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Abstract: This paper is devoted to the mathematical analysis of a spatially homogeneous thermostat-
ted kinetic theory framework with an unbounded activity domain. The framework consists of a
partial integro-differential equation with quadratic nonlinearity where the domain of the activity
variable is the whole real line. Specifically the mathematical analysis refers firstly to the existence and
uniqueness of the solution for the related initial boundary value problem; Secondly the investigations
are addressed to the existence of a class of self-similar solutions by employing the Fourier transform
method. In particular the main result is obtained for a nonconstant interaction rate and a nonconstant
force field. Conclusions and perspectives are discussed in the last section of the paper.
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1. Introduction

Nonlinear evolution equations have recently been proposed for the modeling of
complex phenomena in biology, vehicular traffic, crowds and swarms dynamics, microgrid
composed of sources of energy, see the books [1,2]. The existence and uniqueness of
solutions and their numerical simulations have been the target of multidisciplinary research
activity [3]. In particular, in mathematical physics, important research activity has been
focused on the existence and analysis of self-similar solutions, e.g., a solution may be
obtained from another solution by the result of a uniform scaling (enlarging or shrinking).

A self-similar solution in fluid dynamics is a form of solution which is similar to itself
if the independent and dependent variables are appropriately scaled [4–6]. This type of
solution is also called a self-similar solution of the first kind [7]; indeed, the self-similar
solution of the second kind exists which cannot be derived from dimensional analysis,
see [8–10]. The most important investigations of self-similar solutions in mathematical
physics date back to the classical Boltzmann equation [11], see, among others [12–14] and
for the self-similar asymptotics the papers [15–18].

This paper aims at proving the existence of a class of self-similar solutions for the ther-
mostatted kinetic theory for active particles, which has been proposed in the last decade
for the modeling of complex systems subjected to an external force field. According to this
theory, the complex system is divided into different subsystems, called functional subsys-
tems, composed of particles expressing the same strategy, called activity. The evolution
equations of each functional subsystem is obtained by balancing, into the elementary vol-
ume of the microscopic states, the inlet and outlet flows of active particles. The interested
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reader is referred to papers [19–22] for the theoretical results and to papers [23,24] for the
recent applications.

This paper is devoted to the existence of self-similar solutions of a mathematical
framework of the thermostatted kinetic theory. Specifically the framework is assumed
to be homogeneous with respect to the space and velocity variables; the interactions are
assumed to be conservative (conservation of the density and the activation energy), the
activity domain is assumed to be unbounded and more precisely the whole real line. In
particular, the initial boundary value problem is defined and the existence and uniqueness
of the solution is first investigated. The self-similar solutions of the initial boundary value
problem are investigated by employing the Fourier transform method. The main result
consists of the proof of the theorem of the existence of self-similar solutions and asymptotic
self-similar solutions are also investigated.

It is worth stressing that the self-similar solutions are investigated for both constant
and nonconstant interaction rates and external force fields. This is a generalization with
respect to the previous published papers where the roles of the interaction rates and the
force field have always been assumed to be constants, see [22].

The contents of the present paper are organized into five more sections which follow
this introduction. Specifically, Section 2 deals with the thermostatted kinetic theory and
the related stationary problem; Section 3 is devoted to the initial boundary value problem
and the existence and uniqueness of the solution. The existence of self-similar solutions are
investigated in Sections 4 and 5, where the analysis is performed in the case of constant and
nonconstant interaction rates and force fields, respectively. Conclusions and perspectives
are postponed to Section 6.

