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Abstract: The system of nonlinear equations (SNLEs) is one of the eminent problems in science and
engineering, and it is still open to research. A new hybrid intelligent algorithm is presented in this
research to solve SNLEs. It is a composite of the salp swarm algorithm (SSA) and chaotic search
technique (CST). The proposed methodology is named chaotic salp swarm algorithm (CSSA). CSSA
is designed as an optimization process, whereby feasible and infeasible solutions are updated to
move closer to the optimum value. The use of this hybrid intelligent methodology aims to improve
performance, increase solution versatility, avoid the local optima trap, speed up convergence and
optimize the search process. Firstly, SNLEs are transformed into an optimization problem. Secondly,
CSSA is used to solve this optimization problem: SSA is used to update the feasible solutions, whereas
the infeasible solutions are updated by CST. One of the most significant advantages of the suggested
technique is that it does not ignore infeasible solutions that are updated, because these solutions are
often extremely near to the optimal solution, resulting in increased search effectiveness and effective
exploration and exploitation. The algorithm’s mathematical model is presented in detail. Finally,
the proposed approach is assessed with several benchmark problems and real-world applications.
Simulation results show that the proposed CSSA is competitive and better in comparison to others,
which illustrates the effectiveness of the proposed algorithm. In addition, a statistical analysis by the
Wilcoxon rankings test between CSSA and the other comparison methods shows that all p-values
are less than 0.05, and CSSA achieves negative ranks’ sum values (R−) much better than the positive
ranks’ sum values (R+) in all benchmark problems. In addition, the results have high precision and
show good agreement in comparison with similar methods, and they further proved the ability of
CSSA to solve real-world applications.

Keywords: system of nonlinear equations; swarm intelligence; salp swarm algorithm; chaotic search
technique; hybrid intelligent algorithm; optimization

MSC: 68UXX; 68WXX; 90BXX; 90CXX

1. Introduction

In nature, most systems are nonlinear, from the equation of motion of a simple pen-
dulum to more complex systems such as fluid flow. The system of nonlinear equations
appears widely in many applications in the real world. In mathematical biology, there are
many models, such as population growth and molecular evolution [1]. There are also many
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fields in medicine in which the study of nonlinearity is required, such as understanding the
working of neurons and the study of plasma [2]. Further, in geometric computations, the
SNLE arises in many applications, such as minimum distance, intersections, the creation
of centenary curves, and when solving boundary or initial value problems in partial or
ordinary differential equations [3]. In addition, this system is widely applicable in en-
gineering, computing, physics, finance, astronomy, robotics, etc. Therefore, solving this
system is essential, but it is very difficult. Furthermore, as the number of equations grows,
complications increase. Many books and researchers study these problems, such as the
book Nonlinear Optimization with Engineering Applications [4].

There are two techniques to solving the SNLE: classic and advanced. Classic ap-
proaches are those such as bisection, Newton’s approach and secant methods, etc. [5,6].
The majority of these methods rely on Newton’s approach. Newton’s approach would be a
good choice if the system of nonlinear equations has analytical derivatives for all variables.
Classic methods have many disadvantages, such as the need for good starting guesses,
function continuity and differentiability and many computations. Moreover, advanced
algorithms take their methodology from animal behaviors such as fish schools, bird flocks
and bug swarms. They are also regarded as computational models that simulate natural
swarm systems. These algorithms became very popular because of their gradient-free
mechanism and their flexibility, and they avoid local solutions. They are better and easier
than classic methods and provide us with optimal multiple solutions. These techniques
made improvements in results. For examples of advanced algorithms, there are the firefly
algorithm (FA) (this approach is an optimization approach inspired by the flashing patterns
and intelligent behavior of fireflies and their characteristics [7,8]); ant colony optimization
(ACO) (which follows the behavior of real ants who communicate through pheromones [9]);
bacterial foraging (BF) [10]; the krill herd algorithm (KHA) [11]; cat swarm optimization
(CSO) [12]; the artificial bee colony (ABC) [13]; the sine cosine algorithm (SCA) [14]; particle
swarm optimization (PSO) (which is a swarm-based intelligence algorithm for optimization
that is dependent on the social behavior of birds, insects and fish [15–17]); the genetic
algorithm (GA) (which is a methodology for solving optimization issues that are dependent
on genetics and natural selection, the processes that lead to biological evolution [18,19]);
the grasshopper optimization algorithm (GOA) [20], etc.

Advanced approaches suffer from some limitations. Therefore, many researchers
devoted themselves to developing and improving them by combining two approaches to
improve the quality of solutions and benefit from the advantages of some algorithms and
avoid any deficiencies such as hybrid ACO [21], hybrid PSO [22], hybrid GA [23,24], hybrid
SCA [25], hybrid CSO [26], the hybrid whale optimization algorithm (WOA) [27], etc.
Recently, advanced algorithms have become the most widely used method for solving
SNLEs [28–32].

The chaotic search technique (CST) is one of the common mathematical methods that
proved its efficacy in enhancing the performance of many algorithms. This technique is
well known as the simulation of nonlinear systems’ dynamic behavior [33]. CST has gained
great interest, and it has been used in a variety of fields such as chaos control [34] and
optimization research [35]. In [36], the authors used a GA and a logistic chaotic map to
encrypt pictures, and the results show that their strategy has a high level of resistance
against brute force and statistical invasions. In [37], the authors used a combination
between PSO and the chaos optimization algorithm (COA), and the results reveal that
embedding a logistic chaotic map improves PSO efficiency in terms of time oscillation
and convergence rate. In [38], the authors’ methodology depends on the combination of
chaotic maps, in which employed biogeography-based optimization (BBO) with ten maps
of chaos techniques were used, and the findings show that the improved chaotic BBO can
increase BBO’s performance in terms of exploitation and exploration. It has been found
that hybridization with chaotic maps reduces the time of computations and improves
convergence to the global solution. It has also been demonstrated that these chaotic
maps (particularly logistic maps) have enhanced solution quality, which has improved
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the global searching capability by avoiding local solutions in all circumstances. Therefore,
in our proposed technique, we used the logistic map because it was found to be the best
chaotic map.

The majority of real-world optimization problems have constraints, and constraint
handling has long been a focus of research. Constraint handling refers to all strategies
used that deal with infeasible solutions, either during problem formulation or during
execution. Prior techniques favored viable over non-feasible solutions; they assumed that
selecting just feasible solutions led to a better search path within the feasible region. Current
research, on the other hand, has revealed certain flaws in such strategies; for example,
if certain selected infeasible solutions that are always near the search space boundary
(i.e., good infeasible solutions) were allowed to exist in the population, the search trajectory
could be significantly shorter, resulting in significant savings in the number of function
evaluations [39]. In our suggested technique, infeasible solutions are not ignored, but
rather updated, resulting in improved search effectiveness, as well as balancing between
exploration and exploitation.

Salp swarm algorithm (SSA) is a recent technique of optimization that has been utilized
to handle a variety of optimization issues [40]. It is a mathematical model approach to
finding the optimal solution that imitates the swarming behavior of salps in the sea. In
SSA, a set of solutions is generated at random, which is modified by salp swarm equations
by shifting the solutions outside or inside the solution space to generate new solutions.
SSA is suitable for many kinds of optimization problems in different fields, and it has
good convergence acceleration. It has important characteristics such as adaptability and
robustness [40]. Although SSA is a new optimization method, it has some limitations that
degrade its performance characteristics. For example, the leading strategy in SSA depends
on a set of random parameters that could obstruct the variety of solutions and cause local
optima to become stuck. Additionally, SSA lacks an effective strategy to improve the quality
of solutions during each generation, as it can generate poor-quality solutions as generations
evolve. Furthermore, according to our information, no endeavors to insert SSA to solve
SNLEs and their implementations in power systems have been reported in the literature.

In this paper, an intelligent approach called chaotic salp swarm algorithm (CSSA)
is presented by combining the SSA and CST to solve SNLEs. CSSA hybridizes the salp
swarm algorithm’s features and the chaotic search technique. The essential objective of
the new approach is to fine-tune the solution area for the destination solution; the solution
area is decreased progressively with an augmented number of iterations. SSA is used to
update the feasible solutions, and the infeasible solutions are updated by CST. The CST is
incorporated with concentrations on using the infeasible solution to enhance the efficacy
of the solutions, increasing the variety and intensification of the solution, reaching the
optimum solution and avoiding snaring inside the local optimum. Our proposed approach
has been assessed with several benchmarks and two distinctive electrical applications. The
results have high precision and show good agreement in comparison with similar methods.

The major contributions of this paper include:

(1) Presenting a new hybrid algorithm, CSSA, to solve SNLEs.
(2) Introducing a variety of solutions effectively, and preventing CSSA from dropping

into the local optima by using CST.
(3) Providing a fine balance between exploration and exploitation trends in CSSA by

combining SSA’s exploration and CST’s exploitation abilities.
(4) Applying CST, with a focus on using the infeasible solution, has helped improve

performance, avoid the local optima trap, speed up convergence and optimize the
search process.

(5) Enhancing the quality of solutions and accelerating convergence to the best results
with the hybridization between SSA with CST.

(6) Testing CSSA by using several benchmark problems, as well as two real-world power
system applications.

