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Abstract: Air pollution is a major global problem, closely related to economic and social development
and ecological environment construction. Air pollution data for most regions of China have a close
correlation with time and seasons and are affected by multidimensional factors such as meteorology
and air quality. In contrast with classical peaks-over-threshold modeling approaches, we use a deep
learning technique and three new dynamic conditional generalized Pareto distribution (DCP) models
with weather and air quality factors for fitting the time-dependence of the air pollutant concentration
and make statistical inferences about their application in air quality analysis. Specifically, in the
proposed three DCP models, a dynamic autoregressive exponential function mechanism is applied
for the time-varying scale parameter and tail index of the conditional generalized Pareto distribution,
and a sufficiently high threshold is chosen using two threshold selection procedures. The probabilistic
properties of the DCP model and the statistical properties of the maximum likelihood estimation
(MLE) are investigated, simulating and showing the stability and sensitivity of the MLE estimations.
The three proposed models are applied to fit the PM2.5 time series in Beijing from 2015 to 2021. Real
data are used to illustrate the advantages of the DCP, especially compared to the estimation volatility
of GARCH and AIC or BIC criteria. The DCP model involving both the mixed weather and air
quality factors performs better than the other two models with weather factors or air quality factors
alone. Finally, a prediction model based on long short-term memory (LSTM) is used to predict PM2.5

concentration, achieving ideal results.

Keywords: generalized Pareto distribution; peaks over threshold; dynamic conditional autoregressive
modeling; threshold selection; long short-term memory

MSC: 62P12

1. Introduction

Air pollution, closely related to economic and social development as well as ecological
environment construction, is a global problem that destroys human living environments. In
recent years, the Chinese government has attached great importance to the prevention and
control of air pollution. The World Air Quality Report 2021 released by the Swiss company
IQAir pointed out that air quality in China continued to improve in 2021. Compared to
2020, PM2.5 concentrations decreased in 66% of Chinese cities [1]. However, China still
faces environmental challenges. Air pollution is mainly composed of harmful gases and
particulate matter, which are released into the atmosphere by natural or human activities,
and its concentration is far beyond the self-purification capacity of the atmosphere, resulting
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in changes in the composition of the atmosphere, endangering human health and living
environments. Smog, as a seriously harmful air pollutant, has received growing attention.
Severe smog levels pose a huge threat to China’s public health [2–5]. Short-term exposure
to air pollution will cause cough, dyspnea, headache, fatigue and other phenomena, while
long-term exposure to air pollution will lead to respiratory diseases, cardiovascular damage,
nervous system damage and other diseases, and may even lead to birth defects and
death [6–9]. Climate warming, sea-level rises, acid rain, the hole in the ozone layer and
other particulate pollution directly highlight the environmental problems caused by air
pollution, harming human survival and development. To improve air quality and human
living environments, air pollution has become a key topic for researchers, and monitoring,
assessment, prediction and prevention have become important research directions in the
study of air pollution. Smog is also closely linked to China’s economic development [10–13].
It is necessary to make full use of multidimensional big data and give full play to the
advantages of statistics and artificial intelligence technology. By virtue of interdisciplinary
development, researchers have been able to vigorously develop statistical modeling theory
and deep learning technology for accurate prediction and effective control of urban air
quality. As a result, a solid theoretical foundation and effective technical support can
be provided for improving the capabilities and level of ecological and environmental
conservation.

Fine particulate matter (PM2.5) is the most common object in the studies of pollu-
tant concentration, and the higher the concentration in the air, the more serious the air
pollution [14–16]. From a statistical point of view, pollutant concentration prediction has
become an important research direction in air pollution forecasting and prevention. The ex-
isting research on air pollutant concentration mainly focuses on the sources, concentration
distributions, fluctuations, affecting factors, adverse effects on human health and so on.
Quantitative prediction of pollutant concentration is the most common statistical method
for dealing with air pollution problems, and multivariate regression, cluster analysis and
principal component analysis are the most frequently used statistical models. Chen Songxi,
an academician of the Chinese Academy of Sciences, applied non-parametric statistics to
the national air pollution assessment and prevention research and proposed a method
for adjusting spatio-temporal meteorological factors to remove the meteorological con-
founding effect in atmospheric environmental monitoring, providing a scientific method
for accurately measuring pollutant discharge and evaluating air pollution control [17–22].
Wang et al. (2020) [23] established a spatio-temporal O3 pollution land use regression (LUR)
model suitable for large cities based on parametric, non-parametric and semi-parametric
classical statistical algorithms combined with meteorological factors, with the ability to
monitor O3 concentration with high spatio-temporal resolution.

In order to improve the prediction accuracy, classical extreme value theory (EVT)
has attracted more and more attention. Compared with fine weather, researchers are
more concerned with observations of pollutant concentrations exceeding a certain high
threshold. Pickands (1975) [24] pointed out that observations above a certain threshold
can be approximated well by the generalized Pareto distribution (GPD). As a branch of
EVT, GPD plays an important role in many fields. In the field of hydrometeorology, the
GPD model is used to analyze and forecast natural phenomena such as floods, wind and
rainfall [25,26]. In the financial field, stock yield is non-normal and thick-tailed, which can
be well fitted by a GPD [27,28]. In the field of insurance, insurance losses are generally non-
negative with a thick tail, and a GPD is usually used to predict the maximum loss [29,30].

Due to the strong time correlation of observations, a traditional model with fixed
parameters cannot perfectly fit the time-series observations in reality. To solve this prob-
lem, many researchers have conducted in-depth research on the dynamic extreme value
distribution model and the dynamic over-threshold GPD model. Using the autoregressive
mechanism of the GARCH model, Zhao et al. (2018) [31] established an autoregressive
conditional Fréchet model with time-dependent parameters (type II GEV) for the sequence
of daily maximum stock returns. They solved the maximum likelihood estimation of the
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model parameters and studied the large-sample properties of the parameters. Chavez-
Demoulin et al. (2014) [32] applied a Bayesian method to update the time-varying GPD
parameters for the UBS stock price, which was a non-parametric method applied to a
POT–GPD model. Kelly and Jiang (2014) [33] built a dynamic tail model with POT–GDP for
panel data and measured the tail risk of the S&P 500 index . Massacci (2017) [34] studied
the time-dependent dynamic parameter estimation of a GPD through the score-based
approach, in order to accurately estimate the tail index from U.S. size-sorted decile stock
portfolios. Shen et al. (2020) [27] established an autoregressive conditional Pareto (ACP)
distribution model via an exponential function. The maximum likelihood estimation of the
parameter was given, and its properties were studied. Based on the parameter estimation,
they employed the ACP model to the Dow Jones Industrial Average and the S&P 500
index. Deng et al. (2020) [35] applied a dynamic model to air quality management, taking
time and meteorological factors into consideration and establishing a dynamic conditional
autoregressive Weibull distribution model (type III GEV) via the maximum daily pollutant
concentrations. The probabilistic properties of the autoregressive model were investigated
in their study. As is well known, it is difficult to fit the PM2.5 time series accurately, so the
model selection and statistical inferences are the most important and common challenges
for real data applications.

Threshold selection is a critical issue for fitting the autoregressive conditional gener-
alized Pareto distribution model. In practice, the threshold should be chosen in advance.
If the threshold is too large, the sample size of observations exceeding the threshold will
be too small, which may increase the variance of the parameter estimation and affect the
estimation effect. If the threshold is too small, the sample size can be increased, but the
estimator is prone to bias. Choulakian and Stephens (2001) [36] transformed the threshold
selection into the goodness-of-fit test of the model. Through the selection method, an appro-
priate threshold was chosen, allowing the exceedance to follow the GPD, and the threshold
selection was carried out at the same time as testing the model. Bermudez et al. (2001) [37]
used a Bayesian predictive approach to the peaks-over-threshold (POT) method, which can
also be applied to small-sample situations. Bader et al. (2018) [38] proposed an automated
threshold selection procedure based on a sequence of goodness-of-fit tests, and attained
automatic threshold selection by applying stopping rules, which transform the results
of ordered, sequentially tested hypotheses to control the false discovery rate. Yang et al.
(2018) [39] developed an empirical threshold selection method based on the relationship
between eigenvalues and thresholds. Schneider et al. (2021) [40] proposed selecting the
threshold by minimizing the asymptotic mean squared error of the Hill estimator.

