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Abstract: For G ∈ Rm×n and g ∈ Rm, the minimization min ‖Gψ− g‖2, with ψ ∈ Rn, is known as the
Tykhonov regularization. We transport the Tykhonov regularization to an infinite-dimensional setting,
that is min ‖T(h)− k‖, where T : H → K is a continuous linear operator between Hilbert spaces H, K
and h ∈ H, k ∈ K. In order to avoid an unbounded set of solutions for the Tykhonov regularization, we
transform the infinite-dimensional Tykhonov regularization into a multiobjective optimization prob-
lem: min ‖T(h)− k‖ and min ‖h‖. We call it bounded Tykhonov regularization. A Pareto-optimal
solution of the bounded Tykhonov regularization is found. Finally, the bounded Tykhonov regular-
ization is modified to introduce the precise Tykhonov regularization: min ‖T(h)− k‖ with ‖h‖ = α.
The precise Tykhonov regularization is also optimally solved. All of these mathematical solutions are
optimal for the design of Magnetic Resonance Imaging (MRI) coils.

Keywords: Hilbert space; convex optimization; supporting vector; matrix norm; MRI
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1. Introduction

Optimization problems are among the questions shared between Pure and Applied
Mathematics, studied in Operator Theory [1–4], in Differential Geometry [5–8], in the
Geometry of Banach Spaces [9,10], and in all areas of Medical, Social, and Experimental
Sciences [11–15].

By means of optimization problems, it is possible to model with precision many
real-life situations, even though, in the case of multiobjective optimization problems,
the existence of global and optimal solutions (optimizing all the objective functions at once)
is not guaranteed. This is why Pareto-optimal solutions were defined and introduced in
the literature of Optimization Theory. In an informal way, a Pareto-optimal solution is a
feasible solution satisfying that if there exists another feasible solution better optimizing
one objective function, then the latter has to be less optimal in another objective function.

As shown in [14,16–19], the design of optimal MRI coils is modeled by means of a
particular case of optimization problems called minimum-norm problems [20], such as{

min ‖ψ‖2,
Gψ = g,

{
min ‖ψ‖2,
‖Gψ− g‖∞ ≤ D,

and
{

min ‖Gψ− g‖2,
ψ ∈ Rn,

for G ∈ Rm×n, ψ ∈ Rn, g ∈ Rm, and D ≥ 0. Notice that the last one of the three
above problems is precisely the finite-dimensional Tykhonov regularization. A theoretical
treatment in the framework of Operator Theory and Functional Analysis will be given
to the above problems, transporting them to an infinite-dimensional setting, as well as a
MATLAB encoding for their finite-dimensional version in Appendices A–D.
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We also introduce in the literature of Optimization Theory the following multiobjective
optimization problem: {

min ‖T(h)− k‖,
min ‖h‖,

where T : H → K is a continuous linear operator between Hilbert spaces H, K and
h ∈ H, k ∈ K, which we call bounded Tykhonov regularization. We provide a nontrivial
Pareto-optimal solution of the bounded Tykhonov regularization. Sometimes, the bounded
Tykhonov regularization might produce a nontrivial Pareto-optimal solution of an exces-
sively small norm. This is why we introduce what we name as the precise Tykhonov
regularization: {

min ‖T(h)− k‖,
‖h‖ = α,

which we fully and optimally solve.

2. Materials and Methods

In this Methodology Section, we properly define the optimization problems that
we will deal with. We will also gather all the necessary concepts, notions, techniques,
and results needed to accomplish our analytical solutions for the previously mentioned
optimization problems.

2.1. Mathematical Formulation of the Optimization Problems

The optimization problems that we will deal with in this manuscript are described
next. As we mentioned before, these three problems arise from the optimal design of
MRI coils.

Problem 1. Let G ∈ Rm×n and g ∈ Rm in the range of G. Solve{
min ‖ψ‖2,
Gψ = g,

(1)

for ψ ∈ Rn.

Observe that, under the settings of Problem 1, g must be in the range of G, that is
there must exist at least one ψ ∈ Rn for which Gψ = g. Otherwise, the feasible region
of Problem 1 is empty. Furthermore, if g = 0, then 0 is trivially the unique solution of
Problem 1. The infinite-dimensional or abstract version of Problem 1 is displayed next.

Problem 2. Let X, Y be Banach Spaces, T : X → Y a continuous linear operator, and y ∈ T(X).
Solve {

min ‖x‖,
T(x) = y,

(2)

for x ∈ X.

Under the settings of Problem 2, x = 0 is the (unique) solution of Problem 2 if and
only if y = 0.

Problem 3. Let G ∈ Rm×n, g ∈ Rm \ {0}, and 0 < D < ‖g‖∞. Solve{
min ‖ψ‖2,
‖Gψ− g‖∞ ≤ D,

(3)

for ψ ∈ Rn.
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Notice that, under the settings of Problem 3, g does not necessarily need to be in the
range of G. However, if the condition 0 < D < ‖g‖∞ is not imposed, then 0 ≤ ‖g‖∞ ≤ D
allows 0 to be the unique solution of Problem 3. The infinite-dimensional or abstract version
of Problem 3 is as follows.

Problem 4. Let X, Y be Banach Spaces, T : X → Y a continuous linear operator, y ∈ Y \ {0},
and 0 < D < ‖y‖. Solve {

min ‖x‖,
‖T(x)− y‖ ≤ D,

(4)

for x ∈ X.

Under the settings of Problem 4, the reason for D to lie in the open interval (0, ‖y‖)
is again to avoid the trivial solution x = 0. Indeed, x = 0 is the (unique) solution of
Problem 4 if and only if D ≥ ‖y‖. The following technical lemma ensures that any solution
of Problem 4 must lie in the boundary of the feasible region. This lemma will be useful
later on.

