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Abstract: The enumeration of Dyck paths is one of the most remarkable problems in Catalan combi-
natorics. Recently introduced categories of Dyck paths have allowed interactions between the theory
of representation of algebras and cluster algebras theory. As another application of Dyck paths theory,
we present Brauer configurations, whose polygons are defined by these types of paths. It is also
proved that dimensions of the induced Brauer configuration algebras and the corresponding centers
are given via some integer sequences related to Catalan triangle entries.
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1. Introduction

In the last few years, several combinatorial objects have allowed the research develop-
ment of the theory of representation of algebras. For instance, the number of triangulations
of a polygon with n + 3 sides, or the number of Dyck paths of length 2n in the plane con-
necting the origin with a point P = (2n, 0). Edges in these paths are either rises (linking
points (x, y) and (x + 1, y + 1) in N2) or falls (connecting points (x, y) and (x + 1, y− 1)
in N2) [1]. Caldero, Chapoton, and Schiffler [2] proved that any triangulation T of an
(n + 3)-polygon defines a category modF QT of finitely generated modules over a path
algebra FQT induced by a quiver QT arisen from the triangulation T. They also proved
that modF QT can be identified with the category of diagonals defining the triangulation.

Following the ideas by Caldero et al., Cañadas et al. [3] introduced a categorical
equivalence between a category C2n of Dyck paths and a category of representations
rep An−1 of a quiver of Dynkin type An−1. These approaches allow obtaining formulas for
cluster variables of type A and frieze patterns in terms of Dyck paths and perfect matchings
of some snake graphs. It is worth pointing out that finding formulas of these types is a
significant problem in the cluster algebras theory.

On the other hand, Brauer configuration algebras (BCAs) are bound quiver algebras
introduced by Green and Schroll in [4]. The structure of the indecomposable projective
modules over these types of algebras is given by some combinatorial data, which are
also used to determine their dimension. BCAs were used by Espinosa [5] to categorify
integer sequences in the sense of Ringel and Fahr, i.e., the numbers in these sequences
can be considered as invariants of objects in a category. They are also helpful in several
fields of applied mathematics (cryptography, graph energy theory, algebraic combinatorics,
etc. [6–9]).

Contributions

This paper establishes a connection between Dyck paths and Brauer configuration
algebras researches by proving that Dyck paths define suitable words associated with
polygons in a Brauer configuration. We introduce new Catalan–Brauer configurations
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(CBCs) obtaining formulas for the dimensions of the corresponding BCAs and their centers.
To do that, we introduce an integer sequence S = {hi

x,j} whose properties allow obtaining
formulas relating its elements with entries of the Catalan triangle. Thus, the approach
allows giving another manifestation of Catalan numbers via BCAs.

Figure 1 shows how Brauer configuration algebras and Dyck paths theories are related
to the main results presented in this paper.

Brauer Configuration Algebras (Section 2.2)

��

Dyck paths (Section 2.1)

��
Propositions 1, 2, 3

��
Algorithm 1

��

Lemma 1, Proposition 4

��
Theorem 1, Formulas (7) and (8)

++

Lemma 2, Proposition 5

tt
Theorem 2

Figure 1. Main results presented in this paper (targets of blue and red arrows) allow establishing a
connection between Brauer configuration algebras and Dyck paths theories. Propositions 1–3 give
properties of a suitable integer sequence related to the Catalan triangle entries via Lemma 1 and
Proposition 4. We introduce a Brauer configuration Γx, whose vertices occur in polygons according
to entries of suitable matrices whose properties are given in Lemma 2. Proposition 5 proves that the
Catalan triangle gives entries of such matrices. Theorem 2 gives a formula for the dimension of a
Brauer configuration algebra (and its corresponding center) defined by Dyck paths.

The organization of this paper goes as follows; the main definitions and notation are
given in Section 2, we recall the definitions and notation used throughout the document.
In particular, we recall notions of Dyck paths, Catalan triangle, and Brauer configuration
algebra (Section 2.2). In Section 3, we give our main results. We introduce an integer
sequence whose elements are related to the entries of the Catalan triangle. The numbers in
this sequence allow giving a formula to compute the dimension of some Brauer configu-
ration algebras, whose polygons are defined by Dyck paths. The concluding remarks are
given in Section 4.

2. Background and Related Work

This section is devoted to reminding the basic notation and results concerning Dyck
paths, the Catalan triangle, and Brauer configuration algebras, which are helpful for a better
understanding of the paper.

2.1. Dyck Paths and Catalan Triangle

In this section, we make a brief review on Dyck paths and the Catalan triangle [1,10].
Dyck paths, as defined in the introduction, were enumerated by Stanley [1], who

proved that there are Cn = 1
n+1 (

2n
n ) Dyck paths of length 2n, where Cn denotes the nth

Catalan number. p2n = {P | P is a Dyck path, |P| = 2n}.
For u ≥ 0 and 0 ≤ v ≤ u. The Catalan’s triangle is an integer array whose entries

C(u, v) are given by the formula [10].

