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Abstract: A differential game of m, 3 ≤ m ≤ 6, pursuers and one evader is studied on an icosahedron
in R3. All the players move only along the 1-skeleton graph of the icosahedron when the maximal
speeds of the pursuers are less than the speed of the evader. Pursuit is said to be completed if the
state of a pursuer coincides with the state of evader at some time. We give a sufficient condition of
the completion of pursuit in the game.
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1. Introduction

The main constraints on the controls for differential games are integral constraint and
geometric constraint. In the case of geometric constraints on the controls of players, players
choose the values of control functions from given convex subsets of Rd for some d ≥ 1.
Differential games of many players is one of the important chapters of differential games.
For the multi-player differential games with geometric constraints, interesting results were
obtained by [1–11]. A detailed survey is given in the paper [12] for such differential games.

In [10], a game of m pursuers and one evader is studied. All the players have the
same dynamic capability. The game is completed if the states of k pursuers simultaneously
coincide with the state of the evader. If fewer than k pursuers reach the evader, then all
of these pursuers are destroyed by the pursuer. In the case of a discrete time game, the
necessary and sufficient condition of game completion is obtained in terms of k-hull.

Additionally, the paper [2] studies a differential game of a group of rigidly coordinated
evaders and many pursuers with equal capabilities. Simultaneous multiple capture occurs
in the game if a certain number of pursuers catches the evaders at the same time. The main
result of the paper is the sufficient and necessary conditions for simultaneous multiple
capture of evaders, where pursuers use piecewise-program counter strategies.

The differential games of many players, where the control resources of players are
bounded, are an interesting and difficult area of differential games. In such games, players
need to optimize the expenditure of the resource as well (see, for example, refs. [13–15]).
In [14], the simple motion differential game of many pursuers and many evaders was
studied, and it was proved that if the total energy of the evaders is greater than or equal to
that of the pursuers, then evasion is possible from any initial position of the players.

There are many papers devoted to differential games with state constraints (see, for
example, refs. [16,17]). An interesting class of differential games with state constraint is
differential games on graphs (see, for example, refs. [18–22]). If the graph is connected and
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finite, then only one fast pursuer can catch the evader. Therefore, the case of many slow
pursuers is of importance, and the problems for such games are minimizing the number of
pursuers to complete the game and for the construction of pursuit and evasion strategies.

Azamov et al. [22] studied differential games of many pursuers and one evader on
the edge graphs of regular polyhedrons in R3. The speeds of all players do not exceed 1.
It was established that the minimum number of pursuers to complete the game for the
tetrahedron, octahedron and cube is two, and that for the dodecahedron and icosahedron
is three.

Later on Azamov et al. [21] showed that on the edge graphs of the d-dimensional
regular simplex, cocube, and cube, and it was shown that the minimum numbers of
pursuers to complete the game for these polyhedrons are 2, 2, and [d/2] + 1, respectively.
In the work [19], it was established that the minimum number of pursuers to complete the
game for the regular 24-gone and 120-gone in R4 is equal to 3.

The paper [23] is devoted to the differential game of many slow pursuers and one
evader on the edge graphs of the n-dimensional cocube. The problem of finding the optimal
number of pursuers to complete the game was solved in that paper. It should be noted that
the Π-strategy (see, for example, ref. [24]) played a key role in constructing the strategies of
players.

It should be noted that there are other types of dynamic games on abstract graphs, such
as multimove games, where players move from one vertex of the graph to an adjacent one
by jumping (see, for example, refs. [25–30] and search games (see, for example, ref. [31]).

The present paper is devoted to studying a pursuit game of m, 3 ≤ m ≤ 6, slow
pursuers and one evader on the 1-skeleton graph of the regular icosahedron K in the
Euclidean space R3 (Figure 1).

Figure 1. Icosahedron.

We recall that a regular icosahedron is one of the five Platonic solids, and it is a convex
polyhedron with 30 edges, 12 vertices, and 20 faces. We construct strategies for the slow
pursuers to complete the game.
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2. Statement of Problem

In the present paper, a differential game of m pursuers x1, x2, . . . , xm and one evader y
is considered. Players move according to the following equations:

ẋi = ui, xi(0) = xi0, i = 1, 2 . . . m,
ẏ = v, y(0) = y0,

(1)

where xi, y, xi0, y0 ∈ R3, xi0 6= y0, i = 1, 2, . . . , m; u1, u2, . . . , um and v are the control
parameters of pursuers x1, x2, . . . , xm and evader, respectively. All the pursuers and the
evader move along the edge graphs of icosahedron K. The maximal speed of evader y is σ,
and the maximal speeds of the pursuers x1, x2, . . . , xm are ρ1, ρ2, . . . , ρm, respectively, i.e.,
|ui| ≤ ρi, i = 1, 2, . . . , m, and |v| ≤ σ.

