Article

On Some Properties of the First Brocard Triangle in the Isotropic Plane

Vladimir Volenec ${ }^{1,+(\mathbb{D}}$, Zdenka Kolar-Begović ${ }^{2, *,+(\mathbb{D})}$ and Ružica Kolar-Šuper ${ }^{3,+(\mathbb{D}}$
1 Department of Mathematics, University of Zagreb, Bijenička cesta 30, 10000 Zagreb, Croatia; volenec@math.hr
2 Department of Mathematics, University of Osijek, Trg Lj. Gaja 6, 31000 Osijek, Croatia
3 Faculty of Education, University of Osijek, Cara Hadrijana 10, 31000 Osijek, Croatia; rkolar@foozos.hr
* Correspondence: zkolar@mathos.hr
\dagger These authors contributed equally to this work.

Citation: Volenec, V.; Kolar-Begović, Z.; Kolar-Šuper, R. On Some Properties of the First Brocard Triangle in the Isotropic Plane. Mathematics 2022, 10, 1381. https:// doi.org/10.3390/math10091381

Academic Editor: Yang-Hui He

Received: 9 March 2022
Accepted: 19 April 2022
Published: 20 April 2022
Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Abstract

In this paper we introduce the first Brocard triangle of an allowable triangle in the isotropic plane and derive the coordinates of its vertices in the case of a standard triangle. We prove that the first Brocard triangle is homologous to the given triangle and that these two triangles are parallelogic. We consider the relationships between the first Brocard triangle and the Steiner axis, the Steiner point, and the Kiepert parabola of the triangle. We also investigate some other interesting properties of this triangle and consider relationships between the Euclidean and the isotropic case.

Keywords: isotropic plane; first Brocard triangle; Brocard circle; parallelogy
MSC: 51N25

1. Introduction and Motivation

The isotropic (or Galilean) plane is a projective-metric plane, where the absolute consists of one line-the absolute line ω_{A}, and one point on that line-the absolute point Ω_{A}.

When using homogeneous coordinates in the projective plane, $P=\left(x_{0}: x_{1}: x_{2}\right)$, $x_{0}^{2}+x_{1}^{2}+x_{2}^{2} \neq 0$, then we choose the absolute point $\Omega_{A}=(0: 1: 0)$ and the absolute line ω_{A} having the equation $x_{2}=0$. Points incident to the absolute line ω_{A} are called isotropic points and lines incident to the absolute point Ω_{A} are called isotropic lines. We will mention a few well known metric quantities in the isotropic plane for which we assume that $x=\frac{x_{0}}{x_{2}}$ and $y=\frac{x_{1}}{x_{2}}$.

Two lines are called parallel if they have the same isotropic point. Points which lie on the same isotropic line are said to be parallel.

For two non-parallel points $P_{1}=\left(x_{1}, y_{1}\right)$ and $P_{2}=\left(x_{2}, y_{2}\right)$ the isotropic distance is defined as $d\left(P_{1}, P_{2}\right):=x_{2}-x_{1}$. Notice that the isotropic distance is directed. For two parallel points $P_{1}=\left(x_{1}, y_{1}\right)$ and $P_{2}=\left(x_{1}, y_{2}\right)$, the isotropic span is defined as $s\left(P_{1}, P_{2}\right):=y_{2}-y_{1}$. The midpoint of the points $P_{1}=\left(x_{1}, y_{1}\right)$ and $P_{2}=\left(x_{2}, y_{2}\right)$ is defined as $M=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$.

The angle formed by non-isotropic lines l_{1} and l_{2} given by $y=m_{1} x+b_{1}$ and $y=m_{2} x+b_{2}$ is defined by $\varphi=\angle\left(l_{1}, l_{2}\right):=m_{2}-m_{1}$, and it is directed. The bisector of the lines l_{1} and l_{2} is given by the equation $y=\frac{m_{1}+m_{2}}{2} x+\frac{b_{1}+b_{2}}{2}$. A normal line to a line l at a point P is the isotropic line n passing through P.

All projective transformations that preserve the absolute figure are of the form

$$
\begin{array}{ll}
\bar{x}=a+p x, & a, b, c, p, q \in \mathbf{R}, \\
\bar{y}=b+c x+q y, & p q \neq 0,
\end{array}
$$

and form the 5-parametric group G_{5} known as the group of similarities of the isotropic plane (see [1]).

Distances, spans and angles are kept invariant under the subgroup G_{3} of G_{5} which consists of transformations of the form

$$
\begin{aligned}
& \bar{x}=a+x \\
& \bar{y}=b+c x+y, \quad a, b, c \in \mathbf{R} .
\end{aligned}
$$

G_{3} is called the motion group of the isotropic plane.
Metric quantities and all the facts related to the geometry of the isotropic plane can be found in [1,2].

A triangle is called allowable if none of its sides are isotropic [1]. As it is explained in [3], according to [1], to any allowable triangle in the isotropic plane there is exactly one circumscribed circle. The equation of this circle is of the form $y=u x^{2}+v x+w, u \neq 0$. Choosing a suitable coordinate system and applying the group of similarities, we may assume that the equation of this circle is $y=x^{2}$, and that the vertices of the allowable triangle $A B C$ are $A=\left(a, a^{2}\right), B=\left(b, b^{2}\right), C=\left(c, c^{2}\right)$, where a, b, and c are mutually different numbers. For convenience, we will frequently use abbreviations $a b c=p$ and $a b+b c+c a=q$. Choosing, without loss of generality, that $a+b+c=0$, the diameter of the circle circumscribed to the triangle $A B C$, passing through its centroid $G=\left(\frac{a+b+c}{3}, \frac{a^{2}+b^{2}+c^{2}}{3}\right)=\left(0,-\frac{2}{3} q\right)$, lies on the y-axis, while the x-axis is tangent to this circle at the endpoint of that diameter.

For each allowable triangle $A B C$, one can, in the described way, achieve that its circumscribed circle has the equation $y=x^{2}$, and its vertices are of the form $A=\left(a, a^{2}\right)$, $B=\left(b, b^{2}\right)$, and $C=\left(c, c^{2}\right)$, with $a+b+c=0$. We shall say that such a triangle is in the standard position, or shorter, that the triangle $A B C$ is the standard triangle. To prove geometric facts for allowable triangles, it is sufficient to give a proof for a standard triangle. Its sides $B C, C A$, and $A B$ have equations $y=-a x-b c, y=-b x-c a$, and $y=-c x-a b$. Using the mentioned notations it can be proved that $q=b c-a^{2}$ and $(c-a)(a-b)=2 q-3 b c$.

