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Abstract: This paper presents a new method for a comprehensive stabilization and backstepping
control system design for a class of stochastic nonlinear systems. These types of systems are so
abundant in practice that the control system designer must assume that random noise with a definite
probability distribution affects the dynamics and observations of state variables. Stochastic control
is intended to determine the time course of control variables so that the control target is achievable
even with minimal cost. Since the mathematical equations of stochastic nonlinear systems are not
always constant, not every model-based controller can be accurate. Therefore, in this paper, a type-3
fuzzy neural network is used to estimate the parameters of the backstepping control method. In the
simulation, the proposed method is compared with the Type-1 fuzzy and RBFN methods. Results
clearly show that the proposed method has a very good performance and can be used for any system
in this class.

Keywords: parameter estimation; stochastic systems; type-3 fuzzy neural network; backstepping
control method

MSC: 13P25

1. Introduction

The essence of most real and physical systems is nonlinear. This nonlinear dynamic
behaviour complicates control systems, especially when hysteresis phenomena are taken
into account [1–3]. In recent years, nonlinear systems have received a lot of attention and
many efforts have been made to stabilize them. One of the root causes of instability in
systems is related to their nonlinear nature (dynamics), to which the designer of the control
system must pay special attention [4–8]. Hence, innovative techniques in [9] are proposed
to achieve a systematic design procedure for these highly nonlinear systems, including
the backstepping design method. Due to the increasing complexity of the problem, these
systems are classified into the following three classes of systems: strict feedback systems,
pure feedback systems, and block strict feedback systems. In [10], using the backstepping
method, and in combination with the radial basis function neural network (RBFN), a
creative controller was designed for strict feedback nonlinear stochastic systems with
unknown dynamics. There is a so-called “explosion of complexity”, which complicates
the design and simulation by increasing the system rank. A very creative technique
called dynamic surface control (DSC) is suggested in [11], which can prevent disturbing
phenomena. Numerous studies [7–11] use this technique instead of using the backstepping
design method, in order to prevent the occurrence of the phenomenon of an “explosion
of complexity”, and they have proposed some methods to stabilize different forms of
nonlinear systems. Some of these studies will be reviewed in the following. In [12]. with
the development of a dynamic level control method using Gaussian networks, a controller
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for non-linear toxins in the form of strict feedback with desired indeterminacy is presented.
In [13], the problem of adaptive tracking control for a class of indeterminate strict single
input–single output with unknown path and control perturbations is investigated, and
the DSC design method is used to solve the “explosion of complexity” problem. In [14], a
creative controller is presented based on a combination of the dynamic surface control and
adaptive fuzzy sliding mode control method for a MEMS gyroscope. In [15], the dynamic
surface control, considering the saturation, is presented for the problem of safe entry into
the spacecraft terminal based on the spacecraft’s relative motion model and the potential
to prevent the collision of the sphere. Occurrence of failure in control systems can lead to
catastrophic accidents. Therefore, many efforts have been made to prevent the occurrence
of such accidents, and to deal with adverse effects on control systems. Malfunctions may
occur in various parts of a control system, from the attack of sensors, actuators, controllers,
communication lines, and so on. Among the topics of interest to researchers in recent years
is the occurrence of malfunctions in control system cells. Actuator failure means changing
the characteristic of the actuator from a linear state to a variety of nonlinear states, including
the actuator’s physical performance, its jamming, the dead-zone phenomenon, the residual
phenomenon in the actuator, and so on. In the following, studies will be reviewed that
have examined the occurrence of each of these types of defects in the actuators. In [16],
DSC has been used to avoid the “explosion of complexity” phenomenon in a conventional
backstepping method, and then, by introducing the Lyapunov integral function, they
provide a controller for pure feedback nonlinear systems with a dead-zone area. In [17], the
occurrence of variable failures in nonlinear systems has been investigated. They proposed
an adaptive synchronization sliding mode technique to solve the problems caused by
uncertain system parameters, actuator failure, and perturbations. In [18], the problem
of adaptive control for stochastic nonlinear systems with time delay and a dead-zone is
investigated. In the aforementioned paper, they used an adaptive control scheme based
on neural networks, DSC, and a minimum learning parameters algorithm. In order to
reduce the complexity of the calculations, a creative controller has also been proposed to
eliminate the adverse effect of time delay from the Lyapunov–Krasovskii function [19].
In [20], the adaptive tracking control technique has been investigated for a more general
class of systems with stochastic nonlinear time delay and with a dead area at input.

In [21], by combining the adaptive neural network and backstepping technologies, a
method for controlling a class of stochastic nonlinear systems that can consider uncertainty
and work in the operational situation of the system is proposed. Additionally, via the
combination of these two technologies, a control method for a class of strict-feedback
stochastic nonlinear systems is presented in [22]. In this method, the input disturbances
are also considered. In [23], a comparative adaptive neural controller has been used to
design a decentralized H∞ controller. Each of the subsystems of this proposed design are
designed using the backstepping and Lyapanov methods. Recently, type-2 and-3 fuzzy
systems have played a huge role in controlling the system and, as such, are proposed for a
class of uncertain nonlinear systems. [24].

The innovations of this article are as follows:

1- Using the combination of a type-3 fuzzy neural network and a backstepping control
method for the first time.

2- Applying actuator failure to stochastic nonlinear system in a new way.
3- Ensuring the stability of the control system analytically.