Let B(r) denote the ball of radius r and centered at the origin of R3.

Definition 1. We call the function ui(·), ui : [0, ∞)→ B(ρi) an admissible control of the pursuer
xi, i ∈ {1, 2, . . . , m}, if the solution xi(·) of the initial value problem

ẋi = ui, xi(0) = xi0,

satisfies the condition xi(t) ∈ K, t ≥ 0.

Definition 2. We call the function v(·), v : [0, ∞)→ B(σ) an admissible control of the evader y,
if for the solution y(·) of the initial value problem

ẏ = v, y(0) = y0,

we have y(t) ∈ K, t ≥ 0.

We consider a pursuit differential game where the pursuers apply strategies and
the evader uses an arbitrary admissible control. We give a definition for the strategies
of pursuers.

Definition 3. We call the functions (t, x1, x2, . . . , xm, y, v) → Ui(t, x1, x2, . . . , xm, y, v), i =
1, 2, . . . , m, strategies of pursuers xi, i = 1, 2, . . . , m, if, for ui = Ui(t, x1, x2, . . . , xm, y, v),
i = 1, 2, . . . , m, and for any admissible control v = v(t) of the evader, the initial value problem (1)
has a unique solution x1(t), x2(t), . . . , xm(t), y(t) ∈ K, t ≥ 0.

This definition shows that to construct the strategy of the pursuers, the information
about the states of players x1(t), x2(t), x3(t), y(t), and velocity of evader v(t) at current
time t is needed.

Definition 4. If, for some number T > 0 and any initial states of players x10, x20, . . . , xm0, y0 ∈ K,
there exist strategies of pursuers such that xi(τ) = y(τ) at some 0 < τ ≤ T and i ∈ {1, 2, . . . , m},
then we say that pursuit is completed in the game in K for the time T.

The pursuers try to complete the game as early as possible. The evader tries to
maintain the inequality xi(t) 6= y(t) as long as possible.

Problem 1. The problem is to find a sufficient condition on ρ1, ρ2, . . . , ρm and σ for the completion
of pursuit in the game in K.

Note that in the case where ρ1 = 1, ρ2 > 0, ρ3 > 0, and σ = 1 the problem was studied
in [20] and it was shown that pursuit can be completed in the game on icosahedron K.
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3. Main Result

Let us consider a regular icosahedron AA1 A2 A3 A4 A5 Ā1 Ā2 Ā3 Ā4 Ā5 Ā with the edges
of length 1, where Ā, Ā1, Ā2, Ā3, Ā4, and Ā5 are antipodal of vertices A, A1, A2, A3, A4, and
A5, respectively (Figure 1). We assume that the length of the edges of the icosahedron is
equal to 1.

3.1. The Case of Three Pursuers P1, P2, P3

In this subsection, we consider a differential game of three pursuers P1, P2, P3 and one
evader on the icosahedron. We prove the following statement.

Theorem 1. If the maximal speeds of two pursuers belong to [1/2, 1) and the speed of the third
pursuer is in the interval [2/3, 1), then pursuit can be completed in the game on icosahedron K.

Without loss of generality, we assume that 1/2 ≤ ρ1 < 1, 1/2 ≤ ρ2 < 1, and
2/3 ≤ ρ3 < 1. It is sufficient to show that pursuit can be completed when ρ1 = ρ2 = 1/2,
ρ3 = 2/3.

Proof. We use the graph of icosahedron on the plane illustrated in Figure 2. We denote
Aij(k) = Ai + k

−−→
Ai Aj. That is, Aij(k) is the point of the edge Ai Aj whose distance from the

point Ai is k, 0 ≤ k ≤ 1.

Figure 2. Points F(M) and F(N): A1F(M) = 2
3 A1 M, A5F(N) = 1

3 A5N.

We want to place first the pursuer P3 of speed 2/3 on the edge A1 A5 to guard this
edge from the evader. To this end, we define the point F(M) associated with any point
M of icosahedron K for which A1M ≤ 1 and M /∈ A1 A5, that is, with the point on the
edges A1 A, A1 A2, A1 Ā3, A1 Ā4 (highlighted in blue) by the equation A1F(M) = 2

3 A1M
(Figure 2). Clearly, if the evader is at the point M and the pursuer P3 is at the point F(M),
then they can reach the point A1 at the same time. Note that if pursuer P3 of speed 2/3 is at
the point F(M) and evader E of speed 1 is at the point M, then pursuer P3 can reach the
vertex A1 not later than evader E.