The tangential triangle of a given triangle $A B C$ is the triangle $A_{t} B_{t} C_{t}$ determined by the three tangents to the circumscribed circle of the triangle $A B C$ at its vertices. It can be proved that the lines $A A_{t}, B B_{t}$, and $C C_{t}$ are symmetric, with respect to bisectors of the angles A, B, and C, to the medians $A G, B G$, and $C G$ of the triangle $A B C$. The lines $A A_{t}$, $B B_{t}$, and $C C_{t}$ meet at the point K which is called the symmedian center of the triangle $A B C$.

Let $A B C$ be a standard triangle and let \mathcal{A}, \mathcal{B}, and \mathcal{C}, respectively $\mathcal{A}^{\prime}, \mathcal{B}^{\prime}$, and \mathcal{C}^{\prime}, be lines through the points A, B, and C such that $\angle(A B, \mathcal{A})=\angle(B C, \mathcal{B})=\angle(C A, \mathcal{C})=: \varphi$, $\angle\left(\mathcal{A}^{\prime}, A C\right)=\angle\left(\mathcal{B}^{\prime}, B A\right)=\angle\left(\mathcal{C}^{\prime}, C B\right)=: \psi$. In [4] it is proved that the lines \mathcal{A}, \mathcal{B}, and \mathcal{C} pass through a common point, say Ω_{1}, if and only if $\varphi=\omega$, and the lines $\mathcal{A}^{\prime}, \mathcal{B}^{\prime}$, and \mathcal{C}^{\prime} pass through a common point, say Ω_{2}, if and only if $\psi=\omega$, where ω is given by $\omega=$ $-\frac{1}{3 q}(b-c)(c-a)(a-b)$. The points Ω_{1} and Ω_{2} are called Crelle-Brocard points, and ω is called the Brocard angle.

The isotropic analogue of Brocard's theorem was first obtained in [2].
The standard triangle $A B C$ has, by [4], the symmedian center K and Crelle-Brocard points Ω_{1} and Ω_{2} given by

$$
\begin{equation*}
K=\left(\frac{3 p}{2 q},-\frac{q}{3}\right), \Omega_{1}=\left(\frac{p-p_{1}}{q}, \frac{27 p_{1}^{2}-2 q^{3}}{9 q^{2}}\right), \Omega_{2}=\left(\frac{p-p_{2}}{q}, \frac{27 p_{2}^{2}-2 q^{3}}{9 q^{2}}\right) \tag{1}
\end{equation*}
$$

where $p_{1}=\frac{1}{3}\left(b c^{2}+c a^{2}+a b^{2}\right), p_{2}=\frac{1}{3}\left(b^{2} c+c^{2} a+a^{2} b\right)$. One can prove that $p_{1}+p_{2}+p=0$, $p_{1}^{2}+p_{1} p_{2}+p_{2}^{2}=-\frac{q^{3}}{9}, p^{2}+p p_{1}+p_{1}^{2}=-\frac{q^{3}}{9}$, and $p^{2}+p p_{2}+p_{2}^{2}=-\frac{q^{3}}{9}$.

These three points lie, according to [5], on the Brocard circle of the triangle $A B C$ (see Figure 1), given by

$$
\begin{equation*}
y=2 x^{2}-\frac{3 p}{q} x-\frac{q}{3} . \tag{2}
\end{equation*}
$$

Figure 1. Brocard circle \mathcal{K}_{b}, the Steiner axis \mathcal{S}, and the first Brocard triangle $A_{1} B_{1} C_{1}$ of the triangle $A B C$. Visualization of statements of Theorems 1, 3 and 4.

If A_{m}, B_{m}, and C_{m} are midpoints of the sides $B C, C A$, and $A B$ of the allowable triangle $A B C$, and A^{\prime}, B^{\prime} and C^{\prime} are points on the perpendicular bisectors of these sides such that spans $s\left(A_{m}, A^{\prime}\right), s\left(B_{m}, B^{\prime}\right)$, and $s\left(C_{m}, C^{\prime}\right)$ are proportional to the lengths of sides $B C$, $C A$, and $A B$, then the points $B C \cap B^{\prime} C^{\prime}, C A \cap C^{\prime} A^{\prime}$, and $A B \cap A^{\prime} B^{\prime}$ lie on a line, call it \mathcal{T}. Triangles $A^{\prime} B^{\prime} C^{\prime}$ are the so-called Kiepert triangles of the triangle $A B C$, and the line \mathcal{T} is the axis of homology of the triangle $A B C$ and the corresponding Kiepert triangle $A^{\prime} B^{\prime} C^{\prime}$. Axes of homology of an allowable triangle $A B C$ and its Kiepert triangles envelope a parabola which is called the Kiepert parabola [6].

The inscribed and the circumscribed Steiner's ellipses of an allowable triangle have the same nonisotropic axis, which passes through the centroid G of that triangle and which in the case of a standard triangle has equation $y=-\frac{3 p}{2 q} x-\frac{2}{3} q$. This axis is called the Steiner's axis of the considered triangle. In [7], the Steiner point of the allowable triangle $A B C$ is defined as the fourth (the first three being A, B, and C) common point S of the circumscribed circle and the circumscribed Steiner ellipse of that triangle. If $A B C$ is a standard triangle then $S=\left(-\frac{3 p}{q}, \frac{9 p^{2}}{q^{2}}\right)$.
2. The First Brocard Triangle of a Triangle in the Isotropic Plane

In this section we will define the first Brocard triangle of a triangle in the isotropic plane.

