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Abstract: The problem with computer model calibration by tuning the parameters associated with
computer models is significant in many engineering and scientific applications. Although several
methods have been established to estimate the calibration parameters, research focusing on the design
of calibration parameters remains limited. Therefore, this paper proposes a sequential computer
experiment design based on the D-optimal criterion, which can efficiently tune the calibration
parameters while improving the prediction ability of the calibrated computer model. Numerical
comparisons of the simulated and real data demonstrate the efficiency of the proposed technique.
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1. Introduction

Experiments are conducted to explore or optimize physical phenomena. In some
applications, such as national defense, medicine, and manufacturing, the physical experi-
ments may be difficult to be conducted due to economic, technical, or ethical limitations. To
reduce the experimental cost, mathematical models, which are also called computer models,
are developed to mimic, understand, and predict the physical phenomena in many appli-
cations [1–3]. The computer models are useful and efficient only if they can approximate
the physical process well. Oftentimes, the computer models contain a set of calibration
parameters, which are physical unobservable variables. The computer models’ fidelity to
physical process relies on the unknown values of calibration parameters. Then, physical
data and computer model outputs are combined to estimate the calibration parameters
such that the computer model matches the physical process. This procedure is referred to
as computer model calibration in the literature.

Numerous models have been proposed in the literature for the problem of computer
model calibration, such as [2,4–7]. Among them, the Kennedy and O’Hagan model is the
most commonly used. The Kennedy and O’Hagan model integrates the physical data and
computer model outputs through a Bayesian framework. Any posterior quantity can serve
as the point estimate of calibration parameter depending on the loss function specified.
In practice, the most commonly used predictor of the physical process is a calibrated
computer model, see [8,9]. Since the nonlinear effects from the discrepancy function can be
hard to interpret and also may open up the possibility of overfitting with limited physical
observations. Ref. [10] pointed out that an interpretable calibration parameter should
allow the computer model to predict the real physical phenomena well even without the
discrepancy function.

How to perform the experiments efficiently to tune the calibration parameters accu-
rately under some metrics plays an important role. Although we are not the first to look
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into the problem of design for calibration, it has not received enough attention. Based
on the Kennedy and O’Hagan model, some designs have been proposed in the literature.
Ref. [11] employed the Kullback–Liebler (KL) divergence criterion as a function of the
computer model inputs and obtained the estimate of calibration parameters by minimizing
this criterion. Ref. [12] focused on the problem of functional calibration by generating
sequential designs for the physical and computer experiments. Ref. [13] used results from
the nonlinear optimal design theory to design such experiments. Ref. [14], based on the
Kennedy and O’Hagan model, proposed an optimal sequential design for both computer
and physical experiments by regarding integrated mean squared prediction error. Based
on the Bayesian model calibration framework of [6], a D-optimal design for the physical
experiment was proposed by [15]. Ref. [16] proposed a follow-up optimal experiment
design for computer models calibration. In some practices, no physical experiments can be
conducted after the initial design due to limitations. Thus, these designs, considering the
physical experiments, are hard and impracticable. Ref. [17] presented an adaptive design
for computer experiments to estimate the calibration parameters by using the expected
improvement (EI) algorithm. It aims at reducing the calibration error induced by the
uncertainty of the emulator of computer models but not at improving the estimation of
calibration parameters. Inspired by this, we divert effort on the designs only considering
computer experiments to estimate the calibration parameters. The D-optimal criterion is
well known and widely used in the literature, which can help gather more information
about the calibration parameters by minimizing the asymptotic variances of estimate. This
paper proposes a sequential computer experiment calibration design using the D-optimal
criterion and presents a fast algorithm to generate the designs.

The article is organized as follows. Section 2 reviews the Kennedy and O’Hagan
calibration method. In Section 3, the proposed local D-optimal sequential design is pre-
sented. A fast algorithm for generating the corresponding designs is suggested. In Section 4,
some simulation studies are made to demonstrate the performance of the proposed design.
Conclusions and remarks are given in Section 5. Appendix A shows the derivation of the
Fisher Information Matrix (FIM) for the calibration parameters.

