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Abstract: Vibration response has been extensively used for fault diagnosis to ensure the smooth
operation of mechanical systems. However, the data for vibration condition monitoring may be
misconstrued due to channel quality issues and external disturbances. In particular, data packet
losses that often occur during transmission can cause spectral structure distortion, and as multiple
sensing nodes are often employed for condition monitoring, the differences in the spectral structure
distortions for different sensing nodes can be significant. While retransmission can reduce packet loss,
it is difficult to achieve good performance under the complex conditions. Excessive or insufficient
retransmission of data streams can result in unacceptable delays or errors for online fault diagnosis.
In this paper, we propose a Packet Loss Influence-inspired Retransmission Mechanism (PLIRM) to
address this problem and improve the online diagnostic efficiency. First, we devise a scheme for zero
padding based on packet loss model (ZPPL) to preserve intrinsic properties of frequency domain.
Then, we formulate a dynamic retransmission scheme generated based on the optimal packet loss
mode to minimize the effects of spectral structure distortions. To ensure that the data stream that
is most sensitive to a fault will be preferentially transmitted, we apply a priority setting trick using
maximum mean discrepancy (MMD) to evaluate the spectral structure discrepancies between a data
stream and the historical datasets. We evaluate the retransmission scheme using a fault diagnosis
model based on K-nearest neighbor (KNN) for timely online bearing fault diagnosis. Extensive
experimental results showed that the proposed method can accurately identify the bearing faults in a
timely manner, outperforming competitive approaches under packet loss condition.

Keywords: fault diagnosis; vibration signal; packet loss; retransmission mechanism

MSC: 94A12

1. Introduction

Bearings are the most critical mechanical components for various machinery and
unexpected failures will lead to downtime that can result in heavy economical losses and
even serious human casualties [1–3]. Thus, timely detection and accurate diagnosis of
rolling bearing faults has a very high practical value.

Much attention has been focused on vibration-based diagnosis of mechanical faults
in rotating machines [4,5]. Due to the rotating nature, a periodic or quasi-periodic im-
pulse would appear in the waveform of vibration signals from a defective bearing. These
telling features can be used to characterize the mechanical health using signal processing
techniques [6,7] such as singular value decomposition [8], wavelet transform [9] and Hilbert-
Huang transform [10]. Recently, many vibration-based offline diagnostic approaches have
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been developed using various feature extraction and fault classification techniques. In [11],
statistical features based on the central limit theory were extracted for fault classification.
Babu et al. [12] used a sparse auto-encoder combined with partial corruption to improve
the robustness of feature representation and achieved superior performance in the field of
induction motor fault diagnosis. Zhang et al. [13] used a time-singular-value sequence for
noise suppression and feature extraction, which enhances the fault frequency for diagnosis.
However, due to the influence of transfer paths, the fault features extracted from multiple
sensors installed in different positions exhibit significant differences in most fault diagnosis
methods, which leads to great differences between diagnostic performances [14,15].

More recently, efforts have been focused on fault diagnosis with vibration signals
sampled from different channels [16]. In [17], an optimal sensor placement method based
on the bond graph to digraph transformation was proposed for fault diagnosis and isolation.
Mobed et al. [18] proposed an algorithm for sensor location, type and number optimization
based on magnitude ratio and fault evolution sequences, while Huang et al. [19] provided a
method for locating sensitive measurement points via sensitive measurement point analysis
based on resonance-based sparse signal decomposition. As these above research on the
sensitive measurement points had mostly concentrated on sensor location optimization, the
multiple data streams transmission challenge due to the sensitivities of the measurement
points still remains. For this, Tong et al. [16] had proposed a novel multiple data streams
transmission scheme to identify bearing faults in a timely manner, but only when there is
no packet loss.

While fifth generation network (5G) can provide transmission speed approaching the
limit of the sampling theorem, its transmission is still restricted by channel quality and
subjected to external interference and environmental conditions. For example, packet loss
will most likely remain serious for long distance communication in underground mines,
which affects remote diagnosis of mining equipment seriously. One obvious remedy is to
select only data segments that do not have lost packets for signal processing and diagnosis.
However, the selection of such data segments will incur time and computation which may
be acceptable for offline diagnosis but not practical for online diagnosis.

Interestingly, the influence of packet loss caused by network channels has rarely
been considered in machinery diagnosis. The spectral structure of the sensor signals can
be polluted by the occurrence of packet losses in the process of transmission, while the
different transfer paths and external disturbances will further accentuate the variations
in the distortions in the spectral structures of the different sensing nodes. This can pose a
critical challenge for online detection of bearing failure which is dependent of the timely
detection of a periodic or quasi-periodic impulse in the waveform of the vibration signals
of a defective bearing. Although retransmission can be used to mitigate the packet loss,
insufficient retransmission of data streams can lead to inaccurate prediction results, while
excessive retransmission of data streams can cause increased time in transmission. It is also
difficult to achieve promising performance under complex and varying conditions.

