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Abstract: In this paper we introduce the first Brocard triangle of an allowable triangle in the isotropic
plane and derive the coordinates of its vertices in the case of a standard triangle. We prove that the
first Brocard triangle is homologous to the given triangle and that these two triangles are parallelogic.
We consider the relationships between the first Brocard triangle and the Steiner axis, the Steiner point,
and the Kiepert parabola of the triangle. We also investigate some other interesting properties of this
triangle and consider relationships between the Euclidean and the isotropic case.
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1. Introduction and Motivation

The isotropic (or Galilean) plane is a projective-metric plane, where the absolute con-
sists of one line—the absolute line ωA, and one point on that line—the absolute point ΩA.

When using homogeneous coordinates in the projective plane, P = (x0 : x1 : x2),
x2

0 + x2
1 + x2

2 6= 0, then we choose the absolute point ΩA = (0 : 1 : 0) and the absolute line
ωA having the equation x2 = 0. Points incident to the absolute line ωA are called isotropic
points and lines incident to the absolute point ΩA are called isotropic lines. We will mention
a few well known metric quantities in the isotropic plane for which we assume that x = x0

x2

and y = x1
x2

.
Two lines are called parallel if they have the same isotropic point. Points which lie on

the same isotropic line are said to be parallel.
For two non-parallel points P1 = (x1, y1) and P2 = (x2, y2) the isotropic distance is de-

fined as d(P1, P2) := x2 − x1. Notice that the isotropic distance is directed. For two parallel
points P1 = (x1, y1) and P2 = (x1, y2), the isotropic span is defined as s(P1, P2) := y2 − y1.
The midpoint of the points P1 = (x1, y1) and P2 = (x2, y2) is defined as
M =

( x1+x2
2 , y1+y2

2
)
.

The angle formed by non-isotropic lines l1 and l2 given by y = m1x + b1 and
y = m2x + b2 is defined by ϕ = ∠(l1, l2) := m2 − m1, and it is directed. The bisector
of the lines l1 and l2 is given by the equation y = m1+m2

2 x + b1+b2
2 . A normal line to a line l

at a point P is the isotropic line n passing through P.
All projective transformations that preserve the absolute figure are of the form

x = a + px, a, b, c, p, q ∈ R,

y = b + cx + qy, pq 6= 0,
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and form the 5-parametric group G5 known as the group of similarities of the isotropic plane
(see [1]).

Distances, spans and angles are kept invariant under the subgroup G3 of G5 which
consists of transformations of the form

x = a + x

y = b + cx + y, a, b, c ∈ R.

G3 is called the motion group of the isotropic plane.
Metric quantities and all the facts related to the geometry of the isotropic plane can be

found in [1,2].
A triangle is called allowable if none of its sides are isotropic [1]. As it is explained in [3],

according to [1], to any allowable triangle in the isotropic plane there is exactly one circum-
scribed circle. The equation of this circle is of the form y = ux2 + vx + w, u 6= 0. Choosing
a suitable coordinate system and applying the group of similarities, we may assume that
the equation of this circle is y = x2, and that the vertices of the allowable triangle ABC are
A = (a, a2), B = (b, b2), C = (c, c2), where a, b, and c are mutually different numbers. For
convenience, we will frequently use abbreviations abc = p and ab + bc + ca = q. Choosing,
without loss of generality, that a + b + c = 0, the diameter of the circle circumscribed to the
triangle ABC, passing through its centroid G =

( a+b+c
3 , a2+b2+c2

3
)
=

(
0,− 2

3 q
)
, lies on the

y-axis, while the x-axis is tangent to this circle at the endpoint of that diameter.
For each allowable triangle ABC, one can, in the described way, achieve that its

circumscribed circle has the equation y = x2, and its vertices are of the form A = (a, a2),
B = (b, b2), and C = (c, c2), with a + b + c = 0. We shall say that such a triangle is in the
standard position, or shorter, that the triangle ABC is the standard triangle. To prove geometric
facts for allowable triangles, it is sufficient to give a proof for a standard triangle. Its sides
BC, CA, and AB have equations y = −ax− bc, y = −bx− ca, and y = −cx− ab. Using
the mentioned notations it can be proved that q = bc− a2 and (c− a)(a− b) = 2q− 3bc.