2. Calibration of Computer Models

An important reference for computer calibration is the work of [6]. In this section,
we will review some related background about the Kennedy and O’Hagan model. Let
yp be the observation of physical process and x = (x1, · · · , xr) ∈ X ⊂ Rr be the control
variables, which are also the set of inputs for physical process. According to [6], the physical
observation yp can be modeled as

yp(x) = yc(x, θ) + δ(x) + ε, (1)

where yc(·, ·) is a computer model, θ ∈ T ⊂ Rh is the set of calibration parameters, δ(·) is
the discrepancy function which is independent of the computer model yc(·, ·); ε ∼ N(0, λ2)
is the observation error and λ2 is the corresponding variance. In the literature, the most
popular methods to fit the computer model yc(·, ·) and discrepancy function δ(·) are the
Gaussian processes due to analytical tractability. Thus, the prior information about both
yc(·, ·) and δ(·) is considered as

yc(·, ·) ∼ GP(m(·, ·), c1{(·, ·), (·, ·)}),
δ(·) ∼ GP(0, c2(·, ·)), (2)

where m(·, ·) is the mean function of computer model. Assume x and x′ denote the values
of control inputs, and t and t′ denote the values of calibration inputs. According to
the literature [18,19], c1{(·, ·), (·, ·)} and c2(·, ·) are usually the corresponding separable
covariance functions such as



Mathematics 2022, 10, 1375 3 of 15

c1{(x, t), (x′, t′)} = σ2
1 exp

{
−(x− x′)TΩ−1

x (x− x′)
}

exp
{
−(t− t′)TΩ−1

θ (t− t′)
}

,

c2(x, x′) = σ2
2 exp

{
−(x− x′)TΩ−1

δ (x− x′)
}

. (3)

Here, σ2
1 and σ2

2 are the variance parameters,

Ωx = diag{ω1
x, ω2

x, · · · , ωr
x}

Ωθ = diag{ω1
θ , ω2

θ , · · · , ωh
θ}

and

Ωδ = diag{ω1
δ , ω2

δ , · · · , ωr
δ}.

In terms of the mean function m(·, ·), the linear model structure is always considered, i.e.,

m(x, t) = h(x, t)T β, (4)

where h(x, t) = (h1(x, t), h2(x, t), · · · , hp(x, t))T is a vector of p known functions over X
and β = (β1, β2, · · · , βp)T is the corresponding unknown regression coefficients.

Let Dp = {xp
1 , xp

2 , · · · , xp
q} be the design for physical experiment with q points, yp =

{yp
1 , yp

2 , · · · , yp
q}T be the corresponding physical outputs,

Dc = {(xc
1, tc

1), (xc
2, tc

2), · · · , (xc
n, tc

n)}

be the design for computer experiment with n points, and yc = {yc
1, yc

2, · · · , yc
n}T be

the corresponding computer outputs. Thus, the full output d = (ycT , ypT)T is normally
distributed given (θ, β, σ2

1 , σ2
2 , λ2, Ωx, Ωθ , Ωδ), and the corresponding likelihood function

can be yielded. In order to express the mean and variance matrix of full output clearly,
we define the following notations. Let ψ1 = (σ2

1 , Ωx, Ωθ), ψ2 = (σ2
2 , Ωδ), ϕ = (λ2, ψ1, ψ2)

and Dp
θ = {(xp

1 , θ), (xp
2 , θ), · · · , (xp

q , θ)} be the augmented design points by calibration
parameters θ. Then the mean and variance matrix for full output vector d given (θ, β,ϕ)
can be derived as

E(d|θ, β,ϕ) = H(θ)β, (5)

and

var(d|θ, β,ϕ) =
(

V1(Dc) C1(Dc,Dp
θ )