Theorem 1. Given a standard triangle $A B C$, the lines through its symmedian center K and parallel to its sides $B C, C A$, and $A B$ meet the Brocard circle, besides the point K, at points

$$
\begin{align*}
& A_{1}=\left(-\frac{a}{2}, \frac{1}{6 q}\left(9 a p+3 a^{2} q-2 q^{2}\right)\right) \\
& B_{1}=\left(-\frac{b}{2}, \frac{1}{6 q}\left(9 b p+3 b^{2} q-2 q^{2}\right)\right) \tag{3}\\
& C_{1}=\left(-\frac{c}{2}, \frac{1}{6 q}\left(9 c p+3 c^{2} q-2 q^{2}\right)\right),
\end{align*}
$$

which lie on bisectors of the sides $B C, C A$, and $A B$, respectively (see Figure 1).
Proof. The point A_{1} obviously lies on the bisector of $B C$, and with $x=-\frac{a}{2}$, from (2) and

$$
\begin{equation*}
y=-a x+\frac{3 a p}{2 q}-\frac{q}{3} \tag{4}
\end{equation*}
$$

we get the ordinate of the point A_{1}

$$
y=\frac{a^{2}}{2}+\frac{3 a p}{2 q}-\frac{q}{3}=\frac{1}{6 q}\left(9 a p+3 a^{2} q-2 q^{2}\right) .
$$

Therefore, A_{1} is the intersection of that line and the Brocard circle (2). This line is parallel to $B C$ and passes through K, see (1).

The points A_{1}, B_{1}, and C_{1} from Theorem 1 determine the first Brocard triangle of the triangle $A B C$ (see Figure 1).

Theorem 2. The sides of the first Brocard triangle $A_{1} B_{1} C_{1}$ of the standard triangle $A B C$ are given by

$$
\begin{array}{lll}
B_{1} C_{1} & \ldots & y=\left(a-\frac{3 p}{q}\right) x-\frac{1}{6}(2 q+3 b c) \\
C_{1} A_{1} & \ldots & y=\left(b-\frac{3 p}{q}\right) x-\frac{1}{6}(2 q+3 c a) \tag{5}\\
A_{1} B_{1} & \ldots & y=\left(c-\frac{3 p}{q}\right) x-\frac{1}{6}(2 q+3 a b)
\end{array}
$$

Proof. The point B_{1} satisfies the first equation in (5) because

$$
\left(a-\frac{3 p}{q}\right)\left(-\frac{b}{2}\right)-\frac{1}{6}(2 q+3 b c)=\frac{1}{6 q}\left(9 b p+3 b^{2} q-2 q^{2}\right)
$$

and so does the point C_{1}.
Theorem 3. A triangle and its first Brocard triangle have the same centroid (see Figure 1).
Proof. According to [3], the triangle $A B C$ has the centroid $G=\left(0,-\frac{2}{3} q\right)$. The triangle $A_{1} B_{1} C_{1}$ with vertices (3), has the same centroid because $a+b+c=0$ and

$$
\frac{1}{3} \cdot \frac{1}{6 q}\left(9(a+b+c) p+3\left(a^{2}+b^{2}+c^{2}\right) q-6 q^{2}\right)=\frac{1}{18 q}\left(3 q(-2 q)-6 q^{2}\right)=-\frac{2}{3} q .
$$

3. The First Brocard Triangle and Some Other Significant Elements

In this section we consider the relationships between the first Brocard triangle and some other objects related to a triangle in the isotropic plane.

Theorem 4. Let G be the centroid and $A_{1} B_{1} C_{1}$ the first Brocard triangle of an allowable triangle $A B C$. Then the pairs of lines $G A, G A_{1} ; G B, G B_{1} ;$ and $G C, G C_{1}$ have the same bisector. This bisector is the Steiner axis of the triangle $A B C$ (Figure 1).

For the Euclidean case see [8,9].
Proof. The lines $G A$ and $G A_{1}$ have slopes

$$
\begin{aligned}
\frac{a^{2}+\frac{2}{3} q}{a} & =a+\frac{2 q}{3 a} \\
\frac{\frac{1}{6 q}\left(9 a p+3 a^{2} q-2 q^{2}\right)+\frac{2}{3} q}{-\frac{a}{2}} & =-\frac{1}{3 a q}\left(9 a p+3 a^{2} q+2 q^{2}\right)=-\frac{3 p}{q}-a-\frac{2 q}{3 a} .
\end{aligned}
$$

The sum of slopes is equal to $-\frac{3 p}{q}$, therefore the bisector of these lines has the slope $-\frac{3 p}{2 q}$. The Steiner axis of the triangle $A B C$ is given by $y=-\frac{3 p}{2 q} x-\frac{2}{3} q$ [7], which passes through the centroid $G=\left(0,-\frac{2}{3} q\right)$, and coincides with this bisector.

Theorem 5. The first Brocard triangle $A_{1} B_{1} C_{1}$ of an allowable triangle $A B C$ is homologous with this triangle, and the center of homology is K^{\prime} —the point reciprocal to the symmedian center of the triangle $A B C$ (see Figure 2).

For the Euclidean case see [9].

Figure 2. The axis of homology \mathcal{T} of the triangle $A B C$ and its first Brocard triangle $A_{1} B_{1} C_{1}$, and the Kiepert parabola \mathcal{P} of the triangle $A B C$. Visualization of statements of Theorems 5 and 7 .

Proof. The line

$$
9 a q y=\left(2 q^{2}+3 a^{2} q-9 a p\right) x+9 a^{2} p+6 a^{3} q-2 a q^{2}
$$

passes through the point $A=\left(a, a^{2}\right)$ and also through the point A_{1}, hence it is the line $A A_{1}$. In addition, this line passes through the point

$$
\begin{equation*}
K^{\prime}=\left(-\frac{3 p}{q}, \frac{27 p^{2}-8 q^{3}}{9 q^{2}}\right), \tag{6}
\end{equation*}
$$

which is, by [5], reciprocal to the symmedian center K and anticomplementary to the midpoint of Crelle-Brocard points Ω_{1} and Ω_{2}. The same also holds for analogous lines $B B_{1}$ and $C C_{1}$.

Theorem 6. In case of the standard triangle $A B C$, the axis of homology of triangles $A B C$ and $A_{1} B_{1} C_{1}$ from Theorem 5, has the equation

$$
\begin{equation*}
y=-\frac{6 p}{q} x-\frac{q}{6} . \tag{7}
\end{equation*}
$$

Proof. It is enough to prove e.g., that the point $\left(\frac{q}{6 a},-\frac{q}{6}-b c\right)$ lies on lines $B C$ and $B_{1} C_{1}$, and on the line defined by (7).