The tangential triangle of a given triangle ABC is the triangle AtBtCt determined by
the three tangents to the circumscribed circle of the triangle ABC at its vertices. It can be
proved that the lines AAt, BBt, and CCt are symmetric, with respect to bisectors of the
angles A, B, and C, to the medians AG, BG, and CG of the triangle ABC. The lines AAt,
BBt, and CCt meet at the point K which is called the symmedian center of the triangle ABC.

Let ABC be a standard triangle and let A, B, and C, respectively A′, B′, and C ′, be
lines through the points A, B, and C such that ∠(AB,A) = ∠(BC,B) = ∠(CA, C) =: ϕ,
∠(A′, AC) = ∠(B′, BA) = ∠(C ′, CB) =: ψ. In [4] it is proved that the lines A, B, and C
pass through a common point, say Ω1, if and only if ϕ = ω, and the lines A′, B′, and C ′
pass through a common point, say Ω2, if and only if ψ = ω, where ω is given by ω =
− 1

3q (b− c)(c− a)(a− b). The points Ω1 and Ω2 are called Crelle–Brocard points, and ω is
called the Brocard angle.

The isotropic analogue of Brocard’s theorem was first obtained in [2].
The standard triangle ABC has, by [4], the symmedian center K and Crelle–Brocard

points Ω1 and Ω2 given by

K =
(3p

2q
,− q

3

)
, Ω1 =

( p− p1

q
,

27p1
2 − 2q3

9q2

)
, Ω2 =

( p− p2

q
,

27p2
2 − 2q3

9q2

)
(1)

where p1 = 1
3 (bc2 + ca2 + ab2), p2 = 1

3 (b
2c+ c2a+ a2b). One can prove that p1 + p2 + p = 0,

p2
1 + p1 p2 + p2

2 = − q3

9 , p2 + pp1 + p2
1 = − q3

9 , and p2 + pp2 + p2
2 = − q3

9 .
These three points lie, according to [5], on the Brocard circle of the triangle ABC (see

Figure 1), given by
y = 2x2 − 3p

q x− q
3 . (2)
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Figure 1. Brocard circle Kb, the Steiner axis S , and the first Brocard triangle A1B1C1 of the triangle
ABC. Visualization of statements of Theorems 1, 3 and 4.

If Am, Bm, and Cm are midpoints of the sides BC, CA, and AB of the allowable triangle
ABC, and A′, B′ and C′ are points on the perpendicular bisectors of these sides such
that spans s(Am, A′), s(Bm, B′), and s(Cm, C′) are proportional to the lengths of sides BC,
CA, and AB, then the points BC ∩ B′C′, CA ∩ C′A′, and AB ∩ A′B′ lie on a line, call it T .
Triangles A′B′C′ are the so-called Kiepert triangles of the triangle ABC, and the line T is the
axis of homology of the triangle ABC and the corresponding Kiepert triangle A′B′C′. Axes
of homology of an allowable triangle ABC and its Kiepert triangles envelope a parabola
which is called the Kiepert parabola [6].

The inscribed and the circumscribed Steiner’s ellipses of an allowable triangle have
the same nonisotropic axis, which passes through the centroid G of that triangle and which
in the case of a standard triangle has equation y = − 3p

2q x − 2
3 q. This axis is called the

Steiner’s axis of the considered triangle. In [7], the Steiner point of the allowable triangle
ABC is defined as the fourth (the first three being A, B, and C) common point S of the
circumscribed circle and the circumscribed Steiner ellipse of that triangle. If ABC is a

standard triangle then S =
(
− 3p

q , 9p2

q2

)
.

