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Abstract: During the past several years, the deadly COVID-19 pandemic has dramatically affected the
world; the death toll exceeds 4.8 million across the world according to current statistics. Mathematical
modeling is one of the critical tools being used to fight against this deadly infectious disease. It has
been observed that the transmission of COVID-19 follows a fading memory process. We have used
the fractional order differential operator to identify this kind of disease transmission, considering
both fear effects and vaccination in our proposed mathematical model. Our COVID-19 disease model
was analyzed by considering the Caputo fractional operator. A brief description of this operator and
a mathematical analysis of the proposed model involving this operator are presented. In addition, a
numerical simulation of the proposed model is presented along with the resulting analytical findings.
We show that fear effects play a pivotal role in reducing infections in the population as well as in
encouraging the vaccination campaign. Furthermore, decreasing the fractional-order parameter α

value minimizes the number of infected individuals. The analysis presented here reveals that the
system switches its stability for the critical value of the basic reproduction number R0 = 1.

Keywords: COVID-19; fear factor; mathematical model; basic reproduction number; Caputo
fractional derivative

MSC: 92B05; 34A08; 34H05

1. Introduction

Coronavirus belongs to an outsized family of viruses causing illness in both people
and animals, including camels, cats, and bats. COVID-19 results in a respiratory disease
caused by a SARS-CoV-2, which belongs to the family of severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2). Mostly, SARS-CoV-2-infected people experience mild to
moderate symptoms and recover without any treatment. However, many others require
medical attention due to comorbidity factors or weak immunity.

In humans, COVID-19 transmission occurs directly via respiratory droplets from
coughing or sneezing or indirectly through contaminated objects or surfaces. These par-
ticles range from larger respiratory droplets to smaller aerosols [1]. The virus spreads
more easily indoors and in crowded settings. People who are in close contact with a
suspected/confirmed COVID-19 patient thus often suffer from this virus in turn. In hu-
man civilization, COVID-19 is the fastest-growing infectious disease among all other such
diseases in the world. By the first week of October 2021, more than 238 million cases have
been reported [2] worldwide [3] and among these, more than 4.8 million were fatal cases.
The World Health Organization (WHO) declared COVID-19 a worldwide pandemic on 11
March 2020 [4]. The COVID-19 pandemic has had a significant impact on pediatric surgery
residency programs.
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The recovery rate is the main hope for this pandemic. Every country has implemented
a Standard Operating Procedure (SOP) for controlling and reducing the outbreak. Various
strategies, such as social distancing, wearing masks, regular hand washing, a ban on air
traffic, and bans on social gatherings in different areas have all been considered. Various
countries and local administrations have enforced lockdowns in the most affected areas
to control social gatherings and halt the chain of transmission of this infectious disease.
Scientific/academic institutions and manufacturers have worked on developing COVID-19
vaccines, and they have succeeded in achieving their goals to an extent.

In December 2020, a Pfizer/BioNTech vaccine was listed with the WHO. AstraZeneca’s
collaboration with Oxford University invented the SII/Covishield and AstraZeneca/AZD1222
vaccines, manufactured by the Serum Institute of India and SK Bio, respectively. This vac-
cine received EUL on 16 February. Johnson & Johnson developed the Janssen/Ad26.COV
2.S vaccine, which was listed for EUL on 12 March 2021. In April 2021, the Moderna
COVID-19 vaccine (mRNA 1273) was listed for EUL; the Sinopharm COVID-19 vaccine
was listed for EUL on 7 May 2021. The Sinovac-CoronaVac was listed for EUL on 1 June
2021 [4]. It has been reported that 44.9% of the world’s population has received at least
one dose of the COVID-19, vaccine and about 26.02 million are now being vaccinated each
day. However, the vaccine’s efficacy is questionable for new variants of the virus. Thus,
media awareness around maintaining SOP remains needed in order to control and break
the transmission chain of the pandemic.

