 1,−2) has the same set of periods
than the permutations (2,−3, 1) and (−2, 3, 1), changing the role of length vectors. After
changing length vectors, these permutations have the same set of periods as (3,−1, 2). So, it
only remains the cases (−3, 2, 1) (note that (3, 2,−1) provides the same set of periods up to
changes of vector length) and (3,−2, 1). These cases would end the study of permutations
with one flip, but it seems impossible to adapt this section’s techniques and results to these
remaining cases. We will show this fact when analyzing the case of 3-IETs with permutation
π = (3,−2, 1).

5.2. The Permutation π = (3,−2, 1)

Note that the (3, 1)-IET T is defined by

T(x) =


x + 1− λ1 i f x ∈ [0, λ1),

1− x i f x ∈ (λ1, λ1 + λ2),
x− λ1 − λ2 i f x ∈ (λ1 + λ2, 1].

The shape of the map T is shown in Figure 16 for λ1 = 0.6 and λ2 = 0.1. It is also
shown the graph of the 2-IET with permutation (2,−1) which is deeply connected with T.
First, we prove the next lemma.

Figure 16. The graph of the (3, 1)-IET T with permutation (3,−2, 1) and λ = (0.6, 0.1, 0.3) (solid
lines). The thick solid lines correspond to the (2, 1)-IET which can be derived from T.

Lemma 5. The 3-IET T has a fixed point if and only if 2λ1 < 1 < 2(λ1 + λ2).
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Proof. Clearly T can have a fixed point in I2 = (λ1, λ1 + λ2). Since such fixed point
is 1

2 , we easily see that it belongs to I2 if and only if 1/2 ∈ I2, which is equivalent to
2λ1 < 1 < 2(λ1 + λ2).

Assume that 1/2 is a fixed point of T, and therefore λ1 < 1
2 < λ1 + λ2. We take

d1 = 1
2 − λ1 and d2 = λ1 + λ2 − 1

2 . It is easy to see that d1 ≤ d2 (respectively d1 ≥ d2) if
and only if 1 ≤ 2λ1 + λ2 (respectively 1 ≥ 2λ1 + λ2). We set

α := lim
x→λ1

+
T(x) = 1− λ1

and
β := lim

x→(λ1+λ2)−
T(x) = 1− λ1 − λ2.

Observe that if d1 = d2 and hence 2λ1 + λ2 = 1, then α = λ1 + λ2 and β = λ1. We
define the interval

J :=


(λ1, α) i f 1 < 2λ1 + λ2,

(λ1, λ1 + λ2) i f 1 = 2λ1 + λ2,
(β, λ1 + λ2) i f 1 > 2λ1 + λ2,

which is invariant by T and contains the fixed point of T. Then, we define T̃ the 3-IET with
permutation (3,−2, 1) and vector λ̃ =

(
λ1

1−|J| ,
λ2−|J|
1−|J| , λ3

1−|J|

)
. Note that, by construction, T̃

cannot have fixed points, that is, either 2λ1
1−|J| > 1 or 2(λ1+λ2−|J|

1−|J| < 1. Then, we have the
following result.

Proposition 3. Under the above notation, Per(T) = {1, 2} ∪ Per(T̃).

Proof. Note that all the points of J are periodic with period one or two. The proof follows
taking into account that I \ J is invariant by T.

Once we have analyzed the case in which T has fixed points, it remains to discuss two
cases: (a) λ1 > 1

2 ; (b) λ1 + λ2 < 1
2 , which is equivalent to λ3 > 1

2 . However, the 3-IETs with
permutation (3,−2, 1) and length vectors (λ1, λ2, λ3) and (λ3, λ2, λ1) are conjugate (see
Table 3), and thus have the same periods. So, it suffices to study the case λ1 > 1

2 . We start
by proving the next result.

Theorem 18. Let λ1 = n
n+1 for some n ∈ N.

(a) If λ3
λ2+λ3

= m
m+1 for some m ∈ N, then Per(T) = {(n + 1)(m + 1), 2(n + 1)(m + 1)}.

(b) If m−1
m < λ3

λ2+λ3
< m

m+1 for some m ∈ N, then Per(T) = {(n + 1)m, 2(n + 1)m, (n +

1)(m + 1), 2(n + 1)(m + 1)}.

Proof. Note that λ2 + λ3 = 1
n+1 . We have that T maps the intervals ( i−1

n+1 , i
n+1 ) into

( i
n+1 , (i+1)mod(n+1)

n+1 ) for i = 0, 1, . . . , n. Thus, the restrictions Tn+1|( i−1
n+1 , i

n+1 )
: ( i−1

n+1 , i
n+1 )→

( i−1
n+1 , i

n+1 ) are conjugate to the 2-IET T′ with permutation (−2, 1) and vector length(
λ2

λ2+λ3
, λ3

λ2+λ3

)
. Applying Theorem 6 for T′ (notice that λ2

λ2+λ2
= 1

m+1 ), we obtain the re-
sult.

Next, we need to consider the case n−1
n < λ1 < n

n+1 for some n ∈ N. For that, we
denote by T∗ the 2-IET with permutation (2,−1) and length vector (λ1, λ2 + λ3). Given
n ∈ N and a subset A ⊂ N, we define n · A := {na : a ∈ A}. Then, we prove the following.

Theorem 19. Let n−1
n < λ1 < n

n+1 for some n ∈ N \ {1}.