The ability to properly transmit data streams collected from multiple sensors under
the condition of packet loss for timely online detection of bearing failures is thus a key
issue that requires much attention. To solve this problem, we propose a novel adaptive
retransmission mechanism to improve the online diagnostic efficiency effectively in the
packet loss scenario. The major contributions of this paper are as follows:

(1) First, zero padding based on packet loss model (ZPPL) is proposed to preserve intrin-
sic properties of frequency domain, and a theoretical study referring to packet loss
influences on spectral structures is presented and lays the groundwork for the choice
of packet length and the determination of optimal packet loss mode.

(2) Based on the results of theoretical analysis, a packet loss influence-inspired retrans-
mission mechanism (PLIRM) is proposed. The dynamic retransmission scheme is
designed based on the optimal packet loss mode to minimize spectral structure dis-
tortion, and a priority setting trick to search for the minimum spectral structure
discrepancy between data stream and the historical datasets is established via maxi-
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mum mean discrepancy (MMD) to ensure that the most sensitive data stream to the
fault will be preferentially transmitted. We then employed an evaluation criterion
embedded in a fault diagnosis model based on K-nearest neighbor (KNN) to evaluate
the retransmission scheme.

(3) Experimental results showed that PLIRM can efficiently detect bearing faults and
significantly outperformed competitive approaches under packet loss condition.

2. Influence of Packet Loss on the Spectrum

Data packet loss is unavoidable in the process of transmission over networks and it can
destroy the spectral structure of the sensor data streams. Data packet splicing (DPS) causes
spectral structural distortion such as spectral line offset and characteristic information loss
in condition of packet loss. In order to preserve the inherent spectral structure as much as
possible, we can conduct zero padding operation when packet loss occurs. However, while
zero padding retains the original spectral information, fake frequencies are also introduced
in constructed spectrums. Furthermore, various packet lengths can also affect the spectral
structure under packet loss condition. In this section, we present a theoretical study on
the influence of packet loss on the spectral structures and propose a novel scheme for zero
padding based on packet loss model (ZPPL).

2.1. Packet Loss Model

A number of studies have shown that packet loss is characterized by transient bursts
and exhibits temporal dependency [20], i.e., if packet n is lost, then there is normally a
higher probability that packet n + 1 will also be lost. To capture temporal dependency, a
generalized model referred to as the two-state Markov model or Gilbert model is often
used to simulate packet loss patterns. A two-state Markov model is shown in Figure 1.

Figure 1. Two−state Markov model.

In this model, one of the states represents the occurrence of packet loss while the other
state represents the alternate case in which the packets are successfully transmitted. The
transition probabilities between state 0 and state 1, as shown in Figure 1, are represented by
p and q. Specifically, state 0 means that packet is lost and state 1 means that packet is not
lost. p denotes the probability of transitioning from state 1 to state 0, and q is the probability
of transitioning from state 0 to state 1. The probability that n consecutive packets are lost is
given by p(1− q)n−1. If (1− q) > p, then the probability of losing a packet is greater after
having already lost a packet than after having successfully received one.

2.2. Zero Padding Based on Packet Loss Model

For generality, we will denote the packet length as the number of sampling points in
a data packet. In other words, if a test sample contains M data packets each with packet
length N, then it consists of M× N data points.

Suppose r data packets were lost in transmission, where r ≤ M. The packet loss rate
ppl = r/M and the process of packet loss in transmission is given in Figure 2a.
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Figure 2. The architecture of packet loss in transmission.

Let us denote the data sent as xds(n), and data received as xdr(n), where n = 0, · · · ,
MN − 1. Then xdr(n) can be expressed as:

xdr(n) = xds(n) + xpl(n) (1)

where xpl(n) is a superposition of xpq1(n), · · · , xpqr (n), which is illustrated in Figure 2b.
xqr is the qrth packet sent and 1 ≤ qr ≤ M. Take xpqr as an example, xpqr (n) contains MN
data points. The values of xpqr (n) from (qr − 1)Nth to (qr − 1)N + N − 1th are −xqr and
the other places are with zero padding. xpl(n) is denoted as:

xpl(n) =
z=r

∑
z=1

xpqz (2)

Due to the superposition principle of linear transformation about fast Fourier trans-
form (FFT), the frequency domain Xdr(ejw) and Xpl(ejw) can be derived according to
Equations (1) and (2).

Xdr(ejw) = Xds(ejw) + Xpl(ejw)

= Xds(ejw) +
z=r

∑
z=1

Xpqz(e
jw)

(3)

From Equation (3), the effects of ZPPL on the spectrum is determined by Xpl(ejw) =

∑z=r
z=1 Xpqz(e

jw). Take xpq1 as an example, xpq1 is composed of (M− 1)N zero padding and
a data packet −xq1 . According to Figure 2b and FFT, the frequency domain Xpq1(e

jw) can
be obtained as:
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Xpq1(e
jw) =

(q1−1)N+N−1+(M−q1)N

∑
n=0

xpq1(n)e
−jwn

=
(q1−1)N+N−1

∑
n=(q1−1)N

xq1 f (n)e−jwn

=
N−1

∑
n=0
−xq1(n)e

−jw(n+(q1−1)N)