Lemma 1. Let X, Y be Banach Spaces, T : X → Y a continuous linear operator, y ∈ Y \ {0},
and 0 < D < ‖y‖. If x ∈ X is a solution of Problem 4, then ‖T(x)− y‖ = D.

Proof. If ‖T(x) − y‖ < D, then we can find ‖y‖−D
‖y‖−‖T(x)−y‖ ≤ δ < 1, which implies that

‖T(δx)− y‖ ≤ ‖T(δx)− δy‖+ ‖δy− y‖ = δ‖T(x)− y‖+ (1− δ)‖y‖ ≤ D. Then, δx is in
the feasible region of Problem 4, reaching the contradiction that ‖δx‖ = δ‖x‖ < ‖x‖ ≤
‖δx‖.

The third problem that we will deal with is the Tykhonov regularization.

Problem 5 (Finite-dimensional Tykhonov regularization). Let G ∈ Rm×n and g ∈ Rm. Solve{
min ‖Gψ− g‖2,
ψ ∈ Rn.

(5)

The infinite-dimensional or abstract version of Problem 5 follows next.

Problem 6 (Infinite-dimensional Tykhonov regularization). Let X, Y be Banach Spaces, T :
X → Y a continuous linear operator, and y ∈ Y. Solve{

min ‖T(x)− y‖,
x ∈ X.

(6)

Notice that, under the settings of Problem 6, when y = 0, we obtain the trivial set of
solutions given by ker(T).

2.2. Supporting Vectors

If X, Y are Banach Spaces and T : X → Y is a continuous linear operator, then the
operator norm of T is defined as

‖T‖ := sup
‖x‖≤1

‖T(x)‖.

This norm turns the vector space of continuous linear operators from X to Y, CL(X, Y),
into a Banach Space. When X = Y, we will simply denote it by CL(X). When Y = K (R or
C), we will simply denote it by X∗.
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The concept of the supporting vector was formerly introduced for the first time in [1],
although it appeared implicitly and scattered throughout the literature of Banach Space
Theory, as for instance, in [3,4,9,10].

Definition 1 (Supporting vector). Let X, Y be Banach Spaces. Let T : X → Y be a continuous
linear operator. The set of supporting vectors of T is defined as

suppv(T) := {x ∈ X : ‖x‖ = 1 and ‖T(x)‖ = ‖T‖}.

We refer the reader to [2,21,22] for a topological and geometrical study of the set
of supporting vectors of a continuous linear operator. Supporting vectors have been
successfully applied to solve multiobjective optimization problems that typically arise in
Bioengineering, Physics, and Statistics [14,15,23–25], improving considerably the results
obtained by means of other techniques, such as Heuristic methods [16,18,19].

Definition 2 (1-Supporting vector). Let X be a Banach Space. Let f ∈ X∗ be a continuous linear
functional. The set of 1-supporting vectors of f is defined as

suppv1( f ) := {x ∈ X : ‖x‖ = 1 and f (x) = ‖ f ‖}.

The 1-supporting vectors are special cases of supporting vectors, that is suppv1( f ) ⊆
suppv( f ). We will strongly rely on 1-supporting vectors later on. A standard geometrical
property of 1-supporting vectors is shown in the next remark.

Remark 1. Let X be a Banach Space. Let f ∈ X∗ \ {0}. If x, y ∈ suppv1( f ), then tx + (1−
t)y ∈ suppv1( f ) for all t ∈ [0, 1]. In other words, suppv1( f ) is a convex subset of the unit sphere
SX of X.

2.3. Riesz Representation Theorem on Hilbert Spaces

The Riesz Representation Theorem is one of the most important results in Functional
Analysis and is crucial for working with self-adjoint operators on Hilbert spaces.

Theorem 1 (Riesz Representation Theorem). Let H be a Hilbert space. The dual map of H,

JH : H → H∗

h 7→ JH(h) := h∗ = (•|h), (7)

where
JH(h) = h∗ = (•|h) : H → K

k 7→ JH(h)(k) = h∗(k) = (k|h), (8)

is a surjective linear isometry between H and H∗.

In the frame of the Geometry of Banach Spaces, JH is called the duality mapping.
In Quantum Mechanics, the dual map JH has a different mention and notation. Under the
settings of the Riesz Representation Theorem and by relying on certain techniques of the
Geometry of Banach Spaces and on Remark 1, it can be proven that if h ∈ H \ {0}, then h

‖h‖

is the only 1-supporting vector of h∗, that is suppv1(h
∗) =

{
h
‖h‖

}
.

Let H be a Hilbert space. For every closed subspace M of H, the orthogonal subspace
of M is denoted by M⊥ and the orthogonal projection of H onto M is denoted as pM. Notice
that H = M⊕2 M⊥, in other words, for all x ∈ H,

x = pM(x) + pM⊥(x) and ‖x‖2 = ‖pM(x)‖2 + ‖pM⊥(x)‖2. (9)

If H, K are Hilbert spaces and T : H → K is a continuous linear operator, then there
exists a unique continuous linear operator T∗ : K → H such that (T(h)|k) = (h|T∗(k)) for
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all h ∈ H and all k ∈ K. This operator T∗ is called the adjoint of T. The following technical
lemma is well known in the literature of Functional Analysis and Operator Theory, and it
will be used later on.

Lemma 2. Let H, K be Hilbert spaces. Let T : H → K be a continuous linear operator. Then,
T(H)⊥ = ker(T∗) and T(H) = ker(T∗)⊥.

The finite-dimensional Hilbert spaces, which are involved in the finite-dimensional
problems previously mentioned, will be denoted by `n

2 := (Rn, ‖ · ‖2), where ‖ · ‖2 clearly
denotes the Euclidean norm.

3. Results

This section is aimed at providing analytical solutions for Problems 2 and 4, which
will automatically work for Problems 1 and 3, respectively, since these last two problems
are particular cases of the first two.