2. The First Brocard Triangle of a Triangle in the Isotropic Plane

In this section we will define the first Brocard triangle of a triangle in the isotropic plane.
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Theorem 1. Given a standard triangle ABC, the lines through its symmedian center K and parallel
to its sides BC, CA, and AB meet the Brocard circle, besides the point K, at points

A1 =
(
− a

2
,

1
6q

(9ap + 3a2q− 2q2)
)

,

B1 =
(
− b

2
,

1
6q

(9bp + 3b2q− 2q2)
)

, (3)

C1 =
(
− c

2
,

1
6q

(9cp + 3c2q− 2q2)
)

,

which lie on bisectors of the sides BC, CA, and AB, respectively (see Figure 1).

Proof. The point A1 obviously lies on the bisector of BC, and with x = − a
2 , from (2) and

y = −ax + 3ap
2q −

q
3 , (4)

we get the ordinate of the point A1

y = a2

2 + 3ap
2q −

q
3 = 1

6q (9ap + 3a2q− 2q2).

Therefore, A1 is the intersection of that line and the Brocard circle (2). This line is
parallel to BC and passes through K, see (1).

The points A1, B1, and C1 from Theorem 1 determine the first Brocard triangle of the
triangle ABC (see Figure 1).

Theorem 2. The sides of the first Brocard triangle A1B1C1 of the standard triangle ABC are
given by

B1C1 . . . y =
(

a− 3p
q

)
x− 1

6
(2q + 3bc),

C1 A1 . . . y =
(

b− 3p
q

)
x− 1

6
(2q + 3ca), (5)

A1B1 . . . y =
(

c− 3p
q

)
x− 1

6
(2q + 3ab).

Proof. The point B1 satisfies the first equation in (5) because(
a− 3p

q

)(
− b

2

)
− 1

6
(2q + 3bc) =

1
6q

(
9bp + 3b2q− 2q2),

and so does the point C1.

Theorem 3. A triangle and its first Brocard triangle have the same centroid (see Figure 1).

Proof. According to [3], the triangle ABC has the centroid G =
(
0,− 2

3 q
)
. The triangle

A1B1C1 with vertices (3), has the same centroid because a + b + c = 0 and

1
3
· 1

6q
(
9(a + b + c)p + 3(a2 + b2 + c2)q− 6q2) = 1

18q
(
3q(−2q)− 6q2) = −2

3
q.

3. The First Brocard Triangle and Some Other Significant Elements

In this section we consider the relationships between the first Brocard triangle and
some other objects related to a triangle in the isotropic plane.
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Theorem 4. Let G be the centroid and A1B1C1 the first Brocard triangle of an allowable triangle
ABC. Then the pairs of lines GA, GA1; GB, GB1; and GC, GC1 have the same bisector. This
bisector is the Steiner axis of the triangle ABC (Figure 1).

For the Euclidean case see [8,9].

Proof. The lines GA and GA1 have slopes

a2 + 2
3 q

a
= a +

2q
3a

,

1
6q (9ap + 3a2q− 2q2) + 2

3 q

− a
2

= − 1
3aq

(9ap + 3a2q + 2q2) = −3p
q
− a− 2q

3a
.

The sum of slopes is equal to − 3p
q , therefore the bisector of these lines has the slope

− 3p
2q . The Steiner axis of the triangle ABC is given by y = − 3p

2q x− 2
3 q [7], which passes

through the centroid G =
(
0,− 2

3 q
)
, and coincides with this bisector.

Theorem 5. The first Brocard triangle A1B1C1 of an allowable triangle ABC is homologous with
this triangle, and the center of homology is K′—the point reciprocal to the symmedian center of the
triangle ABC (see Figure 2).

For the Euclidean case see [9].

Figure 2. The axis of homology T of the triangle ABC and its first Brocard triangle A1B1C1, and the
Kiepert parabola P of the triangle ABC. Visualization of statements of Theorems 5 and 7.

Proof. The line
9aqy = (2q2 + 3a2q− 9ap)x + 9a2 p + 6a3q− 2aq2

passes through the point A = (a, a2) and also through the point A1, hence it is the line AA1.
In addition, this line passes through the point

K′ =
(
− 3p

q
,

27p2 − 8q3

9q2

)
, (6)
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which is, by [5], reciprocal to the symmedian center K and anticomplementary to the
midpoint of Crelle–Brocard points Ω1 and Ω2. The same also holds for analogous lines BB1
and CC1.