= −e−jw(n+(q1−1)N)Xq1(e
jw)

(4)

where n = 0, · · · , MN − 1. The spectral lines of xpqr can then be expressed as:

Xpqr (k) = e−j 2π
MN k(qr−1)N

N−1

∑
n=0
−xqr (n)e

−j 2π
MN kn (5)

where n = 0, · · · , MN − 1 and k = 0, · · · , MN − 1. According to Equations (3) and (4),
ZPPL can be obtained as:

Xdr(ejw) = Xds(ejw) + (−
z=r

∑
z=1

e−jw(qz−1)N Xqz(e
jw)) (6)

Spectral lines of ZPPL can thus be expressed as:

Xdr(k) = Xds(k)+

(−
z=r

∑
z=1

e−j 2π
MN k(qz−1)N

N−1

∑
n=0

xqz(n)e
−j 2π

MN kn)
(7)

where n = 0, · · · , MN − 1 and k = 0, · · · , MN − 1.

2.3. Effects Generated by Zero Padding Based on Packet Loss Model

Based on ZPPL and its spectral lines as expressed Equations (6) and (7). respectively, it
is clear that the influences of packet loss on the spectrum are the superposition of frequency
spectrum density from all lost packets, and fake frequencies and phase shifts are introduced
when packet loss occurs. Remarkably, despite phase shifts are different, xpqr spectral
amplitudes for different r are the same. Energies of characteristic frequencies about xdr
decreases as packet loss rate rises. For xpqr , phase shifts between FFT coefficients are 2πn
when spectral line k = (nM)th. Phase shift between FFT coefficients when spectral line
k = (nM/2)th is (2n + 1)π and extremums of amplitudes occur. With the increase of k, a
spectral peak band (SPB) appears once phase shift becomes (2n + 1)π, which means that
packet loss lead to spectral peak band. Essentially, these SPBs appear between frequency
intervals of xqr , which signifies that bandwidth of SPB is Fs

N , where Fs and N denote sample
frequency and length of a packet. respectively. If ft is characteristic frequency of xpqr , the

number of spectral speak bands N f k =
N× ft

Fs
or the number of spectral speak fspk =

N× ft
Fs

from 0 to ft.
It is worth noting that every fake spectral line is of a certain periodicity. For different

xpqr , the periodicity of the same kth spectral line can be found in Equation (8).

Tk
qr =


2π
2π
M k

, k ≤ M
2

2π

π − [ 2k
M − f loor( 2k

M )]π
, k >

M
2

(8)
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Phase shift is the fundamental reason contributing to this phenomenon. It can be
inferred from Equations (6)–(8) that this phenomenon directly affects results generated by
three forms of packet loss as follows. (i) Packet loss occur in continuous position: Every
spectral peak band will be divided into two parts and spectral peak will be reduced by half
once a packet is lost. The more packets are dropped, the smaller the influences caused by
spectral peak bands on the spectrum are. (ii) Packet loss occur in odd or even positions:
The amplitudes of spectral peak bands will be strengthened when a packet is dropped,
which essentially weakens the characteristic frequency. (iii) Packet loss occur in random
position: The amplitudes of spectral peak bands will be suppressed to some extent when a
packet loss occurs.

2.4. Validation with Numerical Simulation

To illustrate packet loss effects, let us consider a simulated vibration signal comprised
of 3 harmonic components generated with a sampling frequency of Fs = 1000 Hz and a
duration of 60 s. Equation (9) defines the generated synthetic signal:

x(t) = A1sin(2π f1t) + A2sin(2π f2t) + A3sin(2π f3t) (9)

where A1 = 1, A2 = 1.5, A3 = 2, f1 = 5 Hz, f2 = 10 Hz and f3 = 20 Hz. Figure 3 shows
the zoom-view of the generated signal and its corresponding spectrum calculating through
fast Fourier Transform (FFT). Based on this simulated signal, three test samples comprising
three kinds of packet lengths are constructed with the same number of packet. Specifically,
the number of packet is selected as 100 and the packet length N of xa, xb and xc are set to
30, 50 and 200. respectively. In order to verify the effects of influence caused by packet
loss, we introduce packet loss at 10% and 50%. For fair comparisons, we ensure that the
packet loss positions are random and setup of packet loss positions xqr are the same to xa,
xb and xc. Figure 4 shows the different spectrums generated based on DPS and ZPPL under
various conditions of packet losses.
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Figure 3. (a) The zoom−in view of simulated vibration signal x; (b) the spectrum of x.

Figure 4 shows that spectrum energy is inversely proportional to packet loss. We
can observe that spectral structural distortion is more serious when the packet length is
less than Fs/ fc, where fc is characteristic frequency, and that the higher packet loss rate,
the worse the damage on the spectrum. It shows that the structure of fault low frequency
band is prone to be severely damaged based on DPS and fake frequencies are introduced,
which decrease diagnostic accuracy. Although fake frequencies are also introduced, what
is exciting is that characteristic frequency and its harmonic components on the spectrum
generated based on ZPPL are clearly visible whatever the packet length is and it indicates
that influences caused by packet loss from ZPPL are less than those from DPS.
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Figure 4. (a) Spectrum of xa generated based on DPS; (b) spectrum of xb generated based on DPS;
(c) spectrum of xc generated based on DPS; (d) spectrum of xa generated based on ZPPL; (e) spectrum
of xb generated based on ZPPL; (f) spectrum of xc generated based on ZPPL.