(7) Using the Wilcoxon test to evaluate the significance of the CSSA results.
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(8) Displaying that CSSA is competitive and better than other optimization algorithms
through statistical analysis and computational results.

The structure of this research paper is as follows: in Section 2, the system of nonlinear
equations is shown. Section 3 presents the preliminary information about the main char-
acteristics of SSA and CST. Section 4 explains the proposed approach. Numerical studies
are provided in Section 5. Section 6 demonstrates how CSSA may be used to tackle power
system applications. Finally, in Section 7, a conclusion is given.

2. System of Nonlinear Equations (SNLEs)

The definition of SNLEs is:

f1(y1, y2, . . . , yn) = 0
f2(y1, y2, . . . , yn) = 0

. . . . . . . . . . . . . . .
fm(y1, y2, . . . , yn) = 0;

(1)

where, fi, i = 1, 2, . . . , m is a nonlinear equation system, and y = (y1, y2, . . . , yn) are the
unknown variables. For SNLEs, the solution requires finding a solution that makes each of
the functions above fi, i = 1, 2, . . . , m equal to zero.

Converting the SNLEs into an Optimization Problem

Many methods exist for converting SNLEs fi, i = 1, 2, . . . , m into a problem of
optimization. In Nie [41,42], the first method is used, in which the SNLEs fi, i = 1, 2, . . . , m
are recast as a restricted optimization problem. The original equations have been divided
into two sets, S1 and S2; S1 refers to the equations that make up the objective function,
and S2 refers to the equations that serve as equality constraints. Furthermore, at each
stage of the optimization process, the two sets are changed. The constrained problem of
optimization can then be expressed as follows:

F(y) = min ∑
i∈s1

f 2
i (y)

Subject to : fi(y) = 0, j ∈ s2

(2)

In the second method, the SNLE is recast as a multi-objective problem of optimiza-
tion [43,44] as follows:

f1(y) = 0
f2(y) = 0

...
fm(y) = 0

−−− →


F1 = min(| f1(y)|) = 0
F2 = min(| f2(y)|) = 0

...
Fm = min(| fm(y)|) = 0

(3)

The purpose of these functions is to reduce the absolute value difference between the
equations’ right and left sides. This technique does not need any additional constraints and
is capable of finding solutions even for a wide range of SNLEs.

Finally, the SNLEs are turned into a restricted optimization problem by adding the left
hand side of all equations and applying the absolute value function [45]:

F(y) = abs( f1(y) + f2(y) + . . . + fm(y))

subject to :


f1(y) = 0
f2(y) = 0

...
fm(y) = 0

(4)
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This objective function’s description differs greatly from Abraham’s and Grosan’s [43].
If whole equations of the system are equal to zero ( fi = 0 ∀i = 1, . . . , m), Equation (4)’s
objective function has a global minimum.

3. Preliminaries

In this section, we provide a brief overview of both the salp swarm algorithm (SSA)
and the chaotic search technique (CST).

3.1. The Main Characteristics of SSA

SSA is one of the most recent meta-heuristic algorithms, presented by Mirjalili [40]
in 2017. The swarming behavior of salps in the ocean inspired this algorithm. Salps are
members of the Salpidae family. Their body is diaphanous and barrel-shaped. They are
very similar to jellyfish in terms of their tissues and movement. They move by contracting
and changing postures by pushing water through their jellied bodies. Salps usually live in
groups, and they often make a swarm, known as a chain of salps. The major cause for their
actions has remained unknown till now. It is thought that this behavior reaches optimal
motion through speedy regulated shifts and foraging. The salps’ population consists of
two groups. These groups are leaders and followers. The chain’s leader is in front, and
followers follow the leader to find a food source.

The position of the salps is defined in m-dimensions of a problem’s solution area,
where m denotes the number of variables in the problem. Therefore, the position of all
salps is stored in a two-dimensional matrix called x. The swarm’s target is a food source
in the search space, which is called F. The leader should update his location, frequently
referring to the later equation:

xj
i =

{
Fi + k1((ubi − lbi)k2 + lbi), k3 ≥ 0
Fi − k1((ubi − lbi)k2 + lbi), k3 < 0

; (5)

where j = 1, xj
i ∀ i = 1, 2, . . . , m refers to the position of the first salp (leader) in ith

dimension, lbi is the lower limit at ith dimension, ubi is the upper limit at ith dimension, Fi is
the position of the food source in ith dimension and k1, k2 and k3 are values in range [0, 1],
which generate randomly. In SSA, coefficient k1 is the most important factor, as it decreases
as the number of iterations increases, resulting in high exploration in the early phases of the
optimization and high exploitation in the later stages, resulting in a balanced optimization.
It is defined as follows:

k1 = 2e−(
t

Tmax ); (6)

where t is the present iteration, Tmax is the maximum number of iterations and k3 is in
charge of determining whether the following position should be toward −∞ or + ∞, as
well as the step size. Newton’s law of motion is used to adjust the location of the followers,
as seen in the equation below:

xj
i = 0.5 at2 + vot; (7)

where j ≥ 2, xj
i ∀ i = 1, 2, . . . , m indicates the position of the jth follower salp in the ith

dimension, vo is the start speed; a =
v f inal

t , where v f inal =
x−x0

t , v f inal is the final speed
motion of the salp, and t is time. The time in the optimization process is the current iteration;
the iteration discrepancy is equivalent to one. Assuming that vo = 0, we can define this
equation as follows:

xj,t+1
i = 0.5

(
xj−1,t+1

i + xj,t
i

)
; (8)

The salp chains can be modeled using Equations (5) and (8). Figure 1 shows the main
steps of SSA.
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3.2. Chaotic Search Technique (CST)

CST is a section of mathematics that transacts with nonlinear dynamical systems,
which follows deterministic laws but appears unpredictable and random. CST is more
appealing to many systems in different fields, such as physics, robotics, microbiology and
computer science [46]. There are three main characteristics of chaos theory: sensitivity to
initial conditions, quasi-stochastic and ergodicity. Sensitivity to initial conditions charac-
teristics means that any little alterations in the initial starting points make a difference in
behavior. Quasi-stochastic means the capacity to substitute random variables with values
from chaotic maps. An ergodic characteristic is defined as chaotic variables’ capacity to
search non-frequently for all states in a given range. When all of these qualities are com-
bined, meta-heuristic optimization techniques can considerably improve their performance.
CST minimizes local optima and increases convergence [47]. In this section, we present
several well-known chaotic maps from the literature [48–56].

− Chebyshev map: the Chebyshev map [48] is formulated as:

xj+1 = cos
(

j cos−1(xj
))

. (9)

− Singer map: Singer’s chaotic one-dimensional map [49] is defined as the follow-
ing equation:

xj+1 = µ(7.86 xj − 23.31 x2
j + 28.75 x3

j − 13.302875 x4
j ); (10)

where µ ∈ (0.9, 1.08).
− Sinusoidal map: the following equation is used to create a sinusoidal map [50]:

xj+1 = a x2
j sin

(
π xj

)
; (11)

where a = 2.3.
− Piecewise map: a piecewise map [51] can be defined as follows:

xj+1 =



xj
p , 0 < xj < p

(xj−p)
(0.5−p) , p ≤ xj < 0.5

(1−p−xj)
(0.5−p) , 0.5 ≤ xj < 1− p

1−xj
p , 1− p < xj < 1

; (12)
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where p ∈ (0, 0.5) and x ∈ (0, 1).

• Sine map: the equation for a sine map [52] is as follows:

xj+1 = 4a sin
(
π xj

)
; (13)

where 0 < a ≤ 4.
• Circle map: a circle map [53] is described as:

xj+1 = xj + h− (k− 2π)sin
(
2π xj

)
mod(1) (14)

where k = 0.5 and h = 0.2.
• Logistic map: a logistic map [54] shows how a simple deterministic system can produce

complex behavior without the use of a random sequence. It depends on a simple
polynomial equation that explains biological population dynamics [50].

xj+1 = a xj
(
1− xj

)
, a = 4. (15)

• Intermittency map: the intermittency map [55] can be formulated as:

xj+1 =

 ε + xj + k xn
j i f 0 < xj ≤ p

(xj−p)
1−p , else i f p < xj < 1

; (16)

where k = 1−ε−p
p2 , n = 2 and ε is very close to zero.

• Gauss map/Mouse map: the Gauss map [56] is given by the Gaussian function:

xj+1 = e−A x2
j + B; (17)

where A and B are real parameters.
• Iterative map: we can formulate the iterative chaotic map [51] as follows:

xj+1 = sin

(
hπ

xj

)
(18)

where h ∈ (0, 1).
• Liebovitch map: we can formulate the Liebovitch chaotic map [48] as follows:

xj+1 =


A xj 0 < xj ≤ h1

h2−xj
h2−h1

h1 < xj ≤ h2

1− B
(
1− xj

)
h2 < xj ≤ 1

; (19)

where h1, h2 ∈ (0, 1), h1 < h2, A = h2(1−(h2−h1))
h1

and B = ((h2−1)−h1(h2−h1))
h2−1 .