C(u, v) =
u− v + 1

u + 1

(
u + v

v

)
, u ≥ 0, and 0 ≤ v ≤ u. (1)

There are many ways of finding Catalan triangle entries in the specialized literature.
For instance, the array (3) gives such numbers according to the recurrence (2). Such a
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recurrence was found by Cañadas et al. [3] via some seed vectors associated with positive
integral diamonds of type An arising from the theory of integer friezes.

px,y =



p1,1 = p1,2 = 1,
x

∑
i=y−1

px−1,i, if y > 1, and x > 1,

x

∑
i=1

px−1,i, if y = 1, and x > 1.

(2)

p1,2 = 1 p1,1 = 1

p2,3 p2,2 p2,1

p3,4 p3,3 p3,2 p3,1

p4,5 p4,4 p4,3 p4,2 p4,1
...

. . .

(3)

2.2. Brauer Configuration Algebras

Green and Schroll introduced the notion of a BCA (Brauer Configuration Algebra).
The authors refer the interested reader to [4,11] for a more detailed study of BGAs (Brauer
Graph Algebras) and BCAs. In the sequel, we make a brief description of the structure of
these algebras.

A BCA ΛΓ is a bound quiver algebra induced by a Brauer configuration Γ = (Γ0, Γ1, µ,O)
of sets, with the functions and orders satisfying the following conditions:

• Elements of the set Γ0 are called vertices;
• Γ1 consists of multisets called polygons, which consist of vertices that can be repeated.

Moreover, if U ∈ Γ1. Then |U| > 1;
• µ denotes a function from the set of vertices to the set of positive integers. Green

and Schroll called this function the multiplicity function, associated with the Brauer
configuration Γ;

• If a vertex h in a polygon W occurs t times. Then, we will write occ(h, W) = t. val(h) =
∑

W∈Γ1

occ(h, W) is said to be the valency of the vertex h, which is said to be non-truncated

if val(h)µ(h) 6= 1 (otherwise, it is non-truncated). We let Sh denote the maximal set of
polygons containing a non-truncated vertex. If Sh = {Ui1 , Ui2 , . . . , Uim}. Then Sh is
endowed with a well-order <, which allows writing Sh in the following form:

Uh1
i1

< Uh2
i2

< · · · < Uhm
im , his > 0. (4)

The symbol Ux
ij

is used to denote that occ(h, Uij) = x. In successor sequences Ux

denotes a subsequence of length x with the form:

U < U · · · < U︸ ︷︷ ︸
x−times

(5)

The set (Sh,<) is said to be the successor sequence associated with the vertex h. Note
that if Ui < Uj is a covering in Sh and h′ ∈ Ui ∩Uj with h′ 6= h then the relation
Ui < Uj also appears in the sequence Sh′ .

In this work, it is assumed that each polygon Ui ∈ Γ1 is given by a word wUi of
the form

wUi = αs1
1 αs2

2 . . . α
st−1
t−1 xst

t (6)

where for each i, 1 ≤ i ≤ t, αi is a vertex, and si = occ(αi, Ui).
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Algorithm 1 is a short version of an algorithm introduced in [6] by Cañadas et al. to
construct a Brauer configuration algebra.

Algorithm 1: Building a BCA

1. Input. Γ = (Γ0, Γ1, µ,O).
2. Output. The BCA ΛΓ = FQΓ/IΓ induced by the BC Γ.
3. Remove truncated vertices.
4. Define the Brauer quiver QΓ = (Q0, Q1, s, t), such that

(a) Q0 = Γ1,
(b) For each covering Ui ≤ Ui+1 contained in a successor sequence Sα,

define an arrow aα for which s(aα) = Ui, and t(aα) = Ui+1,
(c) To each ordered successor sequence Sα define a special cycle Cα

associated with a vertex α by adding a relation rα of the form
Umax Sα

< Umax Sα
.

5. Define the path algebra FQΓ.
6. Define an admissible ideal IΓ generated by the following relations:

(a) aαaα′ , if α, α′ ∈ Γ0, α 6= α′, aαaα′ ∈ FQΓ,

(b) Cµ(α)
α f , if f is the first arrow of a special cycle Cα associated with α,

(c) (lα)µ(α)+1, if l is a loop associated with a non-truncated vertex α ∈ Γ0,
and val(α) = 1.

(d) Cµ(α)
α − Cµ(α′)

α′ , for any pair of special cycles associated with vertices
α, α′ ∈ U, U ∈ Γ1.

7. Define the Brauer configuration algebra ΛΓ = FQΓ/IΓ.
8. The union of classes of proper prefixes of special cycles with classes of special

cycles provide an F basis B of ΛΓ.

Later on, if there is not possibility of confusion, we will assume notations Q (for a
quiver), I (for an admissible ideal) and Λ (for a Brauer configuration algebra).

Theorem 1 provides algebraic properties of BCAs [4].