Similarly, we define the point F(N) associated with any point N, for which A5N ≤ 1
and N /∈ A1 A5, that is, with any point on the edges A5 A, A5 A4, A5 Ā2, A5 Ā3 (highlighted
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in pink) by the equation A5F(N) = 1
3 A5N. Clearly, if evader is at the point N and pursuer

P3 is at the point F(N), then they can reach the point A5 at the same time. Note that if
pursuer P3 of speed 2/3 is at the point F(N) and evader E of speed 1 is at the point N, then
pursuer P3 can reach the vertex A5 not later than evader E.

If A5M ≥ 1 and A1M ≥ 1, that is, if M is on an edge highlighted in red, then F(M) is
defined by the equation F(M) = A51(1/3).

Next, we construct strategies for the pursuers P1, P2, and P3 and show that pursuit can
be completed in a finite time in the game. We divide this process into two stages. In Stage
1, we bring the pursuers to some points associated with the position of the evader. Then, in
Stage 2, we prove that pursuit is completed.

Stage 1. Pursuer P3 comes to the point A1 and then moves along A1 A5 until P3(t1) =
F(E(t1)) at some time t1. Starting from the time t1 to some unspecified time t2 to be defined
later, pursuer P3 maintains the equation P3(t) = F(E(t)).

Next, to describe a strategy for the pursuer P2, we define the point G(Q) ∈ ĀĀ3
associated with each point Q for which ĀQ ≤ 1 and Q /∈ ĀĀ3, that is, with each point
on the edges ĀĀ1, ĀĀ2, ĀĀ4, ĀĀ5 (highlighted in cyan) by the equation ĀG(Q) = 1

2 ĀQ.
Clearly, the evader of speed 1 at the point Q and pursuer P2 of speed 1/2 at the point G(Q)
can reach the point Ā at the same time.

We also define the point G(Q) ∈ ĀĀ3 associated with each point Q for which Ā3Q ≤ 1
and Q /∈ ĀĀ3, that is, with each point on the edges Ā3 A1, Ā3 A5, Ā3 Ā2, Ā3 Ā4 (highlighted
in violet) by the equation Ā3G(Q) = 1

2 Ā3Q (Figure 3). Clearly, the evader of speed 1 is at
the point Q and pursuer P2 of speed 1/2 at the point G(Q) can reach the point Ā3 at the
same time. If ĀQ > 1 and Ā3Q > 1, then we define G(Q) as the mid point of the edge ĀĀ3.
To indicate that point G(Q) is the point of the edge ĀĀ3, we use the symbol GĀĀ3

(Q).

Figure 3. Point G(Q): ĀG(Q) = 1
2 ĀQ or Ā3G(Q) = 1

2 Ā3Q.

We let the pursuer P2 first come to the point Ā and move toward Ā3 until
P2(t′1) = G(E(t′1)) at some time t′1. Pursuer P2 further moves on the point G(E(t)) keeping
it until the time t2, which will be defined later.
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Next, to describe a strategy for the pursuer P1, we define point H(L) on the triangle
Ā1 ĀĀ5 associated with each point L on the icosahedron K, except for the edge A1 A5
(Figure 4). First, we define H(L) ∈ Ā1 Ā5 for L /∈ Ā1 Ā5. We let

(1) H(A2) = Ā5, H(A4) = Ā1,
(2) H(L) = Ā1 if L ∈ Ā1 A4, and H(L) = Ā5 if L ∈ Ā5 A2,
(3) H(L) = A1̄5̄(1/2) if L ∈ AA1 ∪ AA3 ∪ AA5 (recall A1̄5̄(1/2) is midpoint of Ā1 Ā5).

This set is highlighted in yellow in Figure 4.
(4) If L ∈ AA4 (Figure 4), then H(L) ∈ Ā1 Ā5 is defined by the equation Ā1H(L) =

1
2 A4L. Similarly, if L is on one of the edges A4 A, A2 A, A2 A3, Ā5 A3, Ā1 A3, A4 A3
whose vertex is X ∈ {A2, Ā5, Ā1, A4}, then H(L) ∈ Ā1 Ā5 is defined by the equation
H(X)H(L) = 1

2 XL.

In a similar fashion, we define H(L) ∈ ĀĀ1 and H(L) ∈ ĀĀ5 if point L is on the edges
highlighted in cyan and blue.