Theorem 6. In case of the standard triangle ABC, the axis of homology of triangles ABC and
A1B1C1 from Theorem 5, has the equation

y = − 6p
q x− q

6 . (7)

Proof. It is enough to prove e.g., that the point
( q

6a , − q
6 − bc

)
lies on lines BC and B1C1,

and on the line defined by (7).
Indeed, we have

−a · q
6a − bc = − q

6 − bc,(
a− 3p

q

)
· q

6a −
1
6 (2q + 3bc) = q

6 −
bc
2 −

q
3 −

bc
2 = − q

6 − bc,

− 6p
q ·

q
6a −

q
6 = − q

6 − bc.

In the discussion following Theorem 2 in [6] it is shown that the Kiepert triangle
A′B′C′ of a triangle ABC, with t = −ω, coincides with the first Brocard triangle A1B1C1
of the triangle ABC and the axis of homology of triangles ABC and A1B1C1 touches the
Kiepert parabola of the triangle ABC (see Figure 2).

Theorem 7. The triangle ABC and its first Brocard triangle A1B1C1 are three-homologous, and the
centers of homologies are the point K′ and Crelle–Brocard points Ω1 and Ω2 of that triangle.
Triangles ABC and K′Ω1Ω2 have the same centroid G [9] (see Figure 2).

Proof. According to [4], the lines AΩ1 and AΩ2 have equations

AΩ1 . . . y = (ω− c)x− aω− ab,

AΩ2 . . . y = −(ω + b)x + aω− ca.

The point C1 lies on the first line, and the point B1 lies on the second one because

(ω− c) · (− c
2 )− aω− ab = 1

2
(
c2 − 2ab−ω(2a + c)

)
= 1

2
(
c2 − 2(q + c2) + 1

3q (b− c)(c− a)(a− b) · (a− b)
)

= 1
6q
(
− 3q(2q + c2) + (2q− 3bc)(2q− 3ca)

)
= 1

6q
(
− 2q2 − 3c2q− 6q(bc + ca) + 9abc2)

= 1
6q (9cp + 3c2q− 2q2),

−(ω + b) · (− b
2 ) + aω− ca = 1

2
(
b2 − 2ca + ω(2a + b)

)
= 1

2
(
b2 − 2(q + b2) + 1

3q (b− c)(c− a)(a− b) · (c− a)
)

= 1
6q
(
− 3q(2q + b2) + (2q− 3ab)(2q− 3bc)

)
= 1

6q (9bp + 3b2q− 2q2).
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Therefore, points Ω1 and Ω2 lie on lines AC1 and AB1, respectively, the point Ω1 lies
on lines BA1 and CB1, and the point Ω2 lies on lines BC1 and CA1. Points Ω1, Ω2 and K′

have the centroid G =
(
0,− 2

3 q
)

because

1
3
( p−p1

q + p−p2
q − 3p

q
)
= − p+p1+p2

3q = 0

and
1
3
( 27p2

1−2q3

9q2 +
27p2

2−2q3

9q2 + 27p2−8q3

9q2

)
= 1

9q2

(
9(p1 + p2)

2 + 9p2
1 + 9p2

2 − 4q3)
= 1

9q2 (−2q3 − 4q3) = − 2
3 q.

The line AS has the slope a− 3p
q , where S is the Steiner point of the triangle ABC [7].

AS ‖ B1C1 because the line B1C1 has the same slope as AS. Similarly, we get BS ‖ C1 A1
and CS ‖ A1B1. Because of Theorem 1, we have A1K ‖ BC, B1K ‖ CA, and C1K ‖ AB.
Therefore, triangles ABC and A1B1C1 have the property that lines through the vertices of
the first triangle parallel to the corresponding sides of the second triangle pass through
a common point, and lines through the vertices of the second triangle parallel to the
corresponding sides of the first triangle pass through another common point. These two
triangles are called parallelogic, and the two mentioned points are the centers of parallelogy of
these triangles. So we have the following theorem.

