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Abstract: High-dimensional optimization problems are ubiquitous in every field nowadays, which
seriously challenge the optimization ability of existing optimizers. To solve this kind of optimization
problems effectively, this paper proposes an elite-directed particle swarm optimization (EDPSO)
with historical information to explore and exploit the high-dimensional solution space efficiently.
Specifically, in EDPSO, the swarm is first separated into two exclusive sets based on the Pareto
principle (80-20 rule), namely the elite set containing the top best 20% of particles and the non-elite
set consisting of the remaining 80% of particles. Then, the non-elite set is further separated into two
layers with the same size from the best to the worst. As a result, the swarm is divided into three layers.
Subsequently, particles in the third layer learn from those in the first two layers, while particles in the
second layer learn from those in the first layer, on the condition that particles in the first layer remain
unchanged. In this way, the learning effectiveness and the learning diversity of particles could be
largely promoted. To further enhance the learning diversity of particles, we maintain an additional
archive to store obsolete elites, and use the predominant elites in the archive along with particles in
the first two layers to direct the update of particles in the third layer. With these two mechanisms,
the proposed EDPSO is expected to compromise search intensification and diversification well at the
swarm level and the particle level, to explore and exploit the solution space. Extensive experiments
are conducted on the widely used CEC’2010 and CEC’2013 high-dimensional benchmark problem
sets to validate the effectiveness of the proposed EDPSO. Compared with several state-of-the-art
large-scale algorithms, EDPSO is demonstrated to achieve highly competitive or even much better
performance in tackling high-dimensional problems.

Keywords: large-scale optimization; particle swarm optimization; elite learning; historical informa-
tion; high-dimensional problems

MSC: 68-04; 65-04

1. Introduction

With the rapid development of big data and the Internet of Things (IoT), the dimen-
sionality of optimization problems is becoming increasingly higher and higher [1,2], leading
to the emergence of high-dimensional optimization problems [3–5]. Such a kind of opti-
mization problem brings many undesirable challenges to existing optimizers. Specifically,
with the dimensionality increasing, the solution space of optimization problems grows
exponentially, resulting in the search effectiveness and the efficiency of existing optimizers
degrading dramatically [6]. On the other hand, wide and flat local regions are also likely to
increase rapidly as the dimensionality grows, especially for multimodal problems. This
results in it being hard for existing optimizers to effectively escape from local areas, such
that global optima cannot be located efficiently [7,8].

To address the above challenges, a lot of metaheuristic algorithms have been proposed
by taking inspiration from nature and other disciplines. For example, imitating the laws of
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physics, physics-based optimization algorithms such as Henry gas solubility optimization
(HGSO) [9], and artificial electric field algorithm (AEFA) [10], have been developed. In-
spired by the social behaviors of animals, swarm intelligence optimization algorithms, such
as particle swarm optimization (PSO) [11,12], ant colony optimization (ACO) [13–15], salp
swarm algorithm (SSA) [16] and grey wolf optimization (GWO) [17], have been devised.
Derived from competitive behaviors in sport playing, sport inspiration algorithms, such as
the most valuable player algorithm (MVPA) [18] have been designed. Arisen from theories
in mathematics, mathematics inspiration optimization, such as arithmetic optimization
algorithm (AOA) [19] and sine cosine algorithm (SCA) [20], have been proposed. Inspired
by the thoughts of species evolution, evolutionary algorithms, such as genetic algorithms
(GA) [21] and differential evolution algorithms (DE) [22,23], have been developed. In addi-
tion, some other metaheuristic algorithms, such as adaptive hybrid approach (AHA) [24],
Harris hawks optimization (HHO) [25], hunger games search (HGS) [26] and golden jackal
optimization (GJO) [27], have also been designed to solve optimization problems.

Among the above different kinds of metaheuristic algorithms, PSO has been researched
the most in dealing with large-scale optimization [28–32]. In a broad sense, existing PSO
research for high-dimensional optimization problems can be categorized into two main
directions [33]: cooperative co-evolutionary PSOs (CCPSOs) [34–36] and holistic large-scale
PSOs [37–41].

CCPSOs [42,43] first adopt the divide-and-conquer technique to divide a high-dimensional
problem into a number of low-dimensional sub-problems, and then utilize traditional PSOs
for low-dimensional problems to separately solve the decomposed sub-problems. Since Pot-
ter [44] proposed the cooperative co-evolutionary (CC) framework, researchers have employed
this framework into different evolutionary algorithms and developed many cooperative co-
evolutionary algorithms (CCEAs) [43,45], among which CCPSOs [35,46] have been developed
by introducing PSOs into the CC framework.

However, the optimization performance of CCEAs including CCPSOs heavily relies on
the decomposition accuracy in dividing the high-dimensional problem into sub-problems,
since the optimization of interacting variables usually interferes with each other [43].
Ideally, a good decomposition strategy should place interacting variables into the same sub-
problem, so that they can be optimized together. Nevertheless, without prior knowledge on
the correlations between variables, it is hard to accurately decompose a high-dimensional
problem into sub-problems. To solve this issue, researchers have been devoted to designing
effective decomposition strategies to divide a high-dimensional problem into sub-problems
as accurately as possible by detecting the correlations between variables [47]. As a con-
sequence, a lot of remarkable decomposition strategies [48–52] have been devised and
assisted CCEAs, including CCPSOs, to achieve very promising performance in tackling
large-scale optimization.

Different from CCPSOs, holistic large-scale PSOs [33,53] still consider optimizing all
variables together such as traditional PSOs. The key role in designing effective holistic
large-scale PSOs lies in devising effective learning strategies for PSO to improve the search
diversity, largely so that particles in the swarm could search the solution space in different
directions and locate the promising areas fast. To achieve this goal, researchers have
abandoned historical information, such as the personal best positions pbests, the global best
position gbest, or the neighbor best position nbest, and attempted to employ predominate
particles in the current swarm to guide the learning of poor particles. Along this line,
many novel effective learning strategies [29,31,32,54,55] have been proposed, such as the
competitive learning strategy [29], the level-based learning strategy [54], the social learning
strategy [56] and the granularity learning strategy [39], etc.

Though the above large-scale PSO variants have shown promising performance in
certain kinds of high-dimensional problems, they are still confronted with many limitations
in solving complicated large-scale optimization problems, like those with overlapping
interacting variables and those with many wide and flat local basins. For CCPSOs, though,
the advanced decomposition strategies could assist them to achieve promising performance.
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Confronted with problems with overlapping interacting variables, they would place many
variables into the same sub-problem, leading to several large-scale sub-problems with
a lot of interacting variables, or even place all variables into one same group. In this
situation, traditional PSOs designed for low-dimensional problems, lose their effectiveness
in solving these large-scale sub-problems. As for holistic PSOs, they are still confronted
with premature convergence when solving complex problems with many wide and flat
local regions. As a consequence, how to improve the optimization ability of PSO in solving
large-scale optimization problems still deserves careful research.

To the above end, this paper proposes an elite-directed particle swarm optimization
with historical information (EDPSO) to tackle large-scale optimization by taking inspiration
from the “Pareto Principle” [57], which is also known as the 80-20 rule that 80% of the con-
sequences come from 20% of the causes, asserting an unequal relationship between inputs
and outputs. Specifically, the main components of the proposed EDPSO are summarized as
follows.

(1) An elite-directed learning strategy is devised to let elite particles in the current swarm
direct the update of non-elite particles. Specifically, particles in the current swarm are
first divided into two separate sets: the elite set consisting of the top 20% best particles
and the non-elite set containing the remaining 80% of particles. Then, the non-elite
set is further equally separated into two layers. In this way, actually, the swarm is
divided into three layers: the elite layer, the better half of the non-elite set, and the
worse half of the non-elite set. Subsequently, particles in the last layer are updated
by learning from those in the first two layers, and the ones in the second layers are
guided by those in the first layers with particles in the first layer (namely the elite
layer) unchanged and directly entering the next generation. In this manner, particles
in different layers are updated in different ways. Therefore, the learning diversity and
the learning effectiveness of particles are expectedly largely improved.

(2) An additional archive is maintained to store the obsolete elites in the elite set and
then is used to cooperate with particles in the first two layers to direct the update of
non-elite particles, so that the diversity of guiding exemplars could be promoted and
thus the learning diversity of particles is further enhanced.

With the above two techniques, the proposed EDPSO is expected to compromise the
search diversity and fast convergence well to explore and exploit the high-dimensional
space appropriately to find high-quality solutions. To verify the effectiveness of the pro-
posed EDPSO, extensive experiments are conducted to compare it with several state-of-the-
art large-scale optimizers on the widely used CEC’2010 [58] and CEC’2013 [59] large-scale
benchmark optimization problem sets. Meanwhile, deep investigations on EDPSO are also
conducted to find what contributes to its promising performance.

The rest of this paper is organized as follows. Section 2 reviews closely related work
on the classical PSO and large-scale PSO variants. In Section 3, the proposed EDPSO is
presented in detail. Subsequently, extensive experiments are performed to compare the
proposed algorithm with state-of-the-art peer large-scale optimizers in Section 4. Lastly, we
end this paper with the conclusion shown in Section 5.

2. Related Work

Without loss of generality, this paper considers the following minimization problem:

min f (x), x ∈ RD (1)

where D is the dimension size, and x is the variable vector that needs to be optimized. In
this paper, the function value is taken as the fitness value of a particle.

2.1. Canonical PSO

In the classical PSO [60], each particle is denoted by two vectors, namely the position
vector x and the velocity vector v. Then, each particle is updated by cognitively learning
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from its own personal best position pbest, and socially learning from the global best position
gbest of the whole swarm. Specifically, each particle is updated as follows:

vd
i ← ω ∗ vd

i + c1 ∗ rd
1 ∗ (pbestd

i − xd
i ) + c2 ∗ rd

2 ∗ (gbestd − xd
i ) (2)

xd
i ← xd

i + vd
i (3)

where xi =
[
x1

i , x2
i , x3

i , . . . , xD
i
]

and vi =
[
v1

i , v2
i , v3

i , . . . , vD
i
]

are the position vector and
the velocity vector of the ith particle. pbesti =

[
pbest1

i , pbest2
i , pbest3

i , . . . , pbestD
i
]

is the
personal best position of the ith particle, while gbest =

[
gbest1, gbest2, gbest3, . . . , gbestD]

is the global best position found so far by the swarm. As for the parameters, w is termed
as the inertia weight, which is used to keep the velocity of the ith particle in the previous
generation. c1 and c2 are two acceleration coefficients, and r1 and r2 are two real random
numbers uniformly sampled within [0, 1].

Kennedy and Eberhart [60] have taken the second part and the third part in the right
of Equation (2) as the cognitive component and the social component, respectively. Since
gbest is the global best position of the whole swarm and is shared by all particles, the
learning diversity of particles is very limited in classical PSO. In addition, due to the greedy
attraction of gbest, the classical PSO encounters premature convergence when dealing with
multimodal problems [61,62].

To improve the optimization performance of PSO in coping with multimodal problems,
in the early stage, some local topologies have been developed to select a less greedy
guiding exemplar for each particle to replace gbest, so that PSO could be effective to escape
from local basins [63], such as the ring topology [64], the random topology [65], the star
topology [66], and the island-model topology [67]. Later, researchers have developed a lot
of novel effective learning strategies [62] to improve the learning effectiveness of particles,
such as the comprehensive learning strategy [62], the orthogonal learning strategy [61], etc.

Although a lot of PSO variants have been developed, most of them are specially
designed for low-dimensional problems. When dealing with high-dimensional problems,
their optimization performance deteriorates drastically [6,68], which usually results from
“the curse of dimensionality” [69].

2.2. Large Scale PSOs

To effectively solve large-scale optimization problems, researchers have been de-
voted to especially designing effective updating strategies suitable for high-dimensional
problems for PSO. As a result, an ocean of remarkable large-scale PSO variants have
emerged [29,31,32,46,70]. Broadly speaking, existing large-scale PSO variants can be
roughly classified into two main categories [7,8], namely cooperative co-evolutionary
PSOs (CCPSOs) [34–36,46,70] and holistic large-scale PSOs [31,32,54,55,71].

2.2.1. Cooperative Co-Evolutionary PSOs

Since the development of the cooperative co-evolutionary (CC) framework [72], many
researchers have introduced traditional PSOs for low-dimensional problems into the CC
framework, leading to CCPSOs. In [46], the first CCPSO was proposed by first randomly
dividing a D-dimensional problem into K sub-problems with each containing D/K variables
and then employing the classical PSO to optimize each sub-problem separately. In [46], an
improved CCPSO, named CCPSO-HK was developed by hybridizing the classical PSO and
CCPSO alternatively to optimize a high-dimensional problem. Specifically, after CCPSO
is executed, the classical PSO is performed in the next generation, and vice versa. To
alleviate the sensitivity to the parameter K, another improved version of CCPSO, named
CCPSO2 [35], was devised by using an integer pool consisting of different group numbers.
Specifically, this algorithm first randomly selects a group number from the pool every
time gbest is not improved and then divides the high-dimensional problem randomly
into sub-problems based on the selected number. In [70], a cooperative co-evolutionary
bare-bones particle swarm optimization (CCBBPSO) was proposed by devising a function
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independent decomposition (FID) method to decompose the high-dimensional problem
and then employing BBPSO to optimize the decomposed sub-problems. In [73], a two
stages variable interaction reconstruction algorithm along with a learning model and a
marginalized denoising model was first proposed to construct the overall variable interac-
tions using prior knowledge to decompose a high-dimensional problem into sub-problems.
Then, a cooperative hierarchical particle swarm optimization framework was designed to
optimize the decomposed sub-problems.