• Tent map: the tent map [57] is represented as:

xj+1 =

{ xj
0.07 , xj < 0.7

10(1−xj)
3 , xj ≥ 0.7

. (20)

4. Chaotic Salp Swarm Algorithm (CSSA)

This section explains our proposed algorithm, CSSA, which is a composite of SSA
and CST to solve nonlinear equations system. SSA updates its agents about the potential
solution according to Equations (5) and (8). Although it is a highly effective algorithm,
in some states, the SSA remains susceptible to convergence in local optima. As a result,
SSA’s difficulties with unripe convergence and poor results may persist. In some cases,
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the basic SSA is not able to move seamlessly from the phases of exploration to the phases
of exploitation. In this respect, the SSA needs enhanced agents to overcome issues and
more exploration/exploitation ability. To alleviate the aforementioned problems, CST is
presented as a local search phase. The combination of SSA with CST and using infeasible
solutions achieves better searching quality, improves the performance and increases the
variety of solutions, while avoiding entrapment in local optima and accelerating the opti-
mum searching operation and the convergence features. Our proposed algorithm operates
in two phases. Firstly, we transformed the SNLEs into an optimization problem. Secondly,
we used CSSA to solve this optimization problem. SSA was used to update the feasible
solutions, and the infeasible solutions were updated by the CST. When we allowed some
infeasible solutions to exist in the population, the search trajectory became significantly
shorter, resulting in significant savings in the number of function evaluations. We used the
logistic map to generate the chaos sequence, because it is more convenient to use [37,38,58].

4.1. Steps of the Proposed Algorithm

The following are detailed descriptions of our algorithm’s steps:

1. Initialize the parameters. Search agents (all salps’ number) are set as j = L f + Lin,

where
(

L f

)
is the number of salps in the feasible list, and (Lin) is the number of salps

in the infeasible list. The maximum number of iterations (T) are set up to be utilized
as the algorithm’s end conditions, using t = 0 as the iteration counter, lower boundary
(Lb), upper boundary (ub) and the number of variables (m).

2. Initialize the salps’ positions. In the first generation, the salps’ positions are initialized
randomly to fulfill the solution space S (each variable’s upper and lower limits), using
the following equation.

Each individual′s position
∣∣i = Lb + (Ub− Lb)× rand; (21)

where i = 1, 2, . . . , m, and random numbers dispersed uniformly throughout the
range [0, 1] are known as rand.

3. Evaluate the salps. According to the needed objective function, every salp is estimated
based on the quality of its place, as given in Equation (2), where the best solution
(destination) has been documented thus far.

4. Update the salps’ positions. Update salps’ positions in the feasible list according
to Equation (5) and salps’ positions in the infeasible list with CST according to the
following equations:

Zq+1 = 4Zq
(
1− Zq

)
, (22)

Xu = Zq+1 × Xin f +
(
1− Zq+1

)
× Xb (23)

where Z0 ∈ (0, 1), Z0 /∈ (0.25, 0.5, 0.75, 1), q = 1, 2, . . . , Lin, Xu is the updated salps’
position, Xin f is the position of the infeasible salps and Xb is the best position of
feasible salps. Figure 2 shows the updated infeasible solution using the CST.

5. Check the feasibility of solutions. Maybe after updating positions, the feasibility of
solutions is changed, so we should check the salps’ positions; if the salp exists in
the search space, the salp is then considered feasible and is added to the feasible list.
Then, we compute the fitness values of the salps. In this case, if the salp is infeasible,
it should be added to the infeasible list, and set the fitness value of infeasible as the
best value.

6. Evaluation of the feasible solutions. Feasible solutions are evaluated.
7. Update the best value. Compare the present fitness value with the updated value. If

the present value is better than the updated value, then set the present value as the
best value. If the updated value is better than the present value, then set the updated
value as the best value; then, the corresponding position is the best.

8. Termination criteria. Set t = t + 1. If the iterations’ number is greater than the
maximum (T), go to Step 9; otherwise, go to Step 4.
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9. Output the results. Output the best position and the best fitness value.

The pseudo-code for CSSA is presented in Figure 3, and Figure 4 shows the flow diagram.
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4.2. Computational Complexity of the CSSA

The computational complexity, which is linked to the algorithm’s structure and imple-
mentation, must be considered when determining the processing time of any meta-heuristic
algorithms. It is worth mentioning that the recommended CSSA’s computing cost is largely
determined by two factors: the startup method and the solution update. O(j·m) is the com-
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plexity of the initialization process, where j shows the population size and m is the number
of parameters in the problem (dimension). O

(
T·L f ·m

)
is the complexity of evaluating

solutions by SSA, where T indicates iterations and L f = j− Lin is the number feasible solu-

tion. Hence, the computational complexity of the proposed CSSA is O(j·m) + O
(

T·L f ·j
)

.
We can see that the computational complexity of the proposed CSSA, which evaluates
only feasible solutions L f , is less than other algorithms that evaluate all populations k.
In the next section, we used several benchmark tests and real-world optimization prob-
lems to assess and certify the performance of the proposed CSSA in handling systems of
nonlinear equations.

5. Numerical Studies

We checked the effectiveness of the proposed method by several various benchmark
problems for a system of nonlinear equations. In each case study, we compared the best
results with the obtained solutions of the gravitational search algorithm (GRAV) [59],
quantum behaved particle swarm optimization (QPSO) [60,61], the intelligent tuned har-
mony search method (ITHS) [62], salp swarm algorithm (SSA), the evolutionary algorithm
approach (EAA) [43] and with the results of other studies. The comparison established
the suggested algorithm’s efficiency and robustness. The proposed algorithm is coded
in MATLAB R2013a, and the simulations were run on an Intel(R) Core (TM) i5-2430cpu
2.4GHZ, 2.4 GHz processor.

5.1. Testing CSSA on Benchmark Problems

Benchmark 1: It has been solved in [63,64], where the following are its system equations:

f1(y) = 2y1 + y2 + y3 + y4 + y5 − 6 = 0,
f2(y) = y1 + 2y2 + y3 + y4 + y5 − 6 = 0,
f3(y) = y1 + y2 + 2y3 + y4 + y5 − 6 = 0,
f4(y) = y1 + y2 + y3 + 2y4 + y5 − 6 = 0,

f5(y) = y1y2y3y4y5 − 1 = 0;

(24)

where −2 ≤ yi ≤ 2, i = 1, 2, . . . , 5. Table 1 compares the results of the proposed CSSA
approach to those of existing methods and literature studies. Figure 5 shows the history of
convergence for benchmark 1. Table 1 shows that CSSA outperforms the other approaches,
except for L-QPSO. Figure 5 indicates, on the other hand, that CSSA is superior to most
other algorithms, since it found the optimal solution after 100 iterations, whereas other
algorithms did not get close to the optimal solution within 200 iterations.

Table 1. Best results for benchmark 1.

CSSA SSA L-QPSO QPSO ITHS GRAV

y1 0.995903811683832 0.992951171841475 1.418227087330760 1.000144199216134 0.999999983928838 0.916566028481882

y2 0.995903811683831 0.992980846443041 0.916354582533385 1.000120111355508 0.999999984261559 0.916262407670433

y3 0.995903811683832 0.993004941523888 0.916354582533385 1.000131686228283 0.999999984646038 0.916981249858047

y4 0.995903811683831 0.992853011911152 0.916354582533385 1.000129832805469 0.999999984062309 0.916141646585271

y5 1.020480941580842 1.034169125949290 0.916354582533385 0.999369060482274 1.000000076182086 1.417478352612262

f1 0.00000000000000 −1.08973048967975 × 10−3 0.00000000000000 3.90893038000 × 10−5 −2.9903315370 × 10−9 −4.2863102200 × 10−6

f2 0.00000000000000 −1.06005588811442 × 10−3 0.00000000000000 1.50014431730 × 10−5 −2.6576110240 × 10−9 −3.0790712167 × 10−4

f3 0.00000000000000 −1.03596080726653 × 10−3 0.00000000000000 2.65763159490 × 10−5 −2.2731319030 × 10−9 4.10935065933 × 10−4

f4 0.00000000000000 −1.18789042000245 × 10−3 0.00000000000000 2.47228931350 × 10−5 −2.8568605230 × 10−9 −4.2866820683 × 10−4

f5 0.00000000000000 5.30235449108307 × 10−3 0.00000000000000 −1.05338195890 × 10−4 1.3080826866 × 10−8 5.32877402310 × 10−5
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Figure 5. Convergence history for benchmark 1.

Benchmark 2: This benchmark has been studied and solved in [63], where its system
equations are as follows:

f1(y) = y1 +
y2

4y4y6
4 + 0.75 = 0,

f2(y) = y2 + 0.405 e(1+y1y2) − 1.405 = 0,
f3(y) = y3 − y4y6

2 + 1.5 = 0,
f4(y) = y4 − 0.605 e(1−y3

2) − 0.395 = 0,
f5(y) = y5 − y2y6

2 + 1.5 = 0,
f6(y) = y6 − y1y5 = 0.

(25)

Table 2 displays the best benchmark 2 results obtained by CSSA and other comparative
techniques, and Figure 6 displays the objective function’s convergence history for all
comparison techniques. In solving benchmark 2, CSSA beats the other techniques, as seen
in Table 2. According to the objective function’s convergence history, CSSA approaches the
best solution at 800 iterations, whereas the others, except for SSA, fail to approach the best
solution until 1700 iterations, as shown in Figure 6.