Theorem 1 ([4], Theorem B, Propositions 2.7, 3.2 and 3.5, Theorem 3.10, Corollary 3.12 ). Let
Λ = FQ/I be a Brauer configuration algebra induced by a Brauer configuration Γ = (Γ0, Γ1, µ,O).
1. There is a bijection between the set of indecomposable projective modules over Λ and Γ1;
2. If PV is an indecomposable projective module over a BCA Λ defined by a polygon V in Γ1.

Then rad PV =
r
∑

i=1
Ui, where Ui ∩Uj is a simple Λ-module for any 1 ≤ i, j ≤ r, and r is the

number of (non-truncated) vertices of V;
3. I is admissible, whereas Λ is a multiserial symmetric algebra. Moreover, if Γ is connected,

then Λ is indecomposable as an algebra;
4. If rad P (soc P) denotes the radical (socle) of an indecomposable projective module P, and

rad2 P 6= 0. Then, the number of summands in the heart rad P/soc P of P equals the number
of non-truncated vertices of the polygons in Γ corresponding to P counting repetitions;

5. If ΛΓ and ΛΓ′ are BCAs, induced by Brauer configurations Γ = (Γ0, Γ1, µ,O), and
Γ′ = (Γ0\{h}, Γ1\V ∪ V′, µ,O), where V′ = V\{h}, |V| ≥ 3, and val(h)µ(h) = 1.
Then, ΛΓ is isomorphic to ΛΓ′ .

Green and Schroll in [4] proved that the dimension of a Brauer configuration algebra
is given by the following formula.

dimF Λ = 2|Γ1|+ ∑
i∈Γ0

val(i)(µ(i)val(i)− 1). (7)
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Sierra [12] obtained the next formula for the dimension of the center of a connected
Brauer configuration algebra ΛΓ with radical square different from zero.

dimF Z(Λ) = 1 + ∑
α∈Γ0

µ(α) + |Γ1| − |Γ0|+ #(Loops Q)− |CΓ|, (8)

where |CΓ| = {α ∈ Γ0 | val(α) = 1, and µ(α) > 1}.
As an example, we use compositions of the number 3 to define a Brauer configuration

∆ = (∆0, ∆1, µ,O) for which;

• ∆0 = {1, 2, 3};
• ∆1 = {U1 = {3, 1, 1, 1}, U2 = {2, 1}, U3 = {1, 2}};
• µ(1) = µ(2) = 1, µ(3) = 2;

• Successor sequences: S1 = U(3)
1 < U2 < U3, S2 = U2 < U3, S3 = U1;

• val(1) = 5, val(2) = 2, val(3) = 1;
• |∆0| = 3, |∆1| = 3, |C∆| = 1;
• dimF Λ∆ = 29;
• dimF Z(Λ∆) = 8.

The following Figure 2 shows the Brauer quiver Q∆.

Q∆ = U1
a1

1 //

l1
1
��

l1
2

LL

l3
1

��

l3
2

kk U2
a1

2 //

b2
1

$$
U3

b2
2

gg

a1
3

cc

Figure 2. Brauer quiver associated Q∆ induced by the Brauer configuration ∆.

The admissible ideal I∆ is generated by the following relations (a and a′ denote first
arrows of special cycles Cα associated with a vertex α).

• l1
i l3

j , (l1
i )

2, (l3
i )

2, for all possible values of i and j;
• l3

i a1
1, a1

1b2
1, b2

1a1
3, C1

1 a, C1
2 a′, C1

1 ∼ C1
2 , for all possible special cycles associated

with vertices 1 and 2.

3. Main Results

The results in this section allow establishing interactions between Catalan combina-
torics via Dyck paths and Brauer configuration algebras. It is proved that indecomposable
projective modules over some Brauer configuration algebras define Dyck paths. We com-
pute the dimension of these algebras and their corresponding centers.

3.1. Dyck Paths Arising from Brauer Configuration Algebras

For a fixed integer x, and sets of letters

Fx = {ax2
x1}0≤x1≤x−1, x1<x2≤x, Gx = {bx2

x1}0≤x1≤x−1, x1<x2≤x. (9)

It is defined a Brauer configuration Γx = (Γx
0 , Γx

1 , µx,Ox), where

Γx
0 = Fx ∪ Gx. (10)
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If a product or concatenation c is defined on the set Γx
0 in the following fashion:

c(δ) =


a

q+1
p , if δ = a

q
p,

b
q
p, if δ = a

q
p,

a
q+1
p+1, if δ = b

q
p,

b
q
p+1, if δ = b

q
p,

(11)

for suitable integers p and q.
Then the word wV associated with a polygon V ∈ Γx

1 has the form wV = δ1 . . . δ2n =
2n
∏

h=1
δh, where δ1 = a1

0 and δq = c(δq−1).

The orientation Ox is defined by an order < satisfying the following conditions: Suc-
cessor sequences associated with vertices can be defined by adopting the following relation

V < V′ if and only if there exists a positive integer r such that

N
rg
V = N

rg
V′ if 0 < rg < r,

N
rg
V′ < N

rg
V if rg = r.