Statistical data analysis leads to the development of real-world mathematical models.
These models are analyzed to understand changes in the dynamical behavior of viruses.
Infections such as HIV, HCV, and COVID-19 have been modeled by mathematical formulas
and analyzed in an attempt to determine their dynamics. During the present pandemic
period, several mathematical models have been proposed to study COVID-19 on both
the micro-level and macro-level [5–15]. The mathematical study of such models includes
stability theory, local and global dynamics, optimal control theory, and numerical simula-
tion. The infection dynamics of COVID-19 were studied by Atangana [10] using fractional
order differential equations. Tang et al. [11] calculated the basic reproduction number for
COVID-19 infection. Sarkar and Khajanchi [12] formulated a mathematical model to study
SARS CoV-2 infection dynamics and validated their model with real-world data from India.
Liu et al. [16] considered reported and unreported cases to study disease transmission
using data from China. Samui et al. [17] discussed a compartmental mathematical model
based on reported and unreported symptomatic individuals in India. Mondal et al. [8]
studied the effects of non-pharmaceutical and pharmaceutical interventions intended to
control COVID-19.

In unpredictable situations, classical derivatives become inadequate due to the uncer-
tainty factor [18–24]. In the case of COVID-19 there are number of ambiguities, including
the source of the outbreak, changes in the incubation period, the asymptomatic stage of
certain infected individuals, etc. Thus, studying diseases through classical differential
equations is quite challenging. To cope with this situation, fractional-order models play
a pivotal role in fitting data and studying the complex dynamics involved [25]. Several
mathematicians have studied the disease models using fractional calculus as well [2,26–32].

In the present work, we propose a model addressing two new issues: (a) the effects of
fear on transmission rates of infection; and (b) the reinfection of vaccinated individuals.
In our proposed model, we consider the Caputo fractional derivative operator [2] for the
COVID-19 disease model. The subsequent content of this article is organized as follows:

The fundamental concepts of fractional calculus are recalled in Section 2. The basic
mathematical results of our proposed model of COVID-19 are presented in Section 3. A
mathematical model with a Caputo fractional derivative operator setting is analyzed in
Section 4, and the existence of solutions for the proposed model is investigated. In Section 5,
we discuss the numerical simulation of the model. Finally, the results of the fractional-order
model are summarized in the concluding section.
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2. Fundamental Concepts of Fractional Derivatives in the Caputo Sense

Here, we recall the fundamental concepts regarding the Caputo derivative.
The left-sided Caputo fractional derivative [33] is defined as

C
a Dα

t g(t) =
1

Γ(n− α)

∫ t

a

g(n)(s)
(t− s)α−n+1 ds (1)

and the right-sided Caputo fractional derivative [33] is defined as

C
t Dα

b g(t) =
(−1)n

Γ(n− α)

∫ b

t

g(n)(s)
(t− s)α−n+1 ds. (2)

Here α with n − 1 < α < n is the order of derivative and the gamma function is
symbolized as Γ, where n is an integer.

The left-sided Riemann–Liouville fractional derivative [33] is defined as

aDα
t g(t) =

1
Γ(n− α)

dn

dtn

∫ t

a

g(s)
(t− s)α−n+1 ds (3)

and the right-sided Riemann–Liouville fractional derivative [33] is defined as

tDα
b g(t) =

(−1)n

Γ(n− α)

dn

dtn

∫ b

t

g(s)
(t− s)α−n+1 ds. (4)

The order of derivative is denoted as α with n− 1 < α < n and the gamma function is
symbolized as Γ with n as an integer; a > 0, b > 0 are constants. Throughout this article,
Dα

t and Dα
t f

are used to indicate the Left-Caputo and Right-Caputo derivative, respectively.

3. Model with Vaccination

In this article, we propose a compartmental model of the SIR (Susceptible–Infected–
Recovered) type, including a vaccine strategy for COVID-19 with the assumption that a
fixed proportion of individuals entering the model are temporarily immune to infection
(see Figure 1).

Figure 1. The flow diagram of the model (5).

We consider that there is no disease-specific death and the death rate for all classes is
µ. The introduction and removal rates are assumed to be constant.
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Let S, I, and R represent the susceptible, infected, and recovered populations, re-
spectively. We denote by V the vaccinated population, while IV represents the infected
population after vaccination.