2. The Thermostatted Kinetic Theory for an Unbounded Activity Domain

This section briefly reviews the main elements of the thermostatted kinetic theory for
a complex system described by a distribution function f = f (t, u) : [0,+∞[×R → R+,
where u denotes the activity variable which models the strategy of the particles composing
the system and it is assumed to take values in an unbounded domain, and specifically R.
Let A(u∗, u∗, u) : R×R×R→ R+, η(u∗, u∗) : R×R→ R+, and F(u) : R→ R+, f is the
solution of the following partial integro-differential equation with quadratic nonlinearity:

∂t f (t, u) + TF[ f ](t, u) = J[ f ](t, u), (1)

where
• J[ f ](t, u) = G[ f ](t, u)− L[ f ](t, u) models the net flux of particles (gain G and loss L):

G[ f ](t, u) =
∫
R×R

η(u∗, u∗)A(u∗, u∗, u) f (t, u∗) f (t, u∗) du∗ du∗,

L[ f ](t, u) = f (t, u)
∫
R

η(u∗, u∗) f (t, u∗) du∗,

• TF[ f ](t, u) defines the following thermostat term (according to [25,26]):

TF[ f ](t, u) = ∂u

((
F(u)− u

∫
R

u F(u) f (t, u) du
)

f (t, u)
)

,

which allows us to keep constant the activation energy [19]:

E2[ f ] =
∫
R

u2 f (t, u) du.

Assume that

η(u∗, u∗) = η > 0, ∀u∗, u∗ ∈ R,

F(u) = F > 0, ∀u ∈ R,



Mathematics 2022, 10, 1407 3 of 14

then the mathematical framework (1) can be rewritten as follows:

∂t f (t, u) + F∂u((1− uE1[ f ](t)) f (t, u)) =∫
R×R

ηA(u∗, u∗, u) f (t, u∗) f (t, u∗) du∗ du∗ − η f (t, u)E0[ f ](t),
(2)

where

E0[ f ](t) =
∫
R

f (t, u) du, E1[ f ](t) =
∫
R

u f (t, u) du

The mathematical framework is conservative, indeed E0[ f ](t) is constant. In what follows
it is assumed that E0[ f ](t) = 1, for t > 0.

A nonequilibrium stationary solution of (2) is a function g(u) : R→ R+, which satisfies
the related stationary problem:

J[g](u)− TF[g](u) = 0. (3)

The existence of a positive stationary solution g(u) ∈ C(R \ {α}), with α = 1
E1[ f ] , of the

stationary problem (3) has been proved in [27]. In particular, [21]:

E1[ f ](t) =
∫
R

u f (t, u) du t→+∞−−−−→ E+
1 =

−η +
√

η2 + 4F2

2F
.

3. The Initial Boundary Value Problem: Existence and Uniqueness

Let f0 be a suitable function (initial data). The Initial Boundary Value Problem (IBVP)
related to Equation (2) writes:

∂t f (t, u) + F ∂u

((
1− u

∫
R

u f (t, u) du
)

f (t, u)
)
= J(t, u) (t, u) ∈ [0,+∞[×R

f (0, u) = f0(u) u ∈ R

lim
|u|→+∞

f (t, u) = 0.

(4)

Let K(Du) = { f = f (t, u) : [0,+∞[×Du → R+, f (t, u) ∈ C([0,+∞[; L1(Du)) : E0[ f ](t) =
E2[ f ](t) = 1}. The following theorem holds true:

Theorem 1. Assume that:

(i) A(u∗, u∗, u) f (t, u∗) f (t, u∗) is an integrable function with respect to the elementary measure
du∗du∗;

(ii)
∫
R
A(u∗, u∗, u) du = 1, for all u∗, u∗ ∈ R;

(iii)
∫
R

u2A(u∗, u∗, u) du = u2
∗, for all u∗, u∗ ∈ R;

(iv)
∫
R

uA(u∗, u∗, u) du = 0, for all u∗, u∗ ∈ R;

(v) f0(u) ∈ L1(Du);

(vi)
∫
R

f0(u) du =
∫
R

u2 f0(u) du = 1.

Then there exists a unique function f ∈ K(R), which is a solution of the IBVP (4). Moreover the
solution depends continuously on the initial data f0.