The structure of the article is such that the problem is explained first. Then, the
specifications of type-3 fuzzy neural network are presented. The proposed control system is
described in detail below. In the simulation section, the performance of the control system
is evaluated. Finally. in the conclusion section, all of the research results are expressed.
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2. Statement of the Problem

Consider a nonlinear stochastic strict feedback system:

dx1 = (g1x2 + f1)dt + ψ1dψ,
...

dxi = (gixi+1 + fi)dt + ψidψ,
...

dxn = (gnu + fn)dt + ψndψ,
y = x1,

u(t) = pov(t)− d[v](t),

bm ≤ gi ≤ bM , x = [x1, x2, . . . , xn]
T , 1 ≤ i ≤ n (1)

where ψ is the standard two-dimensional external motions defined on the probability space
(Ω, F, P) with Ω as the sample space, F as a filtration, P as a criterion Probability, and
smoothly unknown functions such as below:

fi(·), gi(·) : Ri × R+ → R, ψT
i : Ri × R+ → Ri×i, (2)

where
f (0) = 0, ψT

i (0) = 0 (3)

It should be noted that in (1), u is the control input or the output of the actuator,
which can be exposed to many nonlinear variations, including residuals in the actuator.
In conducting this research, and in each step of the stability analysis procedure, a series
of definitions, concepts, and lemma will be used, which will be briefly explained as we
continue. Consider the following stochastic system:

dx = f (x, t)dt + h(x, t)dψ, x = [x1, x2, . . . , xn]
T ∈ Rn (4)

where x is vector of system state. The following factions are locally Lipchitz functions;

f : Rn × R+ → Rn, h : Rn × R+ → Rn×r, f (0, t), h(0, t) = 0, ∀t ≥ 0 (5)

Definition 1. For each function as follows:

V(x, t)ε C2,1(Rn × R+, R+
)

(6)

Related to relation (4), the differential actuator L is defined as:

LV =
∂v
∂t

+
∂v
∂x

f +
1
2

Tr
{

hT ∂2v
∂x2 h

}
(7)

The last term of (7) is called an Ito correction. The second order derivative ∂2v
∂x2 is the main

challenge for the control system designer and the difference between stochastic and deterministic
systems is determined in this phrase.

Lemma 1. Consider a stochastic system (4), and assume that f (x, t) and h(x, t) in their arguments
C1, f (0, t), and h(0, t) are uniformly bounded in t. In the following functions:

V(x, t)ε C2,1(Rn × R+, R+
)
, µ(·), µ2(·)ε K∞ (8)

And there are the constants a0 > 0, b0 ≥ 0 such that:

µ1(|x|) ≤ v(x, t) ≤ µ2(|x|), LV ≤ a0v(x, t) + b0 (9)

Then the system (4) is bounded in probability.
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Lemma 2. An inequality will also be widely used during the design of the controller and to prove
its stability, hence, it is first described as an inequality.

xy ≤ ap

p
[x]p +

1
qaq [y]

q, (p− 1)(q− 1) = 1 (10)

Optimal determination of values p and q is very important. Trial and error methods are
commonly used in articles. In this paper, for the first time, we calculate these parameters online
using a fuzzy system. This is one of the valuable innovations of this paper.

Lemma 3. For each continuous function:

f (x) : Rn → R, f (0) = 0, x = [x1, x2, . . . ., xn] T (11)

with always positive functions

hi(xi)R→ R+, j = 1, 2, . . . , n (12)

There is

| f (x)| ≤
n

∑
j=1

∣∣xj
∣∣hj
(
xj
)

(13)

Executor actuator: analytically, suppose Cm[0, tE] is a space of uniform continuous fragment
functions. For an input v(t), where v(t) ∈ Cm[0, tE], the executable actuator is:

Fr[v; u−1](0) = fr(v(0), u−1)
Fr[v; u−1](t) = fr(v(t), fr[v; u−1](t1)), ti < t ≤ ti+1, 0 ≤ i ≤ N − 1

(14)

where,
f1(v, u) = max(v− r, min(v + r, u)) (15)

and,
0 = t0 < t1 < . . . < tN = tE, (16)

Therefore, there is a fraction in interval [0, tE], such that the function v(t) on each of the
sub-intervals [ti, ti+1] is uniform.

Prandtl–Ishlinskii (PI) Waste: It is a nonlinear condition as follows:

u(t) = p0v(t)−
∫ R

0
p(r) fr[v](t)dr (17)

In which u(t) is the output of the actuator, v(t) the input signal to the actuator. p(r) is
the density function, and

p0 =
∫ R

0
p(r)dr (18)

is a constant that depends on the density function p(r).

3. Type-3 Fuzzy Neural Network

In this section, the type-3 fuzzy neural network structure (Figure 1) and calculations
are presented. The membership degree of type-3 fuzzy sets is calculated as follows:

µ
S̃j

T |αh
(T) = exp

−
(

T − c
S̃j

T |αh

)2

σ2
S̃j

T |αh

, µ
S̃j

T |αh
(T) = exp

−
(

T − c
S̃j

T |αh

)2

σ2
S̃j

T |αh

 (19)
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µ
S̃j

T |αh
(T) = exp

−
(

T − c
S̃j

T |αh

)2

σ2
S̃j

T |αh

, µ
S̃j

T |αh
(T) = exp

−
(

T − c
S̃j

T |αh

)2

σ2
S̃j

T |αh

 (20)

where, h = 1, . . . , n, j = 1, 2, c
S̃j

T |αh
is the mean of MF S̃j

T

∣∣∣αh , σ
S̃j

T |αh
, and σ

S̃j
T |αh

are the upper

and lower standard divisions for S̃j
T

∣∣∣αh .
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The calculation of upper rule firing at αh are as follows:

ϕ1
αh

= µS̃1
T |αh

µS̃1
P |αh

µS̃1
M |αh

, ϕ2
αh

= µS̃1
T |αh

µS̃1
P |αh

µS̃2
M |αh

(21)

ϕ3
αh

= µS̃1
T |αh

µS̃2
P |αh

µS̃1
M |αh

, ϕ4
αh

= µS̃1
T |αh

µS̃2
P |αh

µS̃2
M |αh

(22)

ϕ5
αh

= µS̃2
T |αh

µS̃1
P |αh

µS̃1
M |αh

, ϕ6
αh

= µS̃2
T |αh

µS̃1
P |αh

µS̃2
M |αh

(23)

ϕ7
αh

= µS̃2
T |αh

µS̃2
P |αh

µS̃1
M |αh

, ϕ8
αh

= µS̃2
T |αh

µS̃2
P |αh

µS̃2
M |αh

(24)

The firing of upper rule at αh, are as follows:

ϕ1
αh

= µS̃1
T |αh

µS̃1
P |αh

µS̃1
M |αh

, ϕ2
αh

= µS̃1
T |αh

µS̃1
P |αh

µS̃2
M |αh

(25)

ϕ3
αh

= µS̃1
T |αh

µS̃2
P |αh

µS̃1
M |αh

, ϕ4
αh

= µS̃1
T |αh

µS̃2
P |αh

µS̃2
M |αh

(26)

ϕ5
αh

= µS̃2
T |αh

µS̃1
P |αh

µS̃1
M |αh

, ϕ6
αh

= µS̃2
T |αh

µS̃1
P |αh

µS̃2
M |αh

(27)

ϕ7
αh

= µS̃2
T |αh

µS̃2
P |αh

µS̃1
M |αh

, ϕ8
αh

= µS̃2
T |αh

µS̃2
P |αh

µS̃2
M |αh

(28)

Equations (29)–(36) are formulations of the upper and lower slices of the lower fir-
ing rules.

ϕ1
αh

= µS̃1
T |αh

µS̃1
P |αh

µS̃1
M |αh

, ϕ2
αh

= µS̃1
T |αh

µS̃1
P |αh

µS̃2
M |αh

(29)

ϕ3
αh

= µS̃1
T |αh

µS̃2
P |αh

µS̃1
M |αh

, ϕ4
αh

= µS̃1
T |αh

µS̃2
P |αh

µS̃2
M |αh

(30)

ϕ5
αh

= µS̃2
T |αh

µS̃1
P |αh

µS̃1
M |αh

, ϕ6
αh

= µS̃2
T |αh

µS̃1
P |αh

µS̃2
M |αh

(31)

ϕ7
αh

= µS̃2
T |αh

µS̃2
P |αh

µS̃1
M |αh

, ϕ8
αh

= µS̃2
T |αh

µS̃2
P |αh

µS̃2
M |αh

(32)
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ϕ1
αh

= µS̃1
T |αh

µS̃1
P |αh

µS̃1
M |αh

, ϕ2
αh

= µS̃1
T |αh

µS̃1
P |αh

µS̃2
M |αh

(33)

ϕ3
αh

= µS̃1
T |αh

µS̃2
P |αh

µS̃1
M |αh

, ϕ4
αh

= µS̃1
T |αh

µS̃2
P |αh

µS̃2
M |αh

(34)

ϕ5
αh

= µS̃2
T |αh

µS̃1
P |αh

µS̃1
M |αh

, ϕ6
αh

= µS̃2
T |αh

µS̃1
P |αh

µS̃2
M |αh

(35)

ϕ7
αh

= µS̃2
T |αh

µS̃2
P |αh

µS̃1
M |αh

, ϕ8
αh

= µS̃2
T |αh

µS̃2
P |αh

µS̃2
M |αh

(36)

The type-reduction procedure from a type-3 fuzzy to a type-2 one, are computed as
follows (Figure 2):

ŷαh
=

R
∑

l=1
ϕl

αh
θl

R
∑

l=1

(
ϕl

αh
+ ϕl

αh

) , ŷαh
=

R
∑

l=1
ϕl

αh
θl

R
∑

l=1

(
ϕl

αh
+ ϕl

αh

) (37)

ŷ
αh

=

R
∑

l=1
ϕl

αh
θl

R
∑

l=1

(
ϕl

αh
+ ϕl

αh

) , ŷ
αh

=

R
∑

l=1
ϕl

αh
θl

R
∑

l=1

(
ϕl

αh
+ ϕl

αh

) (38)

where, R is the number of rules (here R = 5), and θl and θl are the parameters of the lower
and upper of the l-th rule.
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The type-reduction procedure from type-2 fuzzy to type-1 one is as follows:

ŷ =

n
∑

h=1
αhŷαh

n
∑

h=1
(αh + αh)

+

n
∑

h=1
αhŷαh

n
∑

h=1
(αh + αh)

, ŷ =

n
∑

h=1
αhŷ

αh

n
∑

h=1
(αh + αh)

+

n
∑

h=1
αhŷ

αh

n
∑

h=1
(αh + αh)

(39)

The output ŷ is computed as:

ŷ =
ŷ + ŷ

2
(40)

The type-3 fuzzy neural network parametric learning process can be seen in Appendix A.