(12)

where N
rg
V is the number of a words appearing before the first occurrence of an rg-b word

in V.
If no confusion arises, henceforth, we will write polygons in terms of their correspond-

ing words. In successor sequences polygons Vi ∈ Γx
1 are (linearly) ordered in the form

V1 < V2 < . . . , where

V1 =
n

∏
q=1

a
q
0

n

∏
p=0

bx
p, V2 =

n−1

∏
q=1

a
q
0(b

n−1
0 an

1 )
n−1

∏
p=1

bx
p, . . . (13)

Remark 1. It is worth pointing out that under these circumstances, it is easy to prove that there is
a bijection between words of type Vi and Dyck paths of type p2n.

The multiplicity function µx : Γx
0 → N+ is defined in such a way that

µx(δ) = 2, if val(δ) = 1, µx(δ) = 1, otherwise. (14)

Brauer configurations of type Γx are called Catalan–Brauer configurations. We note
that, if V ∈ Γx

1 , then occ(ax2
x1 , V) is given by an entry of the ( x1(2x−x1)

2 + x2 − 1
2 )-row of

the x(x+1)
2 × px,2-matrix Ax = (ax

i,j) shown in Figure 3 (see identities (2)). On the other
hand, the same row in a matrix Bx = (bx

i,j) of the same size gives occ(bx2
x1 , V). Note that,

A1 = B1 = (1).
Entries of Matrix A

p,p(x−1,p+1)
x−1 = (ax−1,p

i,j ) are given by the following identities:

ax−1,p
i,j =

{
ax−1

i,j , if i > p,

0, otherwise ,
(15)

where 0 ≤ p ≤ x− 1.
Entries bx−1,p

i,j ∈ B
p,p(x−1,p+2)
x−1 are given by the same formulas for −1 ≤ p ≤ x− 1.
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Figure 3. Matrices Ax and Bx whose entries are defined by identities (15).

Paths in FQ associated with the Brauer quiver induced by Γx are given by words

of the form
k

∏
h=1

ap
qh or

k′

∏
h=1

bp′

q′h
. In this case, ax

p,qr = bx
p′ ,q′

r′
= 1 with qr < qr+1, q′r < q′r′+1,

1 ≤ qr, q′r′ ≤ px,2. And 1 ≤ p ≤ x(x+1)
2 .

(ap
q )

2 and (bp′

q′ )
2 denote loops associated with vertices δ for which val(δ) = 1.

Special cycles Cp associated with a given non-truncated vertex δp are given by the
following identities:

Cp =



k
∏

h=t
ap

qh

t−1
∏

h=1
ap

qh , ax
p,qt = 1, and δp ∈ Fx,

k′

∏
h=t

bp′

q′h

t−1
∏

h=1
bp′

q′h
, bx

p′ ,q′t
= 1, and δp ∈ Gx,

0, otherwise.

(16)

The admissible ideal I associated with the Brauer configuration Γx is generated by the
following set of relations.

• Relations of type I.

∏
h∈{qs1 ,...,qk1

}
ap1

h ∏
h∈{q1,...,qs1−1}

ap1
h = · · · = ∏

h∈{qst ,...,qkt}
apt

h ∏
h∈{q1,...,qst−1}

apt
h ,

∏
h∈{qst ,...,qkt}

apt
h ∏

h∈{q1,...,qst−1}
apt

h = · · · = ∏
h∈{q′n1 ,...,q′

k′1
}
bp′1

h ∏
h∈{q′n f

,...,q′
k′f
}
bp′1

h ,

∏
h∈{q′n1 ,...,q′

k′1
}
bp′1

h ∏
h∈{q′n f

,...,q′
k′f
}
bp′1

h = · · · = ∏
h∈{q′n1 ,...,q′

k′1
}
b

p′f
h ∏

h∈{q′1,...,q′n f −1}
b

p′f
h .

(17)

qsw = qsw′ = q′nz , for any w, w′ and z, 1 ≤ qs1 ≤ px,2, p1, . . . , pt, p′1, . . . , p′h ∈
{1, 2, . . . , x(x+1)

2 }.
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• Relations of type II.
∏

h∈{qs1 ,...,qk1
}
apr

h ∏
h∈{q1,...,qs1−1,qs1}

apr
h ,

∏
h∈{q′n1 ,...,q′

k′1
}
b

p′f
h ∏

h∈{q′1,...,q′n f −1,q′n1}
b

p′f
h ,

(18)

for appropriated positive integers pr ∈ {p1, . . . , pt} and p′f ∈ {p′1, . . . , p′t′}.
• Relations of type III.

apr
qs aph

qn , apr
qs b

p′h
q′x

, b
p′h
q′n

apr
qs , bp′r

q′s
b

p′h
q′s

, (19)

for all the possible products in ΛΓx .

We let ΛΓx = FQΓx /Ix denote the Catalan–Brauer configuration algebra induced by the
Brauer configuration Γx.

As an example, we define the Catalan–Brauer configuration Γ2 = (Γ2
0, Γ2

1, µ2,O2),
for which

Γ2
0 = {a1

0, a2
0, a2

1, b1
0, b2

0, b2
1}.