Proof. Firstly, assume that Du = [−a, a], a > 0. The existence and uniqueness of the
solution f (t, u) ∈ K(Du) of the IBVP:
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∂t f (t, u) + F∂u

((
1− u

∫
Du

u f (t, u) du
)

f (t, u)
)
= J[ f ](t, u) (t, u) ∈ [0,+∞[×Du

f (0, u) = f0(u) u ∈ Du

f (t, u) = 0 u ∈ ∂Du,

(5)

has been proved in [28] under the assumptions (i)− (iii), and the continuous dependence
with respect to the initial data f0(u) has been gained in [29]. Accordingly, for every R > 0,
there exists a unique solution of the IBVP (5) for Du =]− R, R[. Let ϕR(u) be the following
cut-off function:

ϕR(u) :=


1 u ∈]− R, R[

0 otherwise.

(6)

Multiplying the two sides of the (5)1 by ϕR(u), the IBVP (4) is restricted to [−R, R], R ∈ N.
That is, fR(t, u) = 0 for |u| = R (i.e., on the boundary of [−R, R]). This is reasonable since
it is required that f ∈ L1(Du). Then there exists a unique function fR(t, u) ∈ K(]− R, R[)
solution of the restricted problem. Let R2 > R1 > 0, and fR1(t, u) the solution related
to ]− R1, R1[ and fR2(t, u) the solution related to ]− R2, R2[. By using the uniqueness, it
follows, for t > 0:

fR1(t, u) = fR2(t, u) |u| < R1.

Indeed in the set |u| < R1 one has:

ϕR1(u) = ϕR2(u),

and then

fR1(t, u) = ϕR1(u) f (t, u) = ϕR2(u) f (t, u) = fR2(t, u), t > 0.

For every R > 0,

E0[ fR](t) =
∫
R

fR(t, u) du =
∫
[−R,R]

fR(t, u) du

is a monotone sequence of R since∫
R

fR2 du ≥
∫
R

fR1 du

for R2 ≥ R1. Then it admits a limit l ∈ R, i.e.,

E0[ fR](t) =
∫
[−R,R]

fR(t, u) du R→∞−−−→ l.

It is necessary to prove that there exists a function f (t, u) ∈ L1(R) such that:

l =
∫
R

f (t, u) du.

In order to prove it, observe that there exists f (t, u) ∈ L1(R):

E0[ fR](t) =
∫
[−R,R]

fR(t, u) du =
∫
[−R,R]

ϕR(u) f (t, u). (7)

Indeed, if R2 > R1 > 0, since fR1(t, u) = fR2(t, u), for |u| ≤ R1, we have that:
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ϕR1(u) f1(t, u) = fR1(t, u) = fR2(t, u) = ϕR2(u) f2(t, u),

and then

f1(t, u) = f2(t, u), |u| ≤ R1.

By passing to the limit, as R goes to infinity, into the (7), one has:

E0[ fR](t) =
∫
[−R,R]

fR(t, u) du R→∞−−−→
∫
R

f (t, u) du.

The existence of a solution f (t, u) ∈ K(R) of the IBVP (4) is thus gained.
The uniqueness has to be proved. Let f1(t, u) and f2(t, u) be two of the solutions of (5)1 in
the space K(R), the following quantity has to be estimated:∫

R
| f1(t, u)− f2(t, u)| du.

By using the cut-off function ϕR(u), for every R > 0, the following functions can be considered:

f1R(t, u) := ϕR(u) f1(t, u)

f2R(t, u) := ϕR(u) f2(t, u).

By uniqueness in the bounded domain Du = [−R, R], it follows that:∫
[−R,R]

| f1R(t, u)− f2R(t, u)| du = 0, ∀R > 0. (8)

By using the continuity of the norm and passing to the limit, as R goes to infinity, in the (8),
one has:

0 =
∫
[−R,R]

| f1R(t, u)− f2R(t, u)| du R→∞−−−→
∫
R
| f1(t, u)− f2(t, u)| du. (9)

Then, ∫
R
| f1(t, u)− f2(t, u)| du = 0,

and the uniqueness of the solution of the IBVP (4) is thus gained.
Finally, by improving the technique of [29] for the bounded case Du = [−R, R], the

continuous dependence on the initial data for the framework (4) can be gained.
As a matter of fact, assume that:∥∥∥ f 0