The birth rate is Λ, with a vaccinated proportion ρ. The transmissible function is
β(I, IV), where β(I, IV) =

β1 I
1+α1 I +

β2 IV
1+α2 IV

.
Here, α1 and α2 are the corresponding fear factors before and after vaccination. Here,

ν1 is the recovery rate before vaccination and ν2 is the recovery rate after vaccination in
infected individuals.

Thus, the basic model with vaccination takes the following form:

dS
dt

= ρΛ− β1SI
1 + α1 I

− β2SIV
1 + α2 IV

− µS,

dI
dt

=
β1SI

1 + α1 I
+

β2SIV
1 + α2 IV

− (ν1 + µ)I,

dV
dt

= (1− ρ)Λ− β1VI
1 + α1 I

− β2VIV
1 + α2 IV

− µV, (5)

dIV
dt

=
β1VI

1 + α1 I
+

β2VIV
1 + α2 IV

− (ν2 + µ)IV ,

dR
dt

= ν1 I + ν2 IV − µR,

with the biologically realistic non-negative initial conditions

S(t0) = S0, I(t0) = I0, V(t0) = V0, IV(t0) = IV0 , R(t0) = R0. (6)

Numerous studies have been focused on fractional order systems [2,29] in the study
of disease dynamics. On the basis of Section 2, we applied a general fractional derivative to
extend the above model. Thus, the modified model with fractional order is obtained by

Dα
t S = ρΛ− β1SI

1 + α1 I
− β2SIV

1 + α2 IV
− µS,

Dα
t I =

β1SI
1 + α1 I

+
β2SIV

1 + α2 IV
− (ν1 + µ)I,

Dα
t V = (1− ρ)Λ− β1VI

1 + α1 I
− β2VIV

1 + α2 IV
− µV, (7)

Dα
t IV =

β1VI
1 + α1 I

+
β2VIV

1 + α2 IV
− (ν2 + µ)IV ,

Dα
t R = ν1 I + ν2 IV − µR,

where the initial conditions are S(t0) = S0, I(t0) = I0, V(t0) = V0, IV(t0) = IV0 , R(t0) = R0.
The Left-Caputo fractional derivative is indicated by Dα

t .
All state variables are considered to be non-negative, while the state variable are

positive for the time period t ≥ 0.

Remark 1. In this study, our main focus is to verify the effectiveness of vaccination strategies for
COVID-19 infection. It is true that there are several existing models which include the exposed
and asymptomatic classes and which have been used to describe the short-term dynamics. Here,
however, as we are interested in vaccination-induced changes in the system, we deliberately omitted
the variables for the exposed and asymptomatic classes by assuming that at steady state these
two classes are proportional to the infected population. This can be shown using steady state
approximation theory as well (for example, see [34,35]), that is, the two classes can be approximated
by the infected class.
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4. Mathematical Analysis

To analyze its existence and uniqueness, system (7) can be rewritten in the follow-
ing form:

Dα
t x(t) = f (t, x(t)), 0 < α ≤ 1, (8)

where f (t, x) = ( f1, f2, f3, f4, f5)
T , and the initial conditions are

x(0) = (S(0), I(0), V(0), IV(0), R(0))T ,

where the derivative is assumed in Left-Caputo. Additionally, f1, f2, f3, f4, f5 are the right
hand side of system (7); for example, f1 = ρΛ− β1SI

1+α1 I −
β2SIV

1+α2 IV
− µS, etc. The function

f (t, x) : R×Rd −→ Rd defines a vector field with dimension d ≥ 1.

4.1. Local and Global Existence and Uniqueness of Solution

We consider the function X(t) : R0,+−→ R0,+, defined by

X(t) = f1(t) + f2(t) + f3(t) + f4(t) + f5(t). (9)

Note that the function X(t) is well-defined and differentiable on the interval (0, t f ).
After simple calculation, we obtain

X(t) = Λ− µ[S(t) + I(t) + V(t) + IV + R(t)]. (10)

With the help of the theorem stated below (from [36]), we can establish the existence
of the solution of the fractional-ordered system (7).