Since the decomposed sub-problems are separately optimized and the optimization of
interacting variables usually intertwines with each other, the decomposition strategy to
divide a high-dimensional problem into sub-problems plays a crucial role in CCPSO. There-
fore, recent research on CCEAs, including CCPSO, mainly focuses on devising effective
decomposition strategies to divide a high-dimensional problem into sub-problems as accu-
rately as possible. Along this line, many remarkable decomposition strategies [69,74–77]
have been proposed. Among them, the most representative one is the differential grouping
(DG) strategy [69], which adopts partial difference between function values by disturbing
two variables to detect their interaction. After this decomposition method, many improved
versions [74–76,78] have been devised to promote its detection accuracy and efficiency. For
instance, in [79], a recursive differential grouping (RDG) was devised by employing a non-
linearity detection method to detect the interaction between decision variables. Specifically,
it recursively examines the interaction between one decision variable and the remaining
variables based on the idea of binary search. To further improve its detection efficiency,
an efficient recursive differential grouping (ERDG) [75] was proposed, and to alleviate its
sensitivity to parameters, an improved version, named RDG2, was developed [80]. In [74],
an improved variant of DG, named DG2, was proposed to promote the efficiency and
grouping accuracy of DG. In particular, it adopts a reliable threshold value by estimating
the magnitude of round-off errors, and reuses the sample points generated for detecting
interactions to save the consumption of fitness evaluations in the decomposition stage.
In [76], Ma et al. proposed a merged differential grouping method based on subset–subset
interaction and binary search. Specifically, in this algorithm, each variable is first identified
as either a separable variable or a non-separable variable, and then all separable variables
are put into the same subset, and the non-separable variables are divided into multiple
subsets using a binary-tree-based iterative merging method. In [78], Liu et al. proposed a
hybrid deep grouping (HDG) algorithm by considering the variable interaction and the
essentialness of the variable. In [81], Zhang et al. even proposed a dynamic decomposi-
tion strategy by first designing a novel estimation method to evaluate the contribution
of variables and then constructing the dynamic subcomponent based on the estimated
contributions.

Although the above advanced decomposition strategies greatly improve the optimiza-
tion performance of CCEAs including CCPSOs, they still encounter limitations especially
when dealing with problems with overlapping interaction between variables and fully
non-separable problems.

2.2.2. Holistic Large Scale PSOs

Different from CCPSO, holistic large-scale PSOs [29–32,56,82] still optimize all vari-
ables together like traditional PSOs. To effectively and efficiently search the exponentially
increased solution space, the key to designing holistic large-scale PSOs is to maintain high
search diversity, so that particles could search dispersedly in different directions to find
promising areas fast. To this end, in the literature [29–31], researchers usually abandon the
utilization of historical best positions, such as the personal best positions pbests, the global
best position gbest, and the neighbor best positions nbests, to direct the update of particles
because they usually remain unchanged in many generations, especially in the late stage of
the evolutions. Instead, they generally directly employ the predominant particles in the
current swarm to guide the update of poor particles.
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Along this line, many remarkable novel large-scale PSO variants [29–31,54,55] have
been developed by taking inspiration from intelligent behaviors of natural animals and
human society. For instance, a competitive swarm optimizer (CSO) [29] was developed by
imitating the competition mechanism in human society to tackle large-scale optimization.
Specifically, this algorithm first randomly arranges particles into pairs and then lets each
pair of particles compete with each other. After the competition, the winner is not updated
and directly enters the next generation, while the loser is updated by learning from the
winner and the mean position of the swarm. Inspired by the social learning strategy in
animals, Cheng and Jin devised a social learning PSO (SLPSO) [56], which assigns each
particle a learning probability and then lets each particle learn from the predominant ones
in the swarm and the mean position of the swarm. To further improve the optimization
performance of CSO, Yang et al. proposed a segment-based predominant learning swarm
optimizer (SPLSO) [55] by dividing the whole dimension into several segments and us-
ing different predominant particles to guide different segments of the updated particle.
Instead of the pairwise competition mechanism in CSO, Mohapatra et al. [83] designed
a tri-competitive strategy, leading to a modified CSO (MCSO), to improve the learning
effectiveness of particles. In [32], Kong et al. proposed an adaptive multi-swarm compe-
tition PSO (AMCPSO) by randomly dividing the whole swarm into several sub-swarms,
and then using the competitive mechanism in each sub-swarm to update particles. In [31],
a two-phase learning-based swarm optimizer (TPLSO) was proposed by taking inspira-
tion from the cooperative learning behavior in human society. In this algorithm, a mass
learning strategy and an elite learning mechanism were designed. In the former strategy,
three particles are first randomly selected to form a study group and then the competitive
mechanism is utilized to update the members of the study group. In the latter strategy, all
particles are first sorted and the elite particles with better fitness values are picked out to
learn from each other to exploit promising areas. In [84], a ranking-based biased learning
swarm optimizer (RBLSO) was developed by maximizing the fitness difference between
learners and exemplars. Specifically, in this algorithm, a ranking paired learning (RPL)
strategy and a biased center learning (BCL) strategy were devised to update particles. In
RPL, poor particles learn from predominant particles, while in BCL, each particle learns
from the biased center, which is computed as the fitness weighted center of the whole
swarm.

The above PSO variants have shown promising performance in solving large-scale
optimization. However, in these variants, each particle is guided by only one predominant
particle. To further promote the learning diversity and the learning effectiveness of particles,
researchers have attempted to utilize two different predominant particles to guide the
evolution of each particle. For instance, Yang et al. proposed a level-based learning swarm
optimizer (LLSO) [54] by taking inspiration from pedagogy. Specifically, this algorithm
first partitions particles in the swarm into several levels and then lets each particle in lower
levels learn from two different predominant ones in higher levels. In [85], a particle swarm
optimizer with multi-level population sampling and dynamic p-learning mechanisms was
devised by first partitioning the particles in the swarm into multi-levels based on their
fitness and then designing a dynamic p-learning mechanism to accelerate the learning of
particles. In [30], an adaptive stochastic dominant learning swarm optimizer (SDLSO) was
proposed to effectively tackle large-scale optimization. In this algorithm, each particle is
compared with two randomly selected ones. Only when the particle is dominated by both
of the two selected ones, it is updated by learning from them; otherwise, the particle is not
updated and directly enters the next generation.

To improve the search efficiency of PSO in high-dimensional space, some researchers
even proposed distributed parallel large-scale PSOs. For example, in [71], a distributed elite-
guided learning swarm optimizer (DEGLSO) was devised by using a master-slave parallel
model. Specifically, in this algorithm, a master process and multiple slave processes are
maintained with each slave maintaining a small swarm to evolve in parallel to cooperatively
search the high-dimensional space and the master responsible for communication among
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slaves. In [39], an adaptive granularity learning distributed particle swarm optimization
(AGLDPSO) was proposed by also using the master-slave distributed model. In this
algorithm, the entire swarm is first divided into multiple sub-swarms, and these sub-
swarms are co-evolved in parallel by the slaves.

Though the above holistic large-scale PSOs have presented great optimization ability
in solving large-scale optimization problems, they are still confronted with falling into
local regions and premature convergence when tackling complicated high-dimensional
problems with a lot of local optima. Therefore, the optimization performance of PSO in
coping with high-dimensional problems still needs improving and thus the research on
holistic large-scale PSO still deserves extensive attention. In this paper, inspired by the
“Pareto Principle” [57], we propose an elite-directed particle swarm optimization with
historical information (EDPSO) to tackle large-scale optimization.

3. Proposed Method

Elite individuals in one species usually preserve more valuable evolutionary informa-
tion to guide the evolution of the species than others [86]. Taking inspiration from this, we
devise an elite-directed PSO (EDPSO) with historical information to improve the learning
effectiveness and the learning diversity of particles to search the large-scale solution space
efficiently. Specifically, the main components of the proposed EDPSO are elucidated in
detail as follows.

3.1. Elite-Directed Learning

Taking inspiration from the “Pareto Principle” [57] which is also known as the 80-20
rule that 80% of the consequences come from 20% of the causes, asserting an unequal
relationship between inputs and outputs, we first divide the swarm with NP particles into
two exclusive sets. One set is the elite set containing the top best 20% of particles, while
another set is the non-elite set containing the remaining 80% of particles. To further treat
different particles differently, we further divide the non-elite set equally into two layers.
One layer consists of the best half of the non-elite set, while another layer contains the
remaining half of the non-elite set. In this way, we actually separate particles in the swarm
into three exclusive layers. The first layer, denoted as L1, is the elite set, composed of the
top best 20% of particles. The second layer, denoted as L2, is the best half of the non-elite
set, made up of 40% particles that are only inferior to those in L1. The third layer, denoted
as L3, contains the remaining 40% of particles. On the whole, it is found that particles in
the first layer (L1) are the best, while those in the third layer (L3) are the worst among the
three layers.

Since particles in different layers preserve different strengths in exploring and ex-
ploiting the solution space, we treat them differently. Specifically, for particles in the third
layer (L3), since they are all dominated by those in the first two layers (L1 and L2), they are
updated by learning from those predominant particles in L1 and L2. Likewise, for particles
in the second layer (L2), since they are all dominated by those in the first layer (L1), they are
updated by learning from those in L1. As for particles in the first layer, since they are the
best in the swarm, we do not update them and let them directly enter the next generation
to preserve valuable evolutionary information and keep them from being destroyed, so
that the evolution of the swarm can be guaranteed to converge to promising areas.

In particular, particles in the third layer (L3) are updated as follows:

vL3,i ← r1vL3,i + r2(xL1,2,k1 − xL3,i ) + r3φ(xL1,2,k2 − xL3,i ) (4)

xL3,i ← xL3,i + vL3,i (5)

where xL3,i =
[

x1
L3,i

, x2
L3,i

, x3
L3,i

, . . . , xD
L3,i

]
and vL3,i =

[
v1

L3,i
, v2

L3,i
, v3

L3,i
, . . . , vD

L3,i

]
are the posi-

tion and the velocity of the ith particle in the third layer (L3), respectively. xL1,2,k1 and xL1,2,k2
are two different exemplars randomly selected from L1∪L2. r1, r2, and r3 are three real



Mathematics 2022, 10, 1384 8 of 29

random numbers uniformly generated within [0, 1]. φ is a control parameter within [0, 1],
which is in charge of the influence of the second exemplar on the updated particle.

Likewise, particles in the second layer (L2) are updated as follows:

vL2,i ← r1vL2,i + r2(xL1,k1 − xL2,i ) + r3φ(xL1,k2 − xL2,i ) (6)

xL2,i ← xL2,i + vL2,i (7)

where xL2,i =
[

x1
L2,i

, x2
L2,i

, x3
L2,i

, . . . , xD
L2,i

]
and vL2,i =

[
v1

L2,i
, v2

L2,i
, v3

L2,i
, . . . , vD

L2,i

]
are the posi-

tion and the velocity of the ith particle in the second layer (L2), respectively. xL1,k1 and xL1,k2
represent the two different exemplars randomly selected from the first layer (L1).

In addition to the above updated formula, the following details deserve special atten-
tion:

(1) For particles in L2 and L3, we randomly select two different predominant particles
from higher layers to direct their update. In this way, for different particles, the two
guiding exemplars are different. In addition, for the same particle, the two guiding
exemplars are also different in different generations. Therefore, the learning diversity
of particles is largely improved.

(2) As for the two selected exemplars, we utilize the better one as the first guiding
exemplar and the worse one as the second guiding exemplar. That is to say, in
Equation (4), xL1,2,k1 is better than xL1,2,k2 and in Equation (6), xL1,k1 is better than xL1,k2
Such employment of the two exemplars results in the first guiding exemplar being
mainly responsible for leading the update particle to approach promising areas, and
thus is in charge of the convergence. At the same time, the second guiding exemplar
is mainly responsible for diversity, so that the updated particle is prevented from
approaching the first exemplar too greedily. In this way, a promising balance between
fast convergence and high diversity is expectedly maintained at the particle level
during the update of each particle.

(3) With respect to Equations (5) and (7), once the elements in the position of the update
particle are out of the range of the associated variables, they are set as the lower bounds
of the associated variables if they are smaller than the associated lower bounds and
are set as the upper bounds of the associated variables if they are larger than the
associated upper bounds.

(4) Taking deep observation, we find that particles in L3 have a wider range to learn
than those in L2. This is because particles in L3 learn from those in L2∪L1 consisting
of the top best 60% of particles in the swarm, while particles in L2 only learn from
those in L1 containing the top best 20% of particles. Therefore, we can see that during
the evolution, particles in L3 bias to exploring the solution space, while those in L2
bias to exploiting the found promising areas. Hence, a promising balance between
exploration and exploitation is expectedly maintained at the swarm level during the
evolution of the whole swarm.

(5) Since particles in L1 are preserved to directly enter the next generation, they become
better and better during the evolution, though the members in L1 are likely changed.
As a result, particles in L1 are expected to converge to optimal areas.

3.2. Historical Information Utilization

During the evolution, some of the particles in L1 in the last generation are replaced by
some of the updated particles in L2 and L3, once they are better. Therefore, some particles
in L1 are obsolete and enter L2 and L3 to update in the next generation. However, these
obsolete solutions may also contain useful evolutionary information. To make full use of
the historical information, we maintain an additional archive A of size NP/2 to store the
obsolete elite individuals.

Specifically, before the update of particles in each generation, when the three layers
are formed, we first compute L1,g∩L1,g−1 to obtain the elite particles that survive to directly
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enter the next generation. Then, we calculate L1,g–1 − (L1,g∩L1,g–1) to obtain the obsolete
elites. These obsolete elites are stored in the archive A.

As for the update of the archive A, in the beginning, A is set to be empty. Then, the
obsolete elites (L1,g–1 − (L1,g∩L1,g–1)) are inserted into A from the worst to the best. Once
the archive A is full, namely its size exceeds NP/2, we adopt the “first-in-first-out” strategy
to remove individuals in A until its size reaches NP/2.

To make use of the obsolete elites in A reasonably, we only introduce them into
the learning of particles in L3, so that the convergence of the swarm is not destroyed.
Specifically, to guarantee that particles in L3 learn from better ones, we first seek those
individuals in A that are better than the best one in L3 to form a candidate set A’. Then, A’ is
utilized to update particles in L3 along with the first two layers. That is to say, in Equation
(4), the two guiding exemplars are randomly selected from L1∪L2∪A’ instead of only from
L1∪L2.