C1(Dc,Dp
θ ) λIq + V1(D

p
θ ) + V2(Dp)

)
, (6)

where V1(Dc) is the variance matrix of yc with (i, j) element

c1{(xc
i , tc

i ), (xc
j , tc

j )},

i, j ∈ {1, 2, · · · , n}; C1(Dc,Dp
θ ) is the matrix with (i, j) element

c1{(xc
i , tc

i ), (xp
j , θ)},

i ∈ {1, · · · , n}, j ∈ {1, · · · , q}; V1(D
p
θ ) and V2(Dp) are defined similar with V1(Dc); and

Iq is a q× q identity matrix. Then the posterior for the parameters given the data can be
written as

p(θ, β,ϕ|d,Dc,Dp
θ ) ∝ p(d|θ, β,ϕ)π(θ, β,ϕ), (7)

where π(θ, β,ϕ) is the prior for unknown parameters. The MCMC techniques are usually
used to determine the posterior distribution, but require complex computations. To simplify
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the computations, we adopt the modularization by the literature [20], namely, first estimate
the emulator of the computer model and then the discrepancy.

The modular approach in [20] is considered here to estimate the parameters in the
model, which can be described as follows. The maximum likelihood estimates (MLEs) β̂
of β and ψ̂1 of ψ1 can be obtained based on the computer experimental data (Dc, yc). For
the calibration parameter θ, which is a tuning parameter, there is no “true value”. The
goal of calibration is to find out some type of best-fitting value of θ. It is easy to obtain
the least-squares estimate of θ, i.e., the value θ̃ that minimizes the differences between the
physical outputs and the computer model outputs by regarding fixing the β and ψ1 at their
MLEs. The bias data (Dp, yp − ŷc(Dp

θ̃
)) can be employed to compute the MLEs ψ̂2 of ψ2

and λ̂ of λ, where ŷc(Dp
θ̃
)) is the prediction from the surrogate model. Then, considering

the MLEs β̂ and ϕ̂ as fixed values, the posterior mean θ̂ of the calibration parameters θ is
deduced according to the prior information and observation data. As pointed out by [8],
despite the maximum likelihood estimate plug-in being only approximately Bayesian,
the resulting answers seem to be close to those from a full Bayesian analysis.

3. Sequential D-Optimal Design for Calibration Parameters

How to design the physical and computer experiments efficiently is critical to calibrat-
ing the computer models. Usually, the design for the physical and computer experiments
is conducted separately in practice. A space-filling design is oftentimes used as the initial
design for computer experiments, and some uniform designs or factorial designs are em-
ployed for physical experiments. Due to the limitation of physical experiments, after the
initial designs, only computer experiments are considered to improve the estimation of
calibration parameters sequentially. Here, we propose a sequential D-optimal design for
computer experiments, which improves the estimation by maximizing the determinant of
the FIM.

3.1. D-Optimal Criterion

Following the model presented in Section 2, full output vector d is normally distributed
given (θ, β,ϕ). Thus, the FIM can be derived as

I(θ) =
∫
−( ∂2

∂θ2 ln(p(d|θ, β,ϕ)))p(d|θ, β,ϕ) dd, (8)

where p(d|θ, β,ϕ) is the conditional distribution density function, also known as the
likelihood function. Similar to [15,21], the formula of FIM of the calibration parameter is
presented in the following lemma. The process of the derivation is shown in Appendix A.

Lemma 1. Let d|θ, β,ϕ be distributed as GP(H(θ)β, var(d|θ, β,ϕ)). Then, the (i, j)th element
of the FIM is

Iij(θ) =
∂(H(θ)β)T

∂θi
(var(d|θ, β,ϕ))−1 ∂(H(θ)β)

∂θj
+

1
2

tr

(
(var(d|θ, β,ϕ))−1 ∂(var(d|θ, β,ϕ))

∂θj
(var(d|θ, β,ϕ))−1 ∂(var(d|θ, β,ϕ))

∂θi

]
. (9)

where tr(·) is the trace of the matrix, and i, j ∈ {1, · · · , h}.