Indeed, we have

$$
\begin{aligned}
-a \cdot \frac{q}{6 a}-b c & =-\frac{q}{6}-b c \\
\left(a-\frac{3 p}{q}\right) \cdot \frac{q}{6 a}-\frac{1}{6}(2 q+3 b c) & =\frac{q}{6}-\frac{b c}{2}-\frac{q}{3}-\frac{b c}{2}=-\frac{q}{6}-b c \\
-\frac{6 p}{q} \cdot \frac{q}{6 a}-\frac{q}{6} & =-\frac{q}{6}-b c
\end{aligned}
$$

In the discussion following Theorem 2 in [6] it is shown that the Kiepert triangle $A^{\prime} B^{\prime} C^{\prime}$ of a triangle $A B C$, with $t=-\omega$, coincides with the first Brocard triangle $A_{1} B_{1} C_{1}$ of the triangle $A B C$ and the axis of homology of triangles $A B C$ and $A_{1} B_{1} C_{1}$ touches the Kiepert parabola of the triangle $A B C$ (see Figure 2).

Theorem 7. The triangle $A B C$ and its first Brocard triangle $A_{1} B_{1} C_{1}$ are three-homologous, and the centers of homologies are the point K^{\prime} and Crelle-Brocard points Ω_{1} and Ω_{2} of that triangle. Triangles $A B C$ and $K^{\prime} \Omega_{1} \Omega_{2}$ have the same centroid G [9] (see Figure 2).

Proof. According to [4], the lines $A \Omega_{1}$ and $A \Omega_{2}$ have equations

$$
\begin{array}{lll}
A \Omega_{1} & \ldots & y=(\omega-c) x-a \omega-a b \\
A \Omega_{2} & \ldots & y=-(\omega+b) x+a \omega-c a
\end{array}
$$

The point C_{1} lies on the first line, and the point B_{1} lies on the second one because

$$
\begin{aligned}
(\omega-c) \cdot\left(-\frac{c}{2}\right)-a \omega-a b & =\frac{1}{2}\left(c^{2}-2 a b-\omega(2 a+c)\right) \\
& =\frac{1}{2}\left(c^{2}-2\left(q+c^{2}\right)+\frac{1}{3 q}(b-c)(c-a)(a-b) \cdot(a-b)\right) \\
& =\frac{1}{6 q}\left(-3 q\left(2 q+c^{2}\right)+(2 q-3 b c)(2 q-3 c a)\right) \\
& =\frac{1}{6 q}\left(-2 q^{2}-3 c^{2} q-6 q(b c+c a)+9 a b c^{2}\right) \\
& =\frac{1}{6 q}\left(9 c p+3 c^{2} q-2 q^{2}\right), \\
-(\omega+b) \cdot\left(-\frac{b}{2}\right)+a \omega-c a & =\frac{1}{2}\left(b^{2}-2 c a+\omega(2 a+b)\right) \\
& =\frac{1}{2}\left(b^{2}-2\left(q+b^{2}\right)+\frac{1}{3 q}(b-c)(c-a)(a-b) \cdot(c-a)\right) \\
& =\frac{1}{6 q}\left(-3 q\left(2 q+b^{2}\right)+(2 q-3 a b)(2 q-3 b c)\right) \\
& =\frac{1}{6 q}\left(9 b p+3 b^{2} q-2 q^{2}\right) .
\end{aligned}
$$

Therefore, points Ω_{1} and Ω_{2} lie on lines $A C_{1}$ and $A B_{1}$, respectively, the point Ω_{1} lies on lines $B A_{1}$ and $C B_{1}$, and the point Ω_{2} lies on lines $B C_{1}$ and $C A_{1}$. Points Ω_{1}, Ω_{2} and K^{\prime} have the centroid $G=\left(0,-\frac{2}{3} q\right)$ because

$$
\frac{1}{3}\left(\frac{p-p_{1}}{q}+\frac{p-p_{2}}{q}-\frac{3 p}{q}\right)=-\frac{p+p_{1}+p_{2}}{3 q}=0
$$

and

$$
\begin{aligned}
\frac{1}{3}\left(\frac{27 p_{1}^{2}-2 q^{3}}{9 q^{2}}+\frac{27 p_{2}^{2}-2 q^{3}}{9 q^{2}}+\frac{27 p^{2}-8 q^{3}}{9 q^{2}}\right) & =\frac{1}{9 q^{2}}\left(9\left(p_{1}+p_{2}\right)^{2}+9 p_{1}^{2}+9 p_{2}^{2}-4 q^{3}\right) \\
& =\frac{1}{9 q^{2}}\left(-2 q^{3}-4 q^{3}\right)=-\frac{2}{3} q .
\end{aligned}
$$

The line $A S$ has the slope $a-\frac{3 p}{q}$, where S is the Steiner point of the triangle $A B C$ [7]. $A S \| B_{1} C_{1}$ because the line $B_{1} C_{1}$ has the same slope as $A S$. Similarly, we get $B S \| C_{1} A_{1}$ and $C S \| A_{1} B_{1}$. Because of Theorem 1, we have $A_{1} K\left\|B C, B_{1} K\right\| C A$, and $C_{1} K \| A B$. Therefore, triangles $A B C$ and $A_{1} B_{1} C_{1}$ have the property that lines through the vertices of the first triangle parallel to the corresponding sides of the second triangle pass through a common point, and lines through the vertices of the second triangle parallel to the corresponding sides of the first triangle pass through another common point. These two triangles are called parallelogic, and the two mentioned points are the centers of parallelogy of these triangles. So we have the following theorem.

Theorem 8. A triangle and its first Brocard triangle are parallelogic with the centers of parallelogy at the Steiner point and at the symmedian center of this triangle (see Figure 3).

Figure 3. The circumscribed Steiner ellipse \mathcal{S}_{e} of the triangle $A B C$. Visualization of statements of Theorems 8-11.