4. Controller Design

As presented in the literature review, an approach for the stabilization of stochastic
nonlinear systems is presented in the form of strict feedback, which is based on the back-



Mathematics 2022, 10, 1406 7 of 15

stepping design technique and neural networks. The present method is an extension of the
method proposed in [5]. The differences between our work and the aforementioned work
are as follows: replacing the backstepping design method by using the dynamic surface
control (DSC) design, and the use of a type-3 fuzzy system instead of a radial base function
neural network (RBFN). Numerous articles have proven the ability and accuracy of type-3
fuzzy systems compared to other computational intelligence tools. Finally, the proposed
design method will be used to investigate the occurrence of PI waste in the actuator. This
method is based on a multi-step recursive design algorithm that will be described below.
Consider the strict feedback stochastic nonlinear system (17), then for each i step, an error
surface (Si), as follows:

Si = xi − zi, 1 ≤ i ≤ n, z1 = yr (41)

where Si is the i-th error surface, xi is the i-th state, and zi is the i-th desired state for the
system. The proposed design procedure consists of n sequential step calculations. A virtual
control input xi+1 for each step is defined as follows:

xi+1 = −kiSi − 1
2ai

S3
i θ̂ζT

i (zi)ζi(zi), 1 ≤ i ≤ n,
zi =

[
x̆i, θ̂

]
, x̆i = [x1, . . . , xi]

v = xn+1 = −knSn − 1
2an

S3
n θ̂ζT

i (zn)ζn(zn)

(42)

where ki and ai are the design parameters (calculated by a type-3 fuzzy system), and ζi(zi)
are the type-3 fuzzy membership functions in the first layer of the type-3 fuzzy neural
network. An estimation of θ is shown by θ̂. The virtual control input is passed through a
low-pass filter in order to obtain the desired value of the next step mode.

εi+1
.
zi+1 + zi+1 = xi+1 , 1 ≤ i ≤ n− 1 (43)

In (21), εi+1 is design parameter (calculated by type-3 fuzzy system). The i-th filter
error is as follows:

yi = zi − xi = −εi
.
zi (44)

The derivative of (22) is as follows:

dyi =

(
yi
εi

+ Bi(si, ζi, yi, θ, xi, xi)

)
dt + Gi(si, ζi, yi, θ, xi, xi)dψ (45)

where Bi(.) and Gi(.) are smooth and continuous functions, with maximums of Mi and
Ni, respectively. The adaptation law to update the parameters of the type-3 fuzzy neural
network is as follows:

θ̂ =
n

∑
j=1

λ

2a2
j

S6
J ζT

j
(
zj
)
ζ j
(
zj
)
− k0θ̂ (46)

The block diagram of the proposed control system is shown in Figure 3.
As shown in Figure 3, the dynamic surface control (DSC) is the main controller that

needs to be configured. In previous studies that have been carried out, the parameters
of this controller were usually calculated by trial and error or with prior knowledge, but
in this article, we use the type-3 fuzzy neural network to calculate the aforementioned
parameters. Online tunning of control system parameters is very important, especially in
systems with high nonlinearity dynamics or stochastic systems, such as in [25,26].
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5. Simulations

In this section, to show the efficiency of the proposed method, two stochastic nonlinear
dynamic systems will be controlled and the results will be depicted.

Example 1. Consider the following second-order stochastic nonlinear system.
dx1 =

((
1 + x2

1
)
x2 + x1sin(x1)

)
dt + x3

1dψ

dx2 =

((
2 + x2

2
1+x2

1

)
u + x1x2

2

)
dt + (1 + sin(x1))x2dψ

y = x1

(47)

where x1 and x2 are the states of the system, u is the input of the system (control signal), and y
is the system’s output. Figure 4 shows the simulation result of Example 1 and the performance of
the proposed control system (dynamic surface control with a type-3 fuzzy neural network) for the
convergence of both system states.
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The control signal generated by the proposed control system for the convergence of
the states in Figure 4 is shown in Figure 5.

For further evaluation and analysis, the proposed control method is compared with
the other two methods. In this scenario, the system output is supposed to rise from 0 to
5 after 1 s. One method is a dynamic surface control based on type-1 fuzzy system, and
the other is based on radial basis function neural network. Figure 6 shows the result of
this comparison.
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The control signals generated by all three controllers in Figure 6 are shown in Figure 7.
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It can be seen from Figures 4–7 that the proposed control system has a good perfor-
mance and has been able to manage the states (output) of the controlled system in less
than 1 s. Additionally, comparison with the other two controllers (type-1 fuzzy and RBFN)
shows the high speed and accuracy of the type-3 fuzzy. It can be seen from Figure 7 that
the control cost (control signal peak) in the type-3 fuzzy is much lower than the other cases.
In the following, a more complex system (48) is introduced, and the performance of the
control system for this system (Example 2) is challenged.