The corresponding D-optimal design is generated by maximizing

Dθ = arg max
D∈X

log |I(θ)|, (10)

which is similar to [22,23], where X denotes the experimental space, and | · | is the determi-
nant of a matrix. The inverse of FIM is the asymptotic variance matrix of the estimate of
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calibration parameters. Thus, maximizing (10) is equivalent to minimizing the volume of
the confidence ellipsoid of the estimate, which can help improve the estimation. Obviously,
it is not an easy task to create a D-optimal design by maximizing (10) directly. Here, we
utilize the one-point-at-a-time strategy, i.e., add the computer design points by using the D-
optimal criterion sequentially, which is referred to as sequential D-optimal design hereafter
in this paper.

3.2. Algorithm for Generating Sequential D-Optimal Design

Let Dp and Dc be the initial designs for physical and computer experiments, respec-
tively. In the process of the ith iteration, assume Ds = {(xs

1, θ̂0), (xs
2, θ̂1), · · · , (xs

i , θ̂i−1)}
be the computer experimental points generated sequentially, and ys = {ys

1, ys
2, . . . , ys

i } be
the corresponding computer outputs. Then the estimate θ̂i can be obtained based on the
current full data {(Dc, yc), (Ds, ys), (Dp, yp)}. For a fair comparison, the stopping rule
is set as ‘i ≥ N’, where N is the prefixed number of the sequential design points. Then,
the next computer experiment point is selected by maximizing

xs
i+1 = arg max

x∈X
log |I(θ)|θ=θ̂i ,β=β̂,ϕ=ϕ̂. (11)

Evaluate the computer model at (xs
i+1, θ̂i) and denote the output as ys

i+1. The se-
quential design is augmented as Ds = Ds ∪ {(xs

i+1, θ̂i)}, and the corresponding computer
outputs are augmented as ys = ys ∪ {ys

i+1}. The value θ̂N is used as the final estimate of
calibration parameter θ. Note that it is an r-dimensional optimization problem to find out
the next computer experiment point by maximizing (11), which is a challenge. In order to
overcome this problem, discrete optimization is commonly performed. For example, [16]
used an algorithm (e.g., [24]) based on a fine grid of the r-dimensional input space. Ref. [17]
used a greedy fashion scheme, in which the calibration parameter estimate was considered
as the value that maximized the EI criterion over a grid. However, a greedy search based
on fine grids may be time-consuming. We employ the following procedure to search for the
next design point. Let C be a space-filling design with k points over computer experimental
space X and fθ̂i

(cl) = log |I(θ)|θ=θ̂i ,x=cl
be the corresponding logarithm value of the deter-

minant of FIM at cl and θ̂i. It is generally reasonable that k = 500 for r < 5 and k = 10r or
20r for r ≥ 5, which is similar to [25]. In the numerical simulation studies in Section 4 and
the real data analysis in Section 5, since r ≤ 3, then k = 500 is a reasonable choice. Based
on C and the corresponding evaluations, we can calculate fθ̂i

(·). Then, the next computer
experiment point is selected by maximizing

xs
i+1 = arg max

x∈C
fθ̂i
(x). (12)

The details about the algorithm to create the sequential D-optimal design are presented
as Algorithm 1.
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Algorithm 1: Algorithm for Generating Sequential D-optimal Design

Input: Given physical observation data {Dp = (xp
1 , . . . , xp

q ), yp}, initial computer
experiment data {Dc = ((xc

1, tc
1), . . . , (xc

n, tc
n)), yc}.

Output: N-run sequential D-optimal design
1 Let Ds = ∅ and ys = ∅.
2 Generate a space-filling design C with k points over computer experimental space
X .