Table 2. Best results for benchmark 2.

CSSA SSA LQPSO QPSO ITHS GRAV

y1 −0.999999999976066 −0.999999946014511 −1.0000007185712 −1.06006024401217 −1.00469360193614 −0.94769257629329

y2 0.999999999982547 0.999999996807600 1.000000450917130 1.037892210927400 1.002699552010810 0.959910343740040

y3 −1.00000000000000 −1.000000099827310 −0.9999992090087 −0.96490791149742 −0.99763045117792 −1.03187245704251

y4 1.000000000000000 0.999999868085587 1.000009575627950 1.043046172266930 1.002704645251820 0.961169009727670

y5 −1.00000000000000 −1.000000017251620 −0.99999966616156 −0.96783925322234 −0.99763694114471 −1.03086507223002

y6 0.999999999976066 0.999999935719242 1.000000474541350 1.025883305127200 1.002627773888710 0.976336307899310

f1 4.9782400424192 × 10−13 1.7442991495642 × 10−9 9.037302239889 × 10−8 3.6034275521 × 10−4 −6.3374448056 × 10−4 1.49483833089 × 10−3

f2 −6.910028105267 × 10−13 1.9964645714410 × 10−8 −2.272550148060 × 10−8 −7.3227698937 × 10−4 −2.8872794332 × 10−4 −1.81606786960 × 10−3

f3 1.1967316027040 × 10−11 −1.7297323573473 × 10−9 7.493891107651 × 10−8 7.0261199790 × 10−5 −3.0021434625 × 10−4 −1.08455815450 × 10−3

f4 0.000000000000000 −1.1123369669797 × 10−8 4.630491545750 × 10−10 −1.4208871243 × 10−4 −1.6590037166 × 10−4 −8.92448862560 × 10−4

f5 2.0693669000593 × 10−11 1.6484962284125 × 10−8 −1.288909150520 × 10−7 −2.1739907838 × 10−4 −3.0415100062 × 10−4 5.37267309180 × 10−4

f6 0.0000000000000000 −2.7546884551200 × 10−8 8.980881838205 × 10−8 −8.4609808280 × 10−5 3.0832206541 × 10−4 −6.06868221310 × 10−4
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Benchmark 3: It has been solved in [63], and it is made up of the following system equations:

yi − cos

(
2yi −

4

∑
j=1

yj

)
= 0, 1 ≤ i ≤ 4. (26)

Table 3 displays the simulation results obtained by all algorithms for benchmark 3,
and Figure 7 depicts the convergence behaviors. The results show that our algorithm is
competitive with other methods.

Table 3. Best results for benchmark 3.

CSSA SSA LQPSO QPSO ITHS GRAV

y1 0.514933264661129 0.984951602469349 0.98495160246935 0.514933264661129 0.514933264661129 0.514933264661129 0.514931340034248

y2 0.514933264661129 −0.81124902849969 0.98495160246935 0.514933264661129 0.514933264661129 0.514933264661129 0.514934600978757

y3 0.514933264661129 0.984951602469349 −0.81124902849969 0.514933264661129 0.514933264661130 0.514933264661129 0.514923716523520

y4 0.514933264661129 0.984951602469349 0.98495160246935 0.514933264661129 0.514933264661129 0.514933264661129 0.514944432722957

f1 0.000000000000000 0.000000000000000 1.11022302462516 × 10−16 0.000000000000000 0.000000000000000 0.000000000000000 2.25940766129 × 10−6

f2 0.000000000000000 0.000000000000000 0.00000000000000 0.000000000000000 0.000000000000000 0.000000000000000 −7.0413942500 × 10−8

f3 0.000000000000000 0.000000000000000 −1.11022302462516 × 10−16 0.000000000000000 0.000000000000000 0.000000000000000 7.70620340042 × 10−6

f4 0.000000000000000 0.000000000000000 0.00000000000000 0.000000000000000 0.000000000000000 0.000000000000000 −7.0946910128 × 10−6
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Benchmark 4 (neurophysiology application): The neurophysiology application [43,63]
is used to test the effectiveness and robustness of our method. There are six nonlinear
equations in this problem, which are defined as:

f1(y) = y1
2 + y3

2 − 1 = 0,
f2(y) = y2

2 + y4
2 − 1 = 0,

f3(y) = y5y3
3 + y6y4

3 = c1,
f4(y) = y5y1

3 + y6y2
3 = c2,

f5(y) = y5y1y3
2 + y6y4

2y2 = c3,
f6(y) = y5y1

2y3 + y6y2
2y4 = c4;

(27)

where −10 ≤ yi ≤ 10, i = 1, 2, . . . , 6. The values of ci in this equation are sets are chosen at
random. For simplicity, we setthese values equal to 0.0 in this study.

A comparison of the best results for benchmark 3 discovered by CSSA and other
comparative techniques can be seen in Table 4, and Figure 8 shows its convergence behavior.
CSSA beats other algorithms, as seen in Table 4 and Figure 8, where the optimal solution
was determined after just 300 iterations.

Table 4. Best results for benchmark 4.

CSSA SSA LQPSO QPSO ITHS GRAV EAA

y1 0.670705000548366 0.275927502515214 0.446209184554328 −0.796616684320047 0.757992217157792 0.835326847252122 0.045943625

y2 0.710697050025244 −0.275921585990909 −0.446209184554328 0.796616684320047 0.757995636725586 0.782860693935276 −0.1626952821

y3 0.741724209015329 −0.961189213584485 0.894928691918726 −0.604484787453692 0.652290147139058 0.549753670392631 −0.9215324786

y4 0.703498189823838 0.961168603463013 −0.894928691918726 0.604484787453692 0.652305698905455 −0.622197020332733 0.9841530788

y5 0.000000000000000 −1.398559646254270 0.366779058332292 −0.343529649687506 0.026046699540825 −0.000000012589636 −0.6789794019

y6 0.000000000000000 −1.398649615180130 0.366779058332292 −0.343529649687506 −0.026009939089497 0.000000014361731 −0.9070329917

f1 0.000000000000000 2.0690955444546 × 10−5 0.000000000000000 0.000000000000000 3.463732647923 × 10−5 3.98503403642 × 10−8 1.489636110 × 10−1

f2 0.000000000000000 2.2194101222616 × 10−5 0.000000000000000 0.000000000000000 6.011011956097 × 10−5 −1.78024639200 × 10−9 4.972962500 × 10−3

f3 0.000000000000000 0.00000000000000 0.000000000000000 0.000000000000000 9.686086290410 × 10−6 −5.55110631700 × 10−9 3.332320690 × 10−1

f4 0.000000000000000 6.9388939039072 × 10−18 0.000000000000000 0.000000000000000 1.585609322857 × 10−5 −4.47429924000 × 10−10 3.853671100 × 10−3

f5 0.000000000000000 0.00000000000000 0.000000000000000 0.000000000000000 1.141785526275 × 10−5 1.17420316830 × 10−9 1.183698936 × 10−1

f6 0.000000000000000 0.00000000000000 0.000000000000000 0.000000000000000 1.345652755927 × 10−5 −1.03059189220 × 10−8 2.249327540 × 10−2
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Benchmark 5: This benchmark shows the interval arithmetic problem that has been
presented in [43,63,65]. It was formulated as follows:

f1(y) = y1 − 0.25428722− 0.18324757y4y3y9 = 0,
f2(y) = y2 − 0.37842197− 0.16275449y1y10y6 = 0,
f3(y) = y3 − 0.27162577− 0.16955071y1y2y10 = 0,
f4(y) = y4 − 0.19807914− 0.15585316y7y1y6 = 0,
f5(y) = y5 − 0.44166728− 0.19950920y7y6y3 = 0,
f6(y) = y6 − 0.14654113− 0.18922793y8y5y10 = 0,
f7(y) = y7 − 0.42937161− 0.21180476y2y5y8 = 0,
f8(y) = y8 − 0.07056438− 0.17081208y1y7y6 = 0,
f9(y) = y9 − 0.34504906− 0.19612740y10y6y8 = 0,
f10(y) = y10 − 0.42651102− 0.21466544y4y8y1 = 0.

(28)

Table 5 shows the best results obtained by all algorithms for benchmark 5, and Figure 9
depicts the convergence history. The results show that the proposed algorithm produces
solutions very close to the optimal solution and better than the SSA, ITHS, GRAV and EAA
methods. Therefore, CSSA is competitive with other methods for benchmark 5.

Table 5. Best results for benchmark 5.