Γ1 = {V1, V2}, wV1 = a1
0a

2
0b

2
0b

2
1, wV2 = a1

0b
1
0a

2
1b

2
1.

µ2(δ) = 1, if δ ∈ {a1
0, b2

1}, µ2(δ) = 2, otherwise.

V1 < V2, in any successor sequence.

(20)

The following are the matrices A2 and B2.

A2 =

occ(a1
0, V1) occ(a1

0, V2)
occ(a2

0, V1) occ(a2
0, V2)

occ(a2
1, V1) occ(a2

1, V2)

,

B2 =

occ(b1
0, V1) occ(b1

0, V2)
occ(b2

0, V1) occ(b2
0, V2)

occ(b2
1, V1) occ(b2

1, V2)

.

Figure 4 shows the Brauer quiver QΓ2 .

QΓ2 = V1

β1
b2
1

''

α1
a1
0

��

l1
a2
0
��

l1
a2
1

LL V2

β2
b2
1

gg

α2
a1
0

ZZ

l1
b1
0

��

l1
b2
0

RR

Figure 4. Brauer quiver associated with a Catalan–Brauer configuration algebra ΛΓ2 .

Identities (17)–(19) induce the following set of relations ρΓ2 :

• l1
ul1

v , (l1
u)

3, l1
ai

α1
a1

0
, l1

ai
β1

b2
1
. For all possible values of u and v;

• l1
bi

α2
a1

0
, l1

bi
β2

b2
1
, αuβv. For all possible values of i, u and v;

• Cui ∼ Cvi , for all special cycles associated with vertices ui, vi ∈ Vi, i = 1, 2;
• Cui a, for any special cycle associated with a vertex ui ∈ Γ0, a is the first arrow of Cui .
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The Catalan–Brauer configuration algebra ΛΓ2 is defined in such a way that
ΛΓ2 = FQΓ2 /IΓ2 , where IΓ2 = 〈ρΓ2〉 is an admissible ideal generated by relations ρΓ2 .
Figure 5 shows the indecomposable projective ΛΓ2 -modules.

V1

β1
b2
1

��

l1
a2
0

��

α1
a1
0

yy

l1
a2
1

��

V2

β2
b2
1

~~

l1
a2
0

��

l1
b1
0

��

α2
a1
0

$$
P1 = V2

α2
a1
0

%%

V2

β2
b2
1

��

V1

l1
a2
0

��

V1

l1
a2
1

��

P2 = V1

β1
b2
1   

V2

l1
a2
0

��

V2

l1
b1
0

��

V1

α1
a1
0zz

V1 V2

Figure 5. Indecomposable projective ΛΓ2 -modules. Note that the number of composition series
equals the number of non-truncated vertices in the corresponding polygon.

3.2. Dimension of a Catalan–Brauer Configuration Algebra and Its Corresponding Center

The dimensions of the Catalan–Brauer configuration algebras are given in this section
based on a new family of integer sequences, whose elements are related to Catalan triangle
entries.

Let hp
x,q be integer numbers, such that

h
p
1,q = 1,

h
p
x,q = ∑

c−d=p−q
x−1≤c≤p

hc
x−1,d if x > 1,

h
p
x,q = 0 if q ≤ 0,

(21)

p ≥ x− 1 q ≤ p + 1.
Figure 6 shows integer sequences hp

x,q for x = 2, . . . , 5.

Figure 6. Numbers hp
2≤x≤5, q.

Arithmetic properties of numbers hp
x,q are given by the following Propositions 1–3.

Proposition 1. h
p
x,j = h

p
x,q−1 + h

p−1
x−1,j, for p ≥ 1, q ≤ p, and 1 < x < p + 1.

Proof. If p = 1, h1
2,1 = h0

1,1 + h1
2,0 = 1.
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We suppose that the statement holds true for p = m and 1 < x < m + 1. Then, for
p = m + 1 and x = 2,

hm+1
2,j = ∑

m+1−q=c−d
1≤c≤m+1

hc
1,d = (m− q) + 1 = ∑

m−q=c−d
1≤c≤m+1

hc
1,s + hm

1,q = hm+1
2,q−1 + hm

1,j,

if it is assumed that the proposition holds for x = i− 1 < m + 1. Then

hm+1
i,q = ∑

m+1−q=c−d
i−1≤c≤m+1

hc
i−1,d

= ∑
m+2−q=c−d
i−1≤c≤m+1

hc
i−1,d + ∑

m−q=c−d
i−2≤c≤m

hc
i−2,d

= hm+1
i,j−1 + hm

i−1,j.

The result follows by induction. We are done.

Proposition 2. h
p
x,p+1 = h

p
x,p, for p ≥ 1 and 1 < x ≤ p + 1.

Proof. If p = 1 then h1
2,2 = 1 = h1

2,1. If the proposition is valid for p = ι and 1 < x < ι + 1,
then the following identities hold for p = ι + 1 and x = 2.

hι+1
2,ι+2 = ∑

−1=c−d
1≤c≤ι+1

hc
1,d = ∑

0=c−d
1≤c≤ι+1

hc
1,d = hι+1

2,ι+1.