Theorem 9. Let $A_{1} B_{1} C_{1}$ be the first Brocard triangle of an allowable triangle $A B C$. Then the lines parallel to $B_{1} C_{1}, C_{1} A_{1}$, and $A_{1} B_{1}$ through C, A, and B, through B, C, and A, pass through a common point S_{1}, respectively S_{2}. In addition, the lines parallel to $B C, C A$, and $A B$ through C_{1}, A_{1}, and B_{1}, respectively B_{1}, C_{1}, and A_{1}, pass through a common point K_{1}, respectively K_{2} (see Figure 3). In the case of the standard triangle $A B C$ these points are given by

$$
\begin{array}{ll}
S_{1}=\left(-\frac{3 p_{1}}{q}, \frac{9 p p_{1}}{q^{2}}-q\right), & S_{2}=\left(-\frac{3 p_{2}}{q}, \frac{9 p p_{2}}{q^{2}}-q\right), \\
K_{1}=\left(\frac{3 p_{1}}{2 q},-\frac{5}{6} q\right), & K_{2}=\left(\frac{3 p_{2}}{2 q},-\frac{5}{6} q\right) . \tag{9}
\end{array}
$$

Proof. According to (5), the slope of the line $B_{1} C_{1}$ is $a-\frac{3 p}{q}$, and the line through C parallel to it is given by $y-c^{2}=\left(a-\frac{3 p}{q}\right)(x-c)$, i.e., $q y=(a q-3 p) x+\left(c^{2}-c a\right) q+3 c p$. The point S_{1} lies on this line because

$$
\begin{aligned}
q y-(a q & -3 p) x-\left(c^{2}-c a\right) q-3 c p \\
& =\frac{9 p p_{1}}{q}-q^{2}+3 a p_{1}-\frac{9 p p_{1}}{q}+\left(c a-c^{2}\right) q-3 c p \\
& =\left(c a-c^{2}-q\right) q+a\left(b c^{2}+c a^{2}+a b^{2}\right)-3 a b c^{2} \\
& =(c a-a b) q-2 a b c^{2}+c a^{3}+a^{2} b^{2} \\
& =-a(a+2 c)\left(a^{2}+a c+c^{2}\right)+2 a c^{2}(a+c)+a^{3} c+a^{2}(a+c)^{2}=0 .
\end{aligned}
$$

Substitutions $B \leftrightarrow C$ and $b \leftrightarrow c$ imply the substitution $p_{1} \rightarrow p_{2}$, and using this substitution, the previous proof shows that the line through B, parallel to $B_{1} C_{1}$, passes through S_{2}. Cyclic permutations $a \rightarrow b \rightarrow c \rightarrow a$ imply $C_{1} A_{1}\left\|A S_{1}\right\| C S_{2}$, and $A_{1} B_{1} \|$ $B S_{1} \| A S_{2}$. The line

$$
y=-a x+\frac{1}{6 q}\left(9 c p+3 c^{2} q-3 c a q-2 q^{2}\right)
$$

is parallel to $B C$, and it passes through C_{1}. Let us show that this line also passes through K_{1}, i.e., that

$$
-\frac{5}{6} q=-a \cdot \frac{3 p_{1}}{2 q}+\frac{1}{6 q}\left(9 c p+3 c^{2} q-3 c a q-2 q^{2}\right)
$$

i.e.,

$$
3 c p-3 a p_{1}+c^{2} q-c a q+q^{2}=0
$$

which, because $q+c^{2}=a b$ and $p=a b c$, after dividing by a, becomes equivalent to

$$
3 b c^{2}-3 p_{1}+(b-c) q=0
$$

However, we have

$$
\begin{aligned}
3 b c^{2}-3 p_{1}+(b-c) q & =3 b c^{2}-b c^{2}-c a^{2}-a b^{2}+(b-c)(b c+c a+a b) \\
& =b c^{2}+b^{2} c-a^{2} c-a c^{2} \\
& =b c(b+c)-a c(a+c)=-b c a+a c b=0
\end{aligned}
$$

Other statements of the theorem are proved in a similar way.
Using the obvious term three-parallelogy, statements of Theorems 8 and 9 can be briefly summarized as the following corollary.

Corollary 1. The allowable triangle $A B C$ and its first Brocard triangle $A_{1} B_{1} C_{1}$ are three-parallelogic, and in the case of a standard triangle $A B C$, centers of parallelogy are the Steiner point S of the triangle $A B C$ and points S_{1}, S_{2}, and the symmedian center K of the triangle $A B C$ and points K_{1}, K_{2} (see Figure 3).

In the Euclidean case, the statement about three-parallelogy, without proof, can be found in [10].

Theorem 10. Points S, S_{1}, and S_{2} from Theorem 9 lie on the circumscribed Steiner ellipse of the triangle $A B C$ (see Figure 3).

Proof. The statement for Steiner point S is proved in [7]. For the point $S_{1}=(x, y)$ we have

$$
\begin{aligned}
& q^{2} x^{2}-9 p x y-3 q y^{2}-6 p q x-4 q^{2} y+9 p^{2} \\
& \quad=9 p_{1}^{2}+243 \frac{p^{2} p_{1}^{2}}{q^{3}}-27 p p_{1}-3 q\left(\frac{9 p p_{1}}{q^{2}}-q\right)^{2}+18 p p_{1}-36 p p_{1}+4 q^{3}+9 p^{2} \\
& \quad=9 p^{2}+9 p p_{1}+9 p_{1}^{2}+q^{3}=0
\end{aligned}
$$

and this point lies on the circumscribed Steiner ellipse of the triangle $A B C$, which, by [7], has the equation $q^{2} x^{2}-9 p x y-3 q y^{2}-6 p q x-4 q^{2} y+9 p^{2}=0$. Analogous proof is for the point S_{2}.

Theorem 11. Points K_{1} and K_{2} from Theorems 9 are reciprocal to Crelle-Brocard points Ω_{1} and Ω_{2} of that triangle (see Figure 3).