Theorem 8. A triangle and its first Brocard triangle are parallelogic with the centers of parallelogy
at the Steiner point and at the symmedian center of this triangle (see Figure 3).

Figure 3. The circumscribed Steiner ellipse Se of the triangle ABC. Visualization of statements of
Theorems 8–11.
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Theorem 9. Let A1B1C1 be the first Brocard triangle of an allowable triangle ABC. Then the
lines parallel to B1C1, C1 A1, and A1B1 through C, A, and B, through B, C, and A, pass through a
common point S1, respectively S2. In addition, the lines parallel to BC, CA, and AB through C1,
A1, and B1, respectively B1, C1, and A1, pass through a common point K1, respectively K2 (see
Figure 3). In the case of the standard triangle ABC these points are given by

S1 =
(
− 3p1

q
,

9pp1

q2 − q
)

, S2 =
(
− 3p2

q
,

9pp2

q2 − q
)

, (8)

K1 =
(3p1

2q
, −5

6
q
)

, K2 =
(3p2

2q
, −5

6
q
)

. (9)

Proof. According to (5), the slope of the line B1C1 is a− 3p
q , and the line through C parallel

to it is given by y − c2 =
(
a − 3p

q
)
(x − c), i.e., qy = (aq − 3p)x + (c2 − ca)q + 3cp. The

point S1 lies on this line because

qy− (aq− 3p)x− (c2 − ca)q− 3cp

= 9pp1
q − q2 + 3ap1 − 9pp1

q + (ca− c2)q− 3cp

= (ca− c2 − q)q + a(bc2 + ca2 + ab2)− 3abc2

= (ca− ab)q− 2abc2 + ca3 + a2b2

= −a(a + 2c)(a2 + ac + c2) + 2ac2(a + c) + a3c + a2(a + c)2 = 0.

Substitutions B ↔ C and b ↔ c imply the substitution p1 → p2, and using this
substitution, the previous proof shows that the line through B, parallel to B1C1, passes
through S2. Cyclic permutations a → b → c → a imply C1 A1 ‖ AS1 ‖ CS2, and A1B1 ‖
BS1 ‖ AS2. The line

y = −ax + 1
6q (9cp + 3c2q− 3caq− 2q2)

is parallel to BC, and it passes through C1. Let us show that this line also passes through K1,
i.e., that

− 5
6 q = −a · 3p1

2q + 1
6q (9cp + 3c2q− 3caq− 2q2),

i.e.,
3cp− 3ap1 + c2q− caq + q2 = 0,

which, because q + c2 = ab and p = abc, after dividing by a, becomes equivalent to

3bc2 − 3p1 + (b− c)q = 0.

However, we have

3bc2 − 3p1 + (b− c)q = 3bc2 − bc2 − ca2 − ab2 + (b− c)(bc + ca + ab)

= bc2 + b2c− a2c− ac2

= bc(b + c)− ac(a + c) = −bca + acb = 0.

Other statements of the theorem are proved in a similar way.

Using the obvious term three-parallelogy, statements of Theorems 8 and 9 can be briefly
summarized as the following corollary.

Corollary 1. The allowable triangle ABC and its first Brocard triangle A1B1C1 are three-parallelogic,
and in the case of a standard triangle ABC, centers of parallelogy are the Steiner point S of the
triangle ABC and points S1, S2, and the symmedian center K of the triangle ABC and points K1, K2
(see Figure 3).

In the Euclidean case, the statement about three-parallelogy, without proof, can be found
in [10].
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Theorem 10. Points S, S1, and S2 from Theorem 9 lie on the circumscribed Steiner ellipse of the
triangle ABC (see Figure 3).