1 (u)− f 0
2 (u)

∥∥∥
L1(Du)

≤ δ,

for δ > 0. There exist f1(t, u), f2(t, u) ∈ K(R) solutions of the problem (5) with initial data,
respectively, f 0

1 and f 0
2 . Then,

f1(t, u)− f2(t, u) =
(

f 0
1 (u)− f 0

2 (u)
)

+
∫ t

0
(J[ f1, f1](τ, u)− J[ f2, f2](τ, u)) dτ

+ F
∫ t

0
∂u((1− uE1[ f2](τ)) f2(τ, u)) dτ

− F
∫ t

0
∂u((1− uE1[ f1](τ)) f1(τ, u)), dτ.

(10)

By estimating the terms of the right-hand side of the (10) one has:
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∫
Du
| f1(t, u)− f2(t, u)| du ≤ δ

+ 2 η
∫ t

0

(∫
Du
| f2(τ, u)− f1(τ, u)| du

)
dτ

+ η
∫ t

0

(∫
Du
| f2(τ, u)− f1(τ, u)| du

)
dτ

+ 2F
(
C(η, F) +E+

1
) ∫ t

0

(∫
Du
| f2(τ, u)− f1(τ, u)| du

)
dτ.

(11)

By reordering the the terms of this last relation and using the constant

C̄ :=
(
3 η + 2 F

(
C(η, F) +E+

1
))

,

we get ∫
Du
| f1(t, u)− f2(t, u)| du

≤ δ + C̄
∫ t

0

(∫
Du
| f2(τ, u)− f1(τ, u)| du

)
dτ.

(12)

Finally, the Gronwall inequality [30] and inequality (12) yield∫
Du
| f1(t, u)− f2(t, u)| du ≤ δ eC̄ t, (13)

for all t > 0, so that, for T > 0,

max
t∈[0,T]

(∫
Du
| f1(t, u)− f2(t, u)| du

)
≤ δ eC̄ t,

and our claim is proved.

4. Existence of a Class of Self-Similar Solutions

Let λ > 0 and fλ(t, u) be the scaled solution of the framework (1):

fλ(t, u) := f
(

t,
u
λ

)
. (14)

Let f (t, u) be the solution of Equation (1) and f̂ (t, k) its Fourier transform defined as follows:

f̂ (t, k) =
∫
R

f (t, u)e−2πiku du, k ∈ R, (15)

and ĝ(k) the Fourier transform of g(u) (solution of the related nonequilibrium
stationary problem)

ĝ(k) =
∫
R

g(u)e−2πiku du, k ∈ R. (16)

In [21] the following result has been proved:

∣∣∣ f̂ (t, k)− ĝ(k)
∣∣∣ ≤ (|k|2+p + |k|

)
e−
√

η2+4F2

F t.

Specifically, f̂ (t, k) converges exponentially fast, as t→ +∞, to ĝ(k).
The Fourier transform of the Equation (1) writes as follows:

∂t f̂ (t, k) + 2πikF f̂ (t, k) + FkE1[ f ](t)∂k f̂ (t, k) + η f̂ (t, k) = Ĝ[ f̂ ], (17)

where
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Ĝ[ f̂ ] =
∫
R

f̂ (t, kα(u)) ∗ Â(u∗, u∗, u) ∗ f̂ (t, kβ(u)) du,

and ∗ denotes the convolution product. Specifically, the state u is assumed to be a linear
combination of u∗ and u∗ and then

u = α(u)u∗ + β(u)u∗.

The following result is the main aim of the present paper.