(a) If λ3 = 1− n(1− λ1), then Per(T) = {n, 2n, n + 1}.
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(b) If λ3 < 1− n(1− λ1), then Per(T) = {n, 2n} ∪ (n + 1) · Per(T′), where T′ is the 2-IET

with permutation (−2, 1) and
(

1−n(1−λ1)−λ3
1−n(1−λ1)

, λ3
1−n(1−λ1)

)
and length vector.

Proof. We denote by T∗ the 2-IET with permutation (2,−1) and length vector (λ1, λ2 + λ3).
By Theorem 6, if we iterate with T∗, the interval I0 = (0, 1− n(1− λ1) is periodic with
period n + 1 and the interval I1 = (1− n(1− λ1), 1− λ1) is periodic with period n. Ob-
serve that

|I0|+ |I1| = 1− λ1 = λ2 + λ3.

Hence, since

T j(I0) = (T∗)j(I0) = (j(1− λ1), 1, (n− j)(1− λ1)) ⊂ (0, λ1)

for j = 0, 1, . . . , n− 1, we find that

Tn(I0) = (T∗)n(I0) = (n(1− λ1), 1) = (1− |I0|, 1),

and from

T j(I1) = (T∗)j(I1) = (1− (n− j)(1− λ1), (j + 1)(1− λ1)) ⊂ (0, λ1)

for j = 0, 1, . . . , n− 2, we have that

Tn−1(I1) = (T∗)n−1(I1) = (λ1, n(1− λ1)) = (λ1, 1− |I0|) = (λ1, λ1 + |I1|).

(a) The condition λ3 = 1− n(1− λ1) is equivalent to |I0| = λ3 and |I1| = λ2. Then
Tn+1|I0 : I0 → I0 is the identity, so n + 1 ∈ Per(T). On the other hand, Tn|I1 : I1 → I1 is
1− x, so n, 2n ∈ Per(T). Since (n + 1)|I0|+ n|I1| = 1, the proof of (a) finishes.

(b) The condition λ3 < 1− n(1− λ1) is equivalent to |I0| > λ3, and thus |I1| < λ2. So,
Tn|I1 : I1 → I1 is 1− x, so n, 2n ∈ Per(T). On the other hand, notice that

Tn+1(I0) = T(1− |I0|, 1) = T(1− |I0|, λ1 + λ2) ∪ T(λ1 + λ2, 1),

and thus Tn+1|I0 = T′ : I0 → I0 is the 2-IET with permutation (−2, 1) and length vector(
1−n(1−λ1)−λ3

1−n(1−λ1)
, λ3

1−n(1−λ1)

)
. So, (b) follows.

If λ3 > 1− n(1− λ1), then the situation is much more complicated. The set of periods
cannot be obtained easily from the set of periods of some 2-IET. For instance, when λ1 = 0.6
we show the set of periods of T for several values of λ2 in Table 7. For instance, for λ2 = 0.13
and λ3 = 0.27, we have that Per(T) = {2, 4, 10, 20, 13, 26} and this set of periods cannot be
obtained from a 2-IET because it has at most two periodic components.

Table 7. For λ1 = 0.6, we display the set of periods of T for several values of λ2.

λ2 Per(T) λ2 Per(T)

0.2 {2, 3, 4} 0.19 {2, 4, 64, 128}
0.18 {2, 4, 34, 68} 0.17 {2, 4, 22, 44, 25, 50}
0.16 {2, 4, 19, 38} 0.15 {2, 4, 16, 32}
0.14 {2, 4, 13, 26, 16, 32} 0.13 {2, 4, 10, 20, 13, 26}
0.12 {2, 4, 10, 20, 13, 26} 0.11 {2, 4, 10, 20, 13, 26}
0.10 {10, 20} 0.09 {7, 14, 10, 20, 18, 36}
0.08 {7, 14, 18, 36} 0.07 {7, 14, 58, 116}
0.06 {7, 14, 28, 36, 72} 0.05 {20, 40}
0.04 {12, 24, 13} 0.03 {17, 34, 66, 132}
0.02 {50, 100} 0.01 {100, 200}
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6. Conclusions and Future Work

We have characterized the set of periods of 2-IETs and approached this problem
when 3-IETs are considered. The result for 2-IETs gives an advance to a question posed by
Misiurewicz in 1994, see [15]. As a byproduct, it is interesting to mention that no ordering or
forcing similar to Sharkovsky order is expected for the set of periods of those discontinuous
maps being increasing and continuous on

[
0, 1

2

)
and decreasing and continuous on

(
1
2 , 1
]
.

On the other hand, from our study of 3-IETs, it does not seem easy to give a closed
form for the periods of IETs. As a starting point for this general goal, we have presented
some techniques, as the Poincaré map for some particular cases, the strategy of taking
conjugates or inverse maps to simplify the casuistic, as well as an alternative approach
under matrices associated to a suitable directed graph. With these tools we were able
to obtain the whole study of 3-IETs whose accompanying vector λ = (λ1, λ2, λ3) holds
λ1 = λ3. Moreover, for the sake of warning the reader about the difficulty of the problem,
we have presented two general study cases, partially solved, for which we need to use
some little pieces of linear congruence theory.

We will explore this question of computation of periods for n-IETs, with n ≥ 3, in
future works. However, at least, we know that the case of 3-IETS with λ2 = λ3 is easily
reachable with the techniques shown in this paper, whereas the general case probably
requires the exploration of new tools.
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