Example 2. Consider the following third-order stochastic nonlinear system.
dx1 =

((
0.3 + x2

1
)
x2 − 0.8sin(x1)

)
dt + x1sin(x1)dψ

dx2 =
((

1 + x2
2
)
x3 − x2 − 0.5x3

2 − x3
1 −
√

x1
)
dt + x1cos(x2)dψ

dx3 =

(
(1.5 + sin(x1x2))x3 − 0.5x3 − 1

3 x2
3 − x2

2x3 − x1
1+x2

1

)
dt + 3x1ex2

2 dψ

y = x1

(48)
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where x1 and x2 are the states of the system, u is the input of the system (control signal), and y is
the system’s output. This system (48) has three states, and the proposed control system has been able
to converge all of them very well (Figure 8).
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As shown in Figure 9, the control signal converges the system in less than 1.5 s. As
in Example 1, here the performance of the proposed control system is compared with the
other two methods, and the results are shown in Figure 10.
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It is seen in Figure 10 that the proposed control method (DSC based on a type-3 fuzzy
system) manages and controls the system (48) in less than 0.5 s, while the RBFN-based
method takes more than 1 s. The control signal of all three controllers for the aforementioned
operation is shown in Figure 12.

As can be seen from Figures 8–12, the proposed control method has been able to handle
a nonlinear and complex random system (48) well and control it in less than 1 s. Figure 10
shows that the DSC based on the type-3 fuzzy system touches the desired value for the
first time in less than 0.1 s, and that the overshoot percentage is less than 6%. Additionally,
Figure 11 shows a close view of Figure 10 when the step is applied. Figure 12, which shows
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the control signal of all three controllers, clearly shows the fast response of the proposed
method with the lowest control cost. The swirling domain of the proposed controller
control signal is much lower than the RBFN DSC and type-1 fuzzy DSC methods, and its
response is about 0.6 s faster than other two mentioned methods.
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6. Conclusions

In this paper, an innovative control method for stochastic nonlinear systems is pre-
sented. In this method, for the first time, a new type-3 fuzzy system in the framework
of neural networks (commonly called a type-3 fuzzy neural network) was used to adjust
the dynamic surface control method. The class of stochastic nonlinear systems was con-
sidered as strict feedback with Prandtl–Ishlinskii (PI) waste, which includes a wide range
of real-world systems. The proposed control system was set up to detect changes in less
than 1 s, and to generate the appropriate signal immediately. To evaluate the proposed
method, two common and widely used systems are simulated, and the results show the
high efficiency and accuracy of the proposed control system. Additionally, to compare with
other methods, two methods (a type-1 fuzzy system and RBFN) were compared with the
proposed method, which testifies to the superiority of the proposed method both in terms
of speed and accuracy and in terms of minimum control cost (minimum overshoot).
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Appendix A. Learning Algorithm

In this section, the rule parameters, the centres of MFs, and the values of horizontal
slices are tuned.

Appendix A.1. Tuning of Rule Parameters

The rule parameters are tuned by the EKF algorithm such that the following cost
function is to be minimized:

J =
1
2
(yd − ŷ)2 (A1)

where yd is the desired output and ŷ is the output of the suggested T3-FLS that represents
the estimated output. The tuning laws for the upper and lower rule parameters θ and θ are
given as:

θ(t) = θ(t− 1) + π(t)ψ(t)(yd − ŷ), θ(t) = θ(t− 1) + π(t)ψ(t)(yd − ŷ) (A2)

where π and π(t) are the corresponding covariance matrices for θ an θ, respectively. The
terms ψ(t) and ψ(t) are defined as follows:

ψ =
[
ψ1, . . . , ψl , . . . , ψR

]T , ψ =
[
ψ

1
, . . . , ψ

l
, . . . , ψ

R

]T
(A3)

where ψ(t) and ψ(t) are as follows:

ψl =
∂ŷ
∂θl

= ∂ŷ
∂ŷ

∂ŷ
∂θl

= ∂ŷ
∂ŷ

∂ŷ
∂ŷαh

∂ŷαh
∂θl

+ ∂ŷ
∂ŷ

∂ŷ
∂ŷαh

∂ŷαh
∂θl

= 0.5 1
n
∑

h=1
(αh+αh)

n
∑

h=1
αh

ϕl
αh

R
∑

l=1

(
ϕl

αh
+ϕl

αh

) + 0.5 1
n
∑

h=1
(αh+αh)

n
∑

h=1
αh

ϕl
αh

R
∑

l=1

(
ϕl

αh
+ϕl

αh

) (A4)

ψ
l
= ∂ŷ

∂θl
= ∂ŷ

∂ŷ
∂ŷ
∂θl

= ∂ŷ
∂ŷ

∂ŷ
∂ŷ

αh

∂ŷ
αh

∂θl
+ ∂ŷ

∂ŷ
∂ŷ

∂ŷαh

∂ŷ
αh

∂θl

= 0.5 1
n
∑

h=1
(αh+αh)

n
∑

h=1
αh

ϕl
αh

R
∑

l=1

(
ϕl

αh
+ϕl

αh

) + 0.5 1
n
∑

h=1
(αh+αh)

n
∑

h=1
αh

ϕl
αh

R
∑

l=1

(
ϕl

αh
+ϕl

αh

) (A5)

Appendix A.2. Tuning of MF Parameters

For the antecedent parameters, the centres of MFs are tuned on the basis of the gradient
descent method. Then the tuning laws are written as follows:

c
S̃j

T
(t) = c

S̃j
T
(t− 1)− γ

∂J
∂c

S̃j
T

, j = 1, 2 (A6)

c
S̃j

P
(t) = c

S̃j
P
(t− 1)− γ

∂J
∂c

S̃j
P

, j = 1, 2 (A7)
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c
S̃j

M
(t) = c

S̃j
M
(t− 1)− γ

∂J
∂c

S̃j
M

, j = 1, 2 (A8)

where γ is the training rate. ∂J/∂cS̃1
T

is obtained as follows:

∂J
∂cS̃1

T

= ∂J
∂ŷ

∂ŷ
∂ŷ

∂ŷ
∂ŷαh

(
R
∑

l=1
ζ

l
T

∂ŷαh
∂ϕl

αh

∂ϕl
αh

∂cS̃1
T

+
R
∑

l=1
ζ

l
T

∂ŷαh
∂ϕl

αh

∂ϕl
αh

∂cS̃1
T

)
+

= ∂J
∂ŷ

∂ŷ
∂ŷ

∂ŷ
∂ŷαh

(
R
∑

l=1
ζ

l
T

∂ŷαh
∂ϕl

αh

∂ϕl
αh

∂cS̃1
T

+
R
∑

l=1
ζ

l
T

∂ŷαh
∂ϕl

αh

∂ϕl
αh

∂cS̃1
T

)
+

= ∂J
∂ŷ

∂ŷ
∂ŷ

∂ŷ
∂ŷ

αh

(
R
∑

l=1
ζ

l
T

∂ŷ
αh

∂ϕl
αh

∂ϕl
αh

∂cS̃1
T

+
R
∑

l=1
ζ

l
T

∂ŷ
αh

∂ϕl
αh

∂ϕl
αh

∂cS̃1
T

)
+

= ∂J
∂ŷ

∂ŷ
∂ŷ

∂ŷ
∂ŷ

αh

(
R
∑

l=1
ζ

l
T

∂ŷ
αh

∂ϕl
αh

∂ϕl
αh

∂cS̃1
T

+
R
∑

l=1
ζ

l
T

∂ŷ
αh

∂ϕl
αh

∂ϕl
αh

∂cS̃1
T

)
(A9)

where ζ
l
T represents the l-th element of vector ζT . The vector ζT is defined as follows:

ζT = [1, 1, 1, 1, 0, 0, 0, 0] (A10)

where the elements of ζT in the rules that include cS̃1
T
, are one. The terms

∂ŷαh
∂ϕl

αh

,
∂ŷαh
∂ϕl

αh

,
∂ŷαh
∂ϕl

αh

,

∂ŷαh
∂ϕl

αh

,
∂ŷ

αh
∂ϕl

αh

,
∂ŷ

αh
∂ϕl

αh

,
∂ŷ

αh
∂ϕl

αh

, and
∂ŷ

αh
∂ϕl

αh

are obtained as:

∂ŷαh

∂ϕl
αh

= θl

R
∑

l=1

(
ϕl

αh
+ ϕl

αh

)
− ϕl

αh(
R
∑

l=1

(
ϕl

αh
+ ϕl

αh

))2 ,
∂ŷαh

∂ϕl
αh

= θl
−1(

R
∑

l=1

(
ϕl

αh
+ ϕl

αh

))2 (A11)

∂ŷαh

∂ϕl
αh

= θl

R
∑

l=1

(
ϕl

αh
+ ϕl

αh

)
− ϕl

αh(
R
∑

l=1

(
ϕl

αh
+ ϕl

αh

))2 ,
∂ŷαh

∂ϕl
αh

= θl
−1(

R
∑

l=1

(
ϕl

αh
+ ϕl

αh

))2 (A12)

∂ŷ
αh

∂ϕl
αh

= θl

R
∑

l=1

(
ϕl

αh
+ ϕl

αh

)
− ϕl

αh(
R
∑

l=1

(
ϕl

αh
+ ϕl

αh

))2 ,
∂ŷ

αh

∂ϕl
αh

= θl
−1(

R
∑

l=1

(
ϕl

αh
+ ϕl

αh

))2 (A13)

∂ŷ
αh

∂ϕl
αh

= θl

R
∑

l=1

(
ϕl

αh
+ ϕl

αh

)
− ϕl

αh(
R
∑

l=1

(
ϕl

αh
+ ϕl

αh

))2 ,
∂ŷ

αh

∂ϕl
αh

= θl
−1(

R
∑

l=1

(
ϕl

αh
+ ϕl

αh

))2 (A14)

For
∂ϕl

αh
∂cS̃1

T

,
∂ϕl

αh
∂cS̃1

T

,
∂ϕl

αh
∂cS̃1

T

, and
∂ϕl

αh
∂cS̃1

T

one has:

∂ϕl
αh

∂cS̃1
T

=
2
(

T − cS̃1
T |αh

)
σ2

S̃1
T |αh

ϕl
αh

,
∂ϕl

αh

∂cS̃1
T

=
2
(

T − cS̃1
T |αh

)
σ2

S̃1
T |αh

ϕl
αh

(A15)

∂ϕl
αh

∂cS̃1
T

=
2
(

T − cS̃1
T |αh

)
σ2

S̃1
T |αh

ϕl
αh

,
∂ϕl

αh

∂cS̃1
T

=
2
(

T − cS̃1
T |αh

)
σ2

S̃1
T |αh

ϕl
αh

(A16)
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The computation for terms ∂J/∂cS̃2
T
, ∂J/∂cS̃1

M
, ∂J/∂cS̃2

M
, ∂J/∂cS̃1

P
and ∂J/∂cS̃2

P
, are

the same as ∂J/∂cS̃1
T
, with difference that ζT is repealed with ζT , ζM, ζM, ζP, and ζP,

respectively. Additionally, terms cS̃1
T |αh

, cS̃1
T |αh

, σS̃1
T |αh

and σ2
S̃1

T |αh
should be replaced with

the corresponding terms. The vectors ζT , ζM, ζM, ζP, and ζP are defined as follows:

ζT = [0, 0, 0, 0, 1, 1, 1, 1], ζM = [1, 0, 1, 0, 1, 0, 1, 0] (A17)

ζM = [0, 1, 0, 1, 0, 1, 0, 1], ζP = [1, 1, 0, 0, 1, 1, 0, 0], ζP = [0, 0, 1, 1, 0, 0, 1, 1] (A18)

Table A1. Explaining the symbols used in this paper.