With the continuous development of artificial intelligence and machine learning,
an increasing number of scholars have applied traditional machine learning methods to
statistical prediction models in recent years and achieved good results in terms of accuracy
and time efficiency. Boznar et al. (1993) [41] compared prediction results based on the three-
layer neural network perceptron with the results generated by a traditional atmospheric
diffusion model. Neagu et al. (2002) [42] used a fuzzy neural network model to predict
the concentration of nitrogen oxide pollutants, achieving good results. Esfandani and
Nematzadeh (2016) [43] proposed a prediction model for air quality in Tehran based on
a feedback neural network. Amarpuri et al. (2019) [44] established a convolutional long
short-term memory network to predict carbon dioxide emissions and achieved ideal results.
An air pollution prediction model based on LSTM is a good choice for predicting PM2.5
concentrations. García et al. (2020) [45] analyzed the concentrations of nitrogen dioxide
(NO2), nitrogen oxides (NOX), particulate matter (PM10) and toluene (C7H8) at eight sites in
Madrid (Spain) through seven regression-based machine learning models and time-series
models. Sánchez-Pérez et al. (2020) [46] established a complete spatio-temporal dispersion
model for pollutants through a network simulation method, to obtain the concentrations of
pollutants released at any time in a given space. Sayeed et al. (2021) [47] used a generalized
deep convolutional neural network (CNN) model to predict air pollutants, which could
predict the hourly pollutant concentration within 7 days with relatively high accuracy.
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In this paper, dynamic autoregressive mechanisms are applied, and weather and air
quality factors are also involved in our model. The framework of this paper follows that
of [27]. The three main contributions of this paper are as follows. First, we construct a
dynamic conditional generalized Pareto distribution (DCP) with both weather and air
quality factors to fit the smog observations, considering the time-dependency of the scale
parameter and the tail index of the GPD. Secondly, the threshold is chosen using a threshold
selection program rather than by specifying a quantile. Thirdly, the PM2.5 time series are
predicted by combining the DCP model with deep learning technology.

2. DCP Model
2.1. Conditional Distribution

The cumulative distribution function of a three-parameter GPD is defined as

Gµ,ξ,σ(x) =

{
1−

(
1 + ξ

σ (x− µ)
)− 1

ξ , ξ 6= 0

1− exp(− x−µ
σ ), ξ = 0

, (1)

where µ ∈ (−∞, ∞) is the location parameter, ξ ∈ (−∞, ∞) is the shape parameter and
σ ∈ (0, ∞) the scale parameter. In Equation (1), µ ≤ x < ∞ when ξ ≥ 0, µ < x < µ− σ/ξ
when ξ < 0. In particular, the GPD is an exponential distribution when ξ = 0. Additionally,
the two-parameter GPD should be mentioned here for its extensive use, especially in
parameter estimation. The classical two-parameter GPD(ξ, σ) is obtained by taking µ = 0 in
(1) [48]. The GPD has an important property that if X is a random variable (r.v.) distributed
according to a GPD(ξ, σ), then the r.v. Y = X− u|X > u has a GPD(ξ, σ+ ξu) for a threshold
u. This means that the shape parameter does not alter in the “excess over the threshold”
operation.

Let {Qt}n
t=1 be the time sequence of the daily moving average concentration of PM2.5 at

time t for smog occurrences, where n denotes the size of the observations. Let Ft(qt|Ft−1) be
the conditional cumulative distribution of Qt, whereFt−1 denotes the available information
set until time t− 1. In practice, the underlying distribution Ft(qt|Ft−1) of the dataset is
unknown. Based on the famous Pickands–Balkema–de Haan theorem [24,49], the standard
practice is to employ GPD modeling for the tail region if the dataset under the POT
framework of the original distribution is in the maximum domain of attraction. The obvious
limitation is that the time characteristics of Qt are totally ignored, which may result in the
loss of some sample information and cause the statistical inference result to be inaccurate
if the dataset depends strongly on time. To solve this problem, Massacci (2017) [34] and
Shen et al. (2020) [27] proposed a dynamic GPD framework under the parameters (u, ζt, αt)
as follows:

Gu
t (qt|Ft−1) = 1−

(
1 +

qt − u
αt

)−ζt
, qt > u > 0, ζt > 0, αt > 0,

where the parameters αt and ζt are time varying, and ζt is the tail index and u is the selected
threshold. When the POT approach is employed, based on the Pickands–Balkema–de Haan
theorem [24,49], the conditional distribution of the positive excess Fu

t (qt|Ft−1) can be
approximated by the dynamic GPD if the distribution satisfies the condition of the theorem.
That is,

lim
u→+∞

sup
u≤qt<+∞

|Fu
t (qt|Ft−1)− Gu

t (qt|Ft−1)| = 0,

where

Fu
t (qt|Ft−1)= P(u < Qt ≤ qt|Qt > u;Ft−1)

=
Ft(qt|Ft−1)− Ft(u|Ft−1)

1− Ft(u|Ft−1)
, 0 < u ≤ qt,
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Fu
t (qt|Ft−1) is assumed to be the dynamic GPD, so we can rewrite Ft(qt|Ft−1) as

Ft(qt|Ft−1)= P(Qt ≤ qt|Ft−1)

= [1− Ft(u|Ft−1)]Fu
t (qt|Ft−1) + Ft(u|Ft−1)

= PtGu
t (qt|Ft−1) + 1− Pt, (2)

where Pt = P(Qt > u|Ft−1).
For a given threshold value u, we focus on the exceedance Qt > u and define

Yt =max(Qt − u, 0). Based on Equation (2), the corresponding conditional cumulative
distribution function P(Yt ≤ yt|Ft−1) = Ht(yt|Ft−1) of Yt is as follows [27,34]:

Ht(yt|Ft−1)= I(yt = 0)(1− Pt) + I(yt > 0)Ft(yt + u|Ft−1)

= I(yt = 0)(1− Pt) + I(yt > 0)
[

PtGu
t (yt + u|Ft−1) + 1− Pt

]
= I(yt = 0)(1− Pt) + I(yt > 0)

[
1− Pt

(
1 +

yt

αt

)−ζt]
,

where I(·) is an indicator function. Pt is approximated as a power law multiplied by a
time-varying function slowly varying at infinity. Massacci (2017) [34] parameterized the
function and obtained the following formula for Pt:

Pt = (1 + u)−ζt . (3)

From Equation (3), the cumulative distribution function Ht(Yt|Ft−1) of Yt becomes

Ht(yt|Ft−1) = I(yt = 0)[1− (1 + u)−ζt ] + I(yt > 0)
[
1− (1 + u)−ζt

(
1 +

yt

αt

)−ζt]
, u > 0, αt > 0, ζt > 0. (4)

By solving the inverse function of Yt, we obtain

Yt = αtI(Pt > Zt)

[( Pt

Zt

) 1
ζt − 1

]
, (5)

where Zt follows a uniform distribution in (0,1) and Pt is as given in (3). Equation (4)
contains three distributions from EVT: the POT framework for the GPD, the power law for
the conditional probability of Yt greater than 0 and the uniform distribution of Zt.

2.2. Model Specification

Shen et al. (2022) [27] assumed that ζt/αt = b for simplicity, and the form of αt was
modeled as follows:

log αt = β0 + β1 log αt−1 + β2 exp(−β3Yt−1),

where 0 ≤ β1 ≤ 1, β2 > 0, β3 > 0.
In this paper, after threshold selection for the dynamic conditional generalized Pareto

(DCP) model, we concentrate on the autoregression of both αt and ζt, which are the
critical parameters reflecting the tail behavior. We impose a dynamic structure on the
time-dependent parameters (αt, ζt) and consider weather and air quality factors.

Specifically, the DCP model with weather and air quality factors assumes the form

log αt = β0 + β1 log αt−1 + η1(Qt−1, Tt−1, Ht−1, Wt−1, SO2t−1, NO2t−1, COt−1), (6)

log ζt = γ0 + γ1 log ζt−1 + η2(Qt−1, Tt−1, Ht−1, Wt−1, SO2t−1, NO2t−1, COt−1), (7)

where β1, γ1 ∈ (0, 1), β0, γ0 ∈ R, η1(·) and η2(·) are the observation-driven functions for
log αt and log ζt. Tt, Ht, Wt denote daily average temperature, average relative humidity
and average wind speed, and SO2t, NO2t, COt denote daily moving average concentrations
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of sulfur dioxide, nitrogen dioxide and carbon monoxide on day t, respectively. These three
weather factors and three air quality factors are commonly considered in studies on smog.
Other weather and air quality factors could also be considered, but the model complexity
may be increased, and the effect may be weakened by adding too many factors.

We use continuous monotonic exponential functions in η1(·) and η2(·), as in other
studies in the literature [27,31], for simplicity, flexibility and easy interpretation. From
Equation (5), there exists a positive association between αt and Yt , while ζt and Yt are
negatively correlated. An increasing η1(·) and a decreasing η2(·) ensure that a large Yt is
followed by a large αt and small ζt, so we choose the autoregressive process with weather
factors as

log αt = β0 + β1 log αt−1 − β2 exp(−β3Yt−1 + β4Tt−1 + β5Wt−1 + β6Ht−1), (8)

log ζt = γ0 + γ1 log ζt−1 + γ2 exp(−γ3Yt−1 + γ4Tt−1 + γ5Wt−1 + γ6Ht−1), (9)

where Yt is given in (5), and {Zt}
i.i.d∼ U(0, 1), βi, γi ∈ R, i = 0, 4, 5, 6, 0 ≤ β1 6= γ1 < 1,

β j, γj > 0, j = 2, 3. Equations (8) and (9) mean that an extreme event observed at time t− 1
(large Yt−1) causes the distribution of Yt to have a larger scale (large αt) and a heavier tail
(small ζt). That is why the exceedances tend to occur at around the same period in our
examples.