Figure 4. Point H(L): Ā1H(L) = 1
2 A4L.

Note that if the pursuer P1 of speed 1/2 catches the point H(E) for some position of
evader E at some time, then P1 can further move on the point H(E). Therefore, pursuer P1
first tries to catch the point H(E) (Figure 5).

Figure 5. Points P1 = H(E), P2 = G(E), P3 = F(E).
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To this end, pursuer P1 first comes to the vertex Ā and starting from the time max{t1, t′1}
moves along the sides of the triangle ĀĀ5 Ā1 in the direction Ā → Ā5 → Ā1 → Ā. Since
the speed of the point H(E) does not exceed 1/2, and the evader cannot pass through the
points A1, A5, Ā, Ā3, therefore we have P1(t2) = H(E(t2)) at some t2.

Stage 2. Starting from the time t2, pursuers chase the evader as follows. Pursuer P1
maintains the equation P1(t) = H(E(t)), t ≥ t2. Clearly, if the evader comes to a point of
the triangle ĀĀ5 Ā1, then the evader is captured by the pursuer P1. In other words, pursuer
P1 can guard the triangle ĀĀ5 Ā1.

Pursuer P3 continues to apply their strategy to guard the edge A1 A5, that is P3(t) =
F(E(t)), t ≥ t2.

Pursuer P2, starting from time t2, moves to the point Ā3 and comes to the point Ā3 at
some time t′2. If at this time the evader is on one of the edges Ā3 A1 and Ā3 A5, then E is
trapped by pursuers P2 and P3 and the evader will be captured. If E is not on the edges
Ā3 A1 and Ā3 A5, then E is on an edge whose one endpoint is either A or A2 or A3 or A4 or
Ā2 or Ā4.

If E is on an edge with an endpoint Ā2 or A4 at the time t′2, then pursuer P2 moves
along the path Ā3 → Ā2 → A4 and then moves by the edge A4 A or A4 A3 where E is,
forcing the evader to come to one of the points, A and A3. Evader E may also be trapped
by P2 and one of the pursuers P1 and P3 if E stays on an edge with endpoint at Ā2 or A4
highlighted in blue (Figure 6) when P2 reaches the green endpoint of the edge. In the latter
case, the evader will be captured. Therefore, we assume that E comes to one of the points
A and A3.

Figure 6. Blue edges joined to hexagon A2 A3 A4 Ā2 Ā3 Ā4.

As E reaches one of the points A and A3 at some time t3, pursuer P2 returns back and
moves along the sides of hexagon A2 A3 A4 Ā2 Ā3 Ā4 clockwise and comes to the point A2.

Recall that when E reaches one of the points A and A3 at time t3, by the strategy of
pursuer P3, they will be at the point A51(1/3). Starting from time t3, pursuer P3 applies
the following strategy. If evader E moves along the path A→ A4 → Ā2 or A3 → A4 → Ā2
toward the vertex Ā2 after time t3, then pursuer P3 moves along the path A51(1/3)→ A5 →
Ā2 maintaining the equation 2

3 d(A, E) = d(A51(1/3), P3) or 2
3 d(A3, E) = d(A51(1/3), P3),

respectively, where d(A3, E) denotes the distance of evader E from A3 along the path
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A3 → A4 → Ā2. If F(E(t)) ∈ A1 A51(1/3), then P3(t) = F(E(t)). This strategy of pursuer
P3 allows them to guard the edges A1 A5 and A5 Ā2 from the evader for t ≥ t3 (Figure 7).

Figure 7. The projection E′ of evader E ∈ S = AA1 ∪ AA2 ∪ AA3 ∪ AA4 ∪ AA5.

If E is on an edge with an endpoint Ā4 or A2 or A but not on the edge with the
endpoint A4 at time t′2, then pursuer P2 moves along the path Ā3 → Ā4 → A2. We assume
again that E is not trapped by two pursuers before P2 reaches A2.