Theorem 2. Let the assumptions (i), (ii), (iii) hold true. Then there exists a solution of the
problem (4), such that:

f̂λ(t, k) = λ f̂ (t, λ k) k ∈ R, λ > 0. (18)

Moreover, if the initial data f0(u) is self-similar, i.e., f0(u) = f0(|u|), and there exists α > 1 such that

f̂λ(t, λk) = o
(

1
λα

)
, λ→ +∞,

then there exists an asymptotic self-similar solution γ(|k|) such that:

f̂λ(t, k) t→+∞−−−−→ γ(|k|). (19)

Proof. Let f (t, u) ∈ K(R) be the solution of the IBVP (4), ψ(t, u) ∈ K(R) and λ > 0. Let
S[ψ](t, k) and Z[ψ, λ](t, k) be the following operators:

S[ψ](t, k) :=
∫
R

ψ(u) e−2πik u du, (20)

Z[ψ, λ](t, k) :=
∫
R

ψ
( u

λ

)
e−2πik u du. (21)

By using the (20), one has:

S[ f ](t, k) = f̂ (t, k),

which solves Equation (17).
Let f (t, u) be the solution of (4). Bearing the expression of fλ(t, u) in mind, the (21) rewrites:

Z[ f , λ](t, k) =
∫
R

f
(

t,
u
λ

)
e−2πik u du =

∫
R

fλ(t, u)e−2πik u du = f̂λ(t, k).

One observes that f̂λ(t, k) is the solution of the Fourier transform of the rescaled Equa-
tion (1). Specifically:∫

R
∂t fλ(t, u)e−2πik u du +

∫
R

∂u(F(1− uE1[ f ](t)) fλ(t, u))e−2πik u du

=
∫
R

J[ fλ](t, u)e−2πik u du.
(22)

The first term on the right hand side of the (22) writes:∫
R

∂t fλ(t, u)e−2πik u du = ∂t f̂λ(t, k). (23)

By straightforward calculations, the second term of the right hand side of the Equa-
tion (22) rewrites:
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∫
R

∂u

(
F
(

1− uE[ f ](t)
)

f
(

t,
u
λ

))
e−2πik u du

= F
∫
R

∂u

(
(1− uE1[ f ](t)) f

(
t,

u
λ

))
e−2πik u du

= −F
∫
R
(1− uE1[ f ](t)) f

(
t,

u
λ

)(
−2πi

k
λ

)
e−2πik u du

= (2πik) F
∫
R
(1− uE1[ f ](t)) f

(
t,

u
λ

)
e−2πik u du

= 2πik F f̂λ(t, k)− 2πikFE1[ f ](t)
∫
R

u f
(

t,
u
λ

)
e−2πiku du.

(24)

The last term of the right hand side of the (24) rewrites:

−2πikFE1[ f ](t)
∫
R

u f
(

t,
u
λ

)
e−2πiku du = −FkE1[ f ](t)

∫
R
(2πiu) f

(
t,

u
λ

)
e−2πiku du

= FkE1[ f ](t)
∫
R

f
(

t,
u
λ

)
∂k

(
e−2πiku

)
du

= FkE1[ f ](t)∂k f̂λ(t, k).

(25)

By using the (25), the (24) rewrites:∫
R

∂u

(
F(1− uE1[ f ](t)) f

(
t,

u
λ

))
e−2πik u du = 2πik F f̂λ(t, k) + FkE1[ f ](t)∂k f̂λ(t, k). (26)

The right hand side of the (22) rewrites:∫
R

J[ fλ](t, u)e−2πik u du = Ĝ[ f̂λ](t, k)− η f̂λ(t, k), (27)

where

Ĝ[ f̂λ](t, k) :=
∫
R

f̂λ(t, kα(u)) ∗ Â(kα(u), kβ(u), u) ∗ f̂λ(t, kβ(u)) du.