In addition, αt and ζt of the DCP model with air quality factors and the model with
mixed weather and air quality factors are expressed in the same way as in Equations (10)–(13),
respectively.

log αt = β0 + β1 log αt−1 − β2 exp(−β3Yt−1 − β4SO2t−1 − β5NO2t−1 − β6COt−1), (10)

log ζt = γ0 + γ1 log ζt−1 + γ2 exp(−γ3Yt−1 − γ4SO2t−1 − γ5NO2t−1 − γ6COt−1), (11)

where βi, γi ∈ R, i = 0, 4, 5, 6, 0 ≤ β1 6= γ1 < 1, β j, γj > 0, j = 2, 3.

log αt = β0 + β1 log αt−1 − β2 exp(−β3Yt−1 − β4SO2t−1 − β5COt−1 + β6Wt−1 + β7Ht−1), (12)

log ζt = γ0 + γ1 log ζt−1 + γ2 exp(−γ3Yt−1 − γ4SO2t−1 − γ5COt−1 + γ6Wt−1 + γ7Ht−1), (13)

where βi, γi ∈ R, i = 0, 4, 5, 6, 7, 0 ≤ β1 6= γ1 < 1, β j, γj > 0, j = 2, 3.
Specific details of model applications will be discussed in Sections 5 and 6.

3. Estimation and Properties

In this section, we consider the maximum likelihood estimation method for estimating
the parameters in the DCP models.

3.1. Maximum Likelihood Estimation

Taking the weather factors model as an example, we denote Θs = {θ = (β0, β1, β2, β3, β4,
β5, β6, γ0, γ1, γ2, γ3, γ4, γ5, γ6)|0 ≤ β1 6= γ1 < 1, β2 > 0, β3 > 0, γ2 > 0, γ3 > 0, βi,
γi ∈ R, i = 0, 4, 5, 6} as the parameter space in the DCP model with weather factors. The
conditional probability function of Yt can be obtained according to Equation (4) as

ht(Yt|Ft−1) = I(Yt = 0)[1− (1 + u)−ζt ] + I(Yt > 0)
[ ζt

αt
(1 + u)−ζt

(
1 +

Yt

αt

)−ζt−1]
,

where u > 0, αt > 0, ζt > 0.
The corresponding log-likelihood function with respect to the parameter θ is

Ln(θ) =
1
n

n

∑
t=1

{
I(Yt = 0) log[1− (1 + u)−ζt ] + I(Yt > 0)

[
log ζt − log αt

−ζt log(1 + u)− (ζt + 1) log
(

1 +
Yt

αt

)]}
.

(14)
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Next, the process of maximum likelihood estimation is briefly introduced. With
reference to [38,50], we adopt two threshold selection methods. The details are given
in Section 5. After obtaining a sufficient high threshold u, we can obtain all Yt from
Yt =max(Qt − u, 0). We choose log α1 as β0−β2/2

1−β1
and log ζ1 as γ0+γ2/2

1−γ1
, which lies in the

middle of G =
(

β0−β2
1−β1

, β0
1−β1

)
×
(

γ0
1−γ1

, γ0+γ2
1−γ1

)
, and obtain all αt and ζt with the DCP

model, using Yt, log α1, log ζ1 and θ. Finally, we calculate the likelihood function using
Equation (14) and obtain the MLE estimator of θ. The details are shown in Section 6.

3.2. Statistical Properties

The dynamic evolution Equations (6) and (7) without weather and air quality factors
can be rewritten as

log αt = β0 + β1 log αt−1 − β2 exp{−β3αt−1I(Pt−1 > Zt−1)[(Pt−1/Zt−1)
1/ζt−1 − 1]}, (15)

log ζt = γ0 + γ1 log ζt−1 + γ2 exp{−γ3αt−1I(Pt−1 > Zt−1)[(Pt−1/Zt−1)
1/ζt−1 − 1]}, (16)

where {Zt} is an i.i.d. sequence of uniform distribution in (0,1) random variables and Pt is
as given in (3).

Next, we propose the stationary and geometrically ergodic process of {αt, ζt} given in
(15) and (16).

Theorem 1. If parameters β2, β3, γ2, γ3 > 0, β0, γ0 ∈ R and 0 ≤ β1 6= γ1 < 1, the latent
process {αt, ζt} is defined as stationary and geometrically ergodic.

Assumption 1. Assume the parameter space Θ is a compact set of Θs. Suppose the observations
{Yt}n

t=1 are generated from a stationary and ergodic DCP process with the true parameter θ0 which
is in the interior of Θ.

Denote Ln(θ) based on θ and an arbitrary initial value (α̃1, ζ̃1) as L̃n(θ).

Theorem 2 (Consistency). Under Assumption 1, there exists a sequence {θ̂n}n≥1 of local maximizers
of L̃n(θ) such that θ̂n →p θ0 and ||θ̂n − θ0|| ≤ τn, where τn = Op(n−r), 0 < r < 1/2.

Theorem 3 (Asymptotic Normality). Under the same conditions as in Theorem 2,
√

n(θ̂n −
θ0) → N(0, M−1

0 ), where θ̂n is given in Theorem 2 and M0 is the Fisher information matrix
with θ0.

Theorems 2 and 3 show the existence and asymptotic normality, respectively, of the
MLE θ̂n. However, the uniqueness of the MLE must be proved. Proposition 1 gives an
answer to this.

Proposition 1 (Asymptotic Uniqueness). Under the same conditions as in Theorem 2, P(θ̂n is
the unique global maximizer of L̃n(θ) over Θ)→ 1, where θ̂n is given in Theorem 2.

The proofs of Theorems 1–3 and Proposition 1 are shown in Appendix A.

4. Long Short-Term Memory Model

The main purpose of LSTM is to solve the problem of long-distance dependency in
the training of recurrent neural networks. First, it is necessary to set the cell memory unit,
and introduce the forget gate, input gate and output gate into the recurrent neural network
(RNN), so that information transmission can be controlled. The state (namely the memory
unit) update is also based on these “gates”, which ensure that the LSTM model can save
long-distance information. Under the influence of the memory unit, these “gates” will be
in a controllable range. LSTM then can save, update and read long-distance information,
and gradient explosion or disappearance during training are well solved. In the time-series
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data for air pollution, more comprehensive long-distance dependence information can be
extracted. From the perspective of the whole model, the main components are as follows:
output gate ot , input gate it, memory unit Ct and forget gate ft. The structure is shown in
Figure 1.

Figure 1. Structure of LSTM.

The first “gate” that the LSTM passes through is the “forget gate”, which discards part
of the information in the previous memory unit. This step is realized by a sigmoid function,
which uses the weighted values of the current input and the output of the previous moment
to obtain a number in the range of 0–1, which controls the information transfer. The value 1
represents complete retention and 0 represents complete discarding. The details are given
in Equation (17):

ft = σ
(

W f · [ht−1, xt] + b f

)
, (17)

The input gate controls what information is added to the cell, and the calculation
process is shown in Equations (18) and (19):

it = σ(Wi · [ht−1, xt] + bi), (18)

Ct = ft · Ct−1 + it · tanh
(

W f · [ht−1, xt] + bc

)
, (19)

The output gate controls what information is used for the task output at this moment,
and the calculation process is shown in (20) and (21):

ot = σ(W0 · [ht−1, xt] + b0), (20)

ht = ot · tanh(Ct), (21)

In the above equations, Wi, W f and W0 denote the weight matrices of the correspond-
ing gate, bi, b f and b0 denote the corresponding gate bias matrices, σ and tanh denote the
activation functions, ot denotes the output gate, it denotes the input gate, Ct denotes the
memory unit, ft denotes the forget gate, xt denotes the input at time t and ht denotes the
output at time t.

5. Simulation Study

In this section, the performance of the MLE for the DCP models is investigated using
six numerical experiments. To investigate the performance of the MLE, we generate data
from the three DCP models given in (5) and (8)–(13), with the parameters shown in Table 1.
These sets of parameters are the MLEs obtained from an analysis of real observations in
Beijing from 3 January 2015 to 8 August 2020 and from 1 January 2018 to 8 August 2020,
where the weather factors are from the China Meteorological Data Service Center and the air
quality factors are from the China National Environmental Monitoring Center. In addition,
the estimations of β1 and β2 are close to 0, especially in the three models from 3 January
2015 to 8 August 2020, which indicates that the scale parameter αt can be considered a
constant to a certain extent (a consideration that will be realized in future research). Due
to more attention being given to the tail index ζt and the wider applicability of the DCP
models, we made no changes to αt.
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Figure 2 displays a line graph of the PM2.5 concentration time series in Beijing. As
shown in Figure 2, with the improvement in the national environmental governance level
and public awareness of environmental protection, the PM2.5 concentration generally
shows a downward trend. Figure 2 shows that 2018 is a noteworthy year with significant
governance effects, suggesting that PM2.5 concentrations after this need to be analyzed
separately. Hence, real data from 1 January 2018 to 8 August 2020 are also fitted to the three
DCP models, in addition to the real data from 3 January 2015 to 8 August 2020. According
to the World Air Quality Report 2021 released by IQAir [1], China has seen a 21% overall
reduction in annual PM2.5 concentrations since 2018, which justifies the separation of the
data from 1 January 2018 to 8 August 2020.