With the above modification, the number of candidate exemplars for particles in L3
is enlarged, and thus the learning diversity of particles in L3 is further promoted to fully
explore the high-dimensional solution space. It should be mentioned that on the one hand,
particles in L3 are guaranteed to learn from better ones; on the other hand, the learning of
particles in L2, which are bias to exploiting promising areas, remains unchanged. Therefore,
the convergence of the swarm is not destroyed.

Experiments conducted in Section 4.3 will demonstrate the usefulness of the additional
archive A in helping the proposed EDPSO to achieve a promising performance.

3.3. Overall Procedure of EDPSO

Integrating the above components, the complete EDPSO is obtained with its overall
flowchart exhibited in Figure 1 and the overall procedure presented in Algorithm 1. Specif-
ically, in the beginning, NP particles are randomly initialized and evaluated as shown in
Line 1. After that, the algorithm jumps into the main iteration (Lines 3–25). During the
iteration, the whole swarm is sorted in an ascending order of fitness (Line 4), and then the
swarm is partitioned into three layers (Line 5) along with the update of the archive A (Line
6). Subsequently, particles in L3 are updated (Lines 7–16), following which is the update of
particles in L2 (Lines 17–25). The main iteration proceeds until the maximum number of
fitness evaluations is exhausted. Then, at the end of the algorithm, the global best position
gbest and its fitness f (gbest) are obtained from L1 as the output.

From Algorithm 1, we can see that EDPSO needs O(NP × D) to store the positions
of all particles and O(NP × D) to store the velocity of all particles. In addition, it also
needs O(NP × D) to store the archive, and O(NP) to store the sorted index of particles.
Comprehensively, EDPSO needs O(NP × D) space during the evolution.

Concerning the time complexity, in each generation, it takes O(NPlogNP) time to sort
the swarm (Lines 4) and O(NP) to divide the swarm into three layers (Lines 5–6). Then,
it takes O(NP × D) to update the archive (Lines 6), and to update particles in L2 and L3
(Lines 7–25) O(NP × D) time complexity is also needed. To sum up, the whole complexity
in one generation is O(NP × D), which is the same as the classical PSO.
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Algorithm 1: The pseudocode of EDPSO

Input: swarm size NP, maximum fitness evaluations FESmax and control parameter ∅
1: Initialize NP particles randomly and caculate their fitness;
2: FEs = NP and set the archive empty A = ∅
3: While (FEs < FESmax) do
4: Sort particles in ascending order according to their fitness;

5:
Partition the swarm into three layers: the elite layer L1 containing the top best 20% of particles, the second layer L2

containing the half best of the non-elite particles (40% particles), and the third layer L3 consisting of another half of the
non-elite particles (40% particles);

6: Update the archive A;
7: For each particle in L3 do
8: Find those individuals in A that are better than the best particle in L3 to form a set A’;
9: Select two different exemplars xk1 and xk2 from L1∪L2∪A’;
10: If f (xk1) > f (xk2) then
11: Swap(xk1, xk2);
12: End If
13: Update this particle according to Equations (4) and (5);

14:
If the elements in xi are smaller than the lower bounds of the associated variables, they are set as the asociated

lower bounds; if they are larger than the upper bounds of the associated variables, they are set as the associated upper
bounds.

15: Evaluate its fitness and FEs++;
16: End For
17: For each particle in L2 do
18: Select two different exemplars xk1 and xk2 from L1;
19: If f (xk1) > f (xk2) then
20: Swap(xk1, xk2);
21: End If
22: Update this particle according to Equations (6) and (7);

23:
If the elements in xi are smaller than the lower bounds of the associated variables, they are set as the asociated

lower bounds; if they are larger than the upper bounds of the associated variables, they are set as the associated upper
bounds.

24: Evaluate its fitness and FEs++;
25: End For
26: End While
27: Obtain the global best position gbest and its fitness f (gbest);

Output: f (gbest) and gbest
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Figure 1. The overall flowchart of the proposed EDPSO.

4. Experiments

In this section, we conduct extensive comparison experiments to validate the effec-
tiveness of the proposed EDPSO on the commonly used CEC’2010 [58] and CEC’2013 [59]
large-scale benchmark problem sets by comparing EDPSO with several state-of-the-art
large-scale optimizers. The CEC’2010 set contains twenty 1000-D optimization problems,
while the CEC’2013 set consists of fifteen 1000-D problems. In particular, the CEC’2013
set is an extension of the CEC’2010 set by introducing more complicated features, such as
overlapping interacting variables and unbalanced contribution of variables. Therefore, the
CEC’2013 benchmark problems are more difficult to optimize. The main characteristics of
the CEC’2010 and the CEC’2013 sets are briefly summarized in Tables 1 and 2, respectively.
For more details, please refer to [58,59].
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Table 1. The main characteristics of the CEC’2010 functions.

F Dimension Separability Optima Modality

F1 1000 fully separable 0 unimodal

F2 1000 fully separable 0 multimodal

F3 1000 fully separable 0 multimodal

F4 1000 partially separable 0 unimodal

F5 1000 partially separable 0 multimodal

F6 1000 partially separable 0 multimodal

F7 1000 partially separable 0 unimodal

1000 partially separable 0 multimodal

F9 1000 partially separable 0 unimodal

1000 partially separable 0 multimodal

F11 1000 partially separable 0 multimodal

F12 1000 partially separable 0 unimodal

F13 1000 partially separable 0 multimodal

F14 1000 partially separable 0 unimodal

1000 partially separable 0 multimodal

F16 1000 partially separable 0 multimodal

F17 1000 partially separable 0 unimodal

F18 1000 partially separable 0 multimodal

F19 1000 fully non-separable 0 unimodal

F20 1000 fully non-separable 0 multimodal

Table 2. The main characteristics of the CEC’2013 functions.

F Dimension Separability Optima Modality

F1 1000 fully separable 0 unimodal

F2 1000 fully separable 0 multimodal

F3 1000 fully separable 0 multimodal

F4 1000 partially separable 0 unimodal

F5 1000 partially separable 0 multimodal

F6 1000 partially separable 0 multimodal

F7 1000 partially separable 0 multimodal

F8 1000 partially separable 0 unimodal

F9 1000 partially separable 0 multimodal

F10 1000 partially separable 0 multimodal

F11 1000 partially separable 0 unimodal

F12 1000 overlapping 0 multimodal

F13 905 overlapping 0 unimodal

F14 905 overlapping 0 unimodal

F15 1000 fully non-separable 0 unimodal

In this section, we first investigate the parameter settings of the swarm size NP and the
control parameter φ for EDPSO in Section 4.1. Then, in Section 4.2, the proposed EDPSO
is extensively compared with several state-of-the-art large-scale algorithms on the two
benchmark sets. Lastly, in Section 4.3, the effectiveness of the additional archive in EDPSO
is verified by conducting experiments on the CEC’2010 benchmark set.

In the experiments, for fair comparisons, without being otherwise stated, the maximum
number of fitness evaluations is set as 3000 × D (where D is the dimension size) for all
algorithms. For each algorithm on each optimization problem, we execute it independently
for 30 runs, and then utilize the median, the mean, and the standard deviation (Std) values
over the 30 independent runs to evaluate its performance, so that fair and comprehensive
comparisons can be made.
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In addition, to tell whether there is significant difference between the proposed EDPSO
and the compared methods, we run the Wilcoxon rank-sum test at the significance level of
“α = 0.05” to compare the performance of EDPSO with that of each compared algorithm on
each problem. Furthermore, to compare the overall performance of different algorithms on
one whole benchmark set, we also conduct the Friedman test at the significance level of
“α = 0.05” on each benchmark set.

4.1. Parameter Settings

In the proposed EDPSO, two parameters, namely the swarm size NP and the control
parameter φ, are needed to fine-tune. Therefore, to find suitable settings for these two
parameters for EDPSO, we conduct experiments on the CEC’2010 set by varying NP from
500 to 1000, and φ from 0.1 to 0.9 for EDPSO. The comparison results among these settings
are shown in Table 1. In particular, in this table, the best results among different settings
of φ under the same setting of NP are highlighted in bold. The average rank of each
configuration of φ under the same setting of NP obtained by the Friedman test is also
presented in the last row of each part in Table 1.

From Table 3, we can obtain the following findings. (1) For different settings of NP,
we find that when NP ranges from 500 to 800, the most suitable φ is 0.4; when it ranges
from 900 to 1000, the most suitable φ is 0.3. This indicates that the setting of φ is not so
closely related to NP. (2) Furthermore, we find that neither a too small φ nor a too large φ
is suitable for EDPSO. This is because a too small φ decreases the influence of the second
exemplar on the updated particle, leading to the updated particle greedily approaching
the promising area where the first exemplar is located. In this case, once the first exemplar
falls into local areas, the updated particle likely falls into local basins as well. Therefore, the
algorithm likely encounters premature convergence. On the contrary, a too large φ increases
the influence of the second exemplar, leading to the updated particle being dragged too
far away from promising areas. In this situation, the convergence of the swarm slows
down. (3) It is observed that a relatively large NP is preferred for EDPSO to achieve good
performance. This is because a small NP cannot afford enough diversity for the algorithm
to explore the solution space. However, a too large NP (such as NP = 900 or 1000) is not
beneficial for EDPSO to achieve good performance because too high diversity is afforded,
leading to that the convergence of the swarm slows down. Based on the above observation,
NP = 600 and φ = 0.4 are the recommended settings for the two parameters in EDPSO when
solving 1000-D optimization problems.

4.2. Comparisons with State-of-the-Art Large-Scale Optimizers

This section conducts extensive comparison experiments to compare the proposed
EDPSO with several state-of-art large-scale algorithms including five holistic large-scale
PSO optimizers and four state-of-the-art CCEAs. Specifically, the five holistic large-scale
optimizers are TPLSO [31], SPLSO [55], LLSO [54], CSO [29], and SLPSO [55], respectively,
while the four CCEAs are DECC-GDG [69], DECC-DG [74], DECC-RDG [79], and DECC-
RDG2 [74], respectively. In particular, we compare EDPSO with these algorithms on the
1000-D CEC’2010 and the 1000-D CEC’2013 large-scale benchmark sets.

Tables 4 and 5 show the fitness comparison results between EDPSO and the nine
compared algorithms on the CEC’2010 and the CEC’2013 benchmark sets, respectively. In
these two tables, the symbol “+” above the p-value indicates that the proposed EDPSO
is significantly superior to the associated compared algorithms on the corresponding
problems, and the symbol “−” means that EDPSO is significantly inferior to the associated
compared algorithms on the related problems, while the symbol “=” denotes that EDPSO
achieves equivalent performance with the compared algorithms on the associated problems.
Accordingly, “w/t/l” in the second to last rows of the two tables count the numbers of “+”,
“=”, and “–”, respectively. In addition, the last rows of the two tables present the averaged
ranks of all algorithms, which are obtained from the Friedman test.
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Table 3. Comparison results of EDPSO with different settings of NP and φ on the 1000-D CEC’2010 problems with respect to the average fitness of the global
best solutions found in 30 independent runs. In each part of this table with the same settings of NP, the best results obtained by EDPSO with the optimal φ are
highlighted in bold.

F
NP = 500

F
NP = 600

φ = 0.1 φ = 0.2 φ = 0.3 φ = 0.4 φ = 0.5 φ = 0.6 φ = 0.7 φ = 0.8 φ = 0.9 φ = 0.1 φ = 0.2 φ = 0.3 φ = 0.4 φ = 0.5 φ = 0.6 φ = 0.7 φ = 0.8 φ = 0.9