In order to illustrate the influence introduced by ZPPL, one harmonic component of
x(t) with characteristic frequency equal to f2 is extracted for further exploration. Specifi-
cally, we take the spectrum shown in Figure 5 of xpqr (n) from xpl(n) composed of 100 pack-
ets with packet length 200 as an example. Figure 6 shows the five forms of packet loss
under the condition of packet loss 50%.
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0.015
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A
m

p
lit
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d
e

SPB 2×SPB

Figure 5. The spectrum of xpqr .

From Figure 5, it is clear that packet loss causes SPB, and the width of SPB is equal to
Fs
N . The energies of SPB are uniformly reduced when packet loss happened in continuous
position while the energies of SPB increase abnormally in other situations, and the root
causes of above phenomenon is phase offset introduced by packet loss. Based on the results
from Figure 6, P1 has the minimum effect on raw signal and P5 takes second place according
to AE denoting average energy.

To sum up, in order to reduce the influence caused by packet loss as much as possible,
two key points are acquired based on ZPPL: (a) The spectrums from xpq1 , · · · , xpqr are as
similar as possible; and (b) the number of odd positions and even positions that packet loss
occurs are as equal as possible. We devise two pivotal measures with respect to the choice
of packet length and dynamic retransmission scheme Based on these observations in the
next section.
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Figure 6. (a) Spectrum based on P1 that continuous packet loss; (b) spectrum based on P2 that
continuous odd position packet loss; (c) spectrum based on P3 that continuous even position packet
loss; (d) spectrum based on P4 that random position packet loss; (e) spectrum based on P5 that half
odd position packet loss and half even position packet loss; (f) The sum of energy from fspk.

3. Online Fault Diagnosis Based on Packet Loss Influence-Inspired
Retransmission Mechanism

As mentioned, the spectral structure distortion and discrepancy caused by packet
loss in the multisensor scenario can lead to unsatisfactory accuracy and effectiveness. To
solve this issue, we propose a novel adaptive retransmission mechanism under packet
loss condition for multiple data streams called PLIRM (Packet Loss Influence-inspired
Retransmission Mechanism). The proposed framework of PLIRM is shown in Figure 7.
First, ZPPL is constructed to preserve the intrinsic properties of spectral structure. Then, a
dynamic retransmission scheme with embedded MMD is designed to minimize spectral
structure distortion and search for the minimum spectral structure discrepancy, to ensure
that the data stream that is most sensitive to the fault can be transmitted preferentially.
Finally, a fault diagnosis model based on KNN is used to evaluate the retransmission
scheme. The details of each part are elaborated in the following subsection.

i

j

Figure 7. The framework of packet loss influence-inspired retransmission mechanism (PLIRM) for
online bearing fault diagnosis.
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Packet Loss Influence-Inspired Retransmission Mechanism and Online Diagnosis

First, zero padding is applied to construct ZPPL by taking spectral structure distortion
caused by packet loss into consideration. According to analysis of ZPPL on the spectrum
in Section 2, in order to further reduce the influence caused by packet loss, one of the two
key aspects is that inherent structure of each data packet in frequency domain should be
as similar as possible. Therefore, the optimal packet length that the key parameter for
constructing ZPPL should satisfy integral multiples of the number of sampling points
during a period of fault characteristic frequency. Since the ratio is not generally an integer
between sampling frequency and the fault characteristic frequency and the amount of data
to transmit should be as small as possible for reducing transmission burden, the optimal
packet length containing at least an integral periods of the maximum fault characteristic
frequency from different fault types is adopted in our work. Then, the size of a test sample
depends on the number of packets that influenced by packet loss rate. Packet loss rate
ppl = 80% is a serious situation, which means that the possibility of losing data is really
high when the number of packet is not suitable. For this reason, the number of packet
constituting a test sample is designed based on the Equation (10) and empirical values.

The selection of the optimal packet length does not guarantee that fake frequencies
introduced by ZPPL can be effectively suppressed. Indeed, the optimal packet loss mode
that the number of odd positions and even positions where packets loss occurs are as
equal as possible is the other one key point for restraining spectral structure distortion. We
design our dynamic retransmission scheme for this purpose as follows. First, the optimal
number of retransmissions nre = ceil(lg 0.05/ lg p)− 1 is determined based on packet loss
assessment and a 2-sigma-limited Gaussian distribution shown in Equation (10), where
ceil(·) is greater than or equal to the smallest integer of the expression.