Threshold selection is a key issue in extreme value analysis based on the POT method.
For these two sets of observations, from 3 January 2015 to 8 August 2020 and 1 January
2018 to 8 August 2020, we select two thresholds determined by Bader et al. (2018) [38] and
Davison and Smith (1990) [50]. Bader et al. (2018) [38] proposed an automated threshold
selection procedure using a stop rule that controls the false discovery rate in ordered
hypothesis testing. The ForwardStop rule provides an automated selection procedure
combined with sequential hypothesis testing when the level of desired error control and a
set of thresholds are given. Based on the goodness-of-fit of the GPD, Davison and Smith
(1990) [50] proposed a threshold selection approach where the threshold is chosen as the
lowest value above which the GPD fits the exceedances adequately. In this study, the
threshold selection results were 2.4660 using the method of Bader et al. (2018) [38] for
PM2.5 data from 3 January 2015 to 8 August 2020 and 0.5716 using the method of Davison
and Smith (1990) for PM2.5 data from 1 January 2018 to 8 August 2020, and approximately
4% and 18% of the corresponding real data exceeded these two thresholds, respectively,
ensuring a sufficiently high value.

Tables 2–7 show the averages of the mean values and the standard deviations with
different sample sizes from the three DCP models in the above two periods. We also
calculated the corresponding root mean squared error (RMSE) and absolute bias (Abias) to
measure the estimation effect, as shown in Tables 2–7. We obtained simulated exceedances
Yt with lengths of 1000 and 2000, respectively. The experiments were repeated 500 times for
each sample size. As shown in Tables 2–7, the RMSE and Abias values for the parameter
estimations using the real data from 1 January 2018 to 8 August 2020 were mostly smaller
than those from 3 January 2015 to 8 August 2020, while those for the sample size of 2000
were mostly smaller than those for the sample size of 1000, and the parameter estimation
of the tail index ζt was better than that of αt. The values of RMSE and Abias explain the
validity of our estimation.

To enable observation of the performance of our model more directly, Figure 3 depicts
the dynamics of the tail index ζ̂t estimated by MLE (red line) and the simulated tail index
ζt (black line) under the experiments for n = 2000. We can see that the estimated tail index
ζ̂t was almost the same as the simulated tail index ζt in the three DCP models. In addition,
we calculated the correlation between the two series, and the results were 0.9328, 0.9559,
0.9921, 0.9964, 0.9591 and 0.9679, corresponding to Figure 3a–f, respectively, which shows
the similarity of the two curves better. However, we cannot judge the simulation effect from
the similarity of the two curves only. Figure 3 illustrates the sufficiency of our estimation.
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Figure 2. The graph of PM2.5 time series in Beijing.

(a) (b)

(c) (d)

(e) (f)

Figure 3. Tail index ζ̂t estimated by MLE and simulated tail index ζt. (a) The DCP model with
weather factors from 2015 to 2020. (b) The DCP model with weather factors from 2018 to 2020. (c) The
DCP model with air quality factors from 2015 to 2020. (d) The DCP model with air quality factors
from 2018 to 2020. (e) The DCP model with mixed factors from 2015 to 2020. (f) The DCP model with
mixed factors from 2018 to 2020.
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Table 1. Parameter estimation of the DCP models. Weather1 and weather2 represent the DCP models
with weather factors from 3 January 2015 to 8 August 2020 and from 1 January 2018 to 8 August 2020.
Air1 and air2, and mixed1 and mixed2 are similar to weather1 and weather2.

Weather1 Weather2 Air1 Air2 Mixed1 Mixed2

β0 0.2989 0.0950 −0.0191 0.5932 −0.0186 0.8154
β1 0.0000 0.9210 0.0033 0.3744 0.0000 0.0000
β2 0.0000 0.0303 0.0000 0.0602 0.0000 0.0696
β3 6.4028 33.6097 2.1760 0.0001 2.8285 0.2035
β4 8.2352 0.1524 0.0042 2.0413 0.3989 2.9834
β5 0.9159 0.4756 0.3541 0.7755 6.1266 0.0001
β6 4.4001 1.0734 0.0001 0.0001 0.1056 0.6691
β7 0.6196 0.0001
γ0 −1.3618 −0.0116 −0.3471 0.3087 −1.9032 −0.6329
γ1 0.3739 0.1931 0.3162 0.0182 0.0475 0.0524
γ2 2.1928 1.2830 1.3070 1.0492 3.2466 2.0631
γ3 0.3367 0.8814 0.0001 0.5450 0.0001 0.1949
γ4 0.0666 0.0192 0.1809 0.1848 0.0655 0.1533
γ5 0.1691 0.3138 0.2600 0.2209 0.1140 0.0785
γ6 0.0001 0.0001 0.2353 0.2472 0.1141 0.1859
γ7 0.0001 0.0001

Table 2. Mean, standard deviation, RMSE and Abias of 500 corresponding parameter values estimated
by MLE in the DCP with weather factors from 3 January 2015 to 8 August 2020.

Para True Value
n = 1000 n = 2000

Mean Sd RMSE Abias Mean Sd RMSE Abias

β0 0.2989 0.7935 1.4991 1.5771 0.6634 0.5055 0.9202 0.9422 0.3709
β1 0.0000 0.2133 0.2898 0.3596 0.2133 0.1525 0.2499 0.2925 0.1525
β2 0.0000 0.6980 1.6177 1.7604 0.6980 0.2982 0.9659 1.0100 0.2982
β3 6.4028 6.8126 16.8403 16.8285 8.1358 8.5570 16.9945 17.1137 8.6371
β4 8.2352 2.8520 2.4664 5.9203 5.4315 4.1413 2.5876 4.8417 4.1485
β5 0.9159 0.8824 0.6961 0.6962 0.5726 0.8390 0.6126 0.6168 0.4842
β6 4.4001 1.6663 1.5977 3.1656 2.8693 2.3185 1.4552 2.5390 2.1497
γ0 −1.3618 −1.0625 0.8750 0.9239 0.6968 −1.2880 0.9361 0.9380 0.6209
γ1 0.3739 0.3519 0.1439 0.1455 0.1155 0.3514 0.1119 0.1140 0.0887
γ2 2.1928 1.9536 0.9417 0.9707 0.7376 2.1537 1.0054 1.0051 0.6710
γ3 0.3367 1.1742 5.1284 5.1912 1.0035 1.0593 5.0468 5.0933 0.8586
γ4 0.0666 0.1206 0.1802 0.1880 0.0764 0.0795 0.0662 0.0674 0.0363
γ5 0.1691 0.3291 0.2729 0.3161 0.1722 0.2380 0.1296 0.1467 0.0889
γ6 0.0001 0.0259 0.0639 0.0689 0.0258 0.0117 0.0237 0.0263 0.0116

Table 3. Mean, standard deviation, RMSE and Abias of 500 corresponding parameter values estimated
by MLE in the DCP with air quality factors from 3 January 2015 to 8 August 2020.

Para True Value
n = 1000 n = 2000

Mean Sd RMSE Abias Mean Sd RMSE Abias

β0 −0.0191 0.6258 1.8437 1.9514 0.7166 0.6809 2.0694 2.1826 0.7723
β1 0.0033 0.2380 0.3223 0.3985 0.2368 0.1968 0.2839 0.3434 0.1959
β2 0.0000 1.3443 2.2793 2.6442 1.3443 1.0134 2.1222 2.3499 1.0134
β3 2.1760 13.6808 28.8885 31.0683 13.3849 14.1147 28.1351 30.5374 13.8677
β4 0.0042 3.7857 6.2986 7.3412 3.7834 4.3086 8.0154 9.0910 4.3064
β5 0.3541 1.3850 1.9586 2.2116 1.3261 1.2559 1.7233 1.9435 1.1972
β6 0.0001 1.6231 2.5665 3.0344 1.6230 1.4659 2.3098 2.7337 1.4658
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Table 3. Cont.

Para True Value
n = 1000 n = 2000

Mean Sd RMSE Abias Mean Sd RMSE Abias

γ0 −0.3471 -0.3156 0.2649 0.2665 0.1966 −0.3339 0.2246 0.2247 0.1594
γ1 0.3162 0.2823 0.1097 0.1147 0.0875 0.2996 0.0882 0.0896 0.0689
γ2 1.3070 1.5039 0.7812 0.8049 0.3558 1.3508 0.2809 0.2840 0.1981
γ3 0.0001 0.1969 1.8029 1.8118 0.1968 0.0543 0.5805 0.5825 0.0542
γ4 0.1809 0.2698 0.2871 0.3003 0.1461 0.2182 0.2626 0.2650 0.0926
γ5 0.2600 0.3429 0.2274 0.2418 0.1666 0.2927 0.1313 0.1352 0.0965
γ6 0.2353 0.3471 0.3084 0.3277 0.2023 0.2860 0.1691 0.1764 0.1214

Table 4. Mean, standard deviation, RMSE and Abias of 500 corresponding parameter values estimated
by MLE in the DCP with mixed weather and air quality factors from 3 January 2015 to 8 August 2020.