CSSA SSA LQPSO QPSO ITHS GRAV EAA

y1 0.2578333937003700 0.257833393701697 0.257833393700504 0.257833393700504 0.254686410312621 0.257839946926554 0.0464905115

y2 0.3810971546027980 0.381097154598265 0.381097154602807 0.381097154602807 0.378523004753339 0.381079261668136 0.1013568357

y3 0.2787450173464350 0.278745017349933 0.278745017346440 0.278745017346440 0.276525468374490 0.278737809172705 0.0840577820

y4 0.2006689642178670 0.200668964222069 0.200668964225344 0.200668964225344 0.201804033260634 0.200676775829179 −0.1388460309

y5 0.4452514248306970 0.445251424835867 0.445251424841042 0.445251424841042 0.443869219215441 0.445251560409610 0.4943905739

y6 0.1491839199689970 0.149183919962789 0.149183919969355 0.149183919969355 0.147985685015705 0.149185582343140 −0.0760685163

y7 0.4320096977378360 0.432009697733842 0.432009698983720 0.432009698983720 0.432376554488803 0.432006811493179 0.2475819110

y8 0.0734027777680547 0.073402777761918 0.073402777776249 0.073402777776249 0.069871690818600 0.073403712784558 −0.0170748156

y9 0.3459668268754490 0.345966826879356 0.345966826875554 0.345966826875554 0.349297348759015 0.345965056291278 0.0003667535

y10 0.4273262759931690 0.427326275992379 0.427326275993291 0.427326275993291 0.432318039408281 0.427333090362260 0.1481119311

f1 2.25514051876985 × 10−17 1.16767316302 × 10−12 0.000000000000000 0.000000000000000 −0.003172703109397 6.52503548950 × 10−6 2.077959240 × 10−1

f2 −1.51788304147971 × 10−17 −4.43043605275 × 10−12 0.000000000000000 0.000000000000000 −0.002550893777805 −1.80334006456 × 10−5 2.769798846 × 10−1

f3 1.56125112837913 × 10−17 3.55920674877 × 10−12 0.000000000000000 0.000000000000000 −0.002166747254159 −7.16837992760 × 10−6 1.876863212 × 10−1

f4 8.67361737988404 × 10−19 4.32001049516 × 10−12 0.000000000000000 0.000000000000000 0.001185071568625 7.73423072990 × 10−6 3.367887114 × 10−1

f5 2.73218947466347 × 10−17 5.30765232112 × 10−12 0.000000000000000 0.000000000000000 −0.001328103066942 2.12270381200 × 10−7 5.303913210 × 10−2

f6 −1.25767452008319 × 10−17 −6.01313096538 × 10−12 0.000000000000000 0.000000000000000 −0.001092587590357 1.58576124970 × 10−6 2.223730535 × 10−1

f7 2.25514051876985 × 10−17 −3.77326642154 × 10−12 0.000000000000000 0.000000000000000 0.000518467284375 −2.79803507510 × 10−6 1.816084752 × 10−1

f8 −1.73472347597681 × 10−18 −6.00684389382 × 10−12 0.000000000000000 0.000000000000000 −0.003476285138268 8.50208862100 × 10−7 8.748963860 × 10−2

f9 6.83047368665868 × 10−18 4.02272019948 × 10−12 0.000000000000000 0.000000000000000 0.003371565377805 −1.80713729210 × 10−6 3.447200366 × 10−1

f10 −1.34441069388203 × 10−17 −7.42877656092 × 10−13 0.000000000000000 0.000000000000000 0.005036117718070 6.75152562420 × 10−6 2.784227489 × 10−1

Benchmark 6 (combustion application): The combustion problem is taken as a bench-
mark problem that occurred at a temperature of 3000 ◦C [43,63,65]. The nonlinear system
equations for this problem are described as:

f1(y) = y2 + 2y6 + y9 + 2y10 − 10−5 = 0,
f2(y) = y3 + y8 − 3× 10−5 = 0,
f3(y) = y1 + y3 + 2y5 + 2y8 + y9 + y10 − 5× 10−5 = 0,
f4(y) = y4 + 2y7 − 10−5 = 0,
f5(y) = 0.5140437× 10−7 y5 − y1

2 = 0,
f6(y) = 0.1006932× 10−6 y6 − y1

2 = 0,
f7(y) = 0.7816278× 10−15 y7 − y4

2 = 0,
f8(y) = 0.1496236× 10−6 y8 − y1y3 = 0,
f9(y) = 0.6194411× 10−7 y9 − y1y2 = 0,
f10(y) = 0.2089296× 10−14 y10 − y1y2

2 = 0.

(29)
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Table 6 describes the comparison between CSSA and other comparative techniques
according to the best results obtained. Figure 10 depicts the objective function’s convergence
history for all algorithms. As shown in Table 2, CSSA surpasses the other methods in
obtaining the best solution for benchmark 6. CSSA and SSA, on the other hand, have a
faster convergence to the optimal solution than other techniques, as seen by the objective
function’s convergence history in Figure 10.
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Benchmark 7: This problem consists of eight equations [63,64,66], demonstrated
as follows:

f1(y) = 4.731× 10−3 y1y3 − 0.3578y2y3 − 0.1238y1 + y7 − 1.637× 10−3 y2 − 0.9338y4 − 0.3571 = 0
f2(y) = 0.2238y1y3 + 0.7623y2y3 + 0.2638y1 − y7 − 0.007745y2 − 0.6734y4 − 0.6022 = 0
f3(y) = y6y8 + 0.3578y1 + 4.731× 10−3y2 = 0
f4(y) = −0.7623 y1 + 0.2238y2 + 0.3461 = 0
f5(y) = y1

2 + y2
2 − 1 = 0

f6(y) = y3
2 + y4

2 − 1 = 0
f7(y) = y5

2 + y6
2 − 1 = 0

f8(y) = y7
2 + y8

2 − 1 = 0

(30)

According to [64], this problem has 16 solutions. Table 7 displays a comparison of
CSSA and other comparative approaches based on the best findings obtained. Figure 11
shows the convergence history of the objective function for all methods. As demonstrated
in Table 2 and Figure 11, CSSA gives good results and outperforms most other algorithms
in terms of convergence speed and the best solution.
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Table 6. Best results for benchmark 6.

CSSA SSA LQPSO QPSO ITHS GRAV EAA

y1 2.90530634472166 × 10−10 4.96555026855323 × 10−6 −5.92864500 × 10−8 −4.88278463 × 10−7 0.007245878409306 −0.001297883382200 −0.0552429896 −0.3383785580

y2 −2.15930703246316 × 10−8 −4.65992582665477 × 10−6 −6.94279000 × 10−5 6.47373030 × 10−3 0.010180176931163 0.009181144808811 −0.0023377533 0.0185669333

y3 1.31232272837984 × 10−8 1.00000000000000 × 10−5 −2.98022727 × 10−1 9.88680886 × 10−1 −0.002905173796540 0.351976543447875 0.0455880930 0.0534924988

y4 −7.33338519034429 × 10−9 9.85198390404581 × 10−6 −8.85260400 × 10−5 6.88493552 × 10−3 −0.002322915818070 0.013449786136748 −0.1287029472 0.0392783417

y5 1.30613689078792 × 10−12 8.49139051091713 × 10−6 −4.12726852 × 10−1 2.49330592 × 10−1 −0.002570992889610 0.381060037378405 0.0539771728 0.0183882247

y6 −4.81568921923995 × 10−12 6.64457118737294 × 10−6 −5.47120683 × 10−2 −4.75443378 × 10−3 −0.000128513542400 0.328340515466930 −0.0151036079 0.0005246892

y7 5.00366669259517 × 10−6 7.40081065763225 × 10−8 4.92534440 × 10−5 −3.43749623 × 10−3 0.001075271097203 −0.00672201015185 0.1063159019 −0.1024269629

y8 2.99868767727162 × 10−5 9.99999958141491 × 10−6 2.98052730 × 10−1 −9.88651264 × 10−1 0.002821717052936 −0.35194359192842 0.0386267592 0.0500461848

y9 −2.99959425329520 × 10−5 −5.26744550810345 × 10−6 9.45338532 × 10−1 9.76976826 × 10−1 0.000170605626642 −0.15159591940474 −0.1144905135 −0.1013361102

y10 2.00087726173275 × 10−5 3.31911440986020 × 10−6 −4.17917503 × 10−1 −4.86965844 × 10−1 −0.004937158246720 −0.25714404311724 0.0872294353 0.0404252678

f1 −1.6940658945086 × 10−21 −1.402919477773 × 10−13 −3.718425434 × 10−8 7.579336100 × 10−12 2.094389795 × 10−4 −3.182989656 × 10−5 2.741338780 × 10−2 8.794626000 × 10−4

f2 0.0000000000000000 −1.000000041859 × 10−5 3.403141215 × 10−9 −3.777878940 × 10−7 −1.134567436 × 10−4 2.951519453 × 10−6 8.418485220 × 10−2 1.035086837 × 10−1

f3 0.0000000000000000 −6.450259434649 × 10−13 −1.524300123 × 10−8 3.476367522 × 10−8 2.560031932 × 10−5 1.215884437 × 10−4 1.482418893 × 10−1 9.556261970 × 10−2

f4 0.0000000000000000 1.171984584440 × 10−13 −1.915259325 × 10−8 −5.695425910 × 10−8 −1.823736237 × 10−4 −4.234166957 × 10−7 8.391885670 × 10−2 2.441423777 × 10−1

f5 −1.7266905562087 × 10−20 −2.422019488989 × 10−11 −2.121593269 × 10−8 1.281644356 × 10−8 5.250288608 × 10−5 −1.664913123 × 10−6 3.051785100 × 10−3 1.144999500 × 10−3

f6 −5.6931520725757 × 10−19 −2.398762633404 × 10−11 −1.514954299 × 10−8 −8.381884680 × 10−5 2.072720176 × 10−4 −1.685537783 × 10−4 1.093170000 × 10−5 6.894619000 × 10−4

f7 −5.3774627344972 × 10−17 −9.706158684552 × 10−11 −7.836859219 × 10−9 −4.740233710 × 10−5 5.395937898 × 10−6 −1.808967471 × 10−4 1.656444860 × 10−2 1.542796700 × 10−3

f8 4.4867406427906 × 10−12 −4.815926674816 × 10−11 2.196726011 × 10−8 3.348260222 × 10−7 2.105095828 × 10−5 4.567718476 × 10−4 2.518428300 × 10−3 1.810078900 × 10−3

f9 −1.8580656903664 × 10−12 2.281280871601 × 10−11 5.855288223 × 10−8 6.367894304 × 10−8 −7.376431366 × 10−5 1.190666480 × 10−5 1.291515000 × 10−4 6.282589000 × 10−4

f10 4.1804113131279 × 10−20 −1.078195361637 × 10−16 −5.071595221 × 10−16 2.046233460 × 10−11 7.509338719 × 10−8 1.094030285 × 10−7 3.019000000 × 10−7 1.166490000 × 10−5
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Table 7. Best results for benchmark 7.