Theorem 1. Let J = [t0 − a, t0 + a], B = {x ∈ Rd| ‖ x − x0 ‖≤ b} and D = {(t, x) ∈
R×Rd|t ∈ J, x ∈ B} where the function f : D −→ Rd satisfies the conditions stated below:

(i) f (t, x) is Lebesgue measurable on J with respect to t ,

(ii) f (t, x) is continuous on B with respect to x ,

(iii) There exists a real-valued function m(t) ∈ L5(J) such that f (t, x) ≤ m(t) for almost every
t ∈ J and all x ∈ B.

Then, for α > 1
2 there exists at least one solution of the system

Dα
t x(t) = f (t, x(t)), 0 < α ≤ 1,

on the interval [t0 − h, t0 + h] for some h > 0.

Now, system (7) with conditions (8) can be considered as an initial value problem
(IVP). It is obvious that the right-hand sides of system (8), i.e., f1, f2, f3, f4, f5 are continuous
on B, measurable on J, and bounded for all t ∈ [t0 − h, t0 + h]. Again, if we assume
f (x, t) = ( f1, f2, f3, f4, f5)

T , then from (8) it can be said that f (x, t) satisfies all the conditions
of Theorem 1, with m(t) = Λ− µx(t), x(t) = S(t) + I(t) + V(t) + IV + R(t).

Hence, there exists a solution of system (7) in (0, t f ) with initial condition (8). Using
the following theorem [36], the uniqueness of the solution can be studied.

Theorem 2. Let the conditions (i)–(iii) of Theorem 1 hold. Suppose that a real-valued function
ζ(t) ∈ L5(J) exists, and

‖ f (t, x)− f (t, y) ‖≤ ζ(t) ‖ x− y ‖ (11)

for almost every t ∈ J and all x, y ∈ B; then, the system

Dα
t x(t) = f (t, x(t)), 0 < α ≤ 1,

possesses a unique solution on the interval [t0 − h, t0 + h] for some h > 0.



Mathematics 2022, 10, 1451 6 of 15

For the our system (7), using (10) we can write the following:

‖ f (t, x)− f (t, y) ‖≤ ζ(t) ‖ x− y ‖, (12)

where ζ(t) ≤ Λ
µ . Thus, the conditions of Theorem 2 are true for the fractional ordered

system (7). Hence, system (7) possesses a unique solution.
With the help of the following Theorem (Theorem 3.1 from [36]), the global existence

of the solution for system (7) can be verified.

Theorem 3. Let the vector field F(t, x) satisfy the first two conditions of the above Theorem 2 and
Theorem 2 in the global space and ‖ f (t, x) ‖≤ w + l ‖ x ‖ for almost every t ∈ R and all x ∈ Rd,
with w, l > 0. Then, a function x(t) can be obtained on (−∞,+∞) by solving the IVP (7) with
initial condition (8).

Using (10) and the property of norm, we can write

‖ f (x, t) ‖ ≤ Λ + µ ‖ x ‖ . (13)

Thus, system (7) satisfies all the conditions of a global existence theorem with w = Λ and
l = µ. Thus, a solution of system (7) exists globally.

4.2. Basic Reproductive Number R0

The basic reproduction number for system (7) can be calculated with the help of the
next-generation matrix method [37,38]. Here, the infected compartments of system (7) are
I, IV , R. At the infection-free steady state Ê and rate of appearance of new infections,M
and N , the rates of transition of infection are defined as:

M =


β1SI

1+α1 I +
β2SIV

1+α2 IV
β2VI

1+α1 I +
β2VIV

1+α2 IV
0

, N =

 (ν1 + µ)I
(ν2 + µ)IV

−(ν1 I + ν2 IV − µR)

.