Para True Value
n = 1000 n = 2000

Mean Sd RMSE Abias Mean Sd RMSE Abias

β0 −0.0186 0.4915 1.5853 1.6639 0.5978 0.3881 1.2049 1.2705 0.4428
β1 0.0000 0.2219 0.3009 0.3736 0.2219 0.2228 0.3111 0.3824 0.2228
β2 0.0000 0.5849 1.6337 1.7337 0.5849 0.3853 1.2311 1.2888 0.3853
β3 2.8285 7.7282 19.5914 20.1758 7.7747 8.2657 19.3077 20.0401 7.9301
β4 0.3989 1.5797 2.8494 3.0817 1.6143 1.7926 2.9913 3.2974 1.7668
β5 6.1266 2.9585 4.8771 5.8116 5.1223 3.1062 4.3778 5.3150 4.7418
β6 0.1056 1.0466 1.1051 1.4507 0.9986 0.9204 0.9381 1.2418 0.8764
β7 0.6196 1.3400 2.0752 2.1947 1.3241 1.4397 2.2763 2.4174 1.4125
γ0 −1.9032 −1.7337 0.9557 0.9697 0.7988 −1.8052 0.8761 0.8807 0.7080
γ1 0.0475 0.0730 0.0899 0.0933 0.0705 0.0666 0.0803 0.0824 0.0628
γ2 3.2466 3.0196 0.9698 0.9950 0.8249 3.0970 0.8919 0.9035 0.7355
γ3 0.0001 0.0243 0.3376 0.3381 0.0242 0.0007 0.0033 0.0034 0.0006
γ4 0.0655 0.0712 0.0517 0.0520 0.0319 0.0688 0.0326 0.0328 0.0236
γ5 0.1140 0.1621 0.1388 0.1467 0.0754 0.1370 0.0646 0.0685 0.0486
γ6 0.1141 0.1626 0.1192 0.1286 0.0717 0.1345 0.0587 0.0621 0.0428
γ7 0.0001 0.0144 0.0311 0.0342 0.0143 0.0088 0.0136 0.0161 0.0087

Table 5. Mean, standard deviation, RMSE and Abias of 500 corresponding parameter values estimated
by MLE in the DCP with weather factors from 1 January 2018 to 8 August 2020.

Para True Value
n = 1000 n = 2000

Mean Sd RMSE Abias Mean Sd RMSE Abias

β0 0.0950 0.7499 1.5926 1.7205 0.6839 0.3280 0.8420 0.8728 0.2556
β1 0.9210 0.6431 0.3598 0.4543 0.3029 0.8072 0.2381 0.2637 0.1355
β2 0.0303 0.4727 1.5367 1.5976 0.4729 0.1854 0.7942 0.8084 0.1764
β3 33.6097 24.5359 38.6197 39.6337 36.2003 29.1089 40.3405 40.5506 36.7034
β4 0.1524 1.4197 1.9596 2.3321 1.3589 0.4509 0.6220 0.6893 0.3917
β5 0.4756 1.0975 1.2445 1.3901 0.9800 0.5554 0.5925 0.5972 0.4135
β6 1.0734 1.5782 1.6604 1.7339 1.2105 1.1625 0.8826 0.8862 0.6713
γ0 −0.0116 0.1267 0.2986 0.3289 0.2612 0.0886 0.2156 0.2376 0.1884
γ1 0.1931 0.1890 0.0823 0.0823 0.0669 0.1917 0.0574 0.0573 0.0451
γ2 1.2830 1.1413 0.3072 0.3380 0.2702 1.1741 0.2223 0.2473 0.2020
γ3 0.8814 1.0276 0.7411 0.7547 0.4188 0.9004 0.3328 0.3330 0.2592
γ4 0.0192 0.0256 0.0366 0.0371 0.0223 0.0222 0.0204 0.0206 0.0163
γ5 0.3138 0.4060 0.1500 0.1759 0.1187 0.3642 0.0810 0.0953 0.0718
γ6 0.0001 0.0185 0.0297 0.0349 0.0184 0.0107 0.0165 0.0196 0.0106
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Table 6. Mean, standard deviation, RMSE and Abias of 500 corresponding parameter values estimated
by MLE in the DCP with air quality factors from 1 January 2018 to 8 August 2020.

Para True Value
n = 1000 n = 2000

Mean Sd RMSE Abias Mean Sd RMSE Abias

β0 0.5932 0.9593 1.1273 1.1842 0.4807 0.6085 0.0871 0.0884 0.0667
β1 0.3744 0.2434 0.2857 0.3140 0.2832 0.3525 0.0805 0.0834 0.0613
β2 0.0602 0.3507 1.1224 1.1583 0.3455 0.0638 0.0350 0.0351 0.0271
β3 0.0001 10.7321 25.8047 27.9236 10.7320 1.4567 9.0550 9.1625 1.4566
β4 2.0413 4.6154 7.3362 7.7678 4.3355 2.1536 0.3725 0.3887 0.2452
β5 0.7755 1.4947 2.1804 2.2939 1.3944 0.8279 0.5246 0.5267 0.2043
β6 0.0001 1.0952 2.2492 2.4996 1.0951 0.0561 0.1118 0.1249 0.0560
γ0 0.3087 0.3379 0.1903 0.1923 0.1488 0.3385 0.1461 0.1490 0.1185
γ1 0.0182 0.0546 0.0650 0.0744 0.0516 0.0392 0.0456 0.0502 0.0358
γ2 1.0492 0.9473 0.2153 0.2380 0.1910 0.9757 0.1639 0.1795 0.1448
γ3 0.5450 0.4920 0.2818 0.2864 0.2076 0.4996 0.2112 0.2158 0.1548
γ4 0.1848 0.2208 0.1069 0.1128 0.0833 0.2031 0.0690 0.0714 0.0420
γ5 0.2209 0.2539 0.0943 0.0998 0.0752 0.2445 0.0598 0.0642 0.0441
γ6 0.2472 0.2810 0.0979 0.1035 0.0771 0.2714 0.0581 0.0629 0.0479

Table 7. Mean, standard deviation, RMSE and Abias of 500 corresponding parameter values estimated
by MLE in the DCP with mixed weather and air quality factors from 1 January 2018 to 8 August 2020.

Para True Value
n = 1000 n = 2000

Mean Sd RMSE Abias Mean Sd RMSE Abias

β0 0.8154 0.8577 0.9534 0.9534 0.3941 0.6715 0.9247 0.9349 0.2631
β1 0.0000 0.2211 0.2985 0.3712 0.2211 0.0501 0.1502 0.1582 0.0501
β2 0.0696 0.3003 0.9290 0.9563 0.3031 0.0770 0.0731 0.0734 0.0559
β3 0.2035 12.2266 26.3745 28.9616 12.1660 6.1382 14.5687 15.7176 6.0234
β4 2.9834 2.8016 3.4427 3.4440 2.8849 2.5224 1.1180 1.2083 0.7971
β5 0.0001 1.7871 3.2419 3.6989 1.7870 0.9101 1.7622 1.9817 0.9100
β6 0.6691 1.0305 1.0784 1.1364 0.8332 0.9123 0.9829 1.0116 0.5585
β7 0.0001 1.5230 2.4326 2.8679 1.5229 0.6633 1.4938 1.6330 0.6632
γ0 −0.6329 −0.4751 0.3628 0.3953 0.3139 -0.9250 1.1942 1.2282 0.6621
γ1 0.0524 0.0620 0.0667 0.0673 0.0538 0.0630 0.0559 0.0569 0.0429
γ2 2.0631 1.8830 0.3908 0.4299 0.3385 2.3010 1.1443 1.1677 0.6600
γ3 0.1949 0.1904 0.0851 0.0852 0.0628 0.2905 0.9609 0.9647 0.1879
γ4 0.1533 0.1799 0.0607 0.0662 0.0471 0.1689 0.0915 0.0927 0.0539
γ5 0.0785 0.0982 0.0416 0.0460 0.0344 0.0877 0.0740 0.0745 0.0319
γ6 0.1859 0.2243 0.0631 0.0738 0.0533 0.2061 0.1122 0.1139 0.0612
γ7 0.0001 0.0123 0.0210 0.0243 0.0122 0.0079 0.0143 0.0163 0.0078

6. Real Data Applications

In this section, to verify the performance of the DCP models, we consider the weather
and air quality time series in Beijing from 3 January 2015 to 8 August 2020 and from 1
January 2018 to 8 August 2020 obtained from the China Meteorological Data Service Center
and China National Environmental Monitoring Center, as the sample for our experimental
analysis. Based on these two periods observations, we employed the three DCP models
(one with weather factors, one with air quality factors and the last with mixed weather
and air quality factors) given in Equations (5) and (8)–(13) to fit the smog data and used
the MLE method described in Section 3 to estimate the parameters. In both cases, the
DCP models showed their superiority in reflecting the time dependence of the pollutant
concentration, providing a potential warning signal for smog prevention and control. First,
we made a fat-tailed diagnosis of the observations using an exponential QQ plot. Figure 4
shows that the real data for PM2.5 in Beijing from 3 January 2015 to 8 August 2020 and from
1 January 2018 to 8 August 2020 are fat tailed.
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(a) (b)

Figure 4. Exponential QQ plot of real PM2.5 data in Beijing: (a) from 3 January 2015 to 8 August 2020;
(b) from 1 January 2018 to 8 August 2020.