3.1. Analytical Solution of Problems 1 and 2 in the Hilbert Space Context

Problem 2 will be actually tackled, and solved completely, in the Hilbert space context.
The reformulation of Problem 2 in the previously mentioned setting follows next.

Problem 7. Let H, K be Hilbert spaces, T : H → K a continuous linear operator, and k ∈ T(H).
Solve {

min ‖h‖,
T(h) = k,

(10)

for h ∈ H.

Observe that Problem 1 is still a particular case of Problem 7, which is itself a particular
case of Problem 2.

Lemma 3. Let H be a Hilbert space. Let M be a closed subspace of H. For every x ∈ X,

(x + M) ∩M⊥ = {pM⊥(x)} and min{‖x + m‖ : m ∈ M} = ‖pM⊥(x)‖.

Proof. We will show first that (x + M) ∩M⊥ = {pM⊥(x)}. Indeed, on the one hand, it
is clear that pM⊥(x) ∈ M⊥ and, by (9), pM⊥(x) = x + (−pM(x)) ∈ x + M, so (x + M) ∩
M⊥ ⊇ {pM⊥(x)}. On the other hand, take arbitrary elements m ∈ M and m⊥ ∈ M⊥ such
that x + m = m⊥. By using again (9),

m⊥ = x + m = pM(x) + pM⊥(x) + m,

meaning that
m⊥ − pM⊥(x) = pM(x)−m ∈ M⊥ ∩M = {0}.

As a consequence, m⊥ = pM⊥(x), and so, x + m = m⊥ = pM⊥(x). This proves the
inclusion (x + M) ∩M⊥ ⊆ {pM⊥(x)}. Let us finally prove that min{‖x + m‖ : m ∈ M} =
‖pM⊥(x)‖. Fix an arbitrary m ∈ M. By virtue of (9), note that

‖x + m‖2 = ‖pM(x) + pM⊥(x) + m‖2

= ‖pM(x + m) + pM⊥(x)‖2

= ‖pM(x + m)‖2 + ‖pM⊥(x)‖2

≥ ‖pM⊥(x)‖2.

Therefore,
min{‖x + m‖ : m ∈ M} ≥ ‖pM⊥(x)‖.
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Since pM⊥(x) ∈ x + M as we have just proven first, we finally conclude that

min{‖x + m‖ : m ∈ M} = ‖pM⊥(x)‖.

Remark 2. Under the settings of Lemma 3, for every y ∈ x + M, it is clear that y + M = x + M
and pM⊥(x) = pM⊥(y).

The following theorem solves Problem 7 completely.

Theorem 2. Let H, K be Hilbert spaces. Let T : H → K be a continuous linear operator. For every
k0 ∈ T(H) and every h0 ∈ T−1(k0), we have the following:

1. min{‖h‖ : h ∈ H, T(h) = k0} =
∥∥∥pker(T)⊥(h0)

∥∥∥.

2. The above min is attained at pker(T)⊥(h0) ∈ T−1(k0).
3. If h1 ∈ T−1(k0), then pker(T)⊥(h0) = pker(T)⊥(h1).

Proof. In the first place, observe that

{h ∈ H : T(h) = k0} = T−1(k0) = h0 + ker(T).

By relying on Lemma 3,

min{‖h‖ : h ∈ H, T(h) = k0} = min
{∥∥h0 + h′

∥∥ : h′ ∈ ker(T)
}
=
∥∥∥pker(T)⊥(h0)

∥∥∥.

Finally, by taking into consideration Lemma 3 together with Remark 2, we see that
pker(T)⊥(h0) ∈ T−1(k0) and pker(T)⊥(h0) = pker(T)⊥(h1) for each h1 ∈ T−1(k0).

Now, we are in the right position to provide a full solution to Problem 1.

Corollary 1. Let G ∈ Rm×n and g ∈ Rm be in the range of G. The solution of Problem 1 is given
by
∥∥∥pker(G)⊥(ψ0)

∥∥∥
2

for any ψ0 ∈ Rn such that Gψ0 = g, and it is attained at pker(G)⊥(ψ0).

Proof. It only suffices to call on Theorem 2 by taking H := `n
2 , K := `m

2 , T := G, k0 := g,
and ψ0 := h0.

A MATLAB encoding for Corollary 1 is available in Appendix A.

3.2. Analytical Solution of Problem 7 When K := K
If we take K := K in Problem 7, then its solution can be also computed in terms of

1-supporting vectors.

Theorem 3. Let H be a Hilbert space. Let h∗0 ∈ H∗ \ {0}. For every λ ∈ K,

min{‖h‖ : h ∈ H, h∗0(h) = λ} = |λ|
‖h0‖

.

Even more, the previous min is attained at λ
‖h0‖

h0
‖h0‖

.

Proof. First off, note that, for every h ∈ H with h∗0(h) = λ,

|λ| = |h∗0(h)| ≤ ‖h∗0‖‖h‖ = ‖h0‖‖h‖,
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meaning that

‖h‖ ≥ |λ|
‖h0‖

.

This proves the inequality:

min{‖h‖ : h ∈ H, h∗0(h) = λ} ≥ |λ|
‖h0‖

.

In order to prove the reverse inequality, we will make use of λ

‖h0‖2 h0. Observe that

h∗0

(
λ

‖h0‖2 h0

)
= λ

h∗0(h0)

‖h0‖2 = λ
‖h0‖2

‖h0‖2 = λ.

Therefore,
λ

‖h0‖2 h0 ∈ {h ∈ H : h∗0(h) = λ}.

Next, ∥∥∥∥∥ λ

‖h0‖2 h0

∥∥∥∥∥ =
|λ|
‖h0‖2 ‖h0‖ =

|λ|
‖h0‖

.

This finally shows that

min{‖h‖ : h ∈ H, h∗0(h) = λ} = |λ|
‖h0‖

and it is attained at λ

‖h0‖2 h0.

As an immediate corollary, if we take m = 1 in Problem 1, then its solution can be also
computed in terms of 1-supporting vectors.