Next, we assume the matrixM as the entry-wise non-negative new infection matrix.
Let the non-singular Metzler matrix for the transitions of COVID-19 infection between the
infectious compartments be defined as N where M, N are as follows:

M =

 β1Ŝ β2Ŝ 0
β1V̂ β2V̂ 0

0 0 0

, N =

 (ν1 + µ) 0 0
0 (ν2 + µ) 0
0 0 µ

.

It can be seen that N−1 is similarly a non-negative matrix, and consequently MN−1 is
a non-negative next-generation matrix presenting the estimated number of new infections,
which is provided by

MN−1 =


β1Ŝ

µ(µ+ν2)
β2Ŝ

µ(µ+ν1)
0

β1V̂
µ(µ+ν2)

β2Ŝ
µ(µ+ν1)

0
0 0 0

.

With the help of the spectral radius of the next-generation matrix, we obtain the basic
reproduction number of system (7) as

R0 =
β1Ŝ

µ(µ + ν2)
+

β2V̂
µ(µ + ν1)

=
β1ρΛ

µ2(µ + ν2)
+

β2(1− ρ)Λ
µ2(µ + ν1)

(14)

= R1
0 + R2

0.
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Remark 2. Note that R0 has two parts, the first is R1
0 and the second R2

0. The first term refers to
human-to-human transmission (susceptible-to-infected and infected-to-susceptible). The second,
R2

0, refers to human-to-human disease transmission after vaccination. The system changes from
disease-free to an endemic state when R0 crosses the value 1. The entire infection risk for COVID-19
is considered through this transmission mode during vaccination.

5. Existence of Equilibria and Stability

The recovered population, R(t), has no impact on other populations. Thus, it is
sufficient to study the dynamics of the following system:

Dα
t S = ρΛ− β1SI

1 + α1 I
− β2SIV

1 + α2 IV
− µS,

Dα
t I =

β1SI
1 + α1 I

+
β2SIV

1 + α2 IV
− (ν1 + µ)I,

Dα
t V = (1− ρ)Λ− β1VI

1 + α1 I
− β2VIV

1 + α2 IV
− µV, (15)

Dα
t IV =

β1VI
1 + α1 I

+
β2VIV

1 + α2 IV
− (ν2 + µ)IV ,

Dα
t R = ν1 I + ν2 IV − µR,

with the initial conditions: S(0) = S0, I(0) = I0, V(0) = V0, IV(0) = IV0 . In model (15),

there always exists a disease-free equilibrium Ê = (Ŝ, Î, V̂, ˆIV , R̂) = ( ρΛ
µ , 0, (1−ρ)Λ

µ , 0, 0).
When COVID-19 infection continues in the system, there is a unique positive endemic

steady state, E∗ = (S∗, I∗, V∗, I∗V), which can be obtained by equating the right-hand side
of the model (15) to zero and is provided by

ρΛ− β1SI
1+α1 I −

β2SIV
1+α2 IV

− µS = 0,
β1SI

1+α1 I +
β2SIV

1+α2 IV
− (ν1 + µ)I = 0

(1− ρ)Λ− β1VI
1+α1 I −

β2VIV
1+α2 IV

− µV = 0,
β1VI

1+α1 I +
β2VIV

1+α2 IV
− (ν2 + µ)IV = 0.

 (16)

Solving (16), we obtain

V∗ = (1−ρ)Λ−(ν2+µ)I∗V
µ = φ(I∗, I∗V),

S∗ = ρΛ−(ν1+µ)I∗
µ = ψ1(I∗, I∗V),

S∗ = ρΛ
[

β1 I∗
1+α1 I∗ +

β2 I∗V
1+α2 I∗V

+ µ
]−1

= ψ2(I∗, I∗V),

S∗ = (ν1 + µ)I∗
[

β1 I∗
1+α1 I∗ +

β2 I∗V
1+α2 I∗V

]−1
= ψ3(I∗, I∗V).


(17)

Considering the three curves ψi(I, IV), i = 1, 2, 3, for I, IV ≥ 0, the endemic equilib-
rium can be determined in R3

+ by the interaction of these three curves as

ψ1(0, 0) =
ρΛ
µ

= Ŝ,

ψ1(I1, 0) = 0 =⇒ I1 =
ρΛ

µ + ν1
, (18)

ψ2(0, 0) =
ρΛ
µ

.