Symbol Description Symbol Description

ψ
standard 2-dimensional external

motions F filtration

P criterion Probability X vector of system state

Cm[0, tE]
space of uniform continuous

fragment functions u(t) output of the actuator

v(t) input signal to the actuator p(r) density function
σS̃j

T |αh
upper standard divisions for S̃j

T

∣∣∣αh σS̃j
T |αh

lower standard divisions for S̃j
T

∣∣∣αh

θl parameters of lower of l-th rule θl parameters of upper of l-th rule
Si i-th error surface xi i-th state
zi i-th desired state for the system ki design parameters

ai design parameters ζi(zi)
type-3 fuzzy membership functions in

the first layer of the type-3 fuzzy neural
network

εi+1 design parameter Bi(.) smooth functions
Gi(.) continue functions Mi smooth functions maximum

Ni continue functions maximum u input of the system (control signal)
y system’s output π corresponding covariance matrices for θ

References
1. Vaiana, N.; Sessa, S.; Marmo, F.; Rosati, L. A class of uniaxial phenomenological models for simulating hysteretic phenomena in

rate-independent mechanical systems and materials. Nonlinear Dyn. 2018, 93, 1647–1669. [CrossRef]
2. Vaiana, N.; Sessa, S.; Rosati, L. A generalized class of uniaxial rate-independent models for simulating asymmetric mechanical

hysteresis phenomena. Mech. Syst. Signal Process. 2021, 146, 106984. [CrossRef]
3. Aguirre, G.; Janssens, T.; Brussel, H.V.; Al-Bender, F. Asymmetric-hysteresis compensation in piezoelectric actuators. Mech. Syst.

Signal Process. 2012, 30, 218–231. [CrossRef]
4. Borisov, A.; Bosov, A.; Miller, A. Optimal Stabilization of Linear Stochastic System with Statistically Uncertain Piecewise Constant

Drift. Mathematics 2022, 10, 184. [CrossRef]
5. Bashkirtseva, I. Controlling Stochastic Sensitivity by Feedback Regulators in Nonlinear Dynamical Systems with Incomplete

Information. Mathematics 2021, 9, 3229. [CrossRef]
6. Tavoosi, J.; Shirkhani, M.; Abdali, A.; Mohammadzadeh, A.; Nazari, M.; Mobayen, S.; Asad, J.H.; Bartoszewicz, A. A New General

Type-2 Fuzzy Predictive Scheme for PID Tuning. Appl. Sci. 2021, 11, 10392. [CrossRef]
7. Wang, J.; Xu, C.; Tavoosi, J. A Novel Nonlinear Control for Uncertain Polynomial Type-2 Fuzzy Systems (Case Study: Cart-Pole

System). Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 2021, 29, 753–770. [CrossRef]
8. Mohammadi, F.; Mohammadi-ivatloo, B.; Gharehpetian, G.B.; Ali, M.H.; Wei, W.; Erdinç, O.; Shirkhani, M. Robust Control

Strategies for Microgrids: A Review. IEEE Syst. J. 2021, 1–12. [CrossRef]
9. Wang, M.; Wang, Z.; Dong, H.; Han, Q.L. A Novel Framework for Backstepping-Based Control of Discrete-Time Strict-Feedback

Nonlinear Systems with Multiplicative Noises. IEEE Trans. Autom. Control 2021, 66, 1484–1496. [CrossRef]
10. Zhang, H.; Zhang, X.; Bu, R. Radial Basis Function Neural Network Sliding Mode Control for Ship Path Following Based on

Position Prediction. J. Mar. Sci. Eng. 2021, 9, 1055. [CrossRef]
11. Niu, B.; Li, H.; Zhang, Z.; Li, J.; Hayat, T.; Alsaadi, F.E. Adaptive Neural-Network-Based Dynamic Surface Control for Stochastic

Interconnected Nonlinear Nonstrict-Feedback Systems with Dead Zone. IEEE Trans. Syst. Man Cybern. Syst. 2019, 49, 1386–1398.
[CrossRef]

12. O’Hara, J.M.; Jolly, J.C.K.; Reynold, C.E.; Mantis, N.J. Localization of non-linear neutralizing B cell epitopes on ricin toxin’s
enzymatic subunit (RTA). Immunol. Lett. 2014, 158, 7–13. [CrossRef] [PubMed]

http://doi.org/10.1007/s11071-018-4282-2
http://doi.org/10.1016/j.ymssp.2020.106984
http://doi.org/10.1016/j.ymssp.2011.11.012
http://doi.org/10.3390/math10020184
http://doi.org/10.3390/math9243229
http://doi.org/10.3390/app112110392
http://doi.org/10.1142/S0218488521500331
http://doi.org/10.1109/JSYST.2021.3077213
http://doi.org/10.1109/TAC.2020.2995576
http://doi.org/10.3390/jmse9101055
http://doi.org/10.1109/TSMC.2018.2866519
http://doi.org/10.1016/j.imlet.2013.11.009
http://www.ncbi.nlm.nih.gov/pubmed/24269767