By using the (23), (26) and (27), the (22) rewrites:

∂t f̂λ(t, k) + 2πik F f̂λ(t, k) + FkE1[ f ](t)∂k f̂λ(t, k) + η f̂λ(t, k) = Ĝ[ f̂λ](t, k). (28)

Accordingly ([21]), f̂ (t, k) is a solution of (4), and f̂λ(t, k) is a solution (28).
By using the (20) and the (21) and the change of variables s = u

λ , one has:

Z[ f , λ](t, k) = f̂λ(t, k)

=
∫
R

f
(

t,
u
λ

)
e−2πik u du

= λ
∫
R

f (t, s) e−2πiλ k s ds

= λ f̂ (t, λk),

(29)

then the first part of the proof is concluded.
Assume that the initial data f0(u) is self-similar, i.e., f0(u) = f0(|u|). Bearing the expression
of f̂ in mind and (29), one has:

f̂λ(t, k) =
f̂ (t, λk)

1
λ

.
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Since f̂ (t, λk) = o
(

1
λα

)
, for α > 1, as λ→ +∞, then it follows:

f̂λ(t, k) t→±∞−−−−→
λ→+∞

0. (30)

Then for λ→ +∞, there exists a function χ(t, k) such that:

f̂λ(t, k) =
1

λα
χ(t, k). (31)

In particular (for t = 0) by using the assumption on the self-similarity of f0(u), (31) rewrites:

f̂λ(0, k) =
1

λα
χ(0, |k|). (32)

By using the (32), there exists a function γ(k), such that:

f̂λ(0, k) =
c

λα
γ(|k|), (33)

where c = θ(0) is a positive constant and θ(t) is a positive time-dependent function.
By using the asymptotic behaviour (30) and the (33), it follows that, for t → ±∞ and
λ→ +∞:

f̂λ(t, |k|) =
θ(t)
λα

γ(|k|). (34)

The (33) is an asymptotic self-similar solution for Equation (4) and the proof is thus concluded.

Remark 1. By passing to the limit, as time goes to infinity, in the (28), one has:

ĝλ(k) = λ ĝ(λk), k ∈ R, (35)

regardless of the choice of λ.
However, the function γ(|k|) of Equation (19) of Theorem 2 can be seen as an asymptotic

self-similar solution of the nonequilibrium stationary problem related to the framework (3).

5. The Nonconstant Interaction Rate-Force Field Case

This section deals with the asymptotic self-similar solution analysis for the thermostat-
ted framework (1) for a nonconstant external force field and nonconstant interaction rate.
Specifically, let F(u) : R→ R+ be the external force field, and η(u∗, u∗) : R×R→ R+ the
interaction rate between the particle with state u∗ and the particle with state u∗. The related
continuous thermostatted framework writes reads:

∂t f (t, u) + ∂u

((
F(u)− u

∫
R

uF(u) f (t, u) du
)

f (t, u)
)

=
∫
R×R

η(u∗, u∗)A(u∗, u∗, u) f (t, u∗) f (t, u∗) du∗ du∗ − f (t, u)
∫
R

η(u, u∗) f (t, u∗) du∗.

(t, u) ∈ [0,+∞[×R

f (0, u) = f0(u) u ∈ R

lim
|u|→±∞

f (t, u) = 0.

(36)

The following weighted moment is defined:

E1[ f , F](t) :=
∫
R

uF(u) f (t, u) du.

The main result of this section follows.



Mathematics 2022, 10, 1407 10 of 14

Theorem 3. Let f (t, u) be a solution of the IBVP (36). Assume that:

(i) f (t, u) ∈ C1([0,+∞[; L1(R)
)
;

(ii) E1[ f , F](t) < +∞, for all t > 0;
(iii) There exists F > 0 such that F(u) ≤ F, for all u ∈ R;
(iv) There exists η > 0 such that η(u∗, u∗) ≤ η, for all u∗, u∗ ∈ R.

Then there exists an asymptotic self-similar solution of the Fourier Transform of (36).

Proof. Let
fλ(t, u) := f

(
t,

u
λ

)
. (37)

By applying the Fourier transform to Equation (36), the first term on the left-hand side reads:

ˆ∂t f (t, u) = ∂t f̂ (t, k). (38)

By straightforward calculations, the thermostat term of the (36) is written as follows:∫
R

∂u

((
F(u)− u

∫
R

uF(u) f (t, u) du
)

f (t, u)
)

e−2πiku du

= 2πik
[∫

R
(F(u)− uE1[ f , F](t)) f (t, u)e−2πiku du

]
= 2πik

[∫
R
(F(u) f (t, u))e−2πiku du−

∫
R
E1[ f , F](t)u f (t, u)e−2πiku du

]
= 2πik

[
f̂ (t, k) ? F̂(k)−E1[ f , F](t)

∫
R

u f (t, u)e−2πiku du
]

.