F1
1.33 ×
10−21

1.57 ×
10−22

4.66 ×
10−23

1.89 ×
10−23

1.86 ×
10−22

9.58 ×
10−12

2.58 ×
102

2.83 ×
107

1.31 ×
109 F1

4.60 ×
10−21

1.51 ×
10−22

4.52 ×
10−23

2.77 ×
10−23

2.32 ×
10−21

3.17 ×
10−7

2.12 ×
104

8.43 ×
107

1.97 ×
109

F2
1.23 ×

103
1.54 ×

103
1.72 ×

103
1.30 ×

103
9.12 ×

102
1.04 ×

104
1.08 ×

104
1.12 ×

104
1.19 ×

104 F2
1.02 ×

103
1.33 ×

103
1.32 ×

103
1.10 ×

103
2.66 ×

103
1.04 ×

104
1.07 ×

104
1.14 ×

104
1.19 ×

104

F3
3.12 ×
10−14

2.89 ×
10−14

3.12 ×
10−14

2.18 ×
10−14

2.65 ×
10−14

2.65 ×
10−9

2.56 ×
10−2

7.98 ×
100

1.55 ×
101 F3

4.43 ×
10−14

2.65 ×
10−14

3.01 ×
10−14

2.18 ×
10−14

3.60 ×
10−14

6.21 ×
10−7

4.36 ×
10−1

1.05 ×
101

1.63 ×
101

F4
5.36 ×
1011

5.54 ×
1011

3.89 ×
1011

3.72 ×
1011

2.43 ×
1011

2.54 ×
1011

4.07 ×
1011

3.12 ×
1013

8.64 ×
1013 F4

6.17 ×
1011

5.52 ×
1011

5.08 ×
1011

4.14 ×
1011

2.90 ×
1011

2.28 ×
1011

1.29 ×
1012

4.35 ×
1013

1.18 ×
1014

F5
2.77 ×

108
2.85 ×

108
2.84 ×

108
2.94 ×

108
2.87 ×

108
2.85 ×

108
3.15 ×

108
3.22 ×

108
3.31 ×

108 F5
2.74 ×

108
2.86 ×

108
2.78 ×

108
2.85 ×

108
2.88 ×

108
2.94 ×

108
2.98 ×

108
2.98 ×

108
3.33 ×

108

F6
4.00 ×
10−9

6.71 ×
100

1.55 ×
101

4.00 ×
10−9

4.00 ×
10−9

4.03 ×
10−8

5.59 ×
10−2

9.28 ×
100

1.65 ×
101 F6

4.01 ×
10−9

4.00 ×
10−9

4.00 ×
10−9

4.00 ×
10−9

4.00 ×
10−9

2.81 ×
10−6

7.87 ×
10−1

1.18 ×
101

1.74 ×
101

F7
2.85 ×

101
3.19 ×

101
4.34 ×

101
4.86 ×

100
1.94 ×

100
6.72 ×

102
3.45 ×

104
2.42 ×

107
2.12 ×

109 F7
1.65 ×

102
8.34 ×

101
7.31 ×

101
7.50 ×

100
1.60 ×

101
2.85 ×

103
1.57 ×

105
8.17 ×

107
2.45 ×

109

F8
3.01 ×

107
2.58 ×

107
2.40 ×

107
2.04 ×

107
2.16 ×

107
3.21 ×

107
4.14 ×

107
4.52 ×

107
4.66 ×

107 F8
3.31 ×

107
2.88 ×

107
2.70 ×

107
2.39 ×

107
2.58 ×

107
3.46 ×

107
4.25 ×

107
4.56 ×

107
4.65 ×

107

F9
4.59 ×

107
5.19 ×

107
5.67 ×

107
3.95 ×

107
3.96 ×

107
8.27 ×

107
1.10 ×

109
1.47 ×
1010

3.01 ×
1010 F9

4.87 ×
107

5.06 ×
107

5.41 ×
107

3.78 ×
107

4.15 ×
107

1.10 ×
108

3.69 ×
109

1.81 ×
1010

3.50 ×
1010

F10
1.23 ×

103
1.61 ×

103
1.63 ×

103
1.30 ×

103
9.83 ×

103
1.04 ×

104
1.08 ×

104
1.13 ×

104
1.17 ×

104 F10
9.20 ×

103
1.29 ×

103
1.39 ×

103
1.53 ×

103
1.02 ×

104
1.05 ×

104
1.08 ×

104
1.14 ×

104
1.19 ×

104

F11
1.99 ×
10−13

1.77 ×
101

2.03 ×
101

2.03 ×
101

1.61 ×
10−13

3.54 ×
10−7

6.75 ×
10−1

4.56 ×
101

1.35 ×
102 F11

3.94 ×
10−13

5.70 ×
10−1

1.65 ×
101

1.54 ×
10−13

2.82 ×
10−13

1.41 ×
10−5

4.62 ×
100

6.64 ×
101

1.49 ×
102

F12
2.86 ×

104
1.98 ×

104
2.30 ×

104
1.07 ×

104
3.08 ×

104
2.05 ×

106
4.44 ×

106
5.47 ×

106
6.72 ×

106 F12
4.78 ×

104
2.47 ×

104
2.66 ×

104
1.73 ×

104
7.31 ×

104
2.99 ×

106
4.55 ×

106
5.63 ×

106
6.89 ×

106

F13
8.24 ×

102
7.31 ×

102
7.46 ×

102
5.73 ×

102
5.53 ×

102
4.94 ×

102
8.23 ×

103
2.25 ×

107
5.95 ×

109 F13
7.83 ×

102
6.06 ×

102
6.05 ×

102
5.50 ×

102
5.17 ×

102
5.57 ×

102
7.41 ×

103
1.32 ×

108
1.09 ×
1010

F14
1.31 ×

108
1.40 ×

108
1.57 ×

108
1.04 ×

108
1.12 ×

108
3.04 ×

108
5.87 ×

109
3.11 ×
1010

5.53 ×
1010 F14

1.56 ×
108

1.45 ×
108

1.56 ×
108

1.17 ×
108

1.24 ×
108

5.06 ×
108

1.20 ×
1010

3.80 ×
1010

6.13 ×
1010

F15
1.06 ×

104
1.08 ×

104
1.07 ×

104
1.06 ×

104
1.05 ×

104
1.06 ×

104
1.08 ×

104
1.13 ×

104
1.18 ×

104 F15
1.05 ×

104
1.05 ×

104
1.06 ×

104
1.06 ×

104
1.04 ×

104
1.05 ×

104
1.08 ×

104
1.13 ×

104
1.19 ×

104

F16
1.48 ×

100
5.44 ×

100
6.67 ×

100
1.77 ×

100
2.93 ×
10−1

8.78 ×
10−8

8.68 ×
10−1

1.66 ×
102

3.21 ×
102 F16

2.93 ×
10−1

2.65 ×
100

1.51 ×
100

1.75 ×
10−13

3.06 ×
10−13

1.82 ×
10−5

1.11 ×
101

2.18 ×
102

3.36 ×
102

F17
2.33 ×

105
1.29 ×

105
1.31 ×

105
8.96 ×

104
5.05 ×

105
4.98 ×

106
8.44 ×

106
1.19 ×

107
1.48 ×

107 F17
4.51 ×

105
1.59 ×

105
1.46 ×

105
1.39 ×

105
2.11 ×

106
5.81 ×

106
9.40 ×

106
1.24 ×

107
1.50 ×

107
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Table 3. Cont.

F
NP = 500

F
NP = 600

φ = 0.1 φ = 0.2 φ = 0.3 φ = 0.4 φ = 0.5 φ = 0.6 φ = 0.7 φ = 0.8 φ = 0.9 φ = 0.1 φ = 0.2 φ = 0.3 φ = 0.4 φ = 0.5 φ = 0.6 φ = 0.7 φ = 0.8 φ = 0.9

F18
2.72 ×

103
3.54 ×

103
3.05 ×

103
2.04 ×

103
1.55 ×

103
2.76 ×

103
1.00 ×

105
6.35 ×

109
8.50 ×
1010 F18

2.01 ×
103

2.17 ×
103

3.00 ×
103

2.45 ×
103

1.58 ×
103

2.12 ×
103

3.91 ×
106

1.34 ×
1010

9.69 ×
1010

F19
9.54 ×

106
6.22 ×

106
6.10 ×

106
7.73 ×

106
1.09 ×

107
1.42 ×

107
1.70 ×

107
2.27 ×

107
2.53 ×

107 F19
1.03 ×

107
7.37 ×

106
6.84 ×

106
8.92 ×

106
1.14 ×

107
1.51 ×

107
1.95 ×

107
2.25 ×

107
2.64 ×

107

F20
1.65 ×

103
2.05 ×

103
2.28 ×

103
1.53 ×

103
1.27 ×

103
1.25 ×

103
6.44 ×

104
6.85 ×

109
8.27 ×
1010 F20

1.75 ×
103

1.83 ×
103

1.94 ×
103

1.31 ×
103

1.18 ×
103

1.05 ×
103

3.89 ×
106

1.51 ×
1010

1.08 ×
1011

Rank 3.53 4.15 4.43 2.45 2.55 4.50 6.45 7.95 9.00 Rank 3.90 3.63 3.68 2.05 3.05 4.75 6.95 8.00 9.00

F
NP = 700

F
NP = 800

φ = 0.1 φ = 0.2 φ = 0.3 φ = 0.4 φ = 0.5 φ = 0.6 φ = 0.7 φ = 0.8 φ = 0.9 φ = 0.1 φ = 0.2 φ = 0.3 φ = 0.4 φ = 0.5 φ = 0.6 φ = 0.7 φ = 0.8 φ = 0.9

F1
8.23 ×
10−18

2.92 ×
10−22

6.67 ×
10−23

7.69 ×
10−23

3.84 ×
10−18

4.62 ×
10−4

1.92 ×
105

1.80 ×
108

2.84 ×
109 F1

3.60 ×
10−14

6.27 ×
10−22

1.10 ×
10−22

4.98 ×
10−22

3.99 ×
10−14

7.53 ×
10−2

9.19 ×
105

2.76 ×
108

3.52 ×
109

F2
8.38 ×

102
1.18 ×

103
1.22 ×

103
9.67 ×

102
9.99 ×

103
1.03 ×

104
1.08 ×

104
1.14 ×

104
1.20 ×

104 F2
1.27 ×

103
1.02 ×

103
1.09 ×

103
8.38 ×

102
1.01 ×

104
1.05 ×

104
1.10 ×

104
1.14 ×

104
1.20 ×

104

F3
2.42 ×
10−12

2.77 ×
10−14

2.65 ×
10−14

2.29 ×
10−14

1.60 ×
10−12

2.38 ×
10−5

2.07 ×
100

1.23 ×
101

1.68 ×
101 F3

1.76 ×
10−10

2.89 ×
10−14

2.89 ×
10−14

2.65 ×
10−14

1.69 ×
10−10

3.43 ×
10−4

3.48 ×
100

1.32 ×
101

1.72 ×
101

F4
6.68 ×
1011

8.31 ×
1011

4.07 ×
1011

4.72 ×
1011

2.88 ×
1011

3.39 ×
1011

1.59 ×
1012

3.88 ×
1013

1.38 ×
1014 F4

5.44 ×
1011

7.74 ×
1011

6.56 ×
1011

5.49 ×
1011

4.23 ×
1011

3.81 ×
1011

2.15 ×
1012

4.92 ×
1013

1.09 ×
1014

F5
2.81 ×

108
2.81 ×

108
2.84 ×

108
2.86 ×

108
2.78 ×

108
2.95 ×

108
3.00 ×

108
2.98 ×

108
3.15 ×

108 F5
2.76 ×

108
2.84 ×

108
2.80 ×

108
2.89 ×

108
2.89 ×

108
2.99 ×

108
2.92 ×

108
3.19 ×

108
3.25 ×

108

F6
4.48 ×
10−9

4.00 ×
10−9

4.00 ×
10−9

4.00 ×
10−9

4.25 ×
10−9

9.58 ×
10−5

2.65 ×
100

1.34 ×
101

1.80 ×
101 F6

1.27 ×
10−8

4.00 ×
10−9

4.00 ×
10−9

4.00 ×
10−9

1.27 ×
10−8

1.16 ×
10−3

4.15 ×
100

1.42 ×
101

1.82 ×
101

F7
4.12 ×

102
1.76 ×

102
2.47 ×

102
4.95 ×

101
1.06 ×

102
1.05 ×

104
5.97 ×

105
2.68 ×

108
3.69 ×

109 F7
1.55 ×

103
6.37 ×

102
1.08 ×

103
1.63 ×

102
3.23 ×

102
2.52 ×

104
1.04 ×

106
5.36 ×

108
4.64 ×

109

F8
3.50 ×

107
3.12 ×

107
2.95 ×

107
2.69 ×

107
2.90 ×

107
3.62 ×

107
4.33 ×

107
4.54 ×

107
4.66 ×

107 F8
3.63 ×

107
3.30 ×

107
3.14 ×

107
2.92 ×

107
3.09 ×

107
3.76 ×

107
4.35 ×

107
4.59 ×

107
4.67 ×

107

F9
6.27 ×

107
5.23 ×

107
5.25 ×

107
4.09 ×

107
4.73 ×

107
1.60 ×

108
6.71 ×

109
2.25 ×
1010

3.59 ×
1010 F9

6.85 ×
107

5.83 ×
107

5.27 ×
107

4.63 ×
107

5.40 ×
107

2.63 ×
108

9.57 ×
109

2.40 ×
1010

3.97 ×
1010

F10
9.85 ×

103
1.16 ×

103
1.26 ×

103
3.79 ×

103
1.03 ×

104
1.06 ×

104
1.08 ×

104
1.14 ×

104
1.19 ×

104 F10
1.01 ×

104
1.02 ×

103
1.02 ×

103
9.96 ×

103
1.03 ×

104
1.05 ×

104
1.09 ×

104
1.15 ×

104
1.21 ×

104

F11
6.45 ×
10−11

1.49 ×
10−13

1.45 ×
10−13

1.41 ×
10−13

5.30 ×
10−11

4.23 ×
10−4

9.31 ×
100

7.36 ×
101

1.57 ×
102 F11

3.81 ×
10−9

1.42 ×
10−13

1.35 ×
10−13

1.41 ×
10−13

4.52 ×
10−9

5.26 ×
10−3

1.56 ×
101

8.86 ×
101

1.65 ×
102

F12
8.34 ×

104
3.22 ×

104
3.19 ×

104
2.56 ×

104
1.99 ×

105
3.38 ×

106
4.97 ×

106
6.12 ×

106
7.05 ×

106 F12
1.34 ×

105
4.03 ×

104
3.35 ×

104
3.69 ×

104
6.23 ×

105
3.43 ×

106
5.13 ×

106
6.09 ×

106
7.35 ×

106

F13
6.12 ×

102
7.30 ×

102
7.43 ×

102
8.62 ×

102
5.05 ×

102
4.68 ×

102
5.39 ×

104
4.47 ×

108
1.33 ×
1010 F13

4.94 ×
102

6.67 ×
102

6.91 ×
102

7.08 ×
102

4.91 ×
102

4.72 ×
102

2.28 ×
105

8.72 ×
108

1.88 ×
1010

F14
1.80 ×

108
1.52 ×

108
1.48 ×

108
1.14 ×

108
1.46 ×

108
9.38 ×

108
1.76 ×
1010

4.20 ×
1010

6.65 ×
1010 F14

2.13 ×
108

1.54 ×
108

1.55 ×
108

1.21 ×
108

1.85 ×
108

1.78 ×
109

2.40 ×
1010

4.72 ×
1010

6.86 ×
1010
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Table 3. Cont.