1− pnre+1
pa > 0.95 (10)

1− pnre+1
pa denotes the probability that a packet is received during the nth retransmis-

sion and ppa is the result of packet loss assessment, which can be obtained by calculating
the ratio between the number of packets received and packets sent. When packet loss
still occurs under the condition of nre, inspired by bisection method [21], ppa =

1+ppa
2 is

iteratively updated. Finally, nre is obtained. Then, dynamic allocation unit containing
two packets is used to decide to whether to retransmit. As shown in Figure 1, ‘0’ and ‘1’
denotes packet loss and packet received. respectively and four possible consequences are
obtained. Specific retransmission scheme is established based on these consequences which
can be found in Table 1. N and M denote retransmission operation and no operation of
retransmission. respectively. Note that remanent M−Mur packets will be retransmitted
when the previous Mur packets have not been received.

Table 1. Specific retransmission scheme.

nth Dynamic Allocation Unit (n + 1)th Dynamic Allocation Unit
Odd Position Even Position Odd Position Even Position

0 0 M M
0 1 N M
1 0 M N
1 1 M M

In order to mitigate the influence of spectral structure discrepancies amongst different
sensing nodes, a priority setting trick via MMD [16,22,23] is established on the basis of ZPPL
and dynamic retransmission scheme. Once a fault occurs, the data distribution referring to
the healthy condition of bearings is determined. If the distribution difference Dk calculated
by MMD is the smallest in frequency domain, then the spectral structure discrepancy
between test data and historical dataset is the smallest and the resulting influences on
efficent diagnosis can be reduced as much as possible. Hence, to achieve this, nte × M
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data packets of the kth channel that correspond to the smallest Dk should be preferentially
transmitted, where M denotes the number of data packets in a test sample and nte denotes
the quantity of test samples.

Acquiring reliable diagnostic results in a timely manner is crucial for online fault
diagnosis. We embed an evaluation criterion in the adaptive retransmission procedure as
follows. A datablock constituted by Ddb = {Xk

te|k = 1, . . . , ndb} and ndb is the number of
test samples is constructed for data preparation and fault diagnosis. KNN is introduced to
build the fault diagnosis model in our work with the consideration of generalization error
and diagnostic effectiveness. Following [24], we set K = 1, and adopt the Euclidean distance
for the similarity measurement in construction of KNN-based model. Ultimately, online
diagnosis is completed when multiple consecutive Pre that diagnostic results obtained
from datablocks exceed the alarm threshold. In retransmission assessment process, several
evaluation indicators are defined as follows. Cdc defined as transmissive detection cost
denotes whether this approach can detect bearing faults for online diagnosis. Ctc defined
as transmissive time cost denotes the time cost resulting from the entire process beginning
at the start of transmission and ending at the completion of diagnosis, and Cdv defined as
transmissive data volume represents the number of datablocks when transmission and
diagnosis are completed. Retransmission cost is defined as the average retransmission
count Cpc in actuality.

The detailed steps of the packet loss retransmission mechanism can be summarized
as follows:

• Step 1: At the beginning of transmission, determine packet length N and the number
of packets M based on theoretical analysis referring to ZPPL and number multiple
sensors randomly based on {k = 1, . . . , nch} corresponding to relevant channels, and
nte ×M data packets on the site are transmitted by numbered sequence.

• Step 2: Construct test samples based on ZPPL and obtain the optimal retransmission
nre via packet loss assessment.

• Step 3: Normalise test data streams and historical data in frequency domain and
calculate the distribution differences D = {Dk|k = 1, . . . , nch} between two datasets
by using MMD [16], and Dk ∈ D are arranged in ascending order.

• Step 4: Perform specific retransmission scheme based on dynamic allocation unit
according to Table 1. Data streams of the kth channel corresponding to the smallest Dk
will be preferentially transmitted until nte test samples are transmitted next. When the
number of test samples reaches ndb that the preset size of a datablock, which can be
determined based on experience, go to Step 6.

• Step 5: Dk between historical datasets Xhd and the latest data streams Xk
te are updated

via the latest value; then, Dk ∈ D are rearranged in ascending order. Next, go to
Step 4.

• Step 6: Data preparation: Convert each transmitted test sample into frequency domian,
and extract FFT amplitudes as corresponding fault features, and then, normalize this
features by using mean values of zero and variances of 1.

• Step 7: Train the fault diagnosis model based on KNN by using preprocessed datasets
Xhd including multiple types of healthy conditions related to bearings.

• Step 8: Obtain the diagnostic result Pre based on a transmitted datablock Ddb according
to fault diagnosis model.

• Step 9: Monitor Pre that is updated continuously with the arrival of the latest datablock
Ddb. When the number of multiple consecutive Pre that exceed the alarm value Vam
q = 5, bearing fault diagnosis is completed and transmission evaluation indicators
referring to Cdv, Ctc and Cpc are recorded.

The flowchart of online fault diagnosis based on the packet loss retransmission mecha-
nism is shown in Figure 8.



Mathematics 2022, 10, 1422 11 of 18

re

am
V

Figure 8. Flowchart of online fault diagnosis based on packet loss influence inspired retransmission
mechanism.