(39)

Bearing the right hand side of (36) in mind, one has:∫
R

∫
R×R

η(u∗, u∗)A(u∗, u∗, u) f (t, u∗) f (t, u∗)e−2πiku du∗ du∗ du

=
∫
R×R

η(u∗, u∗) f (t, u∗) f (t, u∗)
(∫

R
A(u∗, u∗, u)e−2πiku du

)
du∗ du∗

=
∫
R×R

η(u∗, u∗)Â(u∗, u∗, u) f (t, u∗) f (t, u∗) du∗ du∗,

(40)

and ∫
R

∫
R

f (t, u) η(u, u∗) f (t, u∗)e−2πiku du du∗

=
∫
R

f (t, u∗)
(∫

R
η(u, u∗) f (t, u)e−2πiku du

)
du∗.

(41)

By using the (38)–(41), Equation (36) rewrites:

∂t f̂ (t, k) + 2πik
[

f̂ (t, k) ? F̂(k)−E1[ f , F](t)
∫
R

u f (t, u)e−2πiku du
]

=
∫
R×R

η(u∗, u∗)Â(u∗, u∗, u) f (t, u∗) f (t, u∗) du∗ du∗

−
∫
R

f (t, u∗)
(∫

R
η(u, u∗) f (t, u)e−2πiku du

)
du∗.

(42)

By observing that:
f̂λ(t, k) = λ f̂ (t, λk),

one has:
∂t f̂λ(t, k) = λ∂t f̂ (t, λk). (43)
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Straightforward calculations show that:

f̂λ(t, k) ? F̂λ(k) = λ f̂ (t, λk) ? λF̂(k)

= λ2 f̂ (t, λk) ? F̂(k),
(44)

and, by using the change of variables u
λ = y, one has:

E1[ fλ, Fλ]
∫
R

u fλ(t, u)e−2πiku du = E1[ fλ, Fλ]λ
∫
R

y f (t, y)e−2πiλky dy

= E1[ fλ, Fλ]λû f (t, u)(t, k).
(45)

Let us consider the scaled version of the right-hand side of the (42).One has:∫
R×R

η

(
u∗
λ

,
u∗

λ

)
Âλ

(
u∗
λ

,
u∗

λ
, k
)

f
(

t,
u∗
λ

)
f
(

t,
u∗

λ

)
du∗ du∗. (46)

By using the following change of coordinates:

u∗
λ

= y

u∗

λ
= z,

the (46) is rewritten as follows:

λ2
∫
R×R

η(λu∗, λu∗)Âλ(λu∗, λu∗, k) f (t, λu∗) f (t, λu∗) du∗ du∗

= λ2
∫
R×R

η(λu∗, λu∗)λÂ(λu∗, λu∗, λk) f (t, λu∗) f (t, λu∗) du∗ du∗

= λ3
∫
R×R

η(λu∗, λu∗)Â(λu∗, λu∗, λk) f (t, λu∗) f (t, λu∗) du∗ du∗.

(47)

By using the same argument, one has:∫
R

f
(

t,
u∗

λ

)(∫
R

η

(
u
λ

,
u∗

λ

)
f
(

t,
u
λ

)
e−2πiku du

)
du∗

= λ
∫
R

f (t, λu∗)
(∫

R
η
( u

λ
, λu∗

)
f
(

t,
u
λ

)
e−2πiku du

)
du∗

= λ2
∫
R

f (t, λu∗)
(∫

R
η(λu, λu∗) f (t, λu)e−2πiku du

)
du∗.