Corollary 2. Let G ∈ R1×n, G 6= 0, and g ∈ R. The solution of Problem 1 is given by |g|
‖Gt‖ , and

it is attained at ψ := g
‖Gt‖

Gt

‖Gt‖ .

Proof. It only suffices to call on Theorem 3 by taking H := `n
2 , h∗0 := G, λ := g, and

h0 := Gt.

A MATLAB encoding for Corollary 2 is available in Appendix B.

3.3. Partial Solution of Problem 3

A particular version of Problem 3 was partially solved in [20] (Corollary 13). Here, we
will follow a completely different approach. Before tackling Problem 3, we will first solve
particular cases of it.

Problem 8. Let X be a Banach Space, f ∈ X∗ \ {0}, and 0 < c ≤ d. Solve{
min ‖x‖,
c ≤ f (x) ≤ d.

(11)

We will first solve Problem 8 by relying on 1-supporting vectors.

Lemma 4. Let X be a Banach Space, f ∈ X∗ \ {0}, and 0 < c ≤ d. The set of optimal solutions of
Problem 8 is given by sol(11) =

{
cx
‖ f ‖ : x ∈ suppv1( f )

}
. In particular, sol(11) 6= ∅ if and only

if suppv1( f ) 6= ∅.
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Proof.

⊆ Fix an arbitrary y ∈ sol(11). We will show that x := ‖ f ‖
c y ∈ suppv1( f ). For every

z ∈ BX \ ker( f ), c
f (z) z is in the feasible region of (11) since f

(
c

f (z) z
)
= c; therefore,

‖y‖ ≤
∥∥∥∥ c

f (z)
z
∥∥∥∥ =

c
| f (z)| ‖z‖. (12)

Now, if we take a sequence (zn)n∈N ⊆ SX \ ker( f ) such that | f (zn)| → ‖ f ‖, we obtain
from (12) that ‖y‖ ≤ c

‖ f ‖ . On the other hand, c ≤ f (y) ≤ ‖ f ‖‖y‖, that is c
‖ f ‖ ≤ ‖y‖.

As a consequence, ‖y‖ = c
‖ f ‖ , meaning that ‖x‖ = 1. Finally, notice that

‖ f ‖ ≥ f (x) = f
(
‖ f ‖

c
y
)
=
‖ f ‖

c
f (y) ≥ ‖ f ‖

c
c = ‖ f ‖,

which implies that f (x) = ‖ f ‖, hence x ∈ suppv1( f ).

⊇ Take any x ∈ suppv1( f ). In the first place, f
(

cx
‖ f ‖

)
= c, so cx

‖ f ‖ is in the feasible region
of problem (11), that is cx

‖ f ‖ is a feasible solution. Next, take y as another feasible
solution of (11). Then, c ≤ f (y) ≤ ‖ f ‖‖y‖; hence,

‖y‖ ≥ c
‖ f ‖ =

∥∥∥∥ cx
‖ f ‖

∥∥∥∥.

This shows that cx
‖ f ‖ ∈ sol(11); in other words, cx

‖ f ‖ is an optimal solution

Notice that the feasible region of Problem 8, c ≤ f (x) ≤ d, can be rewritten as
| f (x)− c+d

2 | ≤
d−c

2 ; hence, Problem 8 is of the same form as Problem 3 whenever c < d.
In the case that c = d, then Problem 8 is a particular case of Problem 1. In fact, Problem 3
can be rewritten as follows.

Problem 9. Let G ∈ Rm×n, g ∈ Rm \ {0}, and 0 < D < ‖g‖∞. Solve

{
min ‖ψ‖2
‖Gψ− g‖∞ ≤ D

⇔


min ‖ψ‖2
|G1ψ− g1| ≤ D
...
|Gmψ− gm| ≤ D

⇔


min ‖ψ‖2
g1 − D ≤ G1ψ ≤ g1 + D
...
gm − D ≤ Gmψ ≤ gm + D

(13)

for ψ ∈ Rn, where g = (g1, . . . , gm)t and Gi is the ith row vector of G for i = 1, . . . , m.

If, under the settings of Problem 9, we assume that g1 = · · · = gm > 0, which is
consistent with the design of optimal MRI coils according to [14,16,18,19], then gi − D =
‖g‖∞ −D > 0 for all i = 1, . . . , m. As a consequence, gi −D ≤ Giψ ≤ gi + D is of the same
form as the feasible region of Problem 11. Observe that, under this assumption, Gi 6= 0 for
all i = 1, . . . , m. In this situation, the infinite-dimensional generalization of Problem 9 is
given as follows.

Problem 10. Let X be a Banach Space, fi ∈ X∗ \ {0}, i = 1, . . . , m, and 0 < c ≤ d. Solve
min ‖x‖,
c ≤ f1(x) ≤ d
...
c ≤ fm(x) ≤ d,

(14)

for x ∈ X.



Mathematics 2022, 10, 1454 9 of 18

Notice that, in the case c < d, Problem 10 is a particular case of Problem 4 since one
can define the following continuous linear operator:

T : X → Rm

x 7→ T(x) := ( f1(x), . . . , fm(x)).
(15)

Then, the feasible region of Problem 10 is precisely

{x ∈ X : c ≤ fi(x) ≤ d ∀i = 1, . . . , m} = {x ∈ X : ‖T(x)− g‖∞ ≤ D},

where g :=
(

c+d
2 , m. . ., c+d

2

)
and D := d−c

2 . If c = d, then by using the same operator T given
in Equation (15), it can be seen that Problem 10 is a particular case of Problem 2. We will
strongly rely on Lemma 4 to approach the optimal solutions of Problem 10.

Theorem 4. Let X be a Banach Space, fi ∈ X∗ \ {0}, i = 1, . . . , m, and 0 < c ≤ d. If there exists
i ∈ {1, . . . , m} and x ∈ suppv1( fi) such that c

‖ fi‖
x ∈ f−1

k ([c, d]) for all k ∈ {1, . . . , m} \ {i},
then c

‖ fi‖
x is an optimal solution of Problem 10.