4. Experimental Evaluations

To verify the effectiveness of the proposed method, a bearing test rig for data collection
and online diagnosis is used to compare the proposed approach with existing methods
including STS, RTS and MDSTS [16]. STS and RTS are essentially conventional approaches
namely, sequential transmission and random transmission. respectively, and MDSTS is a
kind of multiple data stream transmission scheme. These competitive methods did not
take the influence caused by packet loss into consideration.

4.1. Experimental Setup and Dataset Preparation

The experiments are carried out on the belt conveyor idler [16], as shown in Figure 9.
One bearing without defects located in the bearing housing in the idler is closer to the motor.
The other one is farther from the motor, and it could be replaced by the test bearings [23].
Eight accelermeters attached to the bearing housing with glue and magnetic bases are
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employed to collect and transmit the vibration signals of rolling bearing. The inner race
fault (IF), outer race fault (OF), and ball fault (BF) are introduced to test rolling bearings.

Figure 9. Bearing test platform of the belt conveyor idler.

For the purpose of simulating the actual application so that the experimental results
are more persuasive, in this experiment, four bearing conditions including NO (normal
bearings), IF, OF and BF, are considered under the condition LOAD = 900 rpm, and raw
vibration signals of eight accelerometers are sampled at 20 kHz on site. The type of bearing
utilized is 6204, and its main parameters are displayed in Table 2.

Table 2. Main parameters of the 6204 ball bearing.

Type
Inner Race
Diameter

(mm)

Outer Race
Diameter

(mm)

Number
of Balls

Bearing
Width (mm)

Balls
Diameter

(mm)

6204 20 47 8 14 7.9

The fundamental frequency in theory are calculated based on the bearing parameters.
The characteristic frequencies of IF, OF and BF are 74.1495 Hz, 45.8505 Hz and 30.0345 Hz.
respectively. The number of sampling points in a period are about 270, 436 and 667.
respectively correspond to IF, OF and BF. In consideration of the parameter selection criteria
and computational efficiency, the packet length N is set to 300 and the number of packets
M is set to 20. The historical dataset contains data for four bearing conditions including
NO, IF, OF and BF, with 200 samples for each health condition. Each sample contains 3000
Fourier coefficients acquired from FFT. nte is selected as 5 for spectral structure discrepancy
evaluation. A datablock consists of ndb = 20 test samples for predicting diagnostic result,
and it is identified as the bearing fault when q = 5 consecutive predicted values Ppr exceed
Vam = 95%, set based on a 2-sigma-limited Gaussian distribution.

To demonstrate the superiority of PLIRM, test samples from STS, RTS and MDSTS
adopt DPS for comparison. In view of packet loss in long distance complex working
environment, three levels of packet loss probabilities ppl = 5%, 50%, 90% are considered
in the experiment. Three maximum retransmissions times (MRT) are set. respectively for
STS, RTS and MDSTS according to experience. In all, 108 different transmission tests under
different conditions of packet loss and retransmission set are conducted, and a description
of the experimental setup is shown in detail in Table 3.
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Table 3. Description of the experimental setup.

Transmission Scheme ] of Test Fault Type Packet Loss Probability (%) MRT

STS 1–27 IF, OF, BF
5 0
50 5
90 20

RTS 28–54 IF, OF, BF
5 0
50 5
90 20

MDSTS 55–81 IF, OF, BF
5 0
50 5
90 5

PLIRM 82–108 IF, OF, BF
5 /
50 /
90 /

4.2. Diagnosis Results of the Proposed Method

The diagnostic results for the four transmission schemes are shown in Figures 10–12.
Each figure is composed of three subfigures under a particular packet loss probability and
a specific fault type. The left of the symbol “-” in each figure represents the transmission
scheme, and the right represents the retransmission times. The x-axis of every subfigure is
the number of transmitted datablocks and the y-axis represents the detection accuracy for
a datablock.
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Figure 10. Diagnostic results under the condition of 5% packet loss.
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Figure 11. Diagnostic results under the condition of 50% packet loss.
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Figure 12. Diagnostic results under the condition of 90% packet loss.
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From the performance of the transmission schemes for online bearing fault diagnosis
as shown in Figures 10–12, it is clear that the performance of all the competitive meth-
ods dramatically declines with the increase in packet loss rates, and that the diagnostic
results improve with increased retransmission times for every data packet. In terms of
diagnostic performance, STS and RTS are similar and they both failed to diagnose faults in
Figures 11 and 12. Even when the packet loss rate is only 5% and the maximum retrans-
mission times is 20, they still can not detect the outer race fault and ball fault in Figure 10b.
MDSTS is superior to these two methods as shown in Figures 10b and 11a,b. However,
MDSTS still failed in its fault diagnosis when the packet loss reaches 90% and the maxi-
mum retransmission times <20, as shown Figure 12. However, our proposed PLIRM has
outperformed others significantly. It can detect all faults in a timely manner even though
the packet loss rate has reached 90% in Figure 12, and still its performance achieved 100%
and it is very stable.