3 while 0 ≤ i < N do
4 Compute the estimate θ̂i based on the current full data

{(Dc, yc), (Ds, ys), (Dp, yp)}.
5 for cl ∈ C do
6 Evaluate fθ̂i

(cl) = log |I(θ)|θ=θ̂i ,x=cl
.

7 Select xs
i+1 by maximizing fθ̂i

(x)|x ∈ C.
8 Evaluate the computer model at (xs

i+1, θ̂i) and denote as ys
i+1.

9 Augment the sequential D-optimal design as Ds = Ds ∪ {(xs
i+1, θ̂i)} and the

corresponding outputs as ys = ys ∪ {ys
i+1}.

10 i⇐ i + 1.

11 Compute the estimate θ̂N based on the current full data
{(Dc, yc), (Ds, ys), (Dp, yp)}.

12 return Ds and θ̂N

4. Simulation Studies

In this section, we investigate the performance of the new proposed sequential D-
optimal design using simulation studies. Two numerical simulation examples and one real
data analysis are used to compare the performance of the proposed design with the EI [17]
and IMSPE designs [16]. To make the comparison fair, the IMSPE design is implemented
only regarding computer design in the simulation studies. To evaluate the performance of
the designs, the following three statistical metrics are considered:

• Mean square error (MSE);
• Mean prediction discrepancy (MPD);
• Mean square prediction error (MSPE).

The MSE is used to demonstrate the effectiveness of the estimate of the calibration
parameters, which is defined as

MSEl =
1
M

M

∑
m=1
||θ̂lm − θ∗||2, for l = 1, · · · , N,

where ||.|| denotes the corresponding Euclidean distance. Ref. [26] proved that under
certain conditions, the Kennedy–O’Hagan calibration estimator converges to the minimizer
of the norm of the residual function δ̂(x) in the reproducing kernel Hilbert space. As a
result, we assume that θ∗ = arg min ||δ̂(x)||N is the best value of calibration parameter. For
more details about the reproducing kernel Hilbert space N , please refer to [26,27]. θ̂lm is
the estimate of the calibration parameters at the mth replication after l sequential design
points, and M is the number of the simulation replications. The MPD is considered to
assess the predictive performance of the calibrated computer models, which defined as

MPDl =
1
M

M

∑
m=1
||ŷc(Dp, θ̂lm)− yp(Dp)||2, for l = 1, · · · , N,

where ŷc(Dp
θ̂lm

) is the prediction of the computer model with θ̂lm being the estimate of the
calibration parameters at the mth replication with l sequential design points. The MSPE is
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used to assess the accuracy of the predictions by combining the calibrated computer model
and discrepancy, which is defined as

MSPEl =
1
M

M

∑
m=1
||ŷp(Dp, θ̂lm)− yp(Dp)||2, for l = 1, · · · , N,

where ŷp(Dp, θ̂lm) = ŷc(Dp, θ̂lm) + δ̂(Dp) is the prediction associated with the physical
experiments.

4.1. Case Study I

In this section, an example with one calibration parameter and one control variable is
considered, which is formulated as

yp(x) = sin(θx) + exp(−2|x|) + δ(x) + ε,

where ε ∼ N(0, 0.01), δ(x) ≡ 0, x ∈ [−5, 5] and θ ∈ [0, 3]. The best value of the calibration
parameter is θ∗ = 1.5 in this case. A constant mean β and a product-form Matérn correlation
function with ν = 1

2 are selected as the prior for yc(x, θ). For the calibration parameter, we
select the prior of θ to be θ ∼ N(2, 0.01). The size of the physical experiment design (uniform
design) is set as q = 10. An MmLHD in [−5, 5]× [0, 3] with 10 points is generated for the
initial computer experiment design, i.e., n = 10, and the N = 30 points are to be added
sequentially according to Algorithm 1. A total of 100 simulations are performed to calculate
the metrics of performance. The results of MSEl are shown in Figure 1. As the increase in
computer experimental points sequentially, the calibration parameter approaches the best
value, and the proposed method outperforms the other two designs. The results of MPDl
are shown in Figure 2, which shares a similar trend with MSEl . The comparison between
the original computer model and the calibrated computer model is shown in Figure 3. We
can see that the calibrated computer models are closer to the physical observations. As
the number of sequential computer experiments increases, the differences between the
computer model and physical observations decrease, and the proposed method performs
better than the other two designs.