F
NP = 700

F
NP = 800

φ = 0.1 φ = 0.2 φ = 0.3 φ = 0.4 φ = 0.5 φ = 0.6 φ = 0.7 φ = 0.8 φ = 0.9 φ = 0.1 φ = 0.2 φ = 0.3 φ = 0.4 φ = 0.5 φ = 0.6 φ = 0.7 φ = 0.8 φ = 0.9

F15
1.05 ×

104
1.05 ×

104
1.05 ×

104
1.04 ×

104
1.03 ×

104
1.06 ×

104
1.10 ×

104
1.14 ×

104
1.19 ×

104 F15
1.04 ×

104
1.05 ×

104
1.05 ×

104
1.04 ×

104
1.04 ×

104
1.06 ×

104
1.10 ×

104
1.14 ×

104
1.21 ×

104

F16
7.97 ×
10−11

1.94 ×
10−13

5.86 ×
10−1

2.93 ×
10−1

3.92 ×
10−11

6.55 ×
10−4

5.14 ×
101

2.49 ×
102

3.40 ×
102 F16

6.70 ×
10−9

2.03 ×
10−13

3.42 ×
10−1

2.07 ×
10−13

4.18 ×
10−9

8.11 ×
10−3

7.54 ×
101

2.66 ×
102

3.48 ×
102

F17
1.02 ×

106
2.06 ×

105
1.75 ×

105
2.40 ×

105
2.77 ×

106
6.90 ×

106
9.55 ×

106
1.21 ×

107
1.61 ×

107 F17
2.33 ×

106
2.73 ×

105
2.10 ×

105
4.21 ×

105
3.90 ×

106
7.36 ×

106
9.71 ×

106
1.32 ×

107
1.55 ×

107

F18
2.14 ×

103
2.57 ×

103
2.31 ×

103
1.77 ×

103
2.05 ×

103
2.62 ×

103
4.57 ×

107
2.28 ×
1010

1.23 ×
1011 F18

1.97 ×
103

1.90 ×
103

2.13 ×
103

1.59 ×
103

1.20 ×
103

1.75 ×
103

2.35 ×
108

3.15 ×
1010

1.43 ×
1011

F19
1.16 ×

107
8.09 ×

106
7.83 ×

106
9.57 ×

106
1.17 ×

107
1.60 ×

107
2.00 ×

107
2.12 ×

107
2.69 ×

107 F19
1.22 ×

107
9.60 ×

106
8.07 ×

106
9.79 ×

106
1.25 ×

107
1.70 ×

107
1.97 ×

107
2.33 ×

107
2.90 ×

107

F20
1.14 ×

103
1.69 ×

103
1.83 ×

103
1.34 ×

103
1.15 ×

103
1.01 ×

103
4.97 ×

107
2.36 ×
1010

1.23 ×
1011 F20

1.15 ×
103

1.40 ×
103

1.67 ×
103

1.10 ×
103

1.03 ×
103

1.35 ×
103

2.81 ×
108

3.22 ×
1010

1.42 ×
1011

Rank 4.00 3.13 3.15 2.48 3.05 5.20 7.05 7.95 9.00 Rank 3.95 3.18 2.93 2.20 3.55 5.25 6.95 8.00 9.00

F
NP = 900

F
NP = 1000

φ = 0.1 φ = 0.2 φ = 0.3 φ = 0.4 φ = 0.5 φ = 0.6 φ = 0.7 φ = 0.8 φ = 0.9 φ = 0.1 φ = 0.2 φ = 0.3 φ = 0.4 φ = 0.5 φ = 0.6 φ = 0.7 φ = 0.8 φ = 0.9

F1
2.88 ×
10−11

2.30 ×
10−21

3.55 ×
10−22

3.82 ×
10−21

4.57 ×
10−11

2.99 ×
100

2.72 ×
106

4.24 ×
108

4.36 ×
109 F1

5.39 ×
10−9

7.77 ×
10−20

1.84 ×
10−21

1.08 ×
10−18

1.13 ×
10−8

4.65 ×
101

6.59 ×
106

5.75 ×
108

4.98 ×
109

F2
8.01 ×

103
9.43 ×

102
9.92 ×

102
7.73 ×

102
1.02 ×

104
1.06 ×

104
1.09 ×

104
1.16 ×

104
1.21 ×

104 F2
9.60 ×

103
8.89 ×

102
9.57 ×

102
7.69 ×

103
1.02 ×

104
1.05 ×

104
1.10 ×

104
1.15 ×

104
1.22 ×

104

F3
5.03 ×
10−9

3.36 ×
10−14

2.77 ×
10−14

3.95 ×
10−14

5.98 ×
10−9

2.51 ×
10−3

4.55 ×
100

1.40 ×
101

1.73 ×
101 F3

7.68 ×
10−8

1.80 ×
10−13

3.01 ×
10−14

8.03 ×
10−13

1.09 ×
10−7

1.12 ×
10−2

5.60 ×
100

1.45 ×
101

1.75 ×
101

F4
7.99 ×
1011

7.13 ×
1011

6.84 ×
1011

4.70 ×
1011

4.30 ×
1011

4.15 ×
1011

4.18 ×
1012

6.47 ×
1013

1.52 ×
1014 F4

9.19 ×
1011

9.07 ×
1011

9.28 ×
1011

6.61 ×
1011

4.91 ×
1011

5.14 ×
1011

1.22 ×
1013

7.49 ×
1013

1.71 ×
1014

F5
2.81 ×

108
2.87 ×

108
2.81 ×

108
2.88 ×

108
2.90 ×

108
2.96 ×

108
3.04 ×

108
3.21 ×

108
3.05 ×

108 F5
2.91 ×

108
2.87 ×

108
2.74 ×

108
2.91 ×

108
2.77 ×

108
2.90 ×

108
2.99 ×

108
3.24 ×

108
3.28 ×

108

F6
8.16 ×
10−8

4.00 ×
10−9

4.00 ×
10−9

4.00 ×
10−9

8.88 ×
10−8

7.56 ×
10−3

5.51 ×
100

1.51 ×
101

1.86 ×
101 F6

7.90 ×
10−7

4.11 ×
10−9

4.00 ×
10−9

4.20 ×
10−9

9.85 ×
10−7

3.28 ×
10−2

6.85 ×
100

1.55 ×
101

1.89 ×
101

F7
4.34 ×

103
1.64 ×

103
1.48 ×

103
6.09 ×

102
1.88 ×

103
4.68 ×

104
3.75 ×

106
6.39 ×

108
5.22 ×

109 F7
1.07 ×

104
6.59 ×

103
5.32 ×

103
1.33 ×

103
3.16 ×

103
7.82 ×

104
8.34 ×

106
1.06 ×

109
5.69 ×

109

F8
3.75 ×

107
3.44 ×

107
3.30 ×

107
3.10 ×

107
3.26 ×

107
3.88 ×

107
4.40 ×

107
4.62 ×

107
4.67 ×

107 F8
3.84 ×

107
3.56 ×

107
3.42 ×

107
3.24 ×

107
3.40 ×

107
3.94 ×

107
4.42 ×

107
4.62 ×

107
4.67 ×

107

F9
6.99 ×

107
5.67 ×

107
5.77 ×

107
4.59 ×

107
6.41 ×

107
5.03 ×

108
1.11 ×
1010

2.51 ×
1010

4.35 ×
1010 F9

8.37 ×
107

6.27 ×
107

6.76 ×
107

5.13 ×
107

7.33 ×
107

9.70 ×
108

1.28 ×
1010

3.10 ×
1010

4.55 ×
1010

F10
1.01 ×

104
3.96 ×

103
1.69 ×

103
1.02 ×

104
1.03 ×

104
1.06 ×

104
1.10 ×

104
1.15 ×

104
1.22 ×

104 F10
1.02 ×

104
9.41 ×

103
9.35 ×

103
1.02 ×

104
1.03 ×

104
1.06 ×

104
1.09 ×

104
1.16 ×

104
1.22 ×

104

F11
1.11 ×
10−7

2.78 ×
10−13

1.35 ×
10−13

6.80 ×
10−13

1.44 ×
10−7

2.98 ×
10−2

2.22 ×
101

1.03 ×
102

1.68 ×
102 F11

1.41 ×
10−6

7.70 ×
10−12

2.52 ×
10−13

2.49 ×
10−11

2.15 ×
10−6

1.19 ×
10−1

2.59 ×
101

1.09 ×
102

1.73 ×
102
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Table 3. Cont.

F
NP = 900

F
NP = 1000

φ = 0.1 φ = 0.2 φ = 0.3 φ = 0.4 φ = 0.5 φ = 0.6 φ = 0.7 φ = 0.8 φ = 0.9 φ = 0.1 φ = 0.2 φ = 0.3 φ = 0.4 φ = 0.5 φ = 0.6 φ = 0.7 φ = 0.8 φ = 0.9

F12
2.26 ×

105
5.21 ×

104
4.08 ×

104
5.52 ×

104
1.33 ×

106
3.62 ×

106
4.90 ×

106
6.21 ×

106
7.22 ×

106 F12
3.83 ×

105
6.13 ×

104
4.93 ×

104
7.39 ×

104
1.72 ×

106
3.75 ×

106
5.27 ×

106
6.09 ×

106
7.39 ×

106

F13
5.92 ×

102
7.06 ×

102
5.32 ×

102
6.44 ×

102
4.75 ×

102
4.77 ×

102
7.53 ×

105
1.59 ×

109
2.30 ×
1010 F13

5.02 ×
102

5.78 ×
102

5.37 ×
102

5.72 ×
102

5.23 ×
102

5.10 ×
102

2.54 ×
106

2.45 ×
109

2.90 ×
1010

F14
2.41 ×

108
1.69 ×

108
1.68 ×

108
1.35 ×

108
2.46 ×

108
3.45 ×

109
2.75 ×
1010

5.28 ×
1010

7.32 ×
1010 F14

2.88 ×
108

1.80 ×
108

1.77 ×
108

1.50 ×
108

3.07 ×
108

5.52 ×
109

3.11 ×
1010

5.41 ×
1010

7.56 ×
1010

F15
1.04 ×

104
1.04 ×

104
1.05 ×

104
1.04 ×

104
1.03 ×

104
1.06 ×

104
1.10 ×

104
1.15 ×

104
1.21 ×

104 F15
1.04 ×

104
1.03 ×

104
1.03 ×

104
1.03 ×

104
1.03 ×

104
1.07 ×

104
1.10 ×

104
1.16 ×

104
1.23 ×

104

F16
1.16 ×
10−7

2.77 ×
10−13

1.97 ×
10−13

4.64 ×
10−13

1.43 ×
10−7

6.00 ×
10−2

9.28 ×
101

2.82 ×
102

3.51 ×
102 F16

1.75 ×
10−6

4.05 ×
10−12

2.67 ×
10−13

1.78 ×
10−11

2.51 ×
10−6

2.39 ×
10−1

1.19 ×
102

2.95 ×
102

3.58 ×
102

F17
2.70 ×

106
3.51 ×

105
2.75 ×

105
8.26 ×

105
4.26 ×

106
7.45 ×

106
1.04 ×

107
1.33 ×

107
1.61 ×

107 F17
3.49 ×

106
5.20 ×

105
3.59 ×

105
1.52 ×

106
4.78 ×

106
7.70 ×

106
1.02 ×

107
1.29 ×

107
1.60 ×

107

F18
1.28 ×

103
1.49 ×

103
2.04 ×

103
1.76 ×

103
1.22 ×

103
5.19 ×

103
6.05 ×

108
3.93 ×
1010

1.71 ×
1011 F18

1.39 ×
103

1.82 ×
103

1.80 ×
103

1.51 ×
103

1.57 ×
103

7.40 ×
103

1.51 ×
109

4.85 ×
1010

1.73 ×
1011

F19
1.21 ×

107
9.49 ×

106
9.12 ×

106
1.06 ×

107
1.34 ×

107
1.66 ×

107
2.09 ×

107
2.27 ×

107
2.63 ×

107 F19
1.21 ×

107
9.70 ×

106
9.89 ×

106
1.08 ×

107
1.32 ×

107
1.60 ×

107
1.97 ×

107
2.35 ×

107
2.77 ×

107

F20
1.13 ×

103
1.58 ×

103
1.73 ×

103
1.09 ×

103
1.03 ×

103
1.28 ×

103
6.96 ×

108
4.21 ×
1010

1.67 ×
1011 F20

1.09 ×
103

1.15 ×
103

1.14 ×
103

9.99 ×
102

1.10 ×
103

4.70 ×
103

1.73 ×
109

5.17 ×
1010

1.84 ×
1011

Rank 3.90 2.80 2.30 2.75 3.80 5.45 7.00 8.05 8.95 Rank 3.95 2.90 2.25 2.55 3.85 5.50 7.00 8.00 9.00



Mathematics 2022, 10, 1384 18 of 29

Table 4. Fitness comparison between EDPSO and the compared algorithms on the 1000-D CEC’2010 problems with 3 × 106 fitness evaluations with respect to the
median, the mean, and the standard deviation values in the fitness of the global best solutions found in 30 independent runs. The symbols “+”, “−”, and “=” above
the p-value indicate that EDPSO is significantly superior to, significantly inferior to, and equivalent to the compared algorithms on the associated problems. Those
numbers in bold indicates that EDPSO performs significantly better than the compared algorithms.