More details about the diagnostic results of the three healthy conditions under various
packet losses can be found in Table 4 below. The computational accuracies of different
transmission schemes are also shown in Table 5. The computational accuracy, indicated
as Aca, is defined as average ± standard deviation. The average accuracy is the average
predicted value based on all transmissive datablocks. It is obvious that the more serious the
packet loss is, the worse the performance of the competitive methods becomes, including
greater time consumption and lower accuracy. Even if they can detect the faults in several
cases (marked with * in Table 4), they are largely unstable. As shown in Table 5, the
performance of STS, RTS and MDSTS are significantly unstable, whereas the results of
PLIRM are more reliable and rapid for different packet losses under the condition of bearing
outer faults. Due to the establishment of the dynamic retransmission scheme based on
ZPPL and combining MMD, this phenomenon is significantly improved, which can be
observed in Tables 4 and 5. The time costs of STS, RTS and MDSTS remarkably increase
with escalating packet loss. However, more importanly, PLIRM can always accurately
detect faults in a timely manner.

Table 4. Diagnostic performances under various packet loss schemes for online fault diagnosis.

Healthy Condition ppl (%) MRT
STS RTS MDSTS PLIRM

Cdc Cdv Ctc Cpc Cdc Cdv Ctc Cpc Cdc Cdv Ctc Cpc Cdc Cdv Ctc Cpc

IF

5
0 N >20th >126.2833 s 0 Y 5th 31.0817 s 0 Y 5th 40.4896 s 0

Y 5th 61.2548 s 1.25× 10−45 Y 5th 33.4423 s 0.0524 Y 5th 34.7763 s 0.0491 Y 5th 39.0081 s 0.0540
20 Y 5th 32.6717 s 0.048 Y 5th 32.1590 s 0.0554 Y 5th 38.6590 s 0.0493

50
0 N >20th >255.9915 s 0 N >20th >254.7813 s 0 N >20th 286.1462 s 0

Y 5th 95.9446 s 0.30045 Y 5th 87.1334 s 0.9730 Y 5th 88.8885 s 0.9698 Y 5th 91.6796 s 0.9784
20 Y 5th 90.3197 s 1.0054 Y 5th 87.9547 s 0.9995 Y 5th 92.5630 s 0.9938

90
0 N >20th >329.7638 s 0 N >20th >326.3587 s 0 N >20th >357.3670 s 0

Y 5th 324.1284 s 3.53135 N >20th >955.9230 s 3.6686 N >20th >962.3321 s 3.7084 N >20th >982.3726 s 3.6641
20 Y 5th 420.9201 s 7.9141 Y 5th 408.6175 s 7.8786 Y 5th 437.3637 s 8.0036

OF

5
0 N >20th >126.8101 s 0 N >20th >139.5905 s 0 Y 6th 46.8156 s 0

Y 6th 72.5724 s 05 N >20th >126.6477 s 0.0536 N >20th >141.0439 s 0.0551 Y 5th 39.9964 s 0.0514
20 N >20th >126.8909 s 0.0531 N >20th >144.4657 s 0.0541 Y 5th 38.0023 s 0.0494

50
0 N >20th >252.1424 s 0 N >20th >255.0237 s 0 N >20th >289.7554 s 0

Y 9th 151.5227 s 0.00505 N >20th >347.6523 s 0.9734 N >20th >343.6831 s 0.9593 Y 6th 110.1924 s 0.9769
20 N >20th >350.7292 s 1.0056 N >20th >347.6139 s 0.9930 Y 5th 88.4065 s 0.9811

90
0 N >20th >326.4639 s 0 N >20th >327.2350 s 0 N >20th >356.2502 s 0

Y 6th 368.8051 s 3.35445 N >20th >953.8869 s 3.6605 N >20th >958.6008 s 3.7033 N >20th >983.9519 s 3.6713
20 N >20th >1682.2 s 7.9839 N >20th >1659.1 s 7.8994 Y 6th 50.1752 s 7.8411

BF

5
0 N >20th >126.1238 s 0 Y∗ 9th 55.9485 s 0 Y 6th 47.3609 s 0

Y 5th 60.9221s 05 Y 10th 64.5478 s 0.0536 Y∗ 5th 36.1682 s 0.0521 Y 5th 38.0688 s 0.0545
20 Y 10th 64.6910 s 0.0534 Y 5th 34.2677 s 0.0530 Y 5th 40.1503 s 0.0590

50
0 N >20th >254.5737 s 0 N >20th >257.123 s 0 N >20th >287.9346 s 0

Y 5th 93.6135 s 0.30445 N >20th >348.5018 s 0.9588 Y 8th 141.522 s 0.9845 Y 5th 89.1299 s 0.9665
20 Y 10th 169.4589 s 0.9729 Y 8th 141.522 s 0.9845 Y 5th 89.6830 s 0.9670

90
0 N >20th >327.9625 s 0 N >20th >327.8558 s 0 N >20th >356.5563 s 0

Y∗ 6th 559.6489 s 3.56495 N >20th >960.4819 s 3.6989 N >20th >954.3102 s 3.6829 N >20th >986.9021 s 3.6818
20 N >20th >1675.0 s 7.9619 Y 9th >740.8268 s 7.8609 Y 5th 426.5142 s 7.9745
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Table 5. Computational accuracies of different transmission schemes for online fault diagnosis under
various conditions.