If the validness of the proposition holds for x = i− 1 < ι + 2, then

hι+1
i,ι+2 = ∑

1=c−d
i−1≤c≤ι+1

hc
i−1,d = ∑

0=c−d
i−1≤c≤ι+1

hc
i−1,d = hι+1

i,ι+1.

Thus, the statement holds by induction. We are done.

Proposition 3. For p ≥ k − 1, 1 ≤ q ≤ p + 2 − k, and k ≥ 1 fixed, it holds that h
p
k,q =

( 2k−p+q
k−p+q+1).

Proof. To proceed by induction, we note that for any q ≥ 1, h3
1,q = 1, and h4

4,q = q. Since

h
p
k,q = h

p
k,q−1 + h

p−1
k−1,q. It holds that hp

k,q = ( 2k−p+q−1
k−p+q−1+1) + ( 2k−2−p+1+q

k−p+1+q+1−1) = ( 2k−p+q
k−p+q+1). We

are done.

Lemma 1 and Proposition 4 give the relationships between integer numbers hp
x,q and

entries of Catalan triangle px,y (see identities (2)).

Lemma 1. px,x+1−m =
x
∑

q=1
hx−1

m,q for x ≥ 1, 1 ≤ m ≤ x.

Proof. If x = 1, p1,1 = 1 = h0
1,1. If it is assumed that the result is valid for x = ι and

1 ≤ m ≤ ι. Thus, if x = ι + 1 and m = 1, it holds that
ι+1

∑
q=1

hι
1,q = ι + 1 = pι+1,ι+1.

If the lemma holds true for m = i− 1 < ι + 1, then
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ι+1

∑
q=1

hι
i,q = ∑

c−d=ι−1
i−1≤c≤ι

hc
i−1,d + · · ·+ ∑

c−d=1
i−1≤c≤ι

hc
i−1,d

= ∑
c−d=ι−1

i−1≤c≤ι−1

hc
i−1,d + · · ·+ ∑

c−d=1
i−1≤c≤ι−1

hc
i−1,d +

ι+1

∑
q=1

hι
i−1,q

=
ι

∑
q=1

hι−1
i,q +

ι+1

∑
q=1

hι
i−1,q

= pι,ι+1−i + pι+1,ι+3−i

= pι,ι+1−i +
ι+1

∑
p=ι+2−i

pι,p

=
ι+1

∑
p=ι+1−i

pι,p = pι+1,ι+2−i.

Proposition 4. px,x+1−m = hx
1+m,x+1, for x ≥ 1 and 1 ≤ m ≤ x.

Proof. If x = 1, p1,1 = 1 = h1
2,2. If the result holds for x = ι and 1 ≤ m ≤ ι, then if x = ι + 1

and s = 1. Thus
pι+1,ι+1 = ι + 1 = ∑

−1=c−d
1≤c≤ι+1

hc
1,d = hι+1

2,ι+2,

If the proposition is valid for s = i− 1 < ι + 1. Then

pι+1,ι+2−i =
ι+1

∑
q=1

hι
i,q

= ∑
c−d=ι−1
i−1≤c≤ι

hc
i−1,d + · · ·+ ∑

c−d=1
i−1≤c≤ι

hc
i−1,d

=
ι+1

∑
q=1

hι
i−1,q + · · ·+

i

∑
q=1

hi−1
i−1,q

= pι+1,ι+1−i + · · ·+ pi,2
= hι+1

i,ι+2 + · · ·+ hi
i,i+1

= hι+1
i+1,ι+2.

The result holds by induction. We are done.

Each m× n-matrix M = (mpq)1≤p≤m, 1≤q≤n with entries in a commutative ring F has
associated a list of column vectors

LM = (VM,VM,ν,DM,ν,EM,ν,FM,ν). (22)

where,

VM = (vM
p,1)1≤p≤m, vM

p,1 =
n

∑
q=1

mpq,

VM,ν = (vM,ν
p,1 )1≤p≤m, vM,ν

p,1 = vM
p,1, if 1 ≤ p ≤ ν, vM,ν

p,1 = 0, otherwise,

DM,ν = (dM,ν
p,1 )1≤p≤m, dM,ν

p,1 = 0, if 1 ≤ p ≤ ν, dM,ν
p,1 = vM

p,1, otherwise,

EM,ν = (eM,ν
p,1 )1≤p≤m, eM,ν

p,1 = dM,ν
p,1 , if 1 ≤ p ≤ ν, eM,ν

p,1 = dM,ν
ν+k,1 − vM

k,1, ν + 1 ≤ p ≤ m,

FM,ν = VM − EM,ν.

(23)
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Remark 2. Henceforth, we will assume the notation φ0(A
p,px,p+1
x ) = (ax,p

i )
1≤i≤ x(x+1)

2

and φ0(B
p,px,p+2
x ) = (bx,p

i )
1≤i≤ x(x+1)

2
.