Proof. In the first place, notice that c
‖ fi‖

x is a feasible solution of Problem 10, that is it
belongs to the feasible region simply because

c ≤ fk

(
c
‖ fi‖

x
)
≤ d

for all k = 1, . . . , m. Let z ∈ X be another feasible solution of Problem 10. In particular,
c ≤ fi(z) ≤ d; therefore, if we consider Problem 8 for fi, we have that c

‖ fi‖
x is an optimal

solution of such a problem in view of Lemma 4. As a consequence,
∥∥∥ c
‖ fi‖

x
∥∥∥ ≤ ‖z‖. Then,

we claim that c
‖ fi‖

x is an optimal solution of Problem 10.

3.4. Analytical Solution of Problems 5 and 6 in the Hilbert Space Context

The solution of the finite-dimensional Tykhonov regularization is well known in the
literature of Optimization Theory. Here, we present a fine argument to solve the infinite-
dimensional Tykhonov regularization in the Hilbert context, whose formulation follows.

Problem 11 (Infinite-dimensional Tykhonov regularization). Let H, K be Hilbert spaces,
T : H → K a continuous linear operator, and k ∈ K. Solve{

min ‖T(h)− k‖,
h ∈ H.

(16)

We will rely on the basic techniques of Hilbert spaces and Operator Theory.

Proposition 1. Let H, K be Hilbert spaces, T : H → K a continuous linear operator, and k ∈
K. Then:

1. If k ∈ T(H), then min{‖T(h)− k‖ : h ∈ H} = 0, and it is attained at any element of
T−1(k).

2. If T has dense range, then inf{‖T(h)− k‖ : h ∈ H} = 0. Hence, Problem 11 has a solution
if and only if k ∈ T(H).

Proof.

1. This is a simple and trivial exercise.
2. Suppose that T has a dense range, that is the closure of T(H) is K. There exists a

sequence (hn)n∈N such that (T(hn))n∈N converges to k. This means that inf{‖T(h)−
k‖ : h ∈ H} = 0. Next, if Problem 11 has a solution h0 ∈ H, then ‖T(h0)− k‖ =
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min{‖T(h) − k‖ : h ∈ H} = inf{‖T(h) − k‖ : h ∈ H} = 0, which implies that
k = T(h0) ∈ T(H). Conversely, suppose that k ∈ T(H), that is there exists h0 ∈ H
with T(h0) = k. Then, ‖T(h0)− k‖ = 0, so it is clear that inf{‖T(h)− k‖ : h ∈ H} =
min{‖T(h)− k‖ : h ∈ H} = 0.

The following theorem is a refinement of Lemma 3.

Theorem 5. Let H be a Hilbert space. Let M be a closed subspace of H. Let h ∈ H. Then,
min{‖h−m‖ : m ∈ M} = ‖pM⊥(h)‖. Even more, the previous min is attained at pM(h).

Proof. We can write h = pM(h) + pM⊥(h). For every m ∈ M,

‖h−m‖2 = ‖pM(h) + pM⊥(h)−m‖2 = ‖pM(h)−m‖2 + ‖pM⊥(h)‖
2 ≥ ‖pM⊥(h)‖

2.

This shows that min{‖h−m‖ : m ∈ M} ≥ ‖pM⊥(h)‖. Finally, notice that pM(h) ∈ M
and ‖h− pM(h)‖ = ‖pM⊥(h)‖. This shows that min{‖h−m‖ : m ∈ M} = ‖pM⊥(h)‖, and
the min is attained at pM(h).

As an immediate consequence of Theorem 5, we obtain the following corollary, which
fully solves Problem 11.

Corollary 3. Let H, K be Hilbert spaces. Let T : H → K be a continuous linear operator of closed
range. For every k0 ∈ K, we have the following:

1. min{‖T(h)− k0‖ : h ∈ H} =
∥∥∥pT(H)⊥(k0)

∥∥∥.

2. The above min is attained at any element of T−1
(

pT(H)(k0)
)

.

3. arg min{‖T(h)− k0‖ : h ∈ H} is bounded if and only if ker(T) = {0}.

Proof. The first two items are a direct application of Theorem 5, so let us simply take
care of the third item. Note that arg min{‖T(h)− k0‖ : h ∈ H} = T−1

(
pT(H)(k0)

)
= h0 +

ker(T) for any h0 ∈ T−1
(

pT(H)(k0)
)

. As a consequence, arg min{‖T(h)− k0‖ : h ∈ H} is
bounded if and only if ker(T) = {0}.

4. Discussion

We discuss in this section several aspects of the obtained results.

4.1. Bounded Tykhonov Regularization

The bounded Tykhonov regularization is a novel concept conceived of in this manuscript
describing a different way to tackle the classical Tykhonov regularization in an original manner
that allows designing efficient MRI coils. The bounded Tykhonov regularization is described
as the following multiobjective optimization problem.

Problem 12 (Finite-dimensional bounded Tykhonov regularization). Let G ∈ Rm×n and
g ∈ Rm. Solve {

min ‖Gψ− g‖2,
min ‖ψ‖2,

(17)

for ψ ∈ Rn.

The infinite-dimensional version of the bounded Tykhonov regularization follows now.
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Problem 13 (Infinite-dimensional bounded Tykhonov regularization). Let X, Y be Banach
Spaces, T : X → Y a continuous linear operator, and y ∈ Y. Solve{

min ‖T(x)− y‖,
min ‖x‖, (18)

for x ∈ X.

The infinite-dimensional bounded Tykhonov regularization in the Hilbert space con-
text is described next.

Problem 14. Let H, K be Hilbert spaces, T : H → K a continuous linear operator, and k ∈ K.
Solve {

min ‖T(h)− k‖,
min ‖h‖, (19)

for h ∈ H.