Proof. The statement for Steiner point S is proved in [7]. For the point S1 = (x, y) we have

q2x2 − 9pxy− 3qy2 − 6pqx− 4q2y + 9p2

= 9p2
1 + 243 p2 p2

1
q3 − 27pp1 − 3q

( 9pp1
q2 − q

)2
+ 18pp1 − 36pp1 + 4q3 + 9p2

= 9p2 + 9pp1 + 9p2
1 + q3 = 0,

and this point lies on the circumscribed Steiner ellipse of the triangle ABC, which, by [7],
has the equation q2x2 − 9pxy− 3qy2 − 6pqx− 4q2y + 9p2 = 0. Analogous proof is for the
point S2.

Theorem 11. Points K1 and K2 from Theorems 9 are reciprocal to Crelle–Brocard points Ω1 and Ω2
of that triangle (see Figure 3).

In the Euclidean case this statement, without proof, can be found in [11].

Proof. For the point K1 = (x, y) we get

q2x2 − 9pxy− 3qy2 − 6pqx− 4q2y + 9p2

= 9
4 p2

1 +
45
4 pp1 − 25

12 q3 − 9pp1 +
10
3 q3 + 9p2

= 9p2 + 9
4 pp1 +

9
4 p2

1 +
15
12 q3

= 27
4 p2 − 1

4 q3 + 5
4 q3

= 1
4 (27p2 + 4q3),

3pqx2 + 4q2xy− 9py2 + (9p2 + 4q3)x− 12pqy− 4pq2

= 27
4 ·

pp2
1

q − 5p1q2 − 25
4 pq2 + 27

2 ·
p2 p1

q + 6p1q2 + 10pq2 − 4pq2

= 27
2 ·

p2 p1
q + 27

4 ·
pp2

1
q −

1
4 pq2 + p1q2

= 1
4q (54p2 p1 + 27pp2

1 + 3pq3)− (p− p1)q2

= 3p
4q (18pp1 + 9p2

1 − 9p2 − 9pp1 − 9p2
1)− (p− p1)q2

= − 3p
4q (9p2 − 9pp1)− (p− p1)q2

= − 1
4q (p− p1)(27p2 + 4q3),

9p2x2 + 12pqxy + 4q2y2 + 8pq2x− (9p2 − 4q3)y− 12p2q

= 81
4 ·

p2 p2
1

q2 − 15pp1q + 25
9 q4 + 12pp1q + 15

2 p2q− 10
3 q4 − 12p2q

= 81
4 ·

p2 p2
1

q2 − 9
2 p2q− 3pp1q− 5

9 q4

= 1
36q2 (729p2 p2

1 − 162p2q3 − 108pp1q3 − 20q6)

= 1
36q2

(
729p2 p2

1 − 162p2q3 − 108pp1q3 − 8q6 + 12q3(9p2 + 9pp1 + 9p2
1)
)

= 1
36q2 (729p2 p2

1 − 54p2q3 + 108p2
1q3 − 8q6)

= 1
36q2 (27p2 + 4q3)(27p2

1 − 2q3),

and, its reciprocal point has coordinates
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1
4q (p− p1)(27p2 + 4q3)

1
4 (27p2 + 4q3)

=
p− p1

q

and
1

36q2 (27p2 + 4q3)(27p2
1 − 2q3)

1
4 (27p2 + 4q3)

=
1

9q2 (27p2
1 − 2q3)

which is the point Ω1. The proof for K2 is analogous.

Let us consider the indirect similarity given by

x′ = −1
2

x, y′ =
3p
2q

x +
1
2

y− q
3

(10)

and vice versa

x = −2x′, y =
6p
q

x′ + 2y′ +
2
3

q. (11)

The similarity (10) obviously maps the point A = (a, a2) to the point A1, and points B
and C to points B1 and C1. This similarity maps the Steiner point S, which is, according

to [7], given by S = (− 3p
q , 9p2

q2 ), to the point with abscissa 3p
2q and ordinate equal to 3p

2q ·

(− 3p
q ) + 1

2 ·
9p2

q2 −
q
3 = − q

3 , which is the point K. The point S1 is mapped to the point

with abscissa 3p1
2q and ordinate 3p

2q (−
3p1

q ) + 1
2 (

9pp1
q2 − q)− q

3 = − 5
6 q, which is the point K1.