The following result holds for maps φν : Mm×n(F) → Mm×1(F), ϕν : Mm×n(F) →
Mm×1(F), such that, φν(M) = DM,ν, and ϕν(M) = FM,ν. For instance,

φ0(A2) =

2
1
1

, φ1(A2) =

0
1
1

, and ϕ1(A2) =

0
2
1

. (24)

Lemma 2. Let Ax and Bx be the matrices given in Figure 3. Then

1. φ0(A
p,px,p+1
x ) =


φ0(Ax), if p = 0,

φ1(A
p−1,px,p
x ), if p = 1,

φp(A
p−1,px,p
x ) + ϕx(A

p−2,p(x−1,p−1)
x−1 ), if 2 ≤ p ≤ x− 1,

2. φ0(B
p,px,p+2
x ) =

{
φ0(Bx), if p = 0 or p = −1,

φp(B
p−1,px,p+1
x ) + ϕx(B

p−2,px−1,p
x−1 ), if 1 ≤ p ≤ x− 1.

For x > 0.

Proof. (i) Let Ax = (ax
i,j) be an x(x+1)

2 × px,2 matrix, and A
p,px,p+1
x = (ax,p

i,j ) be an x(x+1)
2 ×

px,p+1 matrix, whose entries satisfy identities (15).

• If p = 0 then A0,px,1
x is a matrix with px,1 columns. Then ax,0

i = vAx
i,1 for 1 ≤ i ≤ x(x+1)

2 ,

provided that, px,1 = px,2, ax,0
i,j = ax

i,j;

• If p = 1 then A1,px,2
x is a matrix with px,2 columns, ax,1

i,j = ax
i,j for 2 ≤ i ≤ x(x+1)

2 ,

i.e., ax,1
i = vAx

i,1 for 2 ≤ i ≤ x(x+1)
2 , and ax,1

1 = 0;

• If 2 ≤ p ≤ x− 1, and A
p,px,p+1
x is a matrix with px,p+1 columns. In this case, the entries

of the matrix (A
p,px,p+1
x )′ obtained from matrix A

p,px,p+1
x by deleting the p− 1th row

and all columns Cj, px,p+1 ≤ j ≤ px,p equals A
p−1,px,p
x . Thus, the matrix A

p−2,px−1,p−1
x−1

provides entries in columns Cj, for which x + 1 ≤ j ≤ x(x+1)
2 , i.e.,

ax,p
i =

px,p

∑
q=1

ax,p−1
i,q −

px−1,p−1

∑
q=1

ax−1,p−2
i−x,q ,

for x + 1 ≤ i ≤ x(x+1)
2 and ax,p

i = 0, otherwise.

The item 2 can be proved by using similar arguments as in the case 1. We are done.

The following notation is assumed in the proof of Proposition 5.

• as = 1 + w− (s + 1)− s(s+1)−k(k+1)
2 ;

• bs = s− k + w− (s + 1)− ( s(s+1)−k(k−1)
2 + 1);

• bx = x− k + w− ( x(x+1)−k(k+1)
2 + 1);

• cs = s− k + w− (s + 1)− ( s(s+1)−k(k−1)
2 + 1)− (v− 1);

• cx = x− k + w− ( x(x+1)−k(k+1)
2 + 1)− (v− 1);

• ds = 1 + w− (s+2)(s+1)−k(k+1)
2 ;

• dx = 1 + w− x(x+1)−k(k+1)
2 ;

• es = s− k + w− ( (s+2)(s+1)−k(k−1)
2 + 1);

• fs = s− k + w− ( (s+2)(s+1)−k(k−1)
2 + 1)− (v− 1);

• gs = s− k + w− (s+2)(s+1)−k(k+1)
2 ;
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• hs = w− (s+2)(s+1)−k(k+1)
2 ;

• js = s + 1− k + w− ( (s+2)(s+1)−k(k+1)
2 + 1);

• ks = v + w− (s + 1)− s(s+1)−k(k+1)
2 .

Proposition 5. Let Ax and Bx be the matrices shown in Figure 3. Then, the following identi-
ties hold.

1. ax,v
w = pk,dxh

bx
x−k+1,cx

for 0 ≤ v ≤ x− 1;

2. bx,v
w = pk−1,(dx−1)h

bx+1
(x−k+1),cx−1 for −1 ≤ v ≤ x− 1,

with n(n+1)−k(k+1)
2 ≤ w ≤ x(x+1)−k(k−1)

2 for 1 ≤ k ≤ x, and x > 1.

Proof. 1. If x = 2 and v = 0, then φ0(A0,p2,1
2 ) = φ0(A2). Thus,

a2,0
1 = 2 = p2,2h

0
1,1,

a2,0
2 = 1 = p2,3h

1
1,2,

a2,0
3 = 1 = p1,2h

1
2,2.

If v = 1 then φ0(A1,p2,2
2 ) = φ1(A2), then

a2,1
1 = 0 = p2,2h

0
1,0,

a2,1
2 = 1 = p1,2h

1
1,1,

a2,1
3 = 1 = p1,2h

1
2,1.