F Quality EDPSO TPLSO SPLSO LLSO CSO SL_PSO DECC_GDG DECC_DG2 DECC_RDG DECC_RDG2

F1

Median 2.59 × 10−23 1.97 × 10−18 7.86 × 10−20 2.86 × 10−22 4.63 × 10−12 7.79 × 10−18 6.57 × 100 1.95 × 10−1 2.60 × 10−3 1.05 × 10−3

Mean 2.72 × 10−23 1.95 × 10−18 7.80 × 10−20 3.06 × 10−22 4.78 × 10−12 7.80 × 10−18 6.47 × 100 7.70 × 10−1 6.42 × 100 8.09 × 10−3

Std 6.36 × 10−24 2.83 × 10−19 7.27 × 10−21 7.19 × 10−23 7.52 × 10−13 9.10 × 10−19 1.15 × 100 1.64 × 100 3.47 × 101 3.33 × 10−2

p-value - 3.02 × 10−11 + 3.02 × 10−11 + 9.43 × 10−14 + 3.02 × 10−11 + 3.02 × 10−11 + 3.02 × 10−11 + 3.02 × 10−11 + 3.02 × 10−11 + 3.02 × 10−11 +

F2

Median 1.10 × 103 1.10 × 103 4.47 × 102 9.72 × 102 7.52 × 103 1.94 × 103 1.40 × 103 2.99 × 103 2.98 × 103 3.00 × 103

Mean 1.11 × 103 1.11 × 103 4.46 × 102 9.85 × 102 7.49 × 103 1.94 × 103 1.41 × 103 3.02 × 103 2.98 × 103 3.01 × 103

Std 4.97 × 101 9.16 × 101 1.65 × 101 5.56 × 101 2.54 × 102 7.80 × 101 2.36 × 101 1.68 × 102 1.18 × 102 1.23 × 102

p-value - 6.63 × 10−1 = 3.01 × 10−11 − 1.16 × 10−10 − 3.01 × 10−11 + 3.01 × 10−11 + 3.01 × 10−11 + 3.01 × 10−11 + 3.01 × 10−11 + 3.01 × 10−11 +

F3

Median 2.18 × 10−14 1.43 × 100 2.56 × 10−13 2.89 × 10−14 2.59 × 10−9 1.88 × 100 1.13 × 101 1.10 × 101 1.12 × 101 1.12 × 101

Mean 2.20 × 10−14 1.44 × 100 2.52 × 10−13 2.81 × 10−14 2.60 × 10−9 1.87 × 100 1.13 × 101 1.10 × 101 1.11 × 101 1.12 × 101

Std 9.01 × 10−16 1.29 × 10−1 1.89 × 10−14 1.48 × 10−15 1.78 × 10−10 2.48 × 10−1 6.79 × 10−1 6.60 × 10−1 6.56 × 10−1 6.74 × 10−1

p-value - 2.36 × 10−12 + 2.27 × 10−12 + 1.49 × 10−14 + 2.36 × 10−12 + 2.36 × 10−12 + 2.36 × 10−12 + 2.36 × 10−12 + 2.36 × 10−12 + 2.36 × 10−12 +

F4

Median 3.92 × 1011 2.74 × 1011 4.38 × 1011 4.35 × 1011 6.95 × 1011 2.83 × 1011 1.39 × 1014 1.47 × 1012 1.39 × 1012 1.50 × 1012

Mean 4.00 × 1011 2.95 × 1011 4.34 × 1011 4.46 × 1011 7.32 × 1011 2.91 × 1011 1.43 × 1014 1.73 × 1012 1.49 × 1012 1.49 × 1012

Std 8.10 × 1010 8.68 × 1010 8.10 × 1010 1.16 × 1011 3.48 × 1011 9.25 × 1010 3.04 × 1013 6.33 × 1011 6.42 × 1011 5.54 × 1011

p-value - 2.77 × 10−5 − 5.55 × 10−2 = 3.39 × 10−2 + 7.12 × 10−9 + 3.57 × 10−6 − 3.02 × 10−11 + 3.02 × 10−11 + 4.08 × 10−11 + 4.50 × 10−11 +

F5

Median 2.84 × 108 1.69 × 107 5.97 × 106 1.09 × 107 2.00 × 106 2.99 × 107 3.85 × 108 1.75 × 108 1.74 × 108 1.77 × 108

Mean 2.82 × 108 1.67 × 107 6.37 × 106 1.15 × 107 2.49 × 106 3.09 × 107 3.83 × 108 1.78 × 108 1.71 × 108 1.74 × 108

Std 8.94 × 106 4.65 × 106 1.73 × 106 2.58 × 106 1.32 × 106 8.58 × 106 1.56 × 107 1.96 × 107 1.88 × 107 1.62 × 107

p-value - 3.02 × 10−11 − 2.76 × 10−11 − 9.23 × 10−14 − 3.01 × 10−11 − 3.01 × 10−11 − 3.02 × 10−11 + 3.02 × 10−11 − 3.02 × 10−11 − 3.02 × 10−11 −

F6

Median 4.00 × 10−9 2.07 × 100 1.00 × 10−8 4.00 × 10−9 8.23 × 10−7 2.14 × 101 3.55 × 105 8.86 × 100 1.06 × 101 1.06 × 101

Mean 4.00 × 10−9 2.22 × 100 1.03 × 10−8 4.00 × 10−9 8.18 × 10−7 2.01 × 101 3.65 × 105 8.97 × 100 1.05 × 101 1.05 × 101

Std 8.41 × 10−25 3.78 × 10−1 3.25 × 10−9 2.52 × 10−24 2.62 × 10−8 3.80 × 100 4.61 × 104 6.23 × 10−1 7.11 × 10−1 6.55 × 10−1

p-value - 1.21 × 10−12 + 1.21 × 10−12 + 4.79 × 10−16 + 1.21 × 10−12 + 1.21 × 10−12 + 1.21 × 10−12 + 1.21 × 10−12 + 1.21 × 10−12 + 1.21 × 10−12 +

F7

Median 9.74 × 100 9.00 × 102 4.57 × 102 8.37 × 100 2.14 × 104 6.29 × 104 2.98 × 1010 1.84 × 103 4.85 × 101 5.23 × 101

Mean 1.21 × 101 6.02 × 103 4.82 × 102 4.22 × 101 2.15 × 104 6.57 × 104 3.16 × 1010 2.03 × 103 6.39 × 101 5.94 × 101

Std 6.14 × 100 1.06 × 104 1.26 × 102 1.53 × 102 4.51 × 103 3.85 × 104 4.44 × 109 9.41 × 102 4.74 × 101 3.75 × 101

p-value - 2.03 × 10−09 + 3.02 × 10−11 + 1.54 × 10−1 = 3.02 × 10−11 + 3.02 × 10−11 + 3.02 × 10−11 + 3.02 × 10−11 + 1.17 × 10−9 + 2.61 × 10−10 +

F8

Median 2.41 × 107 4.74 × 105 3.11 × 107 2.33 × 107 3.86 × 107 7.69 × 106 6.98 × 108 6.55 × 102 6.56 × 10−1 4.30 × 10−1

Mean 2.41 × 107 5.05 × 105 3.11 × 107 2.34 × 107 3.87 × 107 7.66 × 106 8.24 × 108 2.70 × 105 6.64 × 105 7.86 × 10−1

Std 2.04 × 105 1.43 × 105 7.87 × 104 2.45 × 105 1.10 × 105 2.47 × 106 4.77 × 108 1.01 × 106 1.51 × 106 1.26 × 100

p-value - 3.02 × 10−11 − 3.02 × 10−11 + 2.15 × 10−13 − 3.02 × 10−11 + 3.02 × 10−11 − 3.02 × 10−11 + 3.02 × 10−11 − 2.98 × 10−11 − 3.02 × 10−11 −

F9

Median 3.99 × 107 4.27 × 107 4.66 × 107 4.55 × 107 6.72 × 107 3.33 × 107 7.56 × 108 2.24 × 108 1.76 × 108 1.80 × 108

Mean 3.94 × 107 4.34 × 107 4.62 × 107 4.51 × 107 6.70 × 107 3.39 × 107 7.46 × 108 2.20 × 108 1.73 × 108 1.80 × 108

Std 2.88 × 106 4.39 × 106 2.97 × 106 4.04 × 106 4.38 × 106 3.82 × 106 3.61 × 107 1.82 × 107 1.24 × 107 1.76 × 107

p-value - 2.39 × 10−4 + 1.29 × 10−9 + 1.43 × 10−8 + 3.02 × 10−11 + 1.03 × 10−6 − 3.02 × 10−11 + 3.02 × 10−11 + 3.02 × 10−11 + 3.02 × 10−11 +

F10

Median 1.06 × 103 9.70 × 102 7.99 × 103 8.92 × 102 9.59 × 103 2.59 × 103 4.18 × 103 6.75 × 103 6.31 × 103 6.29 × 103

Mean 1.08 × 103 9.77 × 102 8.01 × 103 8.87 × 102 9.59 × 103 2.82 × 103 4.16 × 103 6.73 × 103 6.32 × 103 6.30 × 103

Std 5.90 × 101 6.92 × 101 1.17 × 102 3.77 × 101 6.49 × 101 1.30 × 103 5.47 × 101 1.01 × 102 1.14 × 102 1.03 × 102

p-value - 6.52 × 10−7 − 3.02 × 10−11 + 9.41 × 10−14 − 3.02 × 10−11 + 3.02 × 10−11 + 3.02 × 10−11 + 3.02 × 10−11 + 3.02 × 10−11 + 3.01 × 10−11 +
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Table 4. Cont.

F Quality EDPSO TPLSO SPLSO LLSO CSO SL_PSO DECC_GDG DECC_DG2 DECC_RDG DECC_RDG2

F11

Median 1.51 × 10−13 3.51 × 100 3.04 × 10−12 2.49 × 100 3.97 × 10−8 2.43 × 101 5.62 × 100 5.44 × 100 4.76 × 100 4.86 × 100

Mean 1.49 × 10−13 3.54 × 100 3.07 × 10−12 4.60 × 100 4.01 × 10−8 2.49 × 101 5.63 × 100 5.76 × 100 4.75 × 100 4.90 × 100

Std 4.21 × 10−15 1.27 × 100 2.73 × 10−13 4.80 × 100 2.84 × 10−9 3.25 × 100 5.50 × 10−1 7.71 × 10−1 4.88 × 10−1 3.79 × 10−1

p-value - 3.62 × 10−11 + 3.62 × 10−11 + 3.65 × 10−13 + 3.62 × 10−11 + 3.62 × 10−11 + 3.62 × 10−11 + 3.62 × 10−11 + 3.62 × 10−11 + 3.62 × 10−11 +

F12

Median 1.66 × 104 1.18 × 104 9.43 × 104 1.23 × 104 4.25 × 105 1.29 × 104 2.90 × 105 4.04 × 104 2.22 × 104 2.21 × 104

Mean 1.66 × 104 1.20 × 104 9.55 × 104 1.23 × 104 4.40 × 105 1.54 × 104 2.89 × 105 3.98 × 104 2.21 × 104 2.21 × 104

Std 1.21 × 103 1.34 × 103 6.73 × 103 1.22 × 103 6.21 × 104 7.14 × 103 1.05 × 104 2.07 × 103 1.30 × 103 1.26 × 103

p-value - 5.49 × 10−11 − 3.02 × 10−11 + 1.72 × 10−13 − 3.02 × 10−11 + 4.51 × 10−2 − 3.02 × 10−11 + 3.02 × 10−11 + 3.34 × 10−11 + 3.02 × 10−11 +

F13

Median 5.90 × 102 7.42 × 102 4.96 × 102 7.81 × 102 4.90 × 102 8.91 × 102 1.42 × 103 1.67 × 103 8.24 × 102 8.27 × 102

Mean 6.18 × 102 7.57 × 102 5.53 × 102 8.21 × 102 5.55 × 102 9.88 × 102 1.47 × 103 1.84 × 103 8.23 × 102 8.49 × 102

Std 1.62 × 102 1.16 × 102 1.67 × 102 2.63 × 102 1.77 × 102 3.87 × 102 3.57 × 102 5.12 × 102 1.38 × 102 2.00 × 102

p-value - 2.25 × 10−4 + 5.94 × 10−2 = 7.48 × 10−5 + 8.50 × 10−2 − 7.60 × 10−7 + 4.98 × 10−11 + 3.02 × 10−11 + 6.28 × 10−6 + 2.88 × 10−6 +

F14

Median 1.09 × 108 1.29 × 108 1.61 × 108 1.24 × 108 2.48 × 108 8.64 × 107 8.61 × 108 8.73 × 108 7.18 × 108 7.20 × 108

Mean 1.08 × 108 1.31 × 108 1.61 × 108 1.24 × 108 2.48 × 108 8.64 × 107 8.67 × 108 8.64 × 108 7.23 × 108 7.27 × 108

Std 6.06 × 106 1.39 × 107 7.82 × 106 7.66 × 106 1.49 × 107 7.53 × 106 3.53 × 107 3.91 × 107 3.71 × 107 3.44 × 107

p-value - 1.61 × 10−10 + 3.02 × 10−11 + 7.27 × 10−12 + 3.02 × 10−11 + 1.33 × 10−10 − 3.02 × 10−11 + 3.02 × 10−11 + 3.02 × 10−11 + 3.02 × 10−11 +

F15

Median 1.05 × 104 1.01 × 104 9.93 × 103 8.33 × 102 1.01 × 104 1.12 × 104 6.75 × 103 6.74 × 103 6.55 × 103 6.58 × 103

Mean 1.05 × 104 8.70 × 103 9.93 × 103 8.72 × 102 1.01 × 104 1.13 × 104 6.78 × 103 6.75 × 103 6.55 × 103 6.57 × 103

Std 7.80 × 101 3.13 × 103 5.23 × 101 2.75 × 102 6.55 × 101 1.65 × 102 9.92 × 101 8.09 × 101 9.01 × 101 7.58 × 101

p-value - 3.02 × 10−11 − 3.02 × 10−11 − 9.42 × 10−14 − 3.01 × 10−11− 3.02 × 10−11 + 3.02 × 10−11 − 3.02 × 10−11 − 3.02 × 10−11 − 3.02 × 10−11 −

F16

Median 1.76 × 10−13 1.72 × 101 4.65 × 10−12 3.98 × 100 5.69 × 10−8 2.28 × 101 3.99 × 10−4 3.91 × 10−4 1.92 × 10−5 1.88 × 10−5

Mean 1.77 × 10−13 1.88 × 101 4.69 × 10−12 4.24 × 100 5.74 × 10−8 2.47 × 101 4.03 × 10−4 3.92 × 10−4 1.93 × 10−5 1.90 × 10−5

Std 7.02 × 10−15 7.22 × 100 4.46 × 10−13 2.08 × 100 6.14 × 10−9 1.04 × 101 2.55 × 10−5 1.34 × 10−5 9.05 × 10−7 8.73 × 10−7

p-value - 2.90 × 10−11 + 1.93 × 10−3 + 2.24 × 10−12 + 1.94 × 10−3 + 2.90 × 10−11 + 1.94 × 10−3 + 1.93 × 10−3 + 2.76 × 10−11 + 2.76 × 10−11 +

F17

Median 1.42 × 105 9.72 × 104 6.92 × 105 9.15 × 104 2.21 × 106 2.97 × 104 2.65 × 105 2.65 × 105 1.99 × 105 1.97 × 105

Mean 1.41 × 105 9.71 × 104 6.88 × 105 9.17 × 104 2.22 × 106 3.21 × 104 2.66 × 105 2.65 × 105 1.98 × 105 1.99 × 105