In the Euclidean case this statement, without proof, can be found in [11].
Proof. For the point $K_{1}=(x, y)$ we get

$$
\begin{aligned}
q^{2} x^{2}-9 p x y & -3 q y^{2}-6 p q x-4 q^{2} y+9 p^{2} \\
& =\frac{9}{4} p_{1}^{2}+\frac{45}{4} p p_{1}-\frac{25}{12} q^{3}-9 p p_{1}+\frac{10}{3} q^{3}+9 p^{2} \\
& =9 p^{2}+\frac{9}{4} p p_{1}+\frac{9}{4} p_{1}^{2}+\frac{15}{12} q^{3} \\
& =\frac{27}{4} p^{2}-\frac{1}{4} q^{3}+\frac{5}{4} q^{3} \\
& =\frac{1}{4}\left(27 p^{2}+4 q^{3}\right), \\
3 p q x^{2}+4 q^{2} x y & -9 p y^{2}+\left(9 p^{2}+4 q^{3}\right) x-12 p q y-4 p q^{2} \\
& =\frac{27}{4} \cdot \frac{p p_{1}^{2}}{q}-5 p_{1} q^{2}-\frac{25}{4} p q^{2}+\frac{27}{2} \cdot \frac{p^{2} p_{1}}{q}+6 p_{1} q^{2}+10 p q^{2}-4 p q^{2} \\
& =\frac{27}{2} \cdot \frac{p^{2} p_{1}}{q}+\frac{27}{4} \cdot \frac{p p_{1}^{2}}{q}-\frac{1}{4} p q^{2}+p_{1} q^{2} \\
& =\frac{1}{4 q}\left(54 p^{2} p_{1}+27 p p_{1}^{2}+3 p q^{3}\right)-\left(p-p_{1}\right) q^{2} \\
& =\frac{3 p}{4 q}\left(18 p p_{1}+9 p_{1}^{2}-9 p^{2}-9 p p_{1}-9 p_{1}^{2}\right)-\left(p-p_{1}\right) q^{2} \\
& =-\frac{3 p}{4 q}\left(9 p^{2}-9 p p_{1}\right)-\left(p-p_{1}\right) q^{2} \\
& =-\frac{1}{4 q}\left(p-p_{1}\right)\left(27 p^{2}+4 q^{3}\right), \\
9 p^{2} x^{2}+12 p q x y & +4 q^{2} y^{2}+8 p q^{2} x-\left(9 p^{2}-4 q^{3}\right) y-12 p^{2} q \\
& =\frac{81}{4} \cdot \frac{p^{2} p_{1}^{2}}{q^{2}}-15 p p_{1} q+\frac{25}{9} q^{4}+12 p p_{1} q+\frac{15}{2} p^{2} q-\frac{10}{3} q^{4}-12 p^{2} q \\
& =\frac{81}{4} \cdot \frac{p^{2} p_{1}^{2}}{q^{2}}-\frac{9}{2} p^{2} q-3 p p_{1} q-\frac{5}{9} q^{4} \\
& =\frac{1}{36 q^{2}}\left(729 p^{2} p_{1}^{2}-162 p^{2} q^{3}-108 p p_{1} q^{3}-20 q^{6}\right) \\
& =\frac{1}{36 q^{2}}\left(729 p^{2} p_{1}^{2}-162 p^{2} q^{3}-108 p p_{1} q^{3}-8 q^{6}+12 q^{3}\left(9 p^{2}+9 p p_{1}+9 p_{1}^{2}\right)\right) \\
& =\frac{1}{36 q^{2}}\left(729 p^{2} p_{1}^{2}-54 p^{2} q^{3}+108 p_{1}^{2} q^{3}-8 q^{6}\right) \\
& =\frac{1}{36 q^{2}}\left(27 p^{2}+4 q^{3}\right)\left(27 p_{1}^{2}-2 q^{3}\right)
\end{aligned}
$$

and, its reciprocal point has coordinates

$$
\frac{\frac{1}{4 q}\left(p-p_{1}\right)\left(27 p^{2}+4 q^{3}\right)}{\frac{1}{4}\left(27 p^{2}+4 q^{3}\right)}=\frac{p-p_{1}}{q}
$$

and

$$
\frac{\frac{1}{36 q^{2}}\left(27 p^{2}+4 q^{3}\right)\left(27 p_{1}^{2}-2 q^{3}\right)}{\frac{1}{4}\left(27 p^{2}+4 q^{3}\right)}=\frac{1}{9 q^{2}}\left(27 p_{1}^{2}-2 q^{3}\right)
$$

which is the point Ω_{1}. The proof for K_{2} is analogous.
Let us consider the indirect similarity given by

$$
\begin{equation*}
x^{\prime}=-\frac{1}{2} x, \quad y^{\prime}=\frac{3 p}{2 q} x+\frac{1}{2} y-\frac{q}{3} \tag{10}
\end{equation*}
$$

and vice versa

$$
\begin{equation*}
x=-2 x^{\prime}, \quad y=\frac{6 p}{q} x^{\prime}+2 y^{\prime}+\frac{2}{3} q . \tag{11}
\end{equation*}
$$

The similarity (10) obviously maps the point $A=\left(a, a^{2}\right)$ to the point A_{1}, and points B and C to points B_{1} and C_{1}. This similarity maps the Steiner point S, which is, according to [7], given by $S=\left(-\frac{3 p}{q}, \frac{9 p^{2}}{q^{2}}\right)$, to the point with abscissa $\frac{3 p}{2 q}$ and ordinate equal to $\frac{3 p}{2 q}$. $\left(-\frac{3 p}{q}\right)+\frac{1}{2} \cdot \frac{9 p^{2}}{q^{2}}-\frac{q}{3}=-\frac{q}{3}$, which is the point K. The point S_{1} is mapped to the point with abscissa $\frac{3 p_{1}}{2 q}$ and ordinate $\frac{3 p}{2 q}\left(-\frac{3 p_{1}}{q}\right)+\frac{1}{2}\left(\frac{9 p p_{1}}{q^{2}}-q\right)-\frac{q}{3}=-\frac{5}{6} q$, which is the point K_{1}. The centroid $G=\left(0,-\frac{2}{3} q\right)$ is under the similarity (10) mapped onto itself.

The circumscribed circle and the circumscribed Steiner ellipse of the triangle $A B C$ have, according to [3,7], equations

$$
y=x^{2}
$$

and

$$
q^{2} x^{2}-9 p x y-3 q y^{2}-6 p q x-4 q^{2} y+9 p^{2}=0
$$

which, after substitutions (11), become

$$
\frac{6 p}{q} x^{\prime}+2 y^{\prime}+\frac{2}{3} q=4 x^{\prime 2}
$$

and

$$
\begin{aligned}
& q^{2} \cdot 4 x^{\prime 2}+18 p x^{\prime}\left(\frac{6 p}{q} x^{\prime}+2 y^{\prime}+\frac{2}{3} q\right)-3 q\left(\frac{6 p}{q} x^{\prime}+2 y^{\prime}+\frac{2}{3} q\right)^{2}+ \\
& \quad+12 p q x^{\prime}-4 q^{2}\left(\frac{6 p}{q} x^{\prime}+2 y^{\prime}+\frac{2}{3} q\right)+9 p^{2}=0 .
\end{aligned}
$$

After rearrangements and replacements $x^{\prime} \rightsquigarrow x, y^{\prime} \rightsquigarrow y$ this can be written as

$$
y=2 x^{2}-\frac{3 p}{q} x-\frac{q}{3}
$$

and

$$
4 q^{2} x^{2}-36 p x y-12 q y^{2}-24 p q x-16 q y+9 p^{2}-4 q^{3}=0
$$

which are, according to [5,7], equations of the Brocard circle and the inscribed Steiner ellipse of the triangle $A B C$.