We will find a nontrivial Pareto-optimal solution of Problem 14.

Theorem 6. Let H, K be Hilbert spaces. Let T : H → K be a continuous linear operator of closed
range. Let k ∈ K. Then, pker(T)⊥

(
T−1

(
pT(H)(k)

))
is a Pareto-optimal solution of (19).

Proof. Bear in mind that Theorem 2(3) ensures that pker(T)⊥

(
T−1

(
pT(H)(k)

))
is a sin-

gleton; hence, we can take h0 ∈ H with {h0} = pker(T)⊥

(
T−1

(
pT(H)(k)

))
. In view of

Theorem 2(2), pker(T)⊥

(
T−1

(
pT(H)(k)

))
⊆ T−1

(
pT(H)(k)

)
. By applying Corollary 3(2),

arg min{‖T(h)− k‖ : h ∈ H} = T−1
(

pT(H)(k)
)

. This implies that ‖T(h0)− k‖ ≤ ‖T(h)−
k‖ for all h ∈ H. Suppose on the contrary that h0 is not a Pareto-optimal solution of (19).
There exists h1 ∈ H satisfying one of the following two possibilities:

• ‖T(h1) − k‖ ≤ ‖T(h0) − k‖ and ‖h1‖ < ‖h0‖. As a consequence, ‖T(h0) − k‖ =

‖T(h1)− k‖, so h1 ∈ arg min{‖T(h)− k‖ : h ∈ H} = T−1
(

pT(H)(k)
)

. Finally, by call-

ing again on Theorem 2(2), arg min
{
‖h‖ : h ∈ T−1

(
pT(H)(k)

)}
= pker(T)⊥(

T−1
(

pT(H)(k)
))

, so h0 is the element of the minimum norm of T−1
(

pT(H)(k)
)

,
reaching the contradiction that ‖h0‖ ≤ ‖h1‖.

• ‖T(h1)− k‖ < ‖T(h0)− k‖ and ‖h1‖ ≤ ‖h0‖. This is impossible because we have
already proven that ‖T(h0)− k‖ ≤ ‖T(h1)− k‖.
As a consequence of the two previous contradictions, we deduce that the singleton

pker(T)⊥

(
T−1

(
pT(H)(k)

))
is a Pareto-optimal solution of (19).

Under the settings of Theorem 6 and by taking into consideration Lemma 2, the reader
should notice that ker(T∗)⊥ = T(H), thus pker(T)⊥

(
T−1

(
pker(T∗)⊥(k)

))
=

pker(T)⊥

(
T−1

(
pT(H)(k)

))
. Hence, pker(T)⊥

(
T−1

(
pker(T∗)⊥(k)

))
is a Pareto-optimal so-

lution of (19). A more intuitive way of understanding Theorem 6 is the following. It is
not hard to see, by keeping in mind Theorem 2, that pker(T)⊥

(
T−1

(
pker(T∗)⊥(k)

))
is the

solution of {
min ‖h‖,
T(h) = pker(T∗)⊥(k).

(20)
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What Corollary 3(2) is saying is that the set of constraints of the above problem,{
h ∈ H : T(h) = pker(T∗)⊥(k)

}
,

is indeed the set of solutions of {
min ‖T(h)− k‖,
h ∈ H.

(21)

Corollary 4. Let G ∈ Rm×n and g ∈ Rm. Then, pker(G)⊥

(
G−1

(
pker(Gt)⊥

(g)
))

is a Pareto-
optimal solution of (17).

Proof. It only suffices to call on Theorem 6 by taking H := `n
2 , K := `m

2 , T := G, and
k := g.

A MATLAB encoding for Corollary 4 is available in Appendix C.

4.2. Precise Tykhonov Regularization

The bounded Tykhonov regularization might produce a solution of an excessively
small norm. Sometimes, it is precise to obtain a solution of the Tykhonov regularization with
a certain predetermined norm. This is what we call the precise Tykhonov regularization.

Problem 15 (Finite-dimensional precise Tykhonov regularization). Let G ∈ Rm×n with
G 6= 0 and ker(G) 6= {0}, g ∈ Rm, and α ≥ min{‖ψ‖2 : ψ ∈ arg min ‖Gψ− g‖2}. Solve{

min ‖Gψ− g‖2,
‖ψ‖2 = α,

(22)

for ψ ∈ Rn.

Under the settings of Problem 15, by bearing in mind Corollary 3(3), if ker(G) = {0},
then arg min ‖Gψ − g‖2 is a singleton. This is why it is required that ker(G) 6= {0}.
The infinite-dimensional version of the precise Tykhonov regularization follows now.

Problem 16 (Infinite-dimensional precise Tykhonov regularization). Let X, Y be Banach
Spaces, T : X → Y a nonzero continuous linear operator with ker(T) 6= {0}, y ∈ Y, and α ≥
min{‖x‖ : x ∈ arg min ‖T(x)− y‖}. Solve{

min ‖T(x)− y‖,
‖x‖ = α,

(23)

for x ∈ X.

The infinite-dimensional precise Tykhonov regularization in the Hilbert space context
is described next. Observe that, in accordance with Corollary 3(2),

min{‖h‖ : h ∈ arg min ‖T(h)− k‖} = dist
(

0, T−1
(

pT(H)(k)
))

.

Problem 17. Let H, K be Hilbert spaces, T : H → K a nonzero continuous linear operator with
ker(T) 6= {0}, k ∈ K, and α ≥ dist

(
0, T−1

(
pT(H)(k)

))
. Solve

{
min ‖T(h)− k‖,
‖h‖ = α,

(24)

for h ∈ H.
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Notice that Problem 17 is a single-objective optimization problem. We will find an
optimal solution of Problem 17. For this, we will make use of several proper technical
results from Banach Space Theory and Operator Theory. Recall that, in a vector space,
a linear manifold is a translation of a subspace. The dimension of a linear manifold is by
definition the dimension of the subspace.