Std 8.66 × 103 7.69 × 103 3.42 × 104 5.04 × 103 2.10 × 105 1.07 × 104 7.98 × 103 7.75 × 103 8.87 × 103 1.05 × 104

p-value - 3.02 × 10−11 − 3.02 × 10−11 + 9.43 × 10−14 − 3.02 × 10−11 + 3.02 × 10−11 − 3.02 × 10−11 + 3.02 × 10−11 + 3.02 × 10−11 + 3.02 × 10−11 +

F18

Median 1.72 × 103 2.27 × 103 1.27 × 103 2.51 × 103 1.49 × 103 2.01 × 103 1.20 × 103 1.16 × 103 1.08 × 103 1.12 × 103

Mean 1.76 × 103 2.33 × 103 1.37 × 103 2.56 × 103 1.69 × 103 2.19 × 103 1.18 × 103 1.15 × 103 1.07 × 103 1.12 × 103

Std 3.45 × 102 4.22 × 102 3.77 × 102 7.20 × 102 8.08 × 102 5.17 × 102 1.38 × 102 1.24 × 102 1.09 × 102 9.95 × 101

p-value - 9.53 × 10−7 + 3.83 × 10−6 − 5.07 × 10−7 + 3.78 × 10−2 − 1.37 × 10−3 + 2.87 × 10−10 − 1.09 × 10−10 − 4.50 × 10−11 − 4.98 × 10−11 −

F19

Median 8.66 × 106 3.90 × 106 8.22 × 106 1.85 × 106 9.80 × 106 3.87 × 106 2.14 × 106 2.11 × 106 1.96 × 106 1.94 × 106

Mean 8.57 × 106 3.89 × 106 8.26 × 106 1.84 × 106 9.88 × 106 3.85 × 106 2.15 × 106 2.12 × 106 1.95 × 106 1.93 × 106

Std 5.50 × 105 2.71 × 105 4.89 × 105 8.65 × 104 5.06 × 105 5.38 × 105 1.71 × 105 1.05 × 105 7.93 × 104 9.83 × 104

p-value - 3.02 × 10−11 − 4.36 × 10−2 − 9.43 × 10−14 − 1.17 × 10−9 + 3.02 × 10−11 − 3.02 × 10−11 − 3.02 × 10−11 − 3.02 × 10−11 − 3.02 × 10−11 −

F20

Median 1.41 × 103 2.00 × 103 9.79 × 102 1.96 × 103 1.01 × 103 1.59 × 103 5.48 × 103 5.42 × 103 4.32 × 103 4.29 × 103

Mean 1.45 × 103 2.05 × 103 1.06 × 103 1.95 × 103 1.07 × 103 1.59 × 103 5.49 × 103 5.50 × 103 4.28 × 103 4.37 × 103

Std 1.69 × 102 1.88 × 102 1.78 × 102 2.64 × 102 1.72 × 102 1.53 × 102 3.52 × 102 3.38 × 102 2.34 × 102 3.18 × 102

p-value - 6.70 × 10−11 + 1.20 × 10−8 − 9.59 × 10−12 + 3.49 × 10−9 − 1.30 × 10−3 + 3.02 × 10−11 + 3.02 × 10−11 + 3.02 × 10−11 + 3.02 × 10−11 +

w/t/l 11/1/8 12/1/7 11/1/8 15/0/5 12/0/8 17/0/3 15/0/5 15/0/5 15/0/5

Rank 3.65 4.55 4.4 3.45 6.1 5.45 7.8 6.5 7.8 7.8
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Table 5. Fitness comparison between EDPSO and the compared algorithms on the 1000-D CEC’2013 problems with 3 × 106 fitness evaluations with respect to the
median, the mean, and the standard deviation values in the fitness of the global best solutions found in 30 independent runs. The symbols “+”, “−”, and “=” above
the p-value indicate that EDPSO is significantly superior to, significantly inferior to, and equivalent to the compared algorithms on the associated problems. Those
numbers in bold indicates that EDPSO performs significantly better than the compared algorithms.

F Quality EDPSO TPLSO SPLSO LLSO CSO SL_PSO DECC_GDG DECC_DG2 DECC_RDG DECC_RDG2

F1

Median 4.19 × 10−23 3.04 × 10−18 1.18 × 10−19 4.10 × 10−22 8.07 × 10−12 1.03 × 10−17 7.13 × 100 4.42 × 100 2.39 × 10−2 3.09 × 10−2

Mean 4.43 × 10−23 3.74 × 10−18 1.21 × 10−19 4.57 × 10−22 7.94 × 10−12 1.65 × 10−17 7.59 × 100 7.11 × 100 3.87 × 10−2 1.11 × 10−1

Std 1.26 × 10−23 1.64 × 10−18 1.21 × 10−20 1.69 × 10−22 1.23 × 10−12 3.30 × 10−17 1.03 × 100 7.73 × 100 3.97 × 10−2 2.12 × 10−1

p-value - 3.02 × 10−11 + 3.02 × 10−11 + 3.02 × 10−11 + 3.02 × 10−11 + 3.02 × 10−11 + 3.02 × 10−11 + 3.02 × 10−11 + 3.02 × 10−11 + 5.57 × 10−10 +

F2

Median 1.15 × 103 1.23 × 103 9.92 × 102 1.14 × 103 8.61 × 103 2.13 × 103 1.43 × 103 7.85 × 103 7.90 × 103 7.87 × 103

Mean 1.15 × 103 1.23 × 103 1.11 × 103 1.15 × 103 8.59 × 103 2.14 × 103 1.44 × 103 7.92 × 103 7.79 × 103 7.78 × 103

Std 5.03 × 101 5.85 × 101 4.74 × 102 4.54 × 101 1.84 × 102 1.48 × 102 2.18 × 101 4.07 × 102 3.64 × 102 3.65 × 102

p-value - 3.83 × 10−6 + 8.50 × 10−2 = 8.88 × 10−1 = 3.01 × 10−11 + 3.01 × 10−11 + 3.01 × 10−11 + 3.01 × 10−11 + 3.01 × 10−11 + 3.01 × 10−11 +

F3

Median 2.16 × 101 2.16 × 101 2.16 × 101 2.16 × 101 2.16 × 101 2.16 × 101 2.15 × 101 2.15 × 101 2.14 × 101 2.15 × 101

Mean 2.16 × 101 2.16 × 101 2.16 × 101 2.16 × 101 2.16 × 101 2.16 × 101 2.15 × 101 2.15 × 101 2.14 × 101 2.15 × 101

Std 5.79 × 10−3 2.34 × 10−2 2.60 × 10−2 6.00 × 10−3 1.78 × 10−2 3.02 × 10−2 1.10 × 10−2 1.22 × 10−2 1.11 × 10−2 8.29 × 10−3

p-value - 3.22 × 10−1 = 4.78 × 10−1 = 4.33 × 10−1 = 1.20 × 10−1 = 3.50 × 10−3 + 2.98 × 10−11 − 2.98 × 10−11 − 3.00 × 10−11 − 2.96 × 10−11 −

F4

Median 6.11 × 109 4.27 × 109 9.23 × 109 6.53 × 109 1.25 × 1010 4.47 × 109 4.19 × 1011 8.21 × 1010 7.84 × 1010 6.62 × 1010

Mean 6.05 × 109 4.28 × 109 9.60 × 109 6.68 × 109 1.37 × 1010 4.46 × 109 4.30 × 1011 8.02 × 1010 7.46 × 1010 6.92 × 1010

Std 1.08 × 109 1.06 × 109 1.70 × 109 1.50 × 109 3.22 × 109 8.94 × 108 8.20 × 1010 2.22 × 1010 1.92 × 1010 2.32 × 1010

p-value - 5.60 × 10−7 − 2.15 × 10−10 + 1.02 × 10−1 = 3.02 × 10−11 + 6.05 × 10−7 − 3.02 × 10−11 + 3.02 × 10−11 + 3.02 × 10−11 + 3.02 × 10−11 +

F5

Median 6.96 × 105 6.51 × 105 6.48 × 105 6.72 × 105 6.08 × 105 8.89 × 105 8.66 × 106 6.10 × 106 5.85 × 106 5.77 × 106

Mean 1.97 × 106 6.70 × 105 6.40 × 105 6.73 × 105 6.09 × 105 8.98 × 105 8.70 × 106 6.07 × 106 5.78 × 106 5.71 × 106

Std 2.70 × 106 1.02 × 105 9.32 × 104 9.47 × 104 1.04 × 105 1.27 × 105 3.10 × 105 2.21 × 105 3.91 × 105 3.58 × 105

p-value - 4.92 × 10−1 = 1.45 × 10−1 = 5.89 × 10−1 = 3.64 × 10−2 − 4.71 × 10−4 − 3.02 × 10−11 + 6.76 × 10−5 + 6.77 × 10−5 + 6.77 × 10−5 +

F6

Median 1.06 × 106 1.06 × 106 1.06 × 106 1.06 × 106 1.06 × 106 1.06 × 106 1.06 × 106 1.06 × 106 1.06 × 106 1.06 × 106

Mean 1.06 × 106 1.06 × 106 1.06 × 106 1.06 × 106 1.06 × 106 1.06 × 106 1.06 × 106 1.06 × 106 1.06 × 106 1.06 × 106

Std 1.07 × 103 2.34 × 103 1.83 × 103 1.17 × 103 1.09 × 103 2.23 × 103 1.38 × 103 1.43 × 103 1.25 × 103 1.23 × 103

p-value - 4.20 × 10−4 + 5.84 × 10−1 = 4.38 × 10−1 = 7.67 × 10−1 = 4.87 × 10−1 = 1.92 × 10−9 + 5.11 × 10−4 + 5.73 × 10−8 + 6.96 × 10−05 +

F7

Median 2.53 × 106 1.17 × 106 5.52 × 106 1.70 × 106 5.56 × 106 1.49 × 106 7.74 × 108 7.36 × 107 2.93 × 108 8.65 × 107

Mean 2.70 × 106 1.21 × 106 5.61 × 106 1.89 × 106 5.98 × 106 1.76 × 106 7.94 × 108 7.82 × 107 3.76 × 108 8.36 × 107

Std 1.14 × 106 4.52 × 105 2.25 × 106 1.07 × 106 3.08 × 106 1.51 × 106 1.21 × 108 2.80 × 107 2.67 × 108 2.05 × 107

p-value - 3.65 × 10−8 − 1.07 × 10−7 + 1.77 × 10−3 − 7.12 × 10−9 + 2.00 × 10−5 + 3.02 × 10−11 + 3.02 × 10−11 + 3.02 × 10−11 + 3.02 × 10−11 +

F8

Median 1.20 × 1014 6.91 × 1013 1.59 × 1014 1.37 × 1014 2.45 × 1014 9.65 × 1013 1.74 × 1016 9.53 × 1015 6.96 × 1015 6.01 × 1015

Mean 1.19 × 1014 7.19 × 1013 1.59 × 1014 1.38 × 1014 2.50 × 1014 1.11 × 1014 1.78 × 1016 9.38 × 1015 7.03 × 1015 6.58 × 1015

Std 3.47 × 1013 3.55 × 1013 2.76 × 1013 3.45 × 1013 8.60 × 1013 5.49 × 1013 5.51 × 1015 2.73 × 1015 1.57 × 1015 2.08 × 1015

p-value - 3.52 × 10−7 − 1.25 × 10−5 + 1.63 × 10−2 + 5.46 × 10−9 + 1.22 × 10−1 + 3.02 × 10−11 + 3.02 × 10−11 + 3.02 × 10−11 + 3.02 × 10−11 +

F9

Median 1.13 × 108 4.33 × 107 7.93 × 107 1.13 × 108 6.11 × 107 8.10 × 107 5.73 × 108 5.58 × 108 5.43 × 108 5.36 × 108

Mean 1.21 × 108 4.23 × 107 8.27 × 107 1.47 × 108 6.28 × 107 8.11 × 107 5.66 × 108 5.62 × 108 5.42 × 108 5.34 × 108

Std 3.29 × 107 6.71 × 106 2.18 × 107 1.61 × 108 1.31 × 107 1.09 × 107 3.06 × 107 3.28 × 107 3.02 × 107 2.38 × 107

p-value - 3.02 × 10−11 − 3.09 × 10−6 − 8.07 × 10−1 = 2.15 × 10−10 − 9.06 × 10−8 − 3.02 × 10−11 + 3.02 × 10−11 + 3.02 × 10−11 + 3.02 × 10−11 +

F10

Median 9.41 × 107 9.42 × 107 9.40 × 107 9.42 × 107 9.41 × 107 9.37 × 107 9.47 × 107 9.46 × 107 9.47 × 107 9.46 × 107

Mean 9.41 × 107 9.42 × 107 9.40 × 107 9.43 × 107 9.41 × 107 9.29 × 107 9.46 × 107 9.46 × 107 9.46 × 107 9.46 × 107

Std 2.69 × 105 2.77 × 105 2.91 × 105 3.26 × 105 2.68 × 105 1.55 × 106 2.03 × 105 2.51 × 105 1.84 × 105 2.47 × 105

p-value - 9.93 × 10−02 = 1.26 × 10−1 = 3.27 × 10−2 + 7.06 × 10−1 = 1.41 × 10−4 − 3.16 × 10−10 + 2.44 × 10−9 + 9.91 × 10−11 + 5.96 × 10−9 +
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Table 5. Cont.