Observe that ψ3(I1, IV) is an increasing function. Now, we deduce that:

(A) When R0 > 1, S = ψ1(I, IV), then S = ψ2(I, IV), S = ψ3(I, IV) are in the interior of R3
+

and have a unique interaction ψ2(0, 0) ≥ ψ3(0, 0) and ψ2(I, IV) ≤ ψ3(I, IV). Moreover,
at the given interaction point system (17) attains a unique endemic equilibrium, E∗.

(B) There is no interaction point of these three curves in the interior of R3
+ whenever

R0 ≤ 1, as the model has a disease-free equilibrium when R0 ≤ 1.
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Thus, it can be concluded that model (15) has a disease-free equilibrium Ê if R0 ≤ 1. On
the contrary, if R0 > 1, then model (15) attains another equilibrium other than disease-free
equilibrium, that is, endemic equilibrium.

Finally, we obtain the following result for the existence of endemic equilibrium, E∗.

Theorem 4. System (15) represents the SARS-CoV-2 viral infection dynamics; there exists a
threshold parameter around the infection-free equilibrium point, specifically the basic reproduction
number R0 where R0 > 1 results in the existence of a unique positive endemic steady state E∗ for
system (15).

Stability of Equilibria

The Jacobian matrix at any equilibrium point E(S, I, V, IV) is provided by

J|E =


−(a11 + µ) −a12 0 −a13

a11 a12 − (µ + ν1) 0 a13
0 −a32 −(a11 + µ) −a34
0 a32 a11 a34 − (µ + ν2)
0 ν1 0 ν2

, (19)

where

a11 =
β1 I

1 + α1 I
+

β2 IV
1 + α2 IV

, a12 =
β1S

(1 + α1 I)2 ,

a13 =
β2S

(1 + α2 IV)2 , a32 =
β1V

(1 + α1 I)2 , a34 =
β2V

(1 + α2 IV)2 .
(20)

The characteristic equation is obtained from the equation

|J − xI4×4| = 0,

and is provided by

x4 + λ1x3 + λ2x2 + λ3x + λ4 = 0, (21)

where
λ1 = 2a11 − a12 − a34 + 2µ + ν1 + ν2,

λ2 = a11a34 + (a11 + a12)µ + ν1(a11 + µ) + µ2

+ (a11 − a12 + 2µ + ν1)(a11 − a34 + 2µ + ν2)− a13a32,

λ3 = (a11 − a34 + 2µ + ν2)a11a34

+ {(a11 + a12)µ + ν1(a11 + µ) + µ2}(a11 − a34 + 2µ + ν2) + 2µa13a32,

λ4 = a13a32(a11 − a34 + 2µ + ν2) + µ2a13a32.

(22)

Considering the discriminant of a characteristic polynomial denoted by D(ε). If
ε(x) = x4 + λ1x3 + λ2x2 + λ3x + λ4 = 0, then

D(ε) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 λ1 λ2 λ3 λ4 0 0

0 1 λ1 λ2 λ3 λ4 0

0 0 1 λ1 λ2 λ3 λ4

4 3λ1 2λ2 λ3 0 0 0

0 4 3λ1 2λ2 λ3 0 0

0 0 4 3λ1 2λ2 λ3 0

0 0 0 4 3λ1 2λ2 λ3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
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From [39,40], we obtain the following proposition.

Proposition 1. Suppose equilibria E of system (15) exist in R4
+. Now:

(i) Define b1, b2, and b3 as the Routh–Hurwitz discriminants where, b1 = λ1, b2 = λ1λ2 − λ3,
and

b3 =

∣∣∣∣∣∣∣∣∣∣∣∣

λ1 1 0

λ3 λ2 λ1

0 λ4 λ3

∣∣∣∣∣∣∣∣∣∣∣∣
.