Let us find the equation of the fixed line, i.e., of the axis of similarity (10). The transformation $x \rightarrow-2 x, y \rightarrow \frac{6 p}{q} x+2 y+\frac{2}{3} q$ maps the line

$$
\begin{equation*}
y=k x+l \tag{12}
\end{equation*}
$$

to the line

$$
\frac{6 p}{q} x+2 y+\frac{2}{3} q=-2 k x+l
$$

i.e., to the line

$$
y=-\left(k+\frac{3 p}{q}\right) x+\frac{l}{2}-\frac{q}{3},
$$

which coincides with the line (12) if and only if

$$
-\left(k+\frac{3 p}{q}\right)=k, \quad \frac{l}{2}-\frac{q}{3}=l .
$$

Therefore,

$$
k=-\frac{3 p}{2 q}, \quad l=-\frac{2}{3} q
$$

and the required axis is the line

$$
y=-\frac{3 p}{2 q} x-\frac{2}{3} q
$$

which is, according to [7], the Steiner axis of the triangle $A B C$. The last result is in accordance with Theorem 4.

Thus, we have proved:
Theorem 12. An allowable triangle $A B C$ and its first Brocard triangle $A_{1} B_{1} C_{1}$ are indirectly similar. This similarity has the center at the common centroid of these two triangles, its coefficient equals $-\frac{1}{2}$, its axis is the Steiner axis of the triangle $A B C$, and it maps the points S, S_{1}, and S_{2} from Theorem 9 to points K, K_{1}, and K_{2} from the same theorem.

Corollary 2. The symmedian center of the allowable triangle $A B C$ is the Steiner point of its Brocard triangle $A_{1} B_{1} C_{1}$.

For the Euclidean case see [9].

Corollary 3. The circumscribed Steiner ellipse of the first Brocard triangle of a given allowable triangle is the inscribed Steiner ellipse of that triangle.

Corollary 4. Segments GS and GK, where G is the centroid of the allowable triangle $A B C, S$ its Steiner point, and K its symmedian center, have the same perpendicular bisector as pairs of lines from Theorem 4.

For the Euclidean case see [12].
Theorem 13. An allowable triangle is homologous with the complementary triangle of its first Brocard triangle.

Proof. Points B_{1} and C_{1} have the midpoint $A_{1 m}=\left(\frac{a}{4},-\frac{1}{12 q}\left(9 a p+3 b c q+7 q^{2}\right)\right)$ because $9 b p+3 b^{2} q-2 q^{2}+9 c p+3 c^{2} q-2 q^{2}=-9 a p+3(-q-b c) q-4 q^{2}=-\left(9 a p+3 b c q+7 q^{2}\right)$.

The line

$$
9 a q y=\left(9 b^{2} c^{2}+6 b c q-5 q^{2}\right) x+3 p q-9 b c p-4 a q^{2}
$$

passes through $A=\left(a, a^{2}\right)$ and A_{1} because

$$
\left(9 b^{2} c^{2}+6 b c q-5 q^{2}\right) a+3 p q-9 b c p-4 a q^{2}=9 a b c q-9 a q^{2}=9 a^{3} q
$$

and

$$
\begin{aligned}
\left(9 b^{2} c^{2}+6 b c q-5 q^{2}\right) \frac{a}{4}+3 p q-9 b c p-4 a q^{2} & =-\frac{27}{4} a b^{2} c^{2}+\frac{9}{2} a b c q-\frac{21}{4} a q^{2} \\
& =-\frac{3 a}{4}\left(9 b c\left(q+a^{2}\right)-6 b c q+7 q^{2}\right) \\
& =-\frac{1}{12 q}\left(9 a p+3 b c q+7 q^{2}\right) \cdot 9 a q
\end{aligned}
$$

which is the line $A A_{1 m}$. This line also passes through the point $\left(\frac{3 p}{5 q}, \frac{1}{45 q^{2}}\left(27 p^{2}-20 q^{3}\right)\right)$ because

$$
\begin{aligned}
\left(9 b^{2} c^{2}+6 b c q-5 q^{2}\right) \cdot \frac{3 p}{5 q}+3 p q-9 b c p-4 a q^{2} & =\frac{27}{5} \cdot \frac{b^{2} c^{2} p}{q}+\frac{18}{5} b c p-9 b c p-4 a q^{2} \\
& =\frac{1}{5 q}\left(27 b^{2} c^{2} p-27 b c p q-20 a q^{3}\right) \\
& =\frac{1}{5 q}\left(27 a^{2} b c p-20 a q^{3}\right) \\
& =\frac{1}{45 q^{2}}\left(27 p^{2}-20 q^{3}\right) \cdot 9 a q .
\end{aligned}
$$

Theorem 14. If $A_{1} B_{1} C_{1}$ is the first Brocard triangle of the allowable triangle $A B C$, then its Crelle-Brocard points Ω_{1} and Ω_{2} divide in equal proportions the pairs of segments $C B_{1}, B C_{1} ; A C_{1}$, $C A_{1} ; B A_{1}, A B_{1}$.