Mathematics 2022, 10, 1406 15 of 15

13. Labiod, S.; Guerra, T.M. Adaptive Fuzzy Control for Multivariable Nonlinear Systems with Indefinite Control Gain Matrix and
Unknown Control Direction. IFAC-PapersOnLine 2020, 53, 8019–8024. [CrossRef]

14. Fei, J.; Fang, Y.; Yuan, Z. Adaptive Fuzzy Sliding Mode Control for a Micro Gyroscope with Backstepping Controller. Micromachines
2020, 11, 968. [CrossRef]

15. Wu, G.Q.; Song, S.M.; Sun, J.N. Finite-Time Dynamic Surface Antisaturation Control for Spacecraft Terminal Approach Consider-
ing Safety. J. Spacecr. Rocket. 2018, 55, 1430–1443. [CrossRef]

16. Ma, Z.; Ma, H. Adaptive Fuzzy Backstepping Dynamic Surface Control of Strict-Feedback Fractional-Order Uncertain Nonlinear
Systems. IEEE Trans. Fuzzy Syst. 2020, 28, 122–133. [CrossRef]

17. Hu, J.; Zhang, P.; Kao, Y.; Liu, H.; Chen, D. Sliding mode control for Markovian jump repeated scalar nonlinear systems with
packet dropouts: The uncertain occurrence probabilities case. Appl. Math. Comput. 2019, 362, 124574. [CrossRef]

18. Sui, S.; Chen, C.L.P.; Tong, S. Neural-Network-Based Adaptive DSC Design for Switched Fractional-Order Nonlinear Systems.
IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 4703–4712. [CrossRef]

19. Sheng, Z.; Lin, C.; Chen, B.; Wang, Q.G. An asymmetric Lyapunov-Krasovskii functional method on stability and stabilization for
T-S fuzzy systems with time delay. IEEE Trans. Fuzzy Syst. 2021, 1. [CrossRef]

20. Min, H.; Xu, S.; Zhang, Z. Adaptive Finite-Time Stabilization of Stochastic Nonlinear Systems Subject to Full-State Constraints
and Input Saturation. IEEE Trans. Autom. Control 2021, 66, 1306–1313. [CrossRef]

21. Wang, J.; Liu, Z.; Zhang, Y.; Chen, C.L.P.; Lai, G. Adaptive Neural Control of a Class of Stochastic Nonlinear Uncertain Systems
With Guaranteed Transient Performance. IEEE Trans. Cybern. 2020, 50, 2971–2981. [CrossRef] [PubMed]

22. Homayoun, B.; Arefi, M.M.; Vafamand, N. Robust adaptive backstepping tracking control of stochastic nonlinear systems with
unknown input saturation: A command filter approach. Int. J. Robust Nonlinear Control 2020, 30, 3296–3313. [CrossRef]

23. Liu, H.; Li, X.; Liu, X.; Wang, H. Backstepping-based decentralized bounded-H∞ adaptive neural control for a class of large-scale
stochastic nonlinear systems. J. Frankl. Inst. 2019, 356, 8049–8079. [CrossRef]

24. Mohammadzadeh, A.; Castillo, O.; Band, S.S.; Mosavi, A. A Novel Fractional-Order Multiple-Model Type-3 Fuzzy Control for
Nonlinear Systems with Unmodeled Dynamics. Int. J. Fuzzy Syst. 2021, 23, 1633–1651. [CrossRef]

25. Al-Bender, F.; Symens, W.; Swevers, J.; Brussel, H.V. Theoretical analysis of the dynamic behavior of hysteresis elements in
mechanical systems. Int. J. Non-Linear Mech. 2004, 39, 1721–1735. [CrossRef]

26. Vaiana, N.; Sessa, S.; Marmo, F.; Rosati, L. Nonlinear dynamic analysis of hysteretic mechanical systems by combining a novel
rate-independent model and an explicit time integration method. Nonlinear Dyn. 2019, 98, 2879–2901. [CrossRef]

http://doi.org/10.1016/j.ifacol.2020.12.2232
http://doi.org/10.3390/mi11110968
http://doi.org/10.2514/1.A34123
http://doi.org/10.1109/TFUZZ.2019.2900602
http://doi.org/10.1016/j.amc.2019.124574
http://doi.org/10.1109/TNNLS.2020.3027339
http://doi.org/10.1109/TFUZZ.2021.3076512
http://doi.org/10.1109/TAC.2020.2990173
http://doi.org/10.1109/TCYB.2019.2891265
http://www.ncbi.nlm.nih.gov/pubmed/30716058
http://doi.org/10.1002/rnc.4933
http://doi.org/10.1016/j.jfranklin.2019.06.043
http://doi.org/10.1007/s40815-021-01058-1
http://doi.org/10.1016/j.ijnonlinmec.2004.04.005
http://doi.org/10.1007/s11071-019-05022-5

	Introduction 
	Statement of the Problem 
	Type-3 Fuzzy Neural Network 
	Controller Design 
	Simulations 
	Conclusions 
	Appendix A
	Tuning of Rule Parameters 
	Tuning of MF Parameters 

	References