Figure 1. MSEl of θ obtained using the proposed sequential D-optimal method, EI method, and IM-
SPE method by sequentially adding computer experiment points.
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Figure 2. MPDl obtained using the proposed sequential D-optimal method, EI method, and IM-
SPE method.

Figure 3. Model outputs before and after calibration through the proposed sequential D-optimal
method, EI method, and IMSPE method, compared with the physical observations. The left and right
panels show the results obtained by sequentially adding 14 and 30 points, respectively.

The results of MSPEl are summarized in Table 1, which also shares a similar trend
with MPDl and MSEl . The performance of prediction by combining calibrated computer
models and discrepancy function is shown in Figure 4. In Figure 4, the predictions by using
our method approximate the physical observations best.

Table 1. The results about MSPEl .

Number of
Sequential

Points

Before
Calibration D-Optimal EI IMSPE

14 0.5892141 0.1429672 0.5869769 0.4524031
30 0.5892141 0.03625579 0.218899 0.2244712
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Figure 4. Physical predictions before and after calibration with the proposed sequential D-optimal
method, EI method, and IMSPE method with 30 sequential computer experimental points.

4.2. Case Study II

In this section, another example which includes three calibration parameters and
two control variables and is given in [28] is considered. In this case study, a discrepancy
between computer model outputs and physical outputs is also regarding. The physical
process is described as

yp(x) = 7[sin(2πθ1 − π)]2 + 2(2πθ2 − π)2 sin(2πx1 − π) + 6θ3(x2 − 0.5) + δ(x) + ε,

where, ε ∼ N(0, 0.01), δ(x) = cos(2πx1 − π) + 2(x2
2 − x2 + 1/6), x = (x1, x2) ∈ [0, 1]2,

θ = (θ1, θ2, θ3) ∈ [0, 0.25] × [0, 0.5] × [0, 1]. The best value of the calibration parameter
is θ∗ = (0.2, 0.3, 0.8). Assume that the expectation of yc(x, θ) is β, and the correlation
function of yc(x, θ) is Gaussian. The expectation of δ(x) is set to be zero, and the correlation
function of δ(x) is also assumed to be Gaussian. Let the prior for θ1, θ2, and θ3 be U(0, 0.25),
U(0, 0.5), and U(0, 1), respectively. A total of 500 simulations are performed to assess
the performances of the sequential designs. A design with 10 points are employed for
physical experiments, and a MmLHD with n = 20 points over [−1, 1]3 × [0, 0.25]× [0, 0.5]
is utilized as the initial design for computer experiments. In this case, the number of
sequential points is set to be N = 40. The results of MSEl are drawn in Figure 5. As the
size of sequential experiment points increases, the calibration parameter approaches the
best value. The proposed method has smaller MSEs than the other two methods, which
means the proposed method performs better. Figure 6 shows the results of MPDl , which
also demonstrate the effectiveness of the proposed design for calibration.

Figure 5. MSEl of θ obtained using the proposed sequential D-optimal method, EI method, and IM-
SPE method by sequentially adding computer experiment points.
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Figure 6. MPDl obtained using the proposed sequential D-optimal method, EI method, and IM-
SPE method.

The simulation results in Figures 1 and 5 show that, regardless of whether the dis-
crepancy function exists or not, with the increase in sequential points, the estimate of
calibration parameters gradually approaches its best value, indicating that the estimation of
calibration parameters converges. However, the strict mathematical proof of this conclusion
is a complicated problem, which cannot be solved in this paper and will be paid attention
to in a future study.