CSSA SSA LQPSO QPSO ITHS GRAV Abdollahi et al. [66] Wang et al. [67]

y1 0.164431665854327 0.67155424583808 0.16443166585432 0.1644316658540 0.16364139102365 0.67170801323877 0.16443166585433 0.6715446500

y2 −0.986388476850967 0.74095543967366 −0.98638847685090 −0.9863884768500 −0.98627002980711 0.74077329293697 −0.98638847685097 0.7409711100

y3 0.683029894886492 −0.67897885223585 0.94762379640808 0.9476237964080 0.95152343463466 −0.25300250019163 0.71845260102760 0.9518945900

y4 −0.730390417989823 −0.73415797499040 −0.31938869811110 −0.3193886981110 −0.30706727299400 −0.96749642401711 −0.69557591970731 −0.3064372500

y5 0.997901815405138 −0.96316859991350 −0.99842747393700 −0.9984274739370 −0.99686071791680 0.95789826890561 0.99796438397043 0.9638147000

y6 0.064745399922544 −0.26889813599773 −0.05605871286120 −0.0560587128610 0.03838334619587 0.28712600807964 0.06377372755700 −0.2665740500

y7 −0.547789599039993 −0.42195486257455 −0.25758509950460 −0.2575850995040 −0.25765415743645 −0.52841723679413 −0.52780910528355 0.4046369300

y8 −0.836616133709842 0.90661694998613 0.96625561654937 0.9662556165493 −0.96464846447580 −0.84896958414590 −0.84936302508396 0.9144747000

f1 0.00000000000000 −2.7662843682386 × 10−9 0.00000000000000 0.00000000000000 −1.01417138663 × 10−2 −1.85198337832 × 10−4 2.77555756156 × 10−16 −3.7500 × 10−6

f2 0.00000000000000 −3.6325513486091 × 10−8 0.00000000000000 0.00000000000000 −1.13945729434 × 10−2 −9.17918618815 × 10−5 −1.11022302463 × 10−16 1.5370 × 10−5

f3 2.60208521396521 × 10−18 −3.8569253142835 × 10−8 2.60208521390 × 10−18 1.73472347590 × 10−18 1.68584102280 × 10−2 8.04779088699 × 10−5 1.73472347598 × 10−18 8.9900 × 10−6

f4 0.00000000000000 2.5796597469263 × 10−8 0.00000000000000 1.66533453690 × 10−16 6.28934951840 × 10−4 −1.57955532621 × 10−4 1.66533453694 × 10−16 1.0840 × 10−5

f5 0.00000000000000 6.8685144682945 × 10−8 0.00000000000000 0.00000000000000 −4.92923448120 × 10−4 −6.32734221494 × 10−5 0.00000000000000 1.0390 × 10−5

f6 0.00000000000000 2.1402552352612 × 10−7 0.00000000000000 0.00000000000000 −3.12843197070 × 10−4 5.95955891025 × 10−5 0.00000000000000 7.0900 × 10−6

f7 0.00000000000000 −4.0597615824645 × 10−8 0.00000000000000 0.00000000000000 −4.79542780918 × 10−3 1.04380881087 × 10−5 0.00000000000000 4.9000 × 10−7

f8 0.00000000000000 2.0005246814669 × 10−7 0.00000000000000 0.00000000000000 −3.06767514011 × 10−3 −2.55869053997 × 10−5 0.00000000000000 −4.9800 × 10−6
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Figure 11. Convergence history for benchmark 7.

Benchmark 8: The goal of this benchmark is to find the optimum solution for a
thin wall rectangular girder section [29,32,63,66,68]. The following is a description of the
nonlinear equations system for this problem:

f1 = wL− (w− 2k)(L− 2k) = 165,
f2 = wL3

12 −
(w−2k)(L−2k)

12 = 9369,

f3 = 2k(L−k)2(w−k)2

L+w−2k = 6835;

(31)

where w is the width of the section, L is the height of the section and k is the thickness of
the section. Table 8 demonstrates the best solutions provided by our suggested competitive
technique CSSA and other algorithms. The suggested algorithm outperformed some of the
other approaches in terms of efficacy and optimum value. Figure 12, on the other hand,
presents the history of the convergence behavior of this benchmark problem. As shown in
Figure 12, CSSA converged to the optimum result with lower iterations compared to the
other algorithms.
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Table 8. Best results for benchmark 8.

w L k f 1 f 2 f 3

CSSA 13.17896439 20.43927047 2.98361764 165 9369 6835

SSA 13.19004771 20.43358431 2.970077717 164.4441539 9368.996533 6835.012704

LQPSO 12.25651961 22.89493892 2.789817737 165 9369 6835

QPSO 12.25667461 22.90303527 2.784985796 165.1859 9369.0052 6834.9887

ITHS 8.915790282 23.2914526 12.88535322 165.8741 9366.4924 6831.8042

GRAV 12.26024391 22.77563468 2.857554308 167.5713 9362.2016 6836.7276

Abdollahi et al. [66] 8.943088779 23.27148188 12.91277429 165 9369 6835

Jaberipour et al. [29] 43.15556605 10.1289502 12.94404846 709.2412 9369 6835

−7.602995198 −24.54198238 −11.57671567 208.1851 9369 6835

Mo et al. [32] 8.943089 23.271482 12.912774 165 9369 6835

Luo et al. [68] 12.5655 22.8949 2.7898 166.7229 9369 6835

−12.5655 −22.8949 -2.7898 166.7229 9369 6835

8.943089 23.271482 12.912774 165 9369 6835

−8.943089 −23.271482 −12.912774 165 9369 6835

−2.3637 35.7564 3.0151 165 9369 6835

2.3637 −35.7564 −3.0151 165 9369 6835

Finally, Table 9 compares the statistical data for each benchmark problem, which are
best and worst objective values and standard and mean deviations, and compares these
data to the other algorithms to evaluate the efficacy and feasibility of our proposed CSSA
algorithm. Table 9 shows that CSSA outperforms other algorithms in terms of solution
correctness and stability.

5.2. Wilcoxon Signed Ranks Test (WSRT)

The Wilcoxon signed ranks test compares two related groups and is a nonparametric
statistical test. The tests work by calculating the difference between sets of pairings and
analyzing those differences to see if they are statistically significant. It is linked to the p-value,
where p signifies the chance that the null hypothesis is true. The result of the test is returned
as p < 0.05, which shows that the null hypothesis was refused, and p > 0.05, which means
the null hypothesis was not refused. The positive ranks’ sum is R+, and the negative ranks’
sum is R−. Table 10 shows the results of the Wilcoxon signed-rank test for the various methods,
where our proposed CSSA is compared with SSA, QPSO, LQPSO, ITHS and GRAV. Table 10
demonstrates that all p-values < 0.05 and CSSA achieve better R− values than R+ values in all
benchmark problems, indicating that CSSA outperforms the other algorithms.

5.3. Convergence Analysis

For studying the convergence analysis of our proposed algorithm, the statistical
findings for each approach, in terms of standard deviation, the best value, the worst value
and the mean deviation value, were recorded in Table 9, and the Wilcoxon signed ranks
(WSRs) test was employed as a non-parametric test. We can see from the simulation
results in Table 9 that our proposed CSSA has better searching quality and outperforms
other comparable algorithms. In addition to using non-parametric WSRs to determine the
winning algorithm, Table 10 demonstrates that our proposed approach beats other methods
in terms of the calculated p-value. Concerning the offered analyses, we may conclude that
the ingrained property of this enhancement exists in the chaotic search technique, with
attention to the infeasible solution, which speeds the convergence behavior and avoids the
algorithm’s regular running without any changes in the results. Our proposed algorithm
CSSA is extremely competitive compared with other algorithms in terms of computing
the statistical measurements, and it has a great possibility to solve nonlinear systems and
their applications.
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Table 9. Statistical results for all benchmark problems.