What is the behavior of pursuer P2 after reaching point A2? To describe further the
strategy of pursuer P2, let us define the projection E′ of E ∈ S = AA1 ∪ AA2 ∪ AA3 ∪
AA4 ∪ AA5 on the edge A2 A3 by the following equations: (a) A2E′ = 1

2 A2E if E ∈ AA2,
(b) A3E′ = 1

2 A3E if E ∈ AA3, (c) E′ = A23(1/2), that is, E′ is the midpoint of A2 A3, if
E ∈ AA1 ∪ AA5, and (d) A3E′ = 1

2 A4E if E ∈ AA4.
As the pursuer reaches the point A2, they move along the edge A2 A3 until pursuer P2

coincides with the projection E′ of E ∈ S on the edge A2 A3 at some time t4. When pursuer
P2 coincides with E′, they further move, maintaining the equation P2(t) = E′(t) provided
E ∈ S. This is possible since the speed of E′ does not exceed 1/2.

This strategy of the pursuer P2 does not allow the evader to pass through the points A2
and A3 for t ≥ t4, that is, P2 guards the edge A2 A3 from the evader. If the evader reaches
one of these points, it will be captured by P2.

The evader can leave the set S only from the point A4 at some time since the points
A1, A5 are guarded by P3, and A2, A3 are guarded by P2. When the evader comes to the
point A4, according to the strategy above, pursuer P2 will be at point A3 at that time. We let
the pursuer P2 further stay at A3 until E enters S through point A4. As E enters S through
the point A4 we let again P2(t) = E′(t).

Starting from the time T = max{t3, t4} pursuer P1 moves toward point Ā1. As P1
reaches the point Ā1, P1 moves toward the point A4 along the edge Ā1 A4. When P1 reaches
point A4, the evader E is either on the edge A4 Ā2, on A4 A5 or on A4 A3, or on an edge with
the vertex A.

If E ∈ A4 Ā2 or E ∈ A4 A5, then E is trapped by pursuers P1 and P3 and soon will
be captured. If E ∈ A4 A3, then E is trapped by pursuers P1 and P2 and will be captured.
If the evader E is on an edge with the vertex A, pursuer P1 moves along the edge A4 A
then toward the evader, and the evader will be captured. The proof of the theorem is
complete.
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3.2. The Case of More than Three Pursuers

In this subsection, we consider a differential game of m, m ≥ 4 pursuers and one evader.
For the case of four pursuers P1, P2, P3, P4 (m = 4) and one evader on the icosahedron K,
we prove the following statement.

Theorem 2. If the maximal speeds of two pursuers belong to [1/2, 1) and the maximal speeds of
the other two pursuers are positive, then the pursuit can be completed in the game on icosahedron K.

Proof. Without loss of generality, we assume that 1/2 ≤ ρ1 < 1, 1/2 ≤ ρ2 < 1, and
ρ3, ρ4 > 0. It is sufficient to show that the pursuit can be completed when ρ1 = ρ2 = 1/2
and ρ3, ρ4 > 0.

We construct strategies for the pursuers P1, P2, P3, and P4 and show that pursuit can
be completed in a finite time in the game. We divide this process into two stages. In Stage
1, we bring the pursuers to some specific points. Then, in the Stage 2, we prove that pursuit
is completed.

Stage 1. We use the definition of the point G(Q) defined in the proof of Theorem 1.
We let the pursuer P1 come to the vertex A2, then move along A2 A3 toward A3 until the
state of P1(t) coincides with the point GA2 A3(E(t)), and further move on this point keeping
it. Then, clearly, if the evader reaches one of the points A2 or A3 at some time, it is captured
at that time (Figure 8). Note that when the pursuer P1 moves along the edge A2 A3, they
can collide with the evader E as well. Then, clearly, the evader is captured. Therefore, we
exclude such a collision.

We let the pursuer P2 come to the vertex A1, then move along A1 Ā3 toward the point
Ā3 until the state of P2(t) coincides with the point GA1 Ā3

(E(t)), and further move on this
point, keeping it. Let the pursuers P3 and P4 come to the points Ā2 and A4, respectively,
and stay there until the first time t = t1 when all the equations P1(t) = GA2 A3(E(t)),
P2(t) = GA1 Ā3

(E(t)), P3(t) = Ā2, and P4(t) = A4 are satisfied.
Stage 2. We show that pursuit can be completed. Indeed, if the evader is on one of

the edges A1 A2, A3 A4, A4 Ā2, or Ā2 Ā (highlighted in pink) at time t1, then the evader is
trapped by two pursuers, and so the evader will be captured. For example, if E(t1) ∈ A1 A2,
then starting from time t1, the pursuer P2 of speed ρ2 comes to the point A1 and then moves
toward the point A2 along A1 A2 to catch the evader.