From Figure 6, we can easily find out that when 20 points are sequentially added,
the discrepancy tends to be stable. As shown in Figure 7, the physical prediction combining
discrepancy and calibrated computer model by utilizing the proposed sequential D-optimal
method is the closest to the physical observations, followed by the IMSPE method and EI
method. The results regarding the MSPE are presented in Table 2, which shares similar
conclusions as those in the case study I.

Figure 7. Physical predictions before and after calibration using the D-optimal method, EI method,
and IMSPE method. The left, middle, and right panels show the results of sequentially adding 20, 25,
and 40 points, respectively.
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Table 2. The results for MSPEl .

Number of
Sequential

Points

Before
Calibration D-Optimal EI IMSPE

20 points 39.68042 1.187998 8.09301 1.808175
25 points 39.68042 0.7716595 8.97966 1.48396
40 points 39.68042 0.5952004 10.52075 1.336039

4.3. Real Data Analysis

In this section, a real data example with three control inputs and one calibration input is
considered, which is presented in [8]. Figure 8 shows a concise description of the resistance
spot welding process. Two metal sheets of a particular thickness (thickness) are compressed
through two electrodes under a specifically applied load (load). A direct current of a
certain magnitude (current) passes through the sheets via the two electrodes, and the heat
produced by the current flow causes the welding surfaces to melt. After cooling, a weld
nugget with a specific dimension (diameter) is formed, which is of particular interest.
In this manner, the two metal plates are welded.

Figure 8. Schematic of the spot-welding process.

The resistance at the contact surface is particularly critical in determining the mag-
nitude of heat generated. Because the contact resistance at the contact surface is not well
understood as a function of temperature, the calibration parameter is specified and adjusted
based on the field data. The effect of this calibration parameter on the behavior of the
model is a focus in this case. Ref. [8] comprehensively described the inputs for this example.
According to the evaluation of the model developer, the verification experiment focuses on
three control inputs (thickness, load, and current). Table 3 lists the control and calibration
inputs and the corresponding intervals.

Table 3. Control inputs and calibration input.

Load (kN) Thickness (mm) Current (kA) Resistance

[4.0, 5.3] 1 or 2 [21, 26] for thickness 1 [0.8, 8]
[24, 29] for thickness 2
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A constant mean β and the product-form exponential correlation function are con-
sidered as the prior for yc(x, θ). As (2) shows, a zero mean and the Gaussian correlation
function are considered as the prior for δ(x), and more details can be found in [2,6,28,29],
etc. We randomly choose 10 physical experiments from the non-replicated 12 physical
experiments. An initial computer design with 20 points is generated and the corresponding
outputs are simulated according to [8]. N = 40 points are added sequentially according to
Algorithm 1. The results about the MSPE are summarized in Table 4, which illustrates the
superior of the new proposed method due to the smaller MSPE values.

Table 4. MSPE before and after calibration.

Number of
Sequential

Points

Before
Calibration D-Optimal EI IMSPE

20 points 1.384987 0.432674 0.9045898 0.4400638
25 points 1.384987 0.3496204 0.8424071 0.3827046
40 points 1.384987 0.3328246 1.041911 0.3804081

5. Conclusions and Remark

In order to reduce the cost of physical experiments, mathematical models or computer
models are utilized to approximate the real physical process. However, the computer
models’ fidelity to physical process depends on the physical unobservable calibration
parameters. This paper proposed a D-optimal design to augment computer experiments
sequentially by regarding the Kennedy and O’Hagan model. By using the D-optimal
criterion, computer design points are selected sequentially to gather more comprehensive
information to reduce the uncertainty about the estimate of the calibration parameter. Then,
the computer model can mimic the real physical process well with the tuned calibration
parameter. Simulation studies are made to assess the performance of the newly proposed
method compared with EI and IMSPE methods. The results show that the newly proposed
method outperforms the other two methods in terms of MSE, MPD, and MSPE. An
analysis based on the real data introduced in [8] also demonstrates the superior performance
of the new method.
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Abbreviations
The following abbreviations are used in this manuscript:

KL Kullback–Leibler
EI Expected Improvement
GP Gaussian Process
MLE Maximum Likelihood Estimation
FIM Fisher Information Matrix
MSE Mean Square Error
MPD Mean Prediction Discrepancy
MSPE Mean Square Prediction Error
IMSPE Integrated Mean Square Prediction Error
MmLHD Maximin Latin Hypercube Design

Appendix A

Proof of Lemma 1. Since d|θ, β,ϕ is distributed as GP(H(θ)β, var(d|θ, β,ϕ)), thus the like-
lihood function is

p(d|θ, β,ϕ) = (2π)−
n+q

2 |var(d|θ, β,ϕ)|−
1
2 exp

[
−1

2
(d− H(θ)β)T(var(d|θ, β,ϕ))−1(d− H(θ)β)

]
.

Let L = ln(p(d|θ, β,ϕ)), L(1) = ∂L
∂θ , and L(2) = ∂2 L

∂θ2 , then the ith element of L(1) is

∂L
∂θi

= −1
2

tr
[
(var(d|θ, β,ϕ))−1 ∂var(d|θ, β,ϕ)

∂θi

]
− ∂(d− H(θ)β)T

∂θi
(var(d|θ, β,ϕ))−1(d− H(θ)β),

where i = {1, . . . , h}, and the (i, j)th element of L(2) is

∂2L
∂θi∂θj

= −1
2

tr

[
−(var(d|θ, β,ϕ))−1 ∂var(d|θ, β,ϕ)

∂θj
[var(d|θ, β,ϕ)]−1 ∂var(d|θ, β,ϕ)

∂θi

+(var(d|θ, β,ϕ))−1 ∂2var(d|θ, β,ϕ)
∂θi∂θj

]

− ∂2(d− H(θ)β)

∂θi∂θj

T

(var(d|θ, β,ϕ))−1(d− H(θ)β)

− ∂(d− H(θ)β)T

∂θi
(var(d|θ, β,ϕ))−1 ∂(d− H(θ)β)

∂θj

− ∂(d− H(θ)β)T

∂θi

∂(var(d|θ, β,ϕ))−1

∂θj
(d− H(θ)β)

−1
2
(d− H(θ)β)T ∂2(var(d|θ, β,ϕ))−1

∂θi∂θj
(d− H(θ)β),

where i, j = {1, . . . , h}.
Since the FIM can be derived as

I(θ) =
∫
[−L(2)p(d|θ, β,ϕ)]dd,
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thus the (i, j)th element of I(θ) is

Iij(θ) =
∫ [
− ∂2L

∂θi∂θj
p(d|θ, β,ϕ)

]
dd

=
1
2

tr

[
−(var(d|θ, β,ϕ))−1 ∂var(d|θ, β,ϕ)

∂θj
(var(d|θ, β,ϕ))−1 ∂var(d|θ, β,ϕ)

∂θi

]

+ (var(d|θ, β,ϕ))−1 ∂2var(d|θ, β,ϕ)
∂θi∂θj

+
∂(d− H(θ)β)T

∂θi
(var(d|θ, β,ϕ))−1 ∂(d− H(θ)β)

∂θj

+
1
2

tr

[
var(d|θ, β,ϕ)

∂2(var(d|θ, β,ϕ))−1

∂θi∂θj

]

=
∂(d− H(θ)β)T

∂θi
(var(d|θ, β,ϕ))−1 ∂(d− H(θ)β)

∂θj

+
1
2

tr

[
(var(d|θ, β,ϕ))−1 ∂var(d|θ, β,ϕ)

∂θj
(var(d|θ, β,ϕ))−1 ∂var(d|θ, β,ϕ)

∂θi

]
.
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