The centroid G = (0,− 2
3 q) is under the similarity (10) mapped onto itself.

The circumscribed circle and the circumscribed Steiner ellipse of the triangle ABC
have, according to [3,7], equations

y = x2

and

q2x2 − 9pxy− 3qy2 − 6pqx− 4q2y + 9p2 = 0,

which, after substitutions (11), become

6p
q x′ + 2y′ + 2

3 q = 4x′2

and

q2 · 4x′2 + 18px′
( 6p

q x′ + 2y′ + 2
3 q

)
− 3q

( 6p
q x′ + 2y′ + 2

3 q
)2

+

+ 12pqx′ − 4q2( 6p
q x′ + 2y′ + 2

3 q
)
+ 9p2 = 0.

After rearrangements and replacements x′  x, y′  y this can be written as

y = 2x2 − 3p
q

x− q
3

and
4q2x2 − 36pxy− 12qy2 − 24pqx− 16qy + 9p2 − 4q3 = 0,

which are, according to [5,7], equations of the Brocard circle and the inscribed Steiner ellipse
of the triangle ABC.

Let us find the equation of the fixed line, i.e., of the axis of similarity (10). The
transformation x → −2x, y→ 6p

q x + 2y + 2
3 q maps the line

y = kx + l (12)
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to the line
6p
q

x + 2y +
2
3

q = −2kx + l,

i.e., to the line

y = −
(
k +

3p
q
)
x +

l
2
− q

3
,

which coincides with the line (12) if and only if

−
(
k +

3p
q
)
= k,

l
2
− q

3
= l.

Therefore,

k = −3p
2q

, l = −2
3

q,

and the required axis is the line

y = −3p
2q

x− 2
3

q,

which is, according to [7], the Steiner axis of the triangle ABC. The last result is in accor-
dance with Theorem 4.

Thus, we have proved:

Theorem 12. An allowable triangle ABC and its first Brocard triangle A1B1C1 are indirectly
similar. This similarity has the center at the common centroid of these two triangles, its coefficient
equals − 1

2 , its axis is the Steiner axis of the triangle ABC, and it maps the points S, S1, and S2
from Theorem 9 to points K, K1, and K2 from the same theorem.

Corollary 2. The symmedian center of the allowable triangle ABC is the Steiner point of its Brocard
triangle A1B1C1.

For the Euclidean case see [9].

Corollary 3. The circumscribed Steiner ellipse of the first Brocard triangle of a given allowable
triangle is the inscribed Steiner ellipse of that triangle.

Corollary 4. Segments GS and GK, where G is the centroid of the allowable triangle ABC, S its
Steiner point, and K its symmedian center, have the same perpendicular bisector as pairs of lines
from Theorem 4.

For the Euclidean case see [12].

Theorem 13. An allowable triangle is homologous with the complementary triangle of its first
Brocard triangle.

Proof. Points B1 and C1 have the midpoint A1m =
( a

4 , − 1
12q (9ap + 3bcq + 7q2)

)
because

9bp + 3b2q− 2q2 + 9cp + 3c2q− 2q2 = −9ap + 3(−q− bc)q− 4q2 = −(9ap + 3bcq + 7q2).

The line
9aqy = (9b2c2 + 6bcq− 5q2)x + 3pq− 9bcp− 4aq2

passes through A = (a, a2) and A1 because

(9b2c2 + 6bcq− 5q2)a + 3pq− 9bcp− 4aq2 = 9abcq− 9aq2 = 9a3q

and
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(9b2c2 + 6bcq− 5q2)
a
4
+ 3pq− 9bcp− 4aq2 = − 27

4 ab2c2 + 9
2 abcq− 21

4 aq2

= − 3a
4 (9bc(q + a2)− 6bcq + 7q2)

= − 1
12q (9ap + 3bcq + 7q2) · 9aq,

which is the line AA1m. This line also passes through the point
( 3p

5q , 1
45q2 (27p2 − 20q3)

)
because

(9b2c2 + 6bcq− 5q2) · 3p
5q + 3pq− 9bcp− 4aq2 = 27

5 ·
b2c2 p

q + 18
5 bcp− 9bcp− 4aq2

= 1
5q (27b2c2 p− 27bcpq− 20aq3)

= 1
5q (27a2bcp− 20aq3)

= 1
45q2 (27p2 − 20q3) · 9aq.