Theorem 7. Let X be a Banach Space. Let M ⊆ X be a linear manifold with dim(M) ≥ 1.
If α > dist(0, M), then there exists m0 ∈ M such that ‖m0‖ = α.

Proof. On the one hand, since dist(0, M) := inf{‖m‖ : m ∈ M}, there exists m1 ∈ M
with dist(0, M) ≤ ‖m1‖ < α. On the other hand, since dim(M) ≥ 1, we have that M is
unbounded; thus, there exists m2 ∈ M with ‖m2‖ > α. Consider the continuous function

φ : [0, 1] → [0, ∞)
t 7→ φ(t) := ‖tm2 + (1− t)m1‖.

(25)

Notice that φ(0) = ‖m1‖ < α and φ(1) = ‖m2‖ > α. As a consequence, Bolzano’s
Theorem allows the existence of t0 ∈ (0, 1) such that φ(t0) = α. Finally, it only suffices to
take m0 = t0m2 + (1− t0)m1.

Observe that Theorem 7 works with the exact same proof if we replace “linear man-
ifold with dimension ≥1” with “unbounded convex subset”. Theorem 7 can actually be
accomplished in the Hilbert space setting with much less effort.

Remark 3. Let H, K be Hilbert spaces. Let T : H → K be a nonzero continuous linear operator
such that ker(T) 6= {0}. Let k ∈ K. Denote δ := dist

(
0, T−1(k)

)
= min

{
‖h‖ : h ∈ T−1(k)

}
,

and let α ≥ δ. Fix an arbitrary h1 ∈ ker(T) \ {0}. Notice that h2 :=
√

α2 − δ2 h1
‖h1‖

satisfies that

h2 ∈ ker(T), and by virtue of Theorem 2, for every h0 ∈ T−1(k), pker(T)⊥(h0) + h2 ∈ T−1(k) and

∥∥∥pker(T)⊥(h0) + h2

∥∥∥ =

√∥∥∥pker(T)⊥(h0)
∥∥∥2

+ ‖h2‖2 =
√

δ2 + α2 − δ2 = α.

Remark 3 allows easily solving the infinite-dimensional precise Tykhonov regulariza-
tion in the Hilbert space context, that is Problem 17.

Theorem 8. Let H, K be Hilbert spaces, T : H → K a nonzero continuous linear operator with
ker(T) 6= {0}, k ∈ K, and α ≥ δ := dist

(
0, T−1

(
pT(H)(k)

))
. For every h0 ∈ T−1

(
pT(H)(k)

)
and every h1 ∈ ker(T) \ {0}, an optimal solution of Problem 17 is given by pker(T)⊥(h0) +√

α2 − δ2 h1
‖h1‖

.

Proof. First off, notice that, according to Remark 3,

∥∥∥∥pker(T)⊥(h0) +
√

α2 − δ2 h1

‖h1‖

∥∥∥∥ =

√∥∥∥pker(T)⊥(h0)
∥∥∥2

+

∥∥∥∥√α2 − δ2 h1

‖h1‖

∥∥∥∥2

=
√

δ2 + α2 − δ2 = α.

This means pker(T)⊥(h0) +
√

α2 − δ2 h1
‖h1‖

belongs to the feasible region of Problem 17.

Next, by applying Corollary 3, arg min{‖T(h)− k‖ : h ∈ H} = T−1
(

pT(H)(k)
)

= h0 +

ker(T), because h0 ∈ T−1
(

pT(H)(k)
)

. In accordance with Theorem 2, pker(T)⊥(h0) ∈
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T−1
(

pT(H)(k)
)

. In fact, Theorem 2 ensures that arg min
{
‖h‖ : h ∈ T−1

(
pT(H)(k)

)}
=

pker(T)⊥(h0). Finally, by using again Corollary 3, if h ∈ H with ‖h‖ = α, then∥∥∥∥T
(

pker(T)⊥(h0) +
√

α2 − δ2 h1

‖h1‖

)
− k
∥∥∥∥ = ‖T(h0)− k‖

=
∥∥∥pT(H)(k)− k

∥∥∥
=

∥∥∥pT(H)⊥(k)
∥∥∥

≤ ‖T(h)− k‖.

Corollary 5. Let G ∈ Rm×n with G 6= 0 and ker(G) 6= {0}, g ∈ Rm, and α ≥ δ :=
min{‖ψ‖2 : ψ ∈ arg min ‖Gψ− g‖2}. For every ψ0 ∈ G−1

(
pker(Gt)(g)

)
and every ψ1 ∈

ker(G) \ {0}, pker(G)⊥(ψ0) +
√

α2 − δ2 ψ1
‖ψ1‖

is an optimal solution of (22).

Proof. It only suffices to call on Theorem 8 by taking H := `n
2 , K := `m

2 , T := G, k := g,
h0 := ψ0, and h1 := ψ1.

A MATLAB encoding for Corollary 5 is available in Appendix D.

4.3. A Generalization of Theorem 5

As the reader may notice, both Lemma 3 and Theorem 5 are technical results crucial
for the development of this manuscript. The following theorem generalizes them.

Theorem 9. Let X be a Banach Space. Let P : X → X be a continuous linear projection such
that ‖I − P‖ = 1. Let x0 ∈ X. Then, dist(x0, P(X)) = min{‖x0 − y‖ : y ∈ P(X)} =
‖x0 − P(x0)‖. Even more, the previous min is attained at P(x0).

Proof. It only suffices to observe that, for every y ∈ P(X),

‖x0 − P(x0)‖ = ‖(I − P)(x0)‖ = ‖(I − P)(x0 − y)‖ ≤ ‖x0 − y‖.