If at time t1 the evader is on an edge with an endpoint at A or A5 (highlighted in
blue), then we let the pursuer P3 of speed ρ3 come to the point A5 at some time t2, (that is,
P3(t2) = A5) and pursuers P1 and P2 further control the edges A2 A3 and A1 Ā3, respectively,
and P4(t) = A4. If the evader is on one of the edges A5 A1, A5 Ā3, A5 Ā2, A5 A4 at the time
t2, then the evader is trapped by two pursuers, and so the evader will be captured.

If the evader is not on any of these edges, then P3 of speed ρ3 starting from time t2
moves toward point A, and we let P3(t3) = A at some time t3. Then at time t3, the evader
is trapped by two pursuers, and so the evader will be captured.
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Figure 8. Location of the pursuers.

If the evader is on an edge with the vertex Ā or Ā1 or Ā4 or Ā5 (highlighted in green)
at the time t1, then we let the pursuer P4 of speed ρ4 come to the vertex Ā1 at some time
t′2. The evader is trapped by two pursuers at time t′2 if it is on the edge Ā1 Ā2 or Ā1 A3. If
the evader is not on these edges, we let the pursuer P3 of speed ρ3 come to the vertex Ā at
some time t′3. If the evader is not trapped by two pursuers at the time t′3, then pursuer P4
moves along the path Ā1 → Ā5 → Ā4, and P3 stays at the vertex Ā for t ≥ t′3. Then, clearly,
the evader is trapped by two pursuers when pursuer P4 reaches Ā5 or Ā4, and so it will be
captured. The proof of the theorem is complete.

Next, for the case of five pursuers P1, P2, P3, P4, P5 (m = 5) and one evader on the
icosahedron K, the following statement is true.

Theorem 3. If the maximal speed of one pursuer belong to [1/2, 1) and the maximal speeds of the
other three pursuers are positive, then the pursuit can be completed in the game on icosahedron K.

The proof of this theorem is very similar to the proof of the previous theorem. There-
fore, we just give the main idea of the proof. Let ρ1 = 1/2 and ρ2, ρ3, ρ4, ρ5 > 0. First, the
pursuer P5 catches the point GA2 A3(E(t)) and further moves on this point, and pursuers
P1, P2, P3, P4 come to the points A1, Ā3, Ā2, A4, respectively. Then, we let pursuer P3 move
along the path A2 → A5 → A until the evader is trapped by two pursuers if the evader is
on an edge with an endpoint at A or A5. If the evader is on an edge with an endpoint at Ā
or Ā1 or Ā4 or Ā5, then P4 moves from A4 to Ā1, then P3 moves from Ā2 to Ā, and then P4
moves along the path Ā1 → Ā5 → Ā4 until the evader is trapped by two pursuers. For the
case of six pursuers P1, P2, P3, P4, P5, P6 (m = 6) and one evader on the icosahedron K, the
following statement is true.

Theorem 4. If the maximal speeds of pursuers are positive, then pursuit can be completed in the
game on icosahedron K.

We let the pursuers P1, P2, P3, P4, P5, P6 move to the points A1, Ā3, Ā2, A4, A3, and A2,
respectively. The rest of the reasoning is as above.
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4. Conclusions and Discussion

We studied a differential game of three slow pursuers and one evader of speed 1 on
1-skeleton of an icosahedron. Previous research [20] shows that three pursuers of speeds
ρ1 = 1, ρ2 > 0, ρ3 > 0 can catch one evader of speed 1, but two pursuers of speed 1 cannot
catch one evader of speed 1 on icosahedron K. Therefore, in the present paper, we studied
the case of slow pursuers. We obtained a sufficient condition for speeds of pursuers to
complete the game when the number of pursuers is m = 3, 4, 5, 6. We also constructed
strategies for the pursuers to complete the game. According to Theorem 4, six pursuers
with positive speeds can catch one evader of speed 1.

If the speeds of the pursuers are not in the intervals considered in Theorems 1–4,
then differential game has not been studied yet. For the further investigation, we give
some open problems for the differential game on the graph edge of an icosahedron. Can
three pursuers catch one evader of speed 1 if the speeds of the pursuers are (1) ρ1 < 1/2,
ρ2 = 1/2, ρ3 = 2/3, and (2) ρ1 = 1/2, ρ2 = 1/2, ρ3 < 2/3?

Additionally, the case where there are obstacles along the edges is very interesting. In
particular, such an obstacle can be considered a pursuer with the speed equal to 0. Such a
pursuer cannot move, but if the state of the evader coincides with that of this pursuer, the
pursuit is completed.
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