For the Euclidean case, without proof, see [10].
Proof. According to Theorem 7 and its proof, points Ω_{1} and Ω_{2} lie on lines $C B_{1}, A C_{1}, B A_{1}$, and $B C_{1}, C A_{1}, A B_{1}$. From (1) and (3) we get the ratios

$$
\frac{d\left(B_{1}, \Omega_{1}\right)}{d\left(C, \Omega_{1}\right)}=\frac{\frac{p-p_{1}}{q}+\frac{b}{2}}{\frac{p-p_{1}}{q}-c}=\frac{2 p-2 p_{1}+b q}{2\left(p-p_{1}-c q\right)}, \quad \frac{d\left(C_{1}, \Omega_{2}\right)}{d\left(B, \Omega_{2}\right)}=\frac{\frac{p-p_{2}}{q}+\frac{c}{2}}{\frac{p-p_{2}}{q}-b}=\frac{2 p-2 p_{2}+c q}{2\left(p-p_{2}-b q\right)},
$$

so we have to prove the equality

$$
\left(2\left(p-p_{1}\right)+b q\right)\left(p-p_{2}-b q\right)=\left(2\left(p-p_{2}\right)+c q\right)\left(p-p_{1}-c q\right)
$$

which is, after dividing by q, equivalent to

$$
b\left(p-p_{2}-2 p+2 p_{1}-b q\right)=c\left(p-p_{1}-2 p+2 p_{2}-c q\right)
$$

and since $p+p_{1}+p_{2}=0$, equivalent to

$$
3 b p_{1}-b^{2} q=3 c p_{2}-c^{2} q
$$

This last equality holds true because

$$
\begin{aligned}
3 b p_{1}-3 c p_{2}-\left(b^{2}-c^{2}\right) q & =b\left(b c^{2}+c a^{2}+a b^{2}\right)-c\left(b^{2} c+c^{2} a+a^{2} b\right)-(b+c)(b-c) q \\
& =a\left(b^{3}-c^{3}\right)+a(b-c) q \\
& =a(b-c)\left(b^{2}+b c+c^{2}+q\right)=0 .
\end{aligned}
$$

Theorem 15. If $A_{1} B_{1} C_{1}$ is the first Brocard triangle of the allowable triangle $A B C$ with the Brocard angle ω, then $B C A_{1}, C A B_{1}$, and $A B C_{1}$ are isosceles triangles, which have angles at sides $B C, C A$, and $A B$ equal to ω.

For the Euclidean case see [9].

Proof. According to the proof of Theorem 7, lines $A \Omega_{1}$ and $A \Omega_{2}$, containing points C_{1} and B_{1}, have slopes $\omega-c$ and $-(\omega+b)$. By cyclic permutations it follows that lines $B \Omega_{1}$ and $C \Omega_{2}$, containing the point A_{1}, have slopes $\omega-a$ and $-(\omega+a)$. So we get

$$
\begin{aligned}
& \angle\left(B C, B A_{1}\right)=\omega-a-(-a)=\omega, \\
& \angle\left(C A_{1}, B C\right)=-a+\omega+a=\omega .
\end{aligned}
$$

Theorem 16. If P is the center of homology of the triangle $A B C$ and its first Brocard triangle, and if D, E, and F are points symmetrical to P with respect to the midpoints of sides $B C, C A$, and $A B$, then the triangles $A B C$ and $D E F$ are symmetrical with respect to the midpoint S of the Crelle-Brocard points Ω_{1} and Ω_{2}.

For the Euclidean case see [13].
Proof. $P+D=B+C$ implies $D=B+C-P$. By Theorem 7, $P+\Omega_{1}+\Omega_{2}=3 G$, where G is the centroid of $A B C$. We get $P+2 S=3 G$, i.e., $P+2 S=A+B+C$ or $2 S=A+D$.

4. Conclusions

In this paper we introduce the first Brocard triangle of a triangle in the isotropic plane, and study its connections with some other objects related to the given triangle. Some of the most important statements that we prove are the following: the allowable triangle ABC and its first Brocard triangle are homologous, where the centers of homologies are the point reciprocal to the symmedian center of the triangle and the Crelle-Brocard points of that triangle; the allowable triangle ABC and its first Brocard triangle are threeparallelogic and indirectly similar, and the allowable triangle is homologous with the complementary triangle of its first Brocard triangle. The analytical approach used in this paper was introduced and developed in [3]. The obtained results are compared with similar results in the Euclidean plane.

Author Contributions: Conceptualization, V.V., Z.K.-B. and R.K.-Š.; validation; writing-original draft preparation, V.V., Z.K.-B. and R.K.-Š. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.
Acknowledgments: The authors would like to thank the referees for their valuable comments which helped to improve the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Sachs, H. Ebene Isotrope Geometrie; Vieweg-Verlag: Braunschweig, Germany; Wiesbaden, Germany, 1987.
2. Strubecker, K. Geometrie in einer isotropen Ebene I-III. Math. Naturw. Unterr. 1962, 15, 297-306, 343-351, 385-394.
3. Kolar-Šuper, R.; Kolar-Begović, Z.; Volenec, V.; Beban-Brkić, J. Metrical relationships in a standard triangle in an isotropic plane. Math. Commun. 2005, 10, 149-157.
4. Volenec, V.; Kolar-Begović, Z.; Kolar-Šuper, R. Crelle-Brocard points of the triangle in an isotropic plane. Math. Pannon. 2013, 24, 167-181.
5. Kolar-Begović, Z.; Kolar-Šuper, R.; Volenec, V. Brocard circle of the triangle in an isotropic plane. Math. Pannon. 2017/2018, 26, 103-113.
6. Volenec, V.; Kolar-Begović, Z. On Some Properties of Kiepert Parabola in the Isotropic Plane. Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. 2022, accepted for publication.
7. Volenec, V.; Kolar-Begović, Z.; Kolar-Šuper, R. Steiner's ellipses of the triangle in an isotropic plane. Math. Pannon. 2010, 21, 229-238.
8. Alasia, C. La Recente Geometria del Triangolo; Nabu Press: Città di Castello, Italy, 1900.
9. Neuberg, J. Note III, Sur la Géométrie récente du triangle. In E. Rouché et Ch. de Comberousse, Traité de Géométrie, I; Gauthier-Villars: Paris, France, 1922.
10. Casey, J. Géométrie élémentaire récente. Mathesis 1889, 9, 5-70.
11. Gabriel-Marie, F. Exercices de Géométrie, 5th ed.; Maison A. Mame et Fils: Tours, France, 1912.
12. Cesáro, E. Remarques sur la géométrie du triangle. Nouv. Ann. Math. 1887, 6, 215-242.
13. Schwatt, J.F. Aufgabe 1405. Z. Math. Naturwiss. Unterr. 1895, 26, 279.