Theorem 14. If A1B1C1 is the first Brocard triangle of the allowable triangle ABC, then its
Crelle–Brocard points Ω1 and Ω2 divide in equal proportions the pairs of segments CB1, BC1; AC1,
CA1; BA1, AB1.

For the Euclidean case, without proof, see [10].

Proof. According to Theorem 7 and its proof, points Ω1 and Ω2 lie on lines CB1, AC1, BA1,
and BC1, CA1, AB1. From (1) and (3) we get the ratios

d(B1, Ω1)

d(C, Ω1)
=

p−p1
q + b

2
p−p1

q − c
=

2p− 2p1 + bq
2(p− p1 − cq)

,
d(C1, Ω2)

d(B, Ω2)
=

p−p2
q + c

2
p−p2

q − b
=

2p− 2p2 + cq
2(p− p2 − bq)

,

so we have to prove the equality(
2(p− p1) + bq

)
(p− p2 − bq) =

(
2(p− p2) + cq

)
(p− p1 − cq),

which is, after dividing by q, equivalent to

b(p− p2 − 2p + 2p1 − bq) = c(p− p1 − 2p + 2p2 − cq),

and since p + p1 + p2 = 0, equivalent to

3bp1 − b2q = 3cp2 − c2q.

This last equality holds true because

3bp1 − 3cp2 − (b2 − c2)q = b(bc2 + ca2 + ab2)− c(b2c + c2a + a2b)− (b + c)(b− c)q

= a(b3 − c3) + a(b− c)q

= a(b− c)(b2 + bc + c2 + q) = 0.

Theorem 15. If A1B1C1 is the first Brocard triangle of the allowable triangle ABC with the Brocard
angle ω, then BCA1, CAB1, and ABC1 are isosceles triangles, which have angles at sides BC, CA,
and AB equal to ω.

For the Euclidean case see [9].

Proof. According to the proof of Theorem 7, lines AΩ1 and AΩ2, containing points C1
and B1, have slopes ω− c and −(ω + b). By cyclic permutations it follows that lines BΩ1
and CΩ2, containing the point A1, have slopes ω− a and −(ω + a). So we get

∠(BC, BA1) = ω− a− (−a) = ω,

∠(CA1, BC) = −a + ω + a = ω.
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Theorem 16. If P is the center of homology of the triangle ABC and its first Brocard triangle,
and if D, E, and F are points symmetrical to P with respect to the midpoints of sides BC, CA,
and AB, then the triangles ABC and DEF are symmetrical with respect to the midpoint S of the
Crelle–Brocard points Ω1 and Ω2.

For the Euclidean case see [13].

Proof. P + D = B +C implies D = B +C− P. By Theorem 7, P + Ω1 + Ω2 = 3G, where G
is the centroid of ABC. We get P + 2S = 3G, i.e., P + 2S = A + B + C or 2S = A + D.

4. Conclusions

In this paper we introduce the first Brocard triangle of a triangle in the isotropic
plane, and study its connections with some other objects related to the given triangle.
Some of the most important statements that we prove are the following: the allowable
triangle ABC and its first Brocard triangle are homologous, where the centers of homologies
are the point reciprocal to the symmedian center of the triangle and the Crelle–Brocard
points of that triangle; the allowable triangle ABC and its first Brocard triangle are three-
parallelogic and indirectly similar, and the allowable triangle is homologous with the
complementary triangle of its first Brocard triangle. The analytical approach used in this
paper was introduced and developed in [3]. The obtained results are compared with similar
results in the Euclidean plane.
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