LQPSO QPSO

Best Sta. Dev. Mean Dev. Worst Best Sta. Dev. Mean Dev. Worst

Benchmark 1 0.000000000000 0.000000000000 0.000000000000 0.000000000000 1.190238420 × 10−4 0.306154753220 0.196859612150 1.77293447420

Benchmark 2 3.210753720 × 10−8 0.075730680450 0.025461613410 0.752622884890 8.634949370 × 10−4 0.225990422210 0.228434870310 1.31704660560

Benchmark 3 0.000000000000 4.24594670 × 10−33 1.40611580 × 10−33 2.46519030 × 10−32 0.0000000000000 0.007605882530 0.001043577890 0.07364986790

Benchmark 4 0.000000000000 2.99648960 × 10−73 2.39145910 × 10−74 3.77850530 × 10−72 0.0000000000000 0.006962211870 0.002762056610 0.06168524010

Benchmark 5 0.000000000000 0.000000000000 0.000000000000 0.000000000000 0.0000000000000 0.141672132510 0.102737254690 0.55483088300

Benchmark 6 6.20831492 × 10−6 2.06229320 × 10−4 6.44202910 × 10−4 1.13727040 × 10−3 9.629560810 × 10−5 0.460256660890 0.319865848140 2.67500696480

Benchmark 7 2.60208520 × 10−18 3.18574390 × 10−15 8.46968200 × 10−16 1.92128600 × 10−14 1.665424800 × 10−16 0.175672734050 0.207396539150 0.73534258810

Benchmark 8 1.62982150 × 10−10 102.025240148 168.7054837790 551.4606323440 1.860767480 × 10−1 176.0526102180 228.5159259170 767.757960040

GRAV ITHS

Benchmark 1 6.710356250 × 10−4 5.135141020 × 10−3 6.216924520 × 10−3 1.72821113 × 10−2 1.41577466 × 10−8 1.66313944 × 10−2 1.23694080 × 10−2 1.15315200 × 10−1

Benchmark 2 2.856977540 × 10−3 8.672001200 × 10−4 4.668242410 × 10−3 6.26278271 × 10−3 8.88941958 × 10−4 6.36274540 × 10−2 8.84356492 × 10−2 3.01422250 × 10−1

Benchmark 3 1.148300900 × 10−10 7.162948370 × 10−8 6.735700620 × 10−8 3.07558863 × 10−7 0.00000000 2.14825657 × 10−3 4.67800603 × 10−4 1.82132216 × 10−2

Benchmark 4 4.159110120 × 10−8 2.975234980 × 10−4 2.550744330 × 10−4 8.30651132 × 10−4 7.395709810 × 10−5 7.20973854 × 10−3 6.89635827 × 10−3 5.41546139 × 10−2

Benchmark 5 2.321516780 × 10−5 9.275790350 × 10−5 1.647237870 × 10−4 3.81861144 × 10−4 8.64367972 × 10−3 1.29614798 × 10−2 2.84851053 × 10−2 8.82327076 × 10−2

Benchmark 6 5.345489820 × 10−4 1.599892620 × 10−3 2.649030450 × 10−3 5.60918745 × 10−3 3.77206677 × 10−4 2.32644338 × 10−2 2.01043301 × 10−2 1.62034142 × 10−1

Benchmark 7 2.872005150 × 10−4 8.897540130 × 10−2 1.383110850 × 10−1 2.91779881 × 10−1 2.34529275 × 10−2 7.19144829 × 10−2 1.56549347 × 10−1 4.15978152 × 10−1

Benchmark 8 7.4708993593300 17.805724748100 37.155629330300 130.470752028 4.155044146940 338.2946656533 312.651184712 5555.0798892

CSSA SSA

Benchmark 1 0.000000000000000000 0.000000000000000000 0.000000000000000000 0.000000000000000000 3.29104926192984 × 10−5 3.95108134959409 × 10−5 3.33587170408680 × 10−5 1.29503618132905 × 10−4

Benchmark 2 5.72169903220504 × 10−22 1.27453846525393 × 10−9 9.55902434056570 × 10−10 2.55062411258150 × 10−9 1.55893581485026 × 10−15 2.94146385988312 × 10−5 2.75266167036336 × 10−5 6.63152999553047 × 10−5

Benchmark 3 0.000000000000000000 0.000000000000000000 0.000000000000000000 0.000000000000000000 2.46519032881568 × 10−32 7.48292411865044 × 10−7 7.05385173010829 × 10−7 1.60342282199816 × 10−6

Benchmark 4 0.000000000000000000 0.000000000000000000 0.000000000000000000 0.000000000000000000 9.20693766287913 × 10−10 2.43489090617531 × 10−2 2.29157219872556 × 10−2 5.33342563177076 × 10−2

Benchmark 5 2.62710056970923 × 10−33 2.43289660245235 × 10−24 1.82467245183925 × 10−24 4.86579336988802 × 10−24 1.83705442828498 × 10−22 4.57008313872813 × 10−15 4.30830675601078 × 10−15 9.77080461506118 × 10−15

Benchmark 6 3.59989068943566 × 10−9 1.99999973992054 × 10−8 1.49999980494033 × 10−8 4.35998942986662 × 10−8 1.00000008385223 × 10−10 8.31153757526242 × 10−6 7.83583951096494 × 10−6 1.77271255508841 × 10−5

Benchmark 7 6.77084746073637 × 10−36 8.55920865630153 × 10−15 6.41940649222615 × 10−15 1.71184173126031 × 10−14 9.56739772311961 × 10−14 4.73401751086140 × 10−13 4.46285719474635 × 10−13 1.10774526946331 × 10−12

Benchmark 8 0.000000000000000000 0.000000000000000000 0.000000000000000000 0.000000000000000000 3.09138302572801 × 10−1 6.51373967048176 × 101 6.14063142575556 × 101 1.39570903957062 × 102
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Table 10. WSRT for results in Table 9.

Compared Algorithms
Solution Evaluations

R− R+ p-Value Best Algorithm

CSSA SSA 36 0 0.012 CSSA
CSSA LQPSO 14 1 0.08 CSSA
CSSA QPSO 20 1 0.046 CSSA
CSSA GRAV 36 0 0.012 CSSA
CSSA ITHS 28 0 0.018 CSSA

6. Power System Applications

Power system analysis is a branch of electrical engineering for designing whole
power systems that consist of generators, transformers, shunt reactance, capacitor banks,
transmission lines and so on. The purpose of power system analysis is to make certain
the equipment works together so that the required power is sent to the load centers at the
specified voltage and frequency, and an overloaded component in the network or any fault
condition will not endanger the system. The load flow analysis is an essential instrument
in the power system; it is used for planning and determining the optimal power system
operation and electricity reciprocation between utility firms. Under steady-state conditions,
studies of power flow use disciplinarian mathematical methods for computing the phase
angles, different bus voltages, active power and reactive power flows through various
sections, transformers, generators settings and load [69]. Load flow analysis can give a
balanced steady-state operation of the power system without considering system transient
processes. It minimizes losses to the system and transformer tap settings for economic
operation. Hence, the mathematical model of the load flow problem is a nonlinear equations
system. The power system increases because of developments in the industry in society,
so the load flow equation dimension also increases. There is not a numerical method that
can lead to the exact solution. Therefore, engineers exert more effort to find more reliable
methods. The power industry faces the problem of how to find the best method for power
system analysis.

6.1. Formulation of Load Flow Problem
6.1.1. Classification of Buses

A bus is a node or point that connects one or more transmission lines, generators and
loads. Each bus has four parameters: reactive power (Q), active power (P), voltage phase
angle (δ) and voltage magnitude (|V|) [70]. Two parameters of the bus are known, but the
other two parameters must be calculated by solving the node active and reactive power
equations. The buses are categorized into three types based on the two known parameters,
as shown in Table 11.

Table 11. Bus classification.

No. Type of Bus
Variables

P Q |V| δ

1 Slack bus required required given given
2 Generator bus (PV) given required given required
3 Load bus (PQ) given given required required

• Slack bus

In the power system, there should be one and only one slack node, and it is commonly
set as bus 1. To achieve the power balancing criteria, this bus is considered a reference bus.
The slack bus is used as a unit for generating, which is ably modified to meet all needs to
ensure a balance of power [70]. At this bus, the effective generator provides losses to the
utility network, which is necessary because the value of the losses will be unknown until
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the current is calculated completely. In this bus, |V| and δ are known variables, and P and
Q are unknown variables.

• Generator (PV) bus

This is a voltage control bus, and it is linked to a generator unit. The prime mover may
be adjusted to control the active power generated by this bus, and the generator’s excitation
can be adjusted to control the voltage. Frequently, limits for reactive power values are
defined based on the characteristics of each generator. P and |V| are known variables in
this bus, and Q and δ are unknown variables [70,71].

• Load (PQ) bus

This is a bus that does not have a generator and may be computed using historical
information, measurements or forecasts. Positive power is the energy that is supplied to
a power system, whereas negative power is the energy that is consumed. In the power
system, most nodes are from the PQ type. P and Q are known variables in this bus, and
|V| and δ are unknown variables [70,71].