(48)

By using the (43)–(45), (47) and the (48), it is possible to conclude that f̂λ solves the following
scaled equation:

λ f̂ (t, λk) + 2πik
[
λ2 f̂ (t, λk) ? F̂(λk)−E1[ fλ, Fλ]λû f (t, u)(t, λk)

]
= λ3

∫
R×R

η(λu∗, λu∗)Â(λu∗, λu∗, λk) f (t, λu∗) f (t, λu∗) du∗ du∗

− λ2
∫
R

f (t, λu∗)
(∫

R
η(λu, λu∗) f (t, λu)e−2πiku du

)
du∗.

(49)
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The Equation (50) is rewritten as follows:

λ f̂ (t, λk)

= −2πik
[
λ2 f̂ (t, λk) ? F̂(λk)−E1[ fλ, Fλ]λû f (t, u)(t, λk)

]
+ λ3

∫
R×R

η(λu∗, λu∗)Â(λu∗, λu∗, λk) f (t, λu∗) f (t, λu∗) du∗ du∗

− λ2
∫
R

f (t, λu∗)
(∫

R
η(λu, λu∗) f (t, λu)e−2πiku du

)
du∗.

(50)

The asymptotic estimate of the terms on the right hand side of the (50) is the aim.
By using the previous regularity assumptions, as time t goes to infinity, there exist four
constants α, β, γ, δ > 0 and four functions R1(t, k), R2(t, k), R3(t, k), R4(t, k) such that:

2πikλ2 f̂ (t, λk) ? F̂(λk) = λαR1(t, k),

2πikE1[ fλ, Fλ]λû f (t, u)(t, λk) = λβR2(t, k),

λ3
∫
R×R

η(λu∗, λu∗)Â(λu∗, λu∗, λk) f (t, λu∗) f (t, λu∗) du∗ du∗ = λγR3(t, k),

λ2
∫
R

f (t, λu∗)
(∫

R
η(λu, λu∗) f (t, λu)e−2πiku du

)
du∗ = λδR4(t, k).

Then, as times t goes to infinity, (50) is rewritten as follows:

λ f̂ (t, λk) = λαR(t, k), (51)

where the positive constant α > 0 and the function R(t, k) have been used with abuse of
notation. By using the change of variables,

λk = λeθt,

for θ > 0, (51) is rewritten as follows:

λ f (t, λeθt) = λαΦ(t). (52)

Bearing the scaling argument (37) in mind, one has:

f̂λ(t, eθt) = Φ(t), (53)

then the function Φ(t) is an asymptotic self-similar solution of the thermostatted frame-
work (36).

6. Conclusions and Research Perspectives

The present paper can be considered a further generalization of the thermostatted
kinetic theory proposed in [19]; indeed the activity domain is assumed to be the whole real
line and the related initial-boundary-value problem is investigated. However, the main
contribution of this paper is the definition and analysis of self-similar solutions whose
existence is obtained by employing the Fourier transform method.

From the modeling point of view the variable u ∈ R, called activity, describes the
microscopic state of the particles of the system (active particles) and represents the strategy
or function expressed by the particles: η is the interaction rate; A(u∗, u∗, u) is the transition
probability function, i.e., the probability that the active particle with state u∗ falls into the state
u after interacting with the active particle with state u∗, and F denotes an external force field
which acts on the system. The framework is thus proposed for the modeling of complex
systems where the role of the interactions is at the basis of the emerging phenomena
(see [31,32]).
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From the perspective point of view, a further investigation would be the generalization
of the results to a complex system composed by n functional subsystems. Accordingly, the
framework consists of n partial-integro differential equations with quadratic nonlinearity
and the thermostat term would also be modified. The introduction of space and velocity
variables can also be pursued and consequently the analysis of self-similar solutions could
be concerned with the other microscopic state variables.

The analysis presented in this paper can also be generalized to the case where the
activity variable can attain discrete values and then for a discrete thermostatted kinetic
theory [20].

The existence of all moments for the self-similar solution remains open and the results
will be presented in due course.
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