From the results in Table 1, we can see that the tail index ζt is more affected by
Yt−1, which is consistent with Figure 5. The estimated tail index of the DCP can reflect
the severity of smog to some extent and may even play an early warning role for smog
disruption. The graph of the estimated tail index ζt and positive exceedances Yt from
the three DCP models is given in Figure 5, which shows that there is a strong negative
correlation between ζt and Yt, and the tail index volatility is more intuitive. It is interesting
to note that Figure 5a,c,e and Figure 5b,d,f have very similar variation tendencies, and it
can clearly be seen that the tail index ζt starts to decline in the middle of each year, and
at the end of the year the tail index becomes lower, which can be regarded as an effective
indicator for measuring the level of smog.

(a) (b)

Figure 5. Cont.
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(c) (d)

(e) (f)

Figure 5. Estimated tail index ζ̂t from the three DCP models and positive exceedances Yt. (a) The
DCP model with weather factors from 3 January 2015 to 8 August 2020 with u = 2.4660. (b) The
DCP model with weather factors from 1 January 2018 to 8 August 2020 with u = 0.5716. (c) The DCP
model with air quality factors from from 3 January 2015 to 8 August 2020 with u = 2.4660. (d) The
DCP model with air quality factors from 1 January 2018 to 8 August 2020 with u = 0.5716. (e) The
DCP model with mixed factors from from 3 January 2015 to 8 August 2020 with u = 2.4660. (f) The
DCP model with mixed factors from 1 January 2018 to 8 August 2020 with u = 0.5716.

Using the estimated parameters given in Table 1, we generated a sequence of fitted Ŷt
values based on Equation (5) and plotted the line graphs of the fitted Ŷt values and real
exceedances Yt during the period from 1 January 2018 to 8 August 2020, as shown in Figure 6.
It can be seen that the true values Yt and the estimated values Ŷt from the three models were
almost consistent in trend, and the three models were more sensitive to the estimation of
Yt, but the model with mixed weather factors and air quality factors showed values closest
to the true values, which also verifies the superiority of the mixed model over the other
two models and is consistent with the conclusion mentioned in Section 5. A comparison
between the fitted Ŷt and real Yt exceedances during the period from 3 January 2015 to
8 August 2020 was also performed, and similar results were obtained. Due to limited space,
only Figure 6 is shown.
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Figure 6. The line graphs of fitted Ŷt values and real exceedances Yt

Next, we compared the estimated variances from the DCP models and GARCH, as
shown in Figure 7. Similarly to [27] , we calculated the conditional variance

Var(Yt|Ft−1) =
α2

t
(1 + u)ζt ζt − 1

[ 2
ζt − 2

− 1
(1 + u)ζt(ζt − 1)

]
.

Figure 7 shows that the standard deviations given by the DCP models and GARCH
had similar trends, indicating that the DCP models could accurately reflect the volatility
in a sense. Compared to the estimated volatility of GARCH, the DCP models are more
sensitive in smog instances, thus potentially playing a better role in early warning. This is
clearest in Figure 7e, where the fluctuation is largest.

We computed AIC and BIC from the DCP and dynamic conditional Weibull (DCW)
model given in [35]. The results are presented in Table 8. As shown in Table 8, the DCP
model is more suitable than the DCW model, based on AIC and BIC criteria.

Finally, we used our proposed three models (5) and (8)–(13) to predict the daily PM2.5
values from 9 August 2020 to 31 December 2021. We present only the results for the mixed
models in (5), (12) and (13) here, with a training sample from 1 January 2018 to 8 August
2020, since similar results were obtained from the three models. The tail index ζt given in
(13) and PM2.5 given in (5) were predicted by using the real weather and air quality factors
and the parameter estimation results given in Table 1. In order to analyze the fluctuating
tendency and correlations of ζt and PM2.5, the prediction results are presented together in
Figure 8. From Figure 8, we can see that there is a strong negative correlation between ζt
and PM2.5, which enables the tail index to be used as a warning signal for air pollution.
Furthermore, compared with the real smog values, the predictability of the future variation
of PM2.5 performs relatively well, as the real and predicted values are relative close and
have a similar tendency.

Table 8. Comparison of the DCP and DCW models based on AIC and BIC criteria.

AIC BIC

Weather Air Mixed Weather Air Mixed

3 January 2015–8 August 2020 DCP 588.9960 535.8680 531.0784 666.7786 613.6507 619.9729
DCW 3327.6850 3907.5960 4908.1610 3411.0240 3990.9350 5002.6110

1 January 2018–8 August 2020 DCP 1035.3950 1019.2530 1001.3240 1035.3950 1086.0280 1077.6380
DCW 2717.4300 3219.0270 1700.4180 2788.9740 3290.5710 1700.4180
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(a) (b)

(c) (d)

(e) (f)

Figure 7. Estimated standard deviation for DCP vs. GARCH. (a) The DCP model with weather
factors from 3 January 2015 to 8 August 2020. (b) The DCP model with weather factors from 1 January
2018 to 8 August 2020. (c) The DCP model with air quality factors from 3 January 2015 to 8 August
2020. (d) The DCP model with air quality factors from 1 January 2018 to 8 August 2020. (e) The DCP
model with mixed factors from 3 January 2015 to 8 August 2020. (f) The DCP model with mixed
factors from 1 January 2018 to 8 August 2020.

In addition, we used weather and air quality factors (including SO2, NO2, CO, O3)
with the LSTM technique to predict daily PM2.5 values. The air pollution data from 1
January 2015 to 25 November 2019 were used as training data, those from 26 November
2019 to 8 August 2020 were used as verification data and those from 9 August 2020 to
31 December 2021 were used as test data. The LSTM network was trained by using the
weather, air quality factors and PM2.5 time series in Beijing to construct a training set. Then,
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various weather and air quality factors were input into the test set to predict the PM2.5
from 9 August 2020 to 31 December 2021 over a long period. As shown in Figure 9, the
trend of the prediction for PM2.5 was accurate, especially when the true values of PM2.5
were less than 100. To better evaluate the experimental results quantitatively, the RMSE
and coefficient of determination (R2) were calculated, and the results were 20.14 and 0.65,
respectively.

Figure 8. The line graphs of predicted Ŷt values and real exceedances Yt.

Figure 9. The long-term prediction of PM2.5 values in Beijing.

7. Conclusions

In this paper, we investigated the prediction of pollutant concentrations using sta-
tistical inference methods and deep learning techniques. On the one hand, we proposed
three models combined with the autoregressive structure under the POT framework. After
obtaining two sufficiently high thresholds selected using the methods of by Bader et al.
(2018) [38] and Davison and Smith (1990) [50], the DCP models provided a direct dynamic
modeling of exceedances in the PM2.5 time series, such that the scale parameter and tail
index of the conditional generalized Pareto distribution changed over time. Weather and air
quality factors were added to the DCP models for better performance and higher efficiency.
The maximum likelihood estimation method was introduced to estimate the parameters in
the DCP models, and its asymptotic properties were investigated. Simulation studies were
carried out to demonstrate the validity and sufficiency of the estimation, revealing that the
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parameter estimation of the DCP models was not sufficiently accurate but the tail index
dynamics could be well approximated in the DCP models. Real data applications were
used to present the superiority of the DCP models, showing that they could shed new light
on the prevention and control of smog. On the other hand, based on the factors used in the
mixed DCP model, we used LSTM to study the prediction of pollutant concentrations, and
achieved satisfactory results. This paper aimed to improve the prediction ability for the
concentration of pollutants, and valuable results were achieved. Given the requirements of
the air pollution control target for further promoting ecological and environmental protec-
tion in the next five years, the proposed approaches and results in our paper are useful. To
some extent, they could provide a theoretical basis and effective tools for improving the
national air quality forecasting system, thus benefiting public health.

Nevertheless, there are still some points to be considered. In the DCP model with the
autoregressive structure, it is meaningful to add weather and air quality factors, enriching
the model and making it consistent, stable and sensitive. However, the relationship between
the factors has not been scrutinized carefully, resulting in a lack of attention to its impacts
on the model. In addition, it is possible to obtain better results when we compare other
estimation methods. Therefore, prediction, as an important direction in our study of air
pollutant concentrations, still has a long way to go. Combining artificial intelligence and
machine learning, the prediction accuracy will certainly be improved by using a forecast
combination, synthesizing the methods used to obtain the estimated results. Finally, with
the help of combination forecasting, the advantages of individual forecasts are retained,
and effective information is fully utilized to comprehensively forecast air pollution. In this
work, we strive to make valuable advances in the intersection of statistics and machine
learning and to provide effective theoretical and technical support for national continuous
improvement of the modernization level of ecological environmental governance.
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Appendix A

The procedure for the proof follows Shen (2020) [27] and Zhao et al. (2018) [31]. The
main difference from Zhao et al. (2018) [31] is the distribution of observations {Yt}, and the
main difference from Shen (2020) [27] is that we consider the autoregressive structure on
both the scale and tail index series.

Proof of Theorem 1. The proof of the theorem is similar to Shen et al. (2020) [27] and
Zhao et al. (2018) [31], so this proof is omitted.

Before proving Theorems 2 and 3, we first provide some lemmas.