5. Conclusions

Let us summarize all the optimization problems we have dealt with throughout this
manuscript. The “inclusion” symbol means that the “contained” problem is a particular
case of the “continent” problem. The “equal” symbol means that the two involved problems
are equivalent in the sense that they have the same set of optimal solutions:

• Problem 1 ⊆ Problem 7 ⊆ Problem 2.
• Problem 3 = Problem 9 ⊆ Problem 4.
• Problem 8 ⊆ Problem 10 ⊆ Problem 4 (assuming c < d).
• Problem 8 ⊆ Problem 3 (assuming c < d).
• Problem 5 ⊆ Problem 11 ⊆ Problem 6.
• Problem 12 ⊆ Problem 14 ⊆ Problem 13.
• Problem 15 ⊆ Problem 17 ⊆ Problem 16.

We have fully solved Problem 7 (Theorem 2), Problem 8 (Lemma 4), Problem 11
(Corollary 3), Problem 14 (Theorem 6), and Problem 17 (Theorem 8). As a consequence,
Problem 1 (Corollary 1), Problem 5, Problem 12 (Corollary 4), and Problem 15 (Corollary 5)
are automatically fully solved. With respect to Problem 10, its solution has been approached
(Theorem 4).
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Appendix A. Code for Problem 1

In this Appendix Section, we will describe the encoding corresponding to Corollary 1.

Appendix A.1. Pseudocode

The pseudocode for Problem 1 consists of the following lines:

1. Find ψ0 ∈ Rn such that Gψ0 = g (solve Gψ0 = g).
2. Find a basis K = {v1, . . . , vs} of ker(G).
3. Find a basis O = {w1, . . . , wn−s} of ker(G)⊥.
4. Take B := K ∪O = {v1, . . . , vs, w1, . . . , wn−s} as an ordered basis of Rn.
5. Find the coordinates (α1, . . . , αs, αs+1, . . . , αn) of ψ0 with respect to B.
6. Define pker(G)⊥(ψ0) = αs+1w1 + · · ·+ αnwn−s.

Appendix A.2. MATLAB Code

We will define a function MRI(G, g) of two inputs, G and g, which returns one output:
pker(G)⊥(ψ0) = αs+1w1 + · · ·+ αnwn−s.

func t ion [ s o l ] = MRI(G, g )
x_0 = G\g ; % Pseudocode ( 1 )
n = length ( x_0 ) ;
K = n u l l (G) ; % Pseudocode ( 2 )
s = rank (K ) ;
O = n u l l (K ’ ) ; % Pseudocode ( 3 )
B = [K,O] ; % Pseudocode ( 4 )
X = B\x_0 ; % Pseudocode ( 5 )
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coord = X( s +1:n , 1 ) ;
s o l = O* coord ; % Pseudocode ( 6 )

end

Appendix B. Code for Problem 1 When m = 1

In this Appendix Section, we will describe the encoding corresponding to Corollary 2.

Appendix B.1. Pseudocode

The pseudocode for Problem 1 when m = 1 consists of the following line:

1. Find g
‖Gt‖2 Gt.

Appendix B.2. MATLAB Code

We will define a function fMRI(G, g) of two inputs, G and g, which returns one output:
g

‖Gt‖2 Gt.

func t ion [ s o l ] = fMRI (G, g )
a = norm (G’ )
b = g/a^2
s o l = b *G’ % Pseudocode ( 1 )

end

Appendix C. Code for Problem 12

In this Appendix Section, we will describe the encoding corresponding to Corollary 4.

Appendix C.1. Pseudocode

The pseudocode for Problem 12 consists of the following lines:

1. Find a basis K = {v1, . . . , vs} of ker
(
Gt).

2. Find a basis O = {w1, . . . , wm−s} of ker
(
Gt)⊥.

3. Take B := K ∪O = {v1, . . . , vs, w1, . . . , wm−s} as an ordered basis of Rm.
4. Find the coordinates (α1, . . . , αs, αs+1, . . . , αm) of g with respect to B.
5. Define pker(Gt)⊥

(g) = αs+1w1 + · · ·+ αmwm−s.

6. Apply MRI
(

G, pker(Gt)⊥
(g)
)

.

Appendix C.2. MATLAB Code

We will define a function bTR(G, g) of two inputs, G and g, which returns one output:
MRI

(
G, pker(Gt)⊥

(g)
)

.

func t ion [ s o l ] = bTR(G, g )
m = s i z e (G) ;
K = n u l l (G ’ ) ; % Pseudocode ( 1 )
s = rank (K ) ;
O = n u l l (K ’ ) ; % Pseudocode ( 2 )
B = [K,O] ; % Pseudocode ( 3 )
X = B\g ; % Pseudocode ( 4 )
coord = X( s +1:m, 1 ) ;
p = O* coord ; % Pseudocode ( 5 )
s o l = MRI(G, p ) ; % Pseudocode ( 6 )

end
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Appendix D. Code for Problem 15

In this Appendix Section, we will describe the encoding corresponding to Corollary 5.

Appendix D.1. Pseudocode

The pseudocode for Problem 15 consists of the following lines:

1. Define ψ0 := bTR(G, g).
2. Define δ := ‖ψ0‖2.
3. Find ψ1 ∈ Rn \ {0} such that Gψ1 = 0 (solve Gψ1 = 0).
4. Define ψ0 +

√
α2 − δ2 ψ1

‖ψ1‖2
.

Appendix D.2. MATLAB Code

We will define a function pTR(G, g, α) of three inputs, G, g, and α, which returns one
output: ψ0 +

√
α2 − δ2 ψ1

‖ψ1‖2
.

func t ion [ s o l ] = pTR(G, g , a )
x_0 = bTR(G, g ) ; % Pseudocode ( 1 )
d = norm ( x_0 ) ; % Pseudocode ( 2 )
X = n u l l (G) ;
x_1 = X ( : , 1 ) ; % Pseudocode ( 3 )
s o l = x_0 + s q r t ( a^2−d^2)* x_1/norm ( x_1 ) ; % Pseudocode ( 4 )

end
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