Transmission Data ppl (%) MRT
STS RTS MDSTS PLIRM

Aca Aca Aca Aca

IF

5
0 100 100 100

1005 100 100 100
20 100 99.50 ± 1.5390 100

50
0 90.25 ± 7.8598 85.75 ± 7.3045 95.50 ± 5.8264

1005 100 99.75 ± 1.1180 100
20 100 99.50 ± 1.5390 100

90

0 54 ± 11.6529 64.25 ± 13.5991 52.25 ± 13.2263
1005 89 ± 5.9824 83.25 ± 9.3577 92.75±5.9549

20 100 99.50 ± 1.5390 100

OF

5
0 88.50 ± 10.7728 63.50 ± 10.0131 99.50 ± 2.2361

99.50 ± 2.23615 92.25 ± 8.9553 70 ± 11.2390 99.75 ± 1.1180
20 92.25 ± 8.9553 69 ± 10.3364 99.75 ± 1.1180

50
0 60.25 ± 11.1774 58.50 ± 11.8210 92 ± 10.4378

96.75±7.12215 90.75 ± 9.6348 61.50 ± 10.5257 99.50 ± 2.2361
20 92.258.9553 69.50 ± 12.0197 99.75 ± 1.1180

90

0 41 ± 10.5880 41.50 ± 7.0891 57.75 ± 17.7316
98.75 ± 5.59025 58 ± 10.9304 61 ± 8.9736 91.75 ± 13.2064

20 83 ± 9.0902 68.75 ± 12.2340 98.75 ± 5.5902

BF

5
0 97.25 ± 5.7297 97.50 ± 5 99.25 ± 2.4468

1005 98 ± 3.7697 97.50 ± 4.7295 99.75 ± 1.1180
20 98 ± 3.7697 98.50 ± 2.3508 99.75 ± 1.1180

50
0 95.50 ± 5.8264 96 ± 4.1675 93.50 ± 5.6429

99.50 ± 1.53905 96.75 ± 4.9404 98.25 ± 2.9357 99.75 ± 1.1180
20 98 ± 3.7697 98 ± 2.9912 99.75 ± 1.1180

90

0 81.50 ± 11.2507 80.75 ± 12.1693 77.75 ± 8.3496
97.50 ± 3.44125 93.50 ± 7.0897 96.25 ± 3.9320 93.75 ± 7.2321

20 96 ± 6.4072 97.75 ± 3.4317 99.75 ± 1.1180

4.3. Discussion

Packet loss can pose spectral structure distortions and discrepancies in multiple data
stream transmission, resulting in performance degradation for fault diagnosis and increased
transmission costs. Thus, the key for effective online diagnosis is in reducing the influence
caused by packet loss and transmitting the data streams most sensitive to the fault. In
order to illustrate that the proposed method can achieve the above, we adopt the t-SNE
technique [25] to visualize the transmitted data of mentioned methods in our experiment in
a two-dimensional map. For illustration, we take the transmission test under the condition
of 90% packet loss as an example in Figures 13 and 14 for our discussion.

From Figures 13 and 14, it is clear that there are significant discrepancies between
data streams transmitted by STS, RTS and MDSTS without retransmission and different
sensor nodes, which means that intrinsic properties from data streams transmitted by
them are lost seriously. Besides, mode confusion between different fault types are pretty
evident under a poor transmission condition. Although above influences are reduced
slightly when retransmission times increases, the results are still not satisfied. As far as
PLIRM is concerned, remarkably, despite there are slight differences between some intrinsic
properties belonging to different domains, PLIRM can almost always transmit data streams
referring to the most sensitivity to the fault, which indicates that influences involving
spectral structure distortions and discrepancies are reduced dramatically. As stated above,
compared with the competitive methods, our proposed method has obvious advantages.
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(a) STS (b) RTS

(c) MDSTS (d) PLIRM

Figure 13. Spectral structure discrepancies between transmitted data and different sensor nodes.

Figure 14. Spectral structure discrepancies between different methods.

5. Conclusions

In this paper, we have proposed an effective packet loss influence-inspired retransmis-
sion mechanism (PLIRM) for online fault diagnosis. Data streams exhibiting the smallest
spectral structure discrepancy are preferentially transmitted or retransmitted based on
dynamic retransmission scheme with embedded MMD. An evaluation criterion based on
K-nearest neighbor is introduced in the processing of retransmission. Our experimental
results under different transmission experimental scenarios with different packet loss prob-
abilities and retransmission times have showed that the proposed method is indeed feasible
and effective for remote online monitoring as it was able to address the performance issues
of online diagnosis in multisensor scenarios with packet loss conditions successfully.
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The future research will include extending the proposed method into online diagnosis
of other rotating components involving multiple heterogeneous sensor signals such as mo-
tor current, torque and strain gauge. In addition, optimization of dynamic retransmission
scheme when the retransmission time is fixed will also be further studied.
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