F Quality EDPSO TPLSO SPLSO LLSO CSO SL_PSO DECC_GDG DECC_DG2 DECC_RDG DECC_RDG2

F11

Median 9.26 × 1011 1.79 × 108 9.23 × 1011 9.27 × 1011 9.35 × 1011 9.39 × 1011 6.93 × 108 2.09 × 1010 5.84 × 108 1.43 × 1010

Mean 9.29 × 1011 1.78 × 108 9.29 × 1011 9.31 × 1011 9.30 × 1011 9.36 × 1011 7.01 × 108 2.68 × 1010 5.81 × 108 1.52 × 1010

Std 1.00 × 1010 5.06 × 107 1.04 × 1010 1.08 × 1010 9.36 × 109 8.27 × 109 1.09 × 108 1.48 × 1010 8.79 × 107 7.61 × 109

p-value - 3.02 × 10−11 − 8.42 × 10−1 = 5.01 × 10−1 − 9.12 × 10−1 = 1.17 × 10−2 + 3.02 × 10−11 − 3.02 × 10−11 − 3.02 × 10−11 − 3.02 × 10−11 −

F12

Median 1.43 × 103 2.03 × 103 1.03 × 103 1.82 × 103 1.05 × 103 1.76 × 103 5.56 × 103 5.51 × 103 4.31 × 103 4.32 × 103

Mean 1.43 × 103 2.04 × 103 1.06 × 103 1.84 × 103 1.09 × 103 1.78 × 103 5.54 × 103 5.63 × 103 4.37 × 103 4.33 × 103

Std 8.89 × 101 2.38 × 102 5.91 × 101 1.62 × 102 8.43 × 101 1.74 × 102 3.77 × 102 7.69 × 102 3.24 × 102 2.68 × 102

p-value - 3.02 × 10−11 + 4.45 × 10−11 − 5.49 × 10−11 + 6.69 × 10−11 − 6.12 × 10−10 + 3.02 × 10−11 + 3.02 × 10−11 + 3.02 × 10−11 + 3.02 × 10−11 +

F13

Median 4.28 × 108 1.84 × 108 1.22 × 109 3.07 × 108 7.21 × 108 4.03 × 108 1.59 × 109 1.47 × 109 2.97 × 109 7.15 × 108

Mean 4.40 × 108 2.12 × 108 1.24 × 109 3.45 × 108 7.66 × 108 6.26 × 108 1.57 × 109 1.54 × 109 3.08 × 109 7.23 × 108

Std 1.50 × 108 1.17 × 108 5.06 × 108 1.44 × 108 2.87 × 108 8.23 × 108 3.45 × 108 3.47 × 108 8.07 × 108 1.58 × 108

p-value - 1.87 × 10−7 − 6.12 × 10−10 + 1.27 × 10−2 − 7.09 × 10−8 + 7.06 × 10−1 = 3.02 × 10−11 + 3.02 × 10−11 + 3.02 × 10−11 + 9.83 × 10−8 +

F14

Median 2.01 × 108 5.81 × 107 5.19 × 109 9.27 × 107 2.92 × 109 1.56 × 108 4.54 × 109 4.83 × 109 2.22 × 109 3.09 × 109

Mean 3.67 × 108 5.98 × 107 8.36 × 109 1.61 × 108 3.74 × 109 2.71 × 108 5.45 × 109 4.71 × 109 2.87 × 109 3.43 × 109

Std 4.23 × 108 1.28 × 107 6.66 × 109 2.30 × 108 3.35 × 109 2.36 × 108 3.96 × 109 1.80 × 109 1.90 × 109 2.07 × 109

p-value - 1.35 × 10−10 − 4.46 × 10−11 + 9.45 × 10−5 − 4.94 × 10−11 + 2.92 × 10−1 = 8.20 × 10−11 + 8.20 × 10−11 + 3.29 × 10−10 + 1.49 × 10−10 +

F15

Median 4.53 × 107 1.24 × 107 4.13 × 107 4.63 × 106 7.62 × 107 6.06 × 107 8.70 × 106 8.92 × 106 7.89 × 106 8.03 × 106

Mean 4.70 × 107 1.23 × 107 4.19 × 107 4.63 × 106 7.64 × 107 6.10 × 107 9.05 × 106 9.08 × 106 8.05 × 106 8.16 × 106

Std 7.77 × 106 9.89 × 105 3.55 × 106 3.38 × 105 6.06 × 106 6.32 × 106 9.14 × 105 9.03 × 105 1.01 × 106 1.02 × 106

p-value - 3.02 × 10−11 − 5.57 × 10−3 − 3.02 × 10−11 − 3.69 × 10−11 + 4.31 × 10−8 + 3.02 × 10−11 − 3.02 × 10−11 − 3.02 × 10−11 − 3.02 × 10−11 −

w/t/l 4/3/8 6/6/3 4/6/5 8/4/3 8/3/4 12/0/3 12/0/3 12/0/3 12/0/3

Rank 4.07 3.53 4.73 4.00 5.53 4.40 8.20 7.60 6.80 6.13
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From Table 4, the comparison results between EDPSO and the nine compared algo-
rithms on the 20 1000-D CEC’2010 benchmark problems are summarized as follows:

(1) From the perspective of the averaged ranks (shown in the last row) obtained by the
Friedman test, EDPSO and LLSO achieve much smaller rank values than the other
eight compared algorithms. This demonstrates that the proposed EDPSO and LLSO
achieve significantly better performance on the CEC’2010 benchmark set than the
other eight compared algorithms.

(2) In view of the results (shown in the second to last row) obtained from the Wilcoxon
rank-sum test, it is intuitively found that the proposed EDPSO is significantly better
than the nine compared algorithms on at least 11 problems, and shows inferiority
to them on at most eight problems. In particular, compared with the five holistic
large-scale PSOs (namely TPLSO, SPLSO, LLSO, CSO, and SL-PSO), EDPSO shows
significant dominance to them on 11, 12, 11, 15, and 12 problems, respectively, and
only displays inferiority to them on eight, seven, eight, five, and eight problems,
respectively. In comparison with the four CCEAs (namely, DECC-GDG, DECC-DG2,
DECC-RDG, and DECC-RDG2), EDPSO significantly outperforms DECC-GDG on 17
problems, and significantly beats DECC-DG2, DECC-RDG, and DECC-RDG2 on all
15 problems.

From Table 5, we can draw the following conclusions with respect to the comparison
results between the proposed EDPSO and the nine state-of-the-art compared methods on
the 15 1000-D CEC’2013 benchmark problems:

(1) In terms of the average rank values obtained from the Friedman test, the proposed
EDPSO achieves a much smaller rank value than seven compared algorithms. This
indicates that the proposed EDPSO achieves much better overall performance than
them on such a difficult benchmark set. In particular, EDPSO achieves considerably
similar performance with LLSO, but obtains slightly inferior performance to TPLSO.

(2) With respect to the results obtained from the Wilcoxon rank-sum test, in comparison
with the five holistic large-scale PSO variants, EDPSO significantly dominates SPLSO,
CSO, and SL-PSO six, eight, and eight problems, respectively, and only exhibits inferi-
ority to them in three, three, and four problems, respectively. Compared with LLSO,
EDPSO achieves very competitive performance with it. However, in comparison with
TPLSO, EDPSO shows slightly inferiority on this benchmark set. Competed with the
four CCEAs, EDPSO presents significant superiority to them all on 12 problems and
displays inferiority to them all on three problems.

The above experiments have demonstrated the effectiveness of the proposed EDPSO in
solving high-dimensional problems. To further demonstrate its efficiency, we conduct exper-
iments on the CEC’2010 and the CEC’2013 benchmark sets to investigate the convergence
behavior comparisons between EDPSO and the compared algorithms. In these experiments,
we set the maximum number of fitness evaluations as 5 × 106 for all algorithms. Then, we
record the global best fitness every 5 × 105 fitness evaluations. Figures 2 and 3 display the
convergence behavior comparisons between EDPSO and the nine compared algorithms on
the CEC’2010 and the CEC’2013 benchmark sets, respectively.

From Figure 2, at first glance, we find that EDPSO achieves clearly better performance
than the nine compared algorithms in terms of both convergence speed and solution
quality on three problems (F1, F11, and F16). In particular, EDPSO could finally find the true
global optimum of F1. Taking deep observation, it is found that on the whole CEC’2010
benchmark set, the proposed EDPSO achieves highly competitive or even much better
performance than most of the compared algorithms on most problems with respect to
both the convergence speed and the solution quality. This implicitly demonstrates that the
proposed EDPSO is efficient when solving high-dimensional problems.

From Figure 3, the convergence comparison results between the proposed EDPSO and
the compared algorithms on the CEC’2013 show that the proposed EDPSO still presents
considerably competitive or even great superiority to most of the compared algorithms
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on most problems in terms of both the convergence speed and the solution quality. This
further demonstrates that the proposed EDPSO is efficient when solving complicated
high-dimensional problems.

The above experiments on the two benchmark sets have demonstrated the effec-
tiveness and efficiency of the proposed EDPSO. The superiority of EDPSO in solving
high-dimensional problems mainly benefits from the proposed elite-directed learning strat-
egy, which treats particles in different layers differently and lets particles in different layers
learn from different numbers of predominant particles in higher layers. With this strategy,
the learning effectiveness and the learning diversity of particles are largely improved, and
the algorithm could compromise the search diversification and intensification well at the
swarm level and the particle level to explore and exploit the solution space properly to
obtain satisfactory performance.
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4.3. Effectiveness of the Additional Archive

In this section, we conduct experiments to verify the usefulness of the additional
archive. To this end, we first develop two versions of EDPSO. First, we remove the archive
in EDPSO, leading to a variant of EDPSO, which we name as “EDPSO-WA”. Second, to
demonstrate the effectiveness of using predominant individuals in the archive that are
better than the best in the third layer, we replace this strategy by randomly choosing
individuals in the archive along with the first two layers to direct the update of particles in
the third layer. As a result, a new variant of EDPSO, which we name “EDPSO-ARand”, is
developed. Then, we conduct experiments on the CEC’2010 benchmark set to compare the
three different versions of EDPSO. Table 6 presents the comparison results with the best
results in bold.
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Table 6. Fitness comparison between EDPSO with and without the archive on the 1000-D CEC’2010
problems with 3 × 106 fitness evaluations with respect to the mean fitness of the global best solutions
found in 30 independent runs. The best results are highlighted in bold.

F EDPSO EDPSO-WA EDPSO-ARand

F1 2.72 × 10−23 2.25 × 10−20 3.13 × 10−18

F2 1.11 × 103 1.25 × 103 7.58 × 102

F3 2.20 × 10−14 6.82 × 10−14 1.46 × 10−12

F4 4.00 × 1011 7.43 × 1011 3.36 × 1011

F5 2.82 × 108 2.91 × 108 2.73 × 108

F6 4.00 × 10−9 4.31 × 10−9 4.76 × 10−9

F7 1.21 × 101 1.32 × 104 1.99 × 104

F8 2.41 × 107 3.53 × 107 3.19 × 107

F9 3.94 × 107 7.88 × 107 1.85 × 107

F10 1.08 × 103 1.23 × 103 9.40 × 103

F11 1.49 × 10−13 5.82 × 100 1.68 × 10−11

F12 1.66 × 104 6.79 × 104 2.22 × 105

F13 6.18 × 102 8.85 × 102 4.78 × 102

F14 1.08 × 108 2.21 × 108 6.59 × 107

F15 1.05 × 104 1.06 × 104 9.74 × 103

F16 3.44 × 10−1 8.39 × 10−1 2.85 × 10−11

F17 1.41 × 105 3.19 × 105 2.07 × 106

F18 1.76 × 103 3.40 × 103 1.02 × 103

F19 8.57 × 106 9.96 × 106 1.00 × 107

F20 1.45 × 103 2.07 × 103 9.84 × 102

Rank 1.52 2.57 1.90

From Table 6, we can obtain the following findings. (1) With respect to the results
of the Friedman test, the proposed EDPSO achieves the smallest rank among the three
versions of EDPSO. In addition, from the perspective of the number of problems where
the associated algorithm obtains the best results, we find the proposed EDPSO obtains
the best results on 10 problems. These observations demonstrate the effectiveness of the
additional archive and the way of using this archive. (2) Further, compared with EDPSO-
WA, both the proposed EDPSO and EDPSO-ARand achieve much better performance. This
demonstrates the usefulness of the additional archive. In comparison with EDPSO-ARand,
the proposed EDPSO performs much better. This demonstrates the usefulness of the way
of using predominant individuals in the archive to direct the update of particles in the third
layer.

To summarize, the additional archive is helpful for EDPSO to achieve promising
performance. This is because it introduces more candidate exemplars for particles in the
third layer without destroying the convergence of the swarm. In this way, the learning
diversity of particles is further promoted, which is beneficial for the swarm to explore the
solution space and escape from local regions.

5. Conclusions

This paper has proposed an elite-directed particle swarm optimization with historical
information (EDPSO) to tackle large-scale optimization problems. By taking inspiration
from the “Pareto Principle”, which is also known as the 80-20 rule, we first partition
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the swarm into three layers with the first layer containing the top best 20% of particles
and the other two layers of the same size consisting of the remaining 80% of particles.
Then, particles in the third layer are updated by learning from two different exemplars
randomly selected from those in the first two layers, and particles in the second layer
are updated by learning from two different exemplars randomly selected from the first
layer. To preserve the valuable evolutionary information, particles in the first layer are not
updated and directly enter the next generation. To make full use of potentially valuable
historical information, we additionally maintain an archive to store the obsolete elites in the
first layer and then introduce them to the learning of particles in the third layer. With the
above two techniques, particles in the last two layers could learn from different numbers of
predominant candidates, and therefore the learning effectiveness and the learning diversity
of particles are expectedly largely improved. By means of the proposed elite-directed
learning strategy, EDPSO could compromise exploration and exploitation well at both the
particle level and the swarm level to search high-dimensional space, which contributes to
its promising performance solving complex large-scale optimization problems.

Extensive experiments have been conducted on the widely used CEC’2010 and
CEC’2013 large-scale benchmark sets to validate the effectiveness of the proposed EDPSO.
Experimental results have demonstrated that the proposed EDPSO could consistently
achieve much better performance than the compared peer large-scale optimizers on the two
benchmark sets. This verifies that EDPSO is promising for solving large-scale optimization
problems in real-world applications.

However, in EDPSO, the control parameter φ is currently fixed and needs fine-tuning,
which requires a lot of effort. To alleviate this issue, in the future, we will concentrate on
devising an adaptive adjustment scheme for φ to eliminate its sensitivity based on the
evolution state of the swarm and the evolutionary information of particles. In addition,
to promote the application of the proposed EDPSO, in the future, we will also focus on
utilizing EDPSO to solve real-world optimization problems.
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