Lemma A1 (Identifiability). If Yt(θ) = Yt(θ0) almost sure (a.s.) for all t, we have θ = θ0, where
{Yt} is given in (5).
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Proof. Denote αt = αt(θ), ζt = ζt(θ) and α0
t = αt(θ0), ζ0

t = ζt(θ0), P0
t = (1 + u)−ζ0

t . From
Yt(θ) = Yt(θ0) a.s., we arrive at

αtI(Pt > Zt)[(Pt/Zt)
1/ζt − 1] = α0

t I(P0
t > Zt)[(P0

t /Zt)
1/ζ0

t − 1] a.s.,

so

αt[(Pt/Zt)
1/ζt − 1] = α0

t [(P0
t /Zt)

1/ζ0
t − 1] a.s.,

I(Pt > Zt) = I(P0
t > Zt) a.s..

After straightforward manipulations,

αt(Pt/Zt)
1/ζt − α0

t (P0
t /Zt)

1/ζ0
t = αt − α0

t a.s.,

Denote =t = σ(Yt, Yt−1, · · · ), then Zt⊥=t−1 and αt, α0
t , ζt, ζ0

t , Pt, P0
t ∈ =t−1. Therefore,

the above equation holds if and only if αt = α0
t and ζt = ζ0

t a.s. From the autoregressive
equations of log αt and log ζt, log αt = log α0

t and log ζt = log ζ0
t a.s. can be rewritten as

β0
0 + β0

1 log αt−1 − β0
2 exp{−β0

3Yt−1} = β0 + β1 log αt−1 − β2 exp{−β3Yt−1},
γ0

0 + γ0
1 log ζt−1 + γ0

2 exp{−γ0
3Yt−1} = γ0 + γ1 log ζt−1 + γ2 exp{−γ3Yt−1}.

After rearrangement, the above two equations can be expressed as

β0
0 − β0 + (β0

1 − β1) log αt−1 = β0
2 exp{−β0

3Yt−1} − β2 exp{−β3Yt−1},
γ0

0 − γ0 + (γ0
1 − γ1) log ζt−1 = γ2 exp{−γ3Yt−1} − γ0

2 exp{−γ0
3Yt−1}.

Since αt−1 ∈ =t−2, ζt−1 ∈ =t−2 and Yt−1 /∈ =t−2, then βi = β0
i and γi = γ0

i must hold
for i = 0, 1, 2, 3.

In the following, we denote (αt(θ), ζt(θ)) (or (αt, ζt) for simplicity) as the time-
dependent scale parameter and tail index based on θ and the true initial (α0

1, ζ0
1), and

denote (αt(θ0), ζt(θ0)) (or (α0
t , ζ0

t ) for simplicity) as the unobserved true hidden process
based on the true θ0 and the true initial (α0

1, ζ0
1), and denote the t-th iterate series (α̃t(θ),

ζ̃t(θ)) (or (α̃t, ζ̃t) for simplicity) as the scale parameter and tail index series based on θ
and an arbitrary initial (α̃1, ζ̃1), and denote (αL, αU) and (ζL, ζU) as the uniform bound
of αt (or α̃t) and ζt (or ζ̃t) for all θ ∈ Θ due to the compactness of Θ and boundedness of
−β2 exp(−β3Yt−1) and γ2 exp(−γ3Yt−1).

Given (αt, ζt), the conditional log-likelihood function of Yt is expressed as

lt(θ) = I(Yt = 0) log[1− (1 + u)−ζt ] + I(Yt > 0)
[

log ζt − log αt − ζt log(1 + u)− (ζt + 1) log
(

1 +
Yt

αt

)]
.

Due to the conditional independence, the log-likelihood function is then given by

Ln(θ) =
1
n

n

∑
t=1

lt(θ).

We denote lt(θ) and Ln(θ) based on θ and an arbitrary initial value (α̃1, ζ̃1) as L̃n(θ)
and l̃t(θ).

Lemma A2. Under the same conditions as in Theorem 2, Eθ0(
∂
∂θ lt(θ0)) = 0 and M0 = Varθ0(

∂
∂θ lt(θ0))

= −Eθ0(
∂2

∂θ∂θT lt(θ0)) and M0 is finite and positive definite.

Proof. The proof of the lemma is similar to Zhao et al. (2018) [31], so the proof is omit-
ted.
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Lemma A3. Under the same conditions as in Theorem 2, if ||Φ−Φ0|| < τn and τn ↘ 0, we have

(a) sup
1≤t≤n

|αt − α0
t | = O(τn), (b) sup

1≤t≤n

∣∣∣∣∂αt

∂Φ
− ∂α0

t
∂Φ

∣∣∣∣ = O(τn), (c) sup
1≤t≤n

∣∣∣∣ ∂2αt

∂Φi∂Φj
− ∂2α0

t
∂Φi∂Φj

∣∣∣∣ = O(τn),

uniformly over ||Φ−Φ0|| < τn, where Φ = (β0, β1, β2, β3) and Φ0 = (β0
0, β0

1, β0
2, β0

3).

Proof. The proof of the lemma is similar to Zhao et al. (2018) [31], so the proof is omitted.

Lemma A4. Under the same conditions as in Theorem 2, if ||Ψ−Ψ0|| < τn and τn ↘ 0, we have

(a) sup
1≤t≤n

|ζt − ζ0
t | = O(τn), (b) sup

1≤t≤n

∣∣∣∣∂ζt

∂Ψ
− ∂ζ0

t
∂Ψ

∣∣∣∣ = O(τn), (c) sup
1≤t≤n

∣∣∣∣ ∂2ζt

∂Ψi∂Ψj
− ∂2ζ0

t
∂Ψi∂Ψj

∣∣∣∣ = O(τn),

uniformly over ||Ψ−Ψ0|| < τn, where Ψ = (γ0, γ1, γ2, γ3) and Ψ0 = (γ0
0, γ0

1, γ0
2, γ0

3).

Proof. The proof of the lemma is similar to Zhao et al. (2018) [31], so the proof is omitted.

Lemma A5. Under the same conditions as in Theorem 2, ∂2

∂θi∂θj
Ln(θn)→p −mθiθj(θ0), uniformly

over ||θn − θ0|| < τn, where τn ∼ n−r, r > 0, mθiθj(θ0) = −Eθ0(
∂2

∂θi∂θj
l1(θ0)).

Proof. We only prove the case for ∂2

∂β2
0

Ln(θn)→p −mβ0β0(θ0), as the proof for other cases

is similar. From the law of large numbers, we know that ∂2

∂β2
0

Ln(θ0)→p −mβ0β0(θ0). Then,

we need to prove that ∂2

∂β2
0

Ln(θn)− ∂2

∂β2
0

Ln(θ0)→p 0 uniformly over ||θn − θ0|| < τn, where

τn ∼ n−r, r > 0.
By the repeatedly using autoregressive formula, log αt can be expressed as

log αt = β0

t−1

∑
k=1

βk−1
1 − β2

t−1

∑
k=1

βk−1
1 exp(−β3Yt−k) + βt−1

1 log α0
1.

We have
∂αt

∂β0
= αt

t−1

∑
k=1

βk−1
1 ,

∂2αt

∂β2
0
= αt

( t−1

∑
k=1

βk−1
1

)2

,

∂Ln(θ)

∂β0
=

1
n

n

∑
t=1

I(Yt > 0)
t−1

∑
k=1

βk−1
1

[
(ζt + 1)Yt

αt + Yt
− 1
]

,
∂2Ln(θ)

∂β2
0

= − 1
n

n

∑
t=1

I(Yt > 0)
( t−1

∑
k=1

βk−1
1

)2
(ζt + 1)αtYt

(αt + Yt)2 .

Then ∣∣∣∣ ∂2

∂β2
0

Ln(θn)−
∂2

∂β2
0

Ln(θ0)

∣∣∣∣
=

∣∣∣∣ 1n n

∑
t=1

I(Yt > 0)Yt

[( t−1

∑
k=1

βk−1
1

)2
(ζt + 1)αt

(αt + Yt)2 −
( t−1

∑
k=1

(β0
1)

k−1
)2 (ζ0

t + 1)α0
t

(α0
t + Yt)2

]∣∣∣∣
≤ 1

n

n

∑
t=1

I(Yt > 0)Yt

∣∣∣∣( t−1

∑
k=1

βk−1
1

)2
(ζt + 1)αt

(αt + Yt)2 −
( t−1

∑
k=1

βk−1
1

)2 (ζ0
t + 1)α0

t
(α0

t + Yt)2

∣∣∣∣
+

1
n

n

∑
t=1

I(Yt > 0)Yt

∣∣∣∣( t−1

∑
k=1

βk−1
1

)2 (ζ0
t + 1)α0

t
(α0

t + Yt)2
−
( t−1

∑
k=1

(β0
1)

k−1
)2 (ζ0

t + 1)α0
t

(α0
t + Yt)2

∣∣∣∣
=: I + I I,

where
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I =
1
n

n

∑
t=1

I(Yt > 0)Yt

( t−1

∑
k=1

βk−1
1

)2∣∣∣∣ (ζt + 1)αt

(αt + Yt)2 −
(ζ0

t + 1)α0
t

(α0
t + Yt)2

∣∣∣∣
=

1
n

n

∑
t=1

I(Yt > 0)Yt

( t−1

∑
k=1

βk−1
1

)2 |αt(ζt + 1)(α0
t + Yt)2 − α0

t (ζ
0
t + 1)(αt + Yt)2|

(αt + Yt)2(α0
t + Yt)2

≤ 1
n

n

∑
t=1

I(Yt > 0)Yt

[
|α0

t (αtα
0
t + 2αtYt + Y2

t )||ζt − ζ0
t |+ |αtα

0
t (ζ

0
t + 1)−Y2

t (ζt + 1)||αt − α0
t |
]