When α = 1 and if the below conditions

b1 > 0, b2 > 0, b3 = 0 and λ4 > 0 (23)

are satisfied, then the equilibrium point E is locally asymptotically stable.
(ii) If D(ε) > 0, λ1 > 0, λ2 < 0 and α > 2

3 , then then the equilibrium point E is unstable.
(iii) If the inequalities D(ε) < 0, λ1 > 0, λ2 > 0, λ3 > 0, λ4 > 0 and α < 1

3 hold, then E is
locally asymptotically stable, and unstable if D(ε) < 0, λ1 < 0, λ2 > 0, λ3 < 0 and λ4 > 0.

(iv) If the conditions D(ε) < 0, λ1 > 0, λ2 > 0, λ3 > 0, λ4 > 0 and λ2 = λ1λ4
λ3

+ λ3
λ1

hold, then
for α ∈ (0, 1) E is locally asymptotically stable.

(v) A necessary condition for the steady state E to be locally asymptotically stable is λ4 > 0.

The stability of the disease-free Ê and interior equilibrium point E∗ in R4
+ can be deter-

mined using Equation (21) and Proposition 1. The coefficients at the endemic equilibrium
point can be determined and verified, and their stabilities can be studied using MATLAB.

Remark 3. The criterion provided in (23) (Routh–Hurwitz criterion) is only the condition for E to
be locally asymptotic for α = 1, not for all α ∈ [0, 1).

6. Numerical Simulations

In this subsection, our main aim is to find the effect of vaccination against COVID-19
infection in the Caputo form provided by model (7) through numerical analysis. The
numerical method for the system of fractional order differential, (7), was developed from
the existing Matlab code as presented in [41].

For the numerical simulation, the numerical solution of the COVID-19 vaccinated
model Equation (7) is found by considering different values of the fractional order parame-
ter α.

The birth rate is Λ, with a vaccinated proportion ρ. The transmissible function is
β(I, IV), where β(I, IV) =

β1 I
1+α1 I +

β2 IV
1+α2 IV

. Here, α1 and α2 denote the corresponding fear
factors before and after vaccination, ν1 is the recovery rate before vaccination, and ν2 is the
recovery rate after vaccination in infected individuals.

In this section, we aim to perform the numerical simulation of system (5) and (7) using
MATLAB and the baseline parameter values listed in Table 1. In the presence of vaccination
and fear factors, the system is practically changeable, and selection of parameters is an
exciting task.
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Table 1. Description and values of the parameters.

Dependent Variables Description

S Susceptible Population
I Infected Population
V vaccinated population
IV Infected population

after vaccination
R Recovered Population

Parameter Description Values Reference

Λ Birth rate (per week) 270 [42]
ρ Probability of vaccination 0–1 -
β1 Infection rate without vaccination 0.0075 [2,11]
β2 Infection rate after vaccination 0.0007 [11]
α1 Fear effect before vaccination 0.02–2 Assumed
α2 Fear effect after vaccination 0.02–2 Assumed
µ natural death rate 0.3 [2]
ν1 Recovery rate before vaccination 0.01 [43]
ν2 Recovery rate before vaccination 0.3 [43]

Figure 2 (left panel) represents the dynamic behavior of the system through numerical
simulation. In this figure, we have varied the infection rates β1 and β2 to find the existence
of the equilibrium of the system for different values of R0. It can be observed that for a
lower infection rate, the system attains a disease-free state Ê that corresponds to R0 > 1
and system Ê becomes unstable, and hence E∗ exists. Figure 2 (right panel) represents the
color bar scheme. Here, we determine the surface, R0, the surface R0 = 1 by changing
β1 and Λ, the disease transmission rate, and the production rate, respectively . When β
decreases, R0 will decline and range below 1, and the system moves to its infection-free
state. Additionally, R0 can be controlled by reducing Λ. Thus, both vaccination and the
fear effect play a pivotal role in controlling disease progression.