If the result is valid for x = s and 0 ≤ v ≤ s. Moreover, φ0(A0,ps+1,1
s+1 ) = φ0(As+1) if

x = s + 1 and v = 0 (see Lemma 2). as+1,0
w = ps+1,w+v = ps+1,v+wh

w−1
1,w , 0 < w < s + 1.

The rows between s + 2 and (s+1)(s+2)
2 satisfy the following identities.

as+1,0
w = ∑s−1

v=0 pk,ash
bs
s+1−k,cs

= pk,ds ∑s−1
v=0 h

es
s+1−k, fs

= pk,dspgs ,hs = pk,dsh
gs
s+2−k,gs+1, with

1 ≤ k ≤ m.

If v = 1, then φ0(A1,ps+1,2
s+1 ) = φ1(A0,ps,1

s+1 ). Thus, as+1,1
1 = 0 = ps+1,2h

0
1,0, and

as+1,1
w = as+1,0

w = pk,dsh
gs
s+2−k,gs+1 = pk,dsh

gs
s+2−k,gs

. For (s+2)(s+1)−k(k+1)
2 < w ≤

(s+2)(s+1)−k(k−1)
2 with w 6= 1, and 1 ≤ k ≤ s + 1.

If the proposition holds for v = p− 1 < s. Therefore, it holds that φ0(A
p,ps+1,p+1
s+1 ) =

φp(A
p−1,ps+1,p
s+1 ) + ϕs+1(A

p−2,p(s,p−1)
s ) if v = p (see Lemma 2).

as+1,p
w = 0 = ps+1,1+wh

w−1
1,w−p, for 1 ≤ w ≤ p.

as+1,p
w = as+1,p−1

w = ps+1,1+uh
w−1
1,w+1−p = ps+1,1+wh

w−1
1,w−p, for p + 1 ≤ w ≤ s + 1.

as+1,p
w = pk,dsh

js
s+2−k,js−(p−2) − pk,ls ts+1−k

bs+k,bs+k−(p−3), for w ≥ s + 1.

Proposition 1 implies that

as+1,p
w = pk,ksh

js
s+2−k,js−(p−1), for 1 ≤ k ≤ s.

The proof of case 2 requires similar arguments as those exposed in case 1. We are
done.
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The following map δ : N→ {1, 2} such that

δ(x) =

{
1, if x 6= 2,
2, if x = 2.

is used to give dimension formulas for Catalan–Brauer algebras Γx and their centers.

Theorem 2. Let ΛΓx be a Catalan–Brauer configuration algebra. Then

1. dimF ΛΓx
2 = 1

n+1 (
2x
x ) + δ(x) +

x(x+1)
2

∑
u=1

(t
(ax,0

u −1) + t
(bx,0

u −1)).

2. dimF Z(ΛΓx ) = 1 + 2δ(x) + 1
x+1 (

2x
x ).

where, x > 0 and ti denotes the ith triangular number.

Proof. 1. Firstly, we note that the number of vertices in the Brauer quiver QΓx is given by
the xth Catalan number Cx = 1

x+1 (
2x
x ). Secondly, we note that val(ax2

x1) (resp. val(bn2
n1))

is given by ax,0
ma , ma = xx1 + x2 − x1(x1+1)

2 (resp. bx,0
mb , mb = xx1 + x2 − x1(x1+1)

2 ).
As a consequence of Proposition 5, we have that ax,0

x = 1 = bx,0
x for any x. In particular,

for x = 2, it holds that a0,1
2 = b0,1

2 = 1.

2. #Loops(QΛΓx ) = |CΛΓx | (see identity (8)).

As an example, the following are the dimensions associated with the Brauer configu-
ration (20). We note that for x = 2, it holds that C2 = 2, a2,0

1 = 2 = b2,0
3 , and a2,0

2 = a2,0
3 =

b2,0
1 = b2,0

2 = 1. Thus
dimF ΛΓ2 = 2(C2 + δ(2)) + 12− 8

= 2(2 + 2) + 4 = 12,

and
dimF Z(ΛΓ2) = 1 + 2δ(2) + C2 = 7.

4. Concluding Remarks

Catalan–Brauer configuration algebras (CBCAs) is a way to relate Catalan combinatorics
with the BCAs theory. Dimension formulas of such CBCAs and their centers can be obtained
by using entries of the Catalan triangle. The procedure interprets such entries as numbers of
some novel integer sequences hi

x,j dealing with binomial numbers.
It is an interesting task for the future to investigate additional relationships between

sequences hi
x,j and different Catalan objects.
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Abbreviations
The following abbreviations are used in this manuscript:

BCA Brauer Configuration Algebra
Cn nth Catalan number
C(n, k) Catalan triangle entry
dimF ΛΓ Dimension of a Brauer configuration algebra
dimF Z(ΛΓ) Dimension of the center of a Brauer configuration algebra
CBCA Catalan-Brauer Configuration Algebra
F Field
Γ0 Set of vertices of a Brauer configuration Γ
occ(α, V) Number of occurrences of a vertex α in a polygon V
tn nth triangular number

V(α)
i Ordered sequence of polygons

val(α) Valency of a vertex α

wV The word associated with a polygon V
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