(1− β1)2(αt + Yt)2(α0
t + Yt)2

≤ 1
n(1− β1)2

n

∑
t=1

I(Yt > 0)

[
|α0

t (αtα
0
t + 2αtYt + Y2

t )||ζt − ζ0
t |+ |αtα

0
t (ζ

0
t + 1)−Y2

t (ζt + 1)||αt − α0
t |
]

αt(α0
t )

2

≤ 1
n(1− β1)2

n

∑
t=1

I(Yt > 0)
[(

Y2
t

αtα
0
t
+

2Yt

α0
t
+ 1
)
|ζt − ζ0

t |+
∣∣∣∣ ζ0

t + 1
α0

t
− Y2

t (ζt + 1)
αt(α0

t )
2

∣∣∣∣|αt − α0
t |
]

,

It is known that {αt, ζt} is bounded, so E(Yt) = αt/[(ξt − 1)(1 + γ)ξt ] < ∞, E(Y2
t ) =

2α2
t /[(2− ξt)(1− ξt)(1 + γ)ξt ] < ∞ and Y2

t
αtα

0
t
+ 2Yt

α0
t
+ 1, ζ0

t +1
α0

t
− Y2

t (ζt+1)
αt(α

0
t )

2 are bounded too.

Therefore, by Lemmas A3(a) and A4(a),

I ∼ 1
n

n

∑
t=1

(|ζt − ζ0
t |+ |αt − α0

t |) ∼ Op(τn)→ 0.

I I =
1
n

n

∑
t=1

I(Yt > 0)
|(ξ0

t + 1)α0
t |Yt

(α0
t + Yt)2

∣∣∣∣( t−1

∑
k=1

βk−1
1

)2

−
( t−1

∑
k=1

(β0
1)

k−1
)2∣∣∣∣

≤ 2τn

(1− Cb)3
1
n

n

∑
t=1

I(Yt > 0)
|(ξ0

t + 1)α0
t |Yt

(α0
t + Yt)2

≤ 2τn

(1− Cb)3
1
n

n

∑
t=1

I(Yt > 0)
∣∣∣∣ ξ0

t + 1
α0

t

∣∣∣∣Yt

≤ 2Mτn

(1− Cb)3
1
n

n

∑
t=1

I(Yt > 0)Yt = Op(τn)→ 0.

where the first inequality comes from the fact that ∑t
k=1 βk−1

1 < 1/(1− β1) ≤ 1/(1− Cb)
and∣∣∣∣( t−1

∑
k=1

βk−1
1

)2

−
( t−1

∑
k=1

(β0
1)

k−1
)2∣∣∣∣ ≤ ∣∣∣∣( 1

1− β1

)2

−
(

1
1− β0

1

)2∣∣∣∣ ≤ 2τn

(1− Cb)3 = Op(τn),

where Cb is a constant and 0 < Cb < 1. The last inequality of I I shows the boundedness of
{α0

t , ζ0
t }, so there exists |(ξ0

t + 1)/α0
t | ≤ M, and E(Yt) = αt/[(ξt − 1)(1 + γ)ξt ] < ∞.

Lemma A6. Under the same conditions as in Theorem 2, two positive constants C and Cb < 1
exist such that for all θ ∈ Θ and t ≥ 1,

(a) |αt − α̃t| ≤ CCt−1
b , (b)

∣∣∣∣∂αt

∂Φ
− ∂α̃t

∂Φ

∣∣∣∣ ≤ CtCt−1
b , (c)

∣∣∣∣ ∂2αt

∂Φi∂Φj
− ∂2α̃t

∂Φi∂Φj

∣∣∣∣ ≤ Ct2Ct−1
b ,

(d) |ζt − ζ̃t| ≤ CCt−1
b , (e)

∣∣∣∣∂ζt

∂Ψ
− ∂ζ̃t

∂Ψ

∣∣∣∣ ≤ CtCt−1
b (f)

∣∣∣∣ ∂2ζt

∂Ψi∂Ψj
− ∂2ζ̃t

∂Ψi∂Ψj

∣∣∣∣ ≤ Ct2Ct−1
b .

Proof. The proof is omitted because it follows from direct calculation.
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Lemma A7. Under the same conditions as in Theorem A2,
(a) ∂2

∂θi∂θj
L̃n(θ)→p −mθiθj(θ0), uniformly over ||θ − θ0|| < τn, where τn ∼ n−r, r > 0,

(b) (τ∗n )−1
(

∂
∂θ L̃n(θ0)− ∂

∂θ Ln(θ0)

)
→p 0 if τ∗n n→ ∞.

Proof. (a) By the result of Lemma A5, we have ∂2

∂θi∂θj
Ln(θ)− ∂2

∂θi∂θj
Ln(θ0)→p 0 uniformly

over ||θ − θ0|| < τn, so we need to prove that ∂2

∂θi∂θj
L̃n(θ)− ∂2

∂θi∂θj
Ln(θ) →p 0 uniformly

under the claimed region. Based on Lemma A6, we can use the same method as in the
proof of Lemma A5, then it is omitted.

(b) Here we only prove for ∂
∂β0

L̃n(θ0), as other proofs are similar.

∣∣∣∣ 1
τ∗n

(
∂

∂β0
L̃n(θ0)−

∂

∂β0
Ln(θ0)

)∣∣∣∣ = ∣∣∣∣ 1
nτ∗n

n

∑
t=1

I(Yt > 0)
( t−1

∑
k=1

βk−1
1

)(
ξ̃tYt − α̃t

α̃t + Yt
− ξtYt − αt

αt + Yt

)∣∣∣∣
≤ 1

nτ∗n

n

∑
t=1

( t−1

∑
k=1

βk−1
1

)
I(Yt > 0)

∣∣∣∣ ξ̃tYt − α̃t

α̃t + Yt
− ξtYt − αt

αt + Yt

∣∣∣∣
≤ 1

nτ∗n (1− β1)

n

∑
t=1

I(Yt > 0)
∣∣∣∣ ξ̃tYt − α̃t

α̃t + Yt
− ξtYt − αt

αt + Yt

∣∣∣∣
=

1
nτ∗n (1− β1)

n

∑
t=1

I(Yt > 0)
∣∣∣∣ ξ̃tYt − α̃t

α̃t + Yt
− ξ̃tYt − α̃t

αt + Yt
+

ξ̃tYt − α̃t

αt + Yt
− ξtYt − αt

αt + Yt

∣∣∣∣
=

1
nτ∗n (1− β1)

n

∑
t=1

I(Yt > 0)
∣∣∣∣−(ξ̃tYt − α̃t)(α̃t − αt)

(α̃t + Yt)(αt + Yt)
+

Yt(ξ̃t − ξt)

αt + Yt
− α̃t − αt

αt + Yt

∣∣∣∣
≤ C

nτ∗n (1− β1)

n

∑
t=1

I(Yt > 0)
[

Ct−1
b

(
|ξ̃tYt − α̃t|

α2
L

+
1

αL
+ 1
)]

≤ C
nτ∗n (1− β1)

n

∑
t=1

I(Yt > 0)
[

Ct−1
b

(
ξ̃tYt

α2
L

+
αU

α2
L
+

1
αL

+ 1
)]

,

where the second-to-last inequality comes from Lemma A6 (a) and (d). Next, we need to
prove the boundedness of ∑n

t=1 Ct−1
b ξ̃tYt.

E
( n

∑
t=1

Ct−1
b ξtYt

)
≤ E

( ∞

∑
t=1

Ct−1
b ξtYt

)
=

∞

∑
t=1

Ct−1
b E(ξtYt)

=
∞

∑
t=1

Ct−1
b E[E(ξtYt)|ξt] =

∞

∑
t=1

Ct−1
b E

[
αtξt

(ξt − 1)(1 + u)ξt

]
≤

∞

∑
t=1

Ct−1
b E

(
ξUαU
ξL − 1

)
< ∞.

Therefore, when nτ∗n → ∞,

1
τ∗n

[
∂

∂β0
L̃n(θ0)−

∂

∂β0
Ln(θ0)

]
→p 0.

Lemma A8. Under the same conditions as in Theorem 2,

1√
n

n

∑
t=1

∂lt(θ0)

∂θ
→ N(0, M0),

where M0 is the Fisher information matrix at θ0.

Proof. The proof of the lemma is similar Zhao et al. (2018) [31], so it is omitted.
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Proof of Theorem 2. Theorem 2 can be proved by Lemmas A6–A8, and the details can
be seen in Shen et al. (2020) [27]. The proof is similar to Shen et al. (2020) [27], so it is
omitted. The main difference is that we denote fn(t, y) = τ−2

n L̃n(β0 + τnt, Φ0 + τny), Φ0 =
(β0

1, β0
2, β0

3, γ0
0, γ1

0, γ0
2, γ0

3), where t ∈ R, y ∈ R7.

Proof of Theorem 3. Theorem 3 can be proved by Lemmas A7 and A8, and the detail can
be seen in Zhao et al. (2018) [31]. The proof is similar to Zhao et al. (2018) [31], so it is
omitted.
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