6.1.2. Node Power Equations

At the ith bus, the node active and reactive power equations are as follows:

Pi
G − Pi

L = |Vi|
n

∑
k=1
|Vk|[Gikcos(δi − δk) + Biksin(δi − δk)], (32)

Qi
G −Qi

L = |Vi|
n

∑
k=1
|Vk|[Giksin(δi − δk)− Bikcos(δi − δk)]; (33)

where
(

Pi
G + jQi

G
)

is the complex generation,
(

Pi
L + jQi

L
)

is the complex load at the node
i, (Gik + jBik) is the complex admittance between the i and k nodes, Vi is the voltage
magnitude at the node i, δi is the phase angle of voltage at the node i and n is the number
of nodes.

Power system application 1: Three-bus system

This electrical application is taken as a benchmark problem in [70,72]. Figure 13 shows
the single line diagram of the three bus systems. Bus 1 is the slack bus. Its magnitude of
voltage is 1.05 per unit, and its phase angle is zero. The loads on buses 2 and 3 as clear on
the diagram. The impedance of the lines is shown per unit on a 100-MVA base, with the
line charging capacitances ignored.
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Table 12 shows a comparison between our proposed algorithm CSSA with other
algorithms. Further Figure 14 shows the history of the convergence behavior of this
electrical application. According to the presented results, the suggested algorithm surpasses
the other approaches in terms of optimal value. In addition, it has faster convergence than
the standard SSA.

Table 12. Results for the three-bus system.

CSSA SSA SCA [72] Q-SCA [72] Saadat [70]

|V1| 1.05 1.05 1.05 1.05 1.05

|V2| 0.981835016690686 0.982496442317607 0.981838079377364 0.981835016690686 0.98183

|V3| 1.001249219725040 1.001753708151100 1.001251283783532 1.001249219725039 1.00125

δ1 0.0000 0.0000 0.0000 0.0000 0.0000

δ2 −3.50353164478445 −3.4603930381497400 −3.502382236093232 −3.503531644784462 −3.5035

δ3 −2.86240522611174 −2.8425024238824500 −2.861380189597466 −2.862405226111747 −2.8624

Pg1 409.50 405.73129813204 N.C. N.C. 409.50

Qg1 189.00 183.25286594842 N.C. N.C. 189.00

f1 0.000000000000000 −3.4795486078437 × 10−2 −5.05150474218397 × 10−4 8.8817841970013 × 10−16 N.C.

f2 0.000000000000000 −2.0558824779045 × 10−3 −4.88402153445477 × 10−4 4.4408920985006 × 10−16 N.C.

f3 0.000000000000000 −1.8891887805239 × 10−6 1.78159569490965 × 10−4 −2.44249065417534 × 10−15 N.C.

f4 0.000000000000000 −1.1836177929517 × 10−2 1.54114917028381 × 10−4 2.66453525910038 × 10−15 N.C.

f5 0.000000000000000 1.0080130330437 × 10−7 N.C. N.C. N.C.

f6 0.000000000000000 −3.6960016677433 × 10−2 N.C. N.C. N.C.

N.C. means that the result is not calculated.
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Power system application 2: Five-bus system

A five-bus system is an electrical network that has been selected as a benchmark
problem [72]. Figure 15 shows a single-line diagram for the five-bus system, which contains
a slack bus (bus 1), two generators buses and two load buses. The voltage magnitude of the
slack bus is 1.06 per unit, and its phase angle is zero, Table 13 shows the system’s whole
data per unit on a 100-MVA base.
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Table 13. The complete data for the five-bus system.

Line (Lij) Impedance Admittance

L12 0.020 + j0.060 j0.03
L13 0.080 + j0.240 j0.025
L23 0.060 + j0.180 j0.02
L24 0.060 + j0.180 j0.02
L25 0.040 + j0.120 j0.015
L34 0.010 + j0.030 j0.01
L45 0.080 + j0.240 j0.025

Node Data of Generator Data of Load Voltage of Node Type of Node

1 Pg1 + jQg1 - 1.06 ∠ 0 Slake
2 0.4 + jQg2 0.2 + j0.1 1.045 ∠ δ2 V. controlled
3 0.3 + jQg3 0.2 + j0.15 1.03 ∠ δ3 V. controlled
4 - 0.5 + j0.3 V4 ∠ δ4 Load
5 - 0.6 + j0.4 V5 ∠ δ5 Load

In Table 14, the results of this power system application are shown, and the optimum
solution for active and reactive power, voltage and phase angle at each node are mentioned.
Further, Figure 16 displays the convergence behavior. The obtained results demonstrated
robustness and efficiency for our proposed technique in addressing this power system
application, and it beats the other algorithms. Furthermore, CSSA has a faster convergence
than the usual SSA, as shown in Figure 16.
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Table 14. Results for the five-bus system.

CSSA SSA SCA [72] Q-SCA [72]

|V1| 1.06 1.06 1.06 1.06

|V2| 1.056 1.056 1.056 1.056

|V3| 1.03 1.03 1.03 1.03

|V4| 1.01863059295273 1.01952646373577 1.018435127204843 1.018630577870106

|V5| 0.990099003985225 0.99750656900719 0.989538210278804 0.990098992150422

δ1 0.0000 0.0000 0.0000 0.0000

δ2 −1.78246929197204 −1.59427491015746 −1.944789603009603 −1.782148822376761

δ3 −2.6640102508242 −2.42268934031169 −2.919882018480426 −2.66376758698785

δ4 −3.24314133420668 −2.97827944424071 −3.511490409163109 −3.242881574384807

δ5 −4.40507424178388 −4.11900384738152 −4.675411331717214 −4.404773706610992

Pg1 83.052564864276 75.795550223517 N.C N.C

Qg1 7.27097023180857 2.36345263841315 N.C N.C

Pg2 40 40 40 40

Qg2 41.8123141017395 34.2364944774385 N.C N.C

Pg3 30 30 30 30

Qg3 24.1494180415641 19.9147887667246 N.C N.C

f1 0.0000000000000000 1.05025892427335 × 10−8 0.011471071353534 −0.279221090693227

f2 −1.77635683940025 × 10−15 −7.06283406052970 × 10−2 0.017876378728437 −0.374561492932912

f3 0.0000000000000000 −1.01589935000534 × 10−2 0.018260614359347 −0.400235400377369

f4 8.88178419700125 × 10−16 −2.51482193291963 × 10−7 0.015992420160200 −0.316413562018170

f5 1.77635683940025 × 10−15 −4.03229812917516 × 10−6 −0.000366016023354 −0.026645352591004

f6 0.0000000000000000 −1.05128974045066 × 10−2 −0.000323620656330 0.034972025275692

f7 −2.22044604925031 × 10−16 −2.10402859592851 × 10−2 N.C N.C

f8 −8.88178419700125 × 10−16 −1.97171408924390 × 10−5 N.C N.C

f9 −2.22044604925031 × 10−16 −3.65790017599030 × 10−2 N.C N.C

f10 0.0000000000000000 −7.09655695185432 × 10−2 N.C N.C

N.C. means that the result is not calculated.

Finally, the obtained results demonstrate the effectiveness and robustness of CSSA in
solving power system applications. Thus, we can deduce that it is suitable to solve real
applications related to solving the nonlinear system equations.

7. Conclusions

This study presented the chaotic salp swarm algorithm (CSSA), an intelligent hy-
brid optimization technique for solving systems of nonlinear equations (SNLEs) that is
a combination of the salp swarm algorithm (SSA) and the chaotic search strategy (CST).
Firstly, SNLEs were transformed into an optimization problem. Then, CSSA was used
to solve this optimization problem; SSA was used to update the feasible solutions, and
the infeasible solutions were updated by CST. CSSA was tested using several benchmark
SNLEs problems and two electrical applications. The suggested method demonstrated
various advantages, which we mention below:

1. CSSA is simple in application, and it can solve many optimization problems.
2. CSSA combines the SSA’s robust global searching capacity with the CST’s substantial

chaotic searching ability.
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3. Only objective function information is used in CSSA; no derivatives or other auxiliary
data is used.

4. CSSA can transact with the non-continuous, non-differentiable and non-smooth func-
tions that are common in problems of optimization.

5. CSSA can give a globally optimal solution because it searches at a set of points, not a
single point, unlike traditional techniques.

6. The combination between SSA and CST and not ignoring infeasible solutions led to
enhancing the efficacy of the search, increasing solution versatility, avoiding the local
optima trap, speeding up convergence and optimizing the search process.

7. Results have proven the superiority of CSSA over those reported in the literature, as
it is significantly better than other comparison methods.

8. Statistical results showed that CSSA solutions are more accurate and stable than most
other algorithms’ solutions.

9. CSSA converges more quickly to the optimal solution in the early iteration.
10. A Wilcoxon signed ranks test showed the significance of the CSSA findings.
11. By addressing power system applications with CSSA, we can conclude that it is suited

for tackling real-world applications that are related to nonlinear system equations.

Without any prejudice, our proposed approach, like other meta-heuristics approaches,
has the probable drawback of not warranting a rise in computing speed or accuracy when
we tackle any optimization issue. This is because meta-heuristics approaches are random
techniques, and the computational effectiveness as well as the CSSA’s solution quality are
determined by the problem’s nature and complexity. In future works, we plan to solve
more applications to prove the effectiveness and efficiency of our algorithm, and we will
concentrate on advancing new algorithms for solving optimization problems.
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