0 1 2 3 4 5
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0

20

40

60

80

In
fe

c
te

d
 p

o
p
u
la

ti
o
n
, 
I

(a) (b)

Λβ
1

0
0.1

1

2

60

3

0.05

4

40
20

0 0

R0 < 1

Stable Ê
R0 > 1

E∗ exists and stable

Figure 2. (a) The transcritical bifurcation diagram at R0 = 1 is presented; (b) the value of the
basic reproduction number (R0) is shown when the disease transmission rate (β1) and the virions
production rate (λ) are varied simultaneously. Other parameter values are taken from Table 1.

Comparison plots for the Caputo operators for different fear factors are provided in
Figures 3 and 4 considering various values of the fractional-order parameter
α = 1, 0.7, 0.5; the graphical results are presented for comparison. By reducing the value
of α, it can be observed that the quantity of infected individuals declines. From these
visual findings, ir can be noted that the fear factor for infection plays a crucial role in
controlling the infection process, and helps with vaccination strategies as well. As the
fear factor increases, the vaccinated population increases, and the infected population is
simultaneously reduced.
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Figure 3. Numerical solution of (a) susceptible S(t), (b) infected I(t), (c) vaccinated population
V(t), (d) infected population after vaccination IV(t) and (e) recovered populations R(t) are plotted
for showing the dynamics of the fractional model (7) when α = 1, 0.7, 0.5, and the fear factors are
α1 = 0.0029 and α2 = 0.002.
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Figure 4. Numerical solution of (a) susceptible S(t), (b) infected I(t), (c) vaccinated population V(t),
(d) infected population after vaccination IV(t) and (e) recovered populations R(t) are plotted for
showing the dynamics of the fractional ordered model (7) when α = 1, 0.7, 0.5 and the fear factors
are α1 = 0.29 and α2 = 0.2.

Figure 5 shows that the solution of system (7) is independent of initial conditions.
Figure 5 shows that system (7) attains its globally asymptotic stability around the endemic
equilibrium E∗ in S− I −V phase space as different preliminary conditions taking the rest
of the values of the parameters as in Table 1 where R0 > 1.
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Figure 5. Phase portrait in S–I–V plane for three different initial conditions. In this figure,
α = 0.8; others parameters are same as in Figure 4. Colored lines are obtained from three different
initial conditions.

7. Discussion

The anticipated benefits and efficacy of the vaccine need to be fully elaborated before
introducing it. Mathematical modeling with the fractional derivative of population dynam-
ics, including the effects of vaccination, can assist in disease management strategies. The
basic reproduction number of the proposed model is important for the disease dynamics
as well.

It has been observed that the proposed FDE model shows greater efficacy than the one
exhibited by the integer-order model [5]. This study focuses on possible issues that may
arise due to vaccination for COVID-19. Thus, the dynamics of the COVID-19 disease model
in light of vaccination through a fractional differential equation (FDE) involving Caputo
fractional derivative are presented here.

The existence and uniqueness of solutions for the proposed FDE model were obtained
(Theorem 1). It can be seen that the solutions are independent of the choice of initial
values of the model variables (Figure 5). The disease-free state is stable when R0 < 1
(Figure 2), and this state can be obtained by decreasing infection rates. The numerical
simulation for different values of the fractional-order parameter α = 1, 0.7, 0.5 are presented
in (Figures 3–6). In addition, the respective outcome of these choices are discussed. The
comparison results for different fear factors are helpful for disease control policies, as the
population of infected individuals can be decreased.

In summary, the proposed fractional-order model is highly functional for studying the
dynamics of COVID-19 with vaccination. It can capture the psychological changes of the
fear effects related to infection and the effects of vaccination on controlling COVID-19 infec-
tion. The obtained results are helpful in COVID-19 disease management. The present work
can be extended using fractional optimal control theory [7,41] for greater cost-effectiveness
of vaccination. Additionally, awareness programs through social media [44] can be included
in this model to further improve outcomes.
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Figure 6. The numerical solution of (a) susceptible S(t), (b) infected I(t), (c) vaccinated population
V(t), (d) infected population after vaccination IV(t) and (e) recovered populations R(t) are plotted
for showing the dynamics of the fractional ordered model (7) when α = 1, 0.7, 0.5 and where the fear
factors are α1 = 1.29 and α2 = 1.2.
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