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Abstract: The system of nonlinear equations (SNLEs) is one of the eminent problems in science and 

engineering, and it is still open to research. A new hybrid intelligent algorithm is presented in this 

research to solve SNLEs. It is a composite of the salp swarm algorithm (SSA) and chaotic search 

technique (CST). The proposed methodology is named chaotic salp swarm algorithm (CSSA). CSSA 

is designed as an optimization process, whereby feasible and infeasible solutions are updated to 

move closer to the optimum value. The use of this hybrid intelligent methodology aims to improve 

performance, increase solution versatility, avoid the local optima trap, speed up convergence and 

optimize the search process. Firstly, SNLEs are transformed into an optimization problem. Sec-

ondly, CSSA is used to solve this optimization problem: SSA is used to update the feasible solutions, 

whereas the infeasible solutions are updated by CST. One of the most significant advantages of the 

suggested technique is that it does not ignore infeasible solutions that are updated, because these 

solutions are often extremely near to the optimal solution, resulting in increased search effectiveness 

and effective exploration and exploitation. The algorithm’s mathematical model is presented in de-

tail. Finally, the proposed approach is assessed with several benchmark problems and real-world 

applications. Simulation results show that the proposed CSSA is competitive and better in compar-

ison to others, which illustrates the effectiveness of the proposed algorithm. In addition, a statistical 

analysis by the Wilcoxon rankings test between CSSA and the other comparison methods shows 

that all p-values are less than 0.05, and CSSA achieves negative ranks’ sum values (R−) much better 

than the positive ranks’ sum values (R+) in all benchmark problems. In addition, the results have 

high precision and show good agreement in comparison with similar methods, and they further 

proved the ability of CSSA to solve real-world applications. 

Keywords: system of nonlinear equations; swarm intelligence; salp swarm algorithm; chaotic search 

technique; hybrid intelligent algorithm; optimization 
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1. Introduction 

In nature, most systems are nonlinear, from the equation of motion of a simple pen-

dulum to more complex systems such as fluid flow. The system of nonlinear equations 

appears widely in many applications in the real world. In mathematical biology, there are 
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many models, such as population growth and molecular evolution [1]. There are also 

many fields in medicine in which the study of nonlinearity is required, such as under-

standing the working of neurons and the study of plasma [2]. Further, in geometric com-

putations, the SNLE arises in many applications, such as minimum distance, intersections, 

the creation of centenary curves, and when solving boundary or initial value problems in 

partial or ordinary differential equations [3]. In addition, this system is widely applicable 

in engineering, computing, physics, finance, astronomy, robotics, etc. Therefore, solving 

this system is essential, but it is very difficult. Furthermore, as the number of equations 

grows, complications increase. Many books and researchers study these problems, such 

as the book Nonlinear Optimization with Engineering Applications [4]. 

There are two techniques to solving the SNLE: classic and advanced. Classic ap-

proaches are those such as bisection, Newton’s approach and secant methods, etc. [5,6]. 

The majority of these methods rely on Newton’s approach. Newton’s approach would be 

a good choice if the system of nonlinear equations has analytical derivatives for all varia-

bles. Classic methods have many disadvantages, such as the need for good starting 

guesses, function continuity and differentiability and many computations. Moreover, ad-

vanced algorithms take their methodology from animal behaviors such as fish schools, 

bird flocks and bug swarms. They are also regarded as computational models that simu-

late natural swarm systems. These algorithms became very popular because of their gra-

dient-free mechanism and their flexibility, and they avoid local solutions. They are better 

and easier than classic methods and provide us with optimal multiple solutions. These 

techniques made improvements in results. For examples of advanced algorithms, there 

are the firefly algorithm (FA) (this approach is an optimization approach inspired by the 

flashing patterns and intelligent behavior of fireflies and their characteristics [7,8]); ant 

colony optimization (ACO) (which follows the behavior of real ants who communicate 

through pheromones [9]); bacterial foraging (BF) [10]; the krill herd algorithm (KHA) [11]; 

cat swarm optimization (CSO) [12]; the artificial bee colony (ABC) [13]; the sine cosine 

algorithm (SCA) [14]; particle swarm optimization (PSO) (which is a swarm-based intelli-

gence algorithm for optimization that is dependent on the social behavior of birds, insects 

and fish [15–17]); the genetic algorithm (GA) (which is a methodology for solving optimi-

zation issues that are dependent on genetics and natural selection, the processes that lead 

to biological evolution [18,19]); the grasshopper optimization algorithm (GOA) [20], etc. 

Advanced approaches suffer from some limitations. Therefore, many researchers de-

voted themselves to developing and improving them by combining two approaches to 

improve the quality of solutions and benefit from the advantages of some algorithms and 

avoid any deficiencies such as hybrid ACO [21], hybrid PSO [22], hybrid GA [23,24], hy-

brid SCA [25], hybrid CSO [26], the hybrid whale optimization algorithm (WOA) [27], etc. 

Recently, advanced algorithms have become the most widely used method for solving 

SNLEs [28–32]. 

The chaotic search technique (CST) is one of the common mathematical methods that 

proved its efficacy in enhancing the performance of many algorithms. This technique is 

well known as the simulation of nonlinear systems’ dynamic behavior [33]. CST has 

gained great interest, and it has been used in a variety of fields such as chaos control [34] 

and optimization research [35]. In [36], the authors used a GA and a logistic chaotic map 

to encrypt pictures, and the results show that their strategy has a high level of resistance 

against brute force and statistical invasions. In [37], the authors used a combination be-

tween PSO and the chaos optimization algorithm (COA), and the results reveal that em-

bedding a logistic chaotic map improves PSO efficiency in terms of time oscillation and 

convergence rate. In [38], the authors’ methodology depends on the combination of cha-

otic maps, in which employed biogeography-based optimization (BBO) with ten maps of 

chaos techniques were used, and the findings show that the improved chaotic BBO can 

increase BBO’s performance in terms of exploitation and exploration. It has been found 

that hybridization with chaotic maps reduces the time of computations and improves con-

vergence to the global solution. It has also been demonstrated that these chaotic maps 
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(particularly logistic maps) have enhanced solution quality, which has improved the 

global searching capability by avoiding local solutions in all circumstances. Therefore, in 

our proposed technique, we used the logistic map because it was found to be the best 

chaotic map. 

The majority of real-world optimization problems have constraints, and constraint 

handling has long been a focus of research. Constraint handling refers to all strategies 

used that deal with infeasible solutions, either during problem formulation or during ex-

ecution. Prior techniques favored viable over non-feasible solutions; they assumed that 

selecting just feasible solutions led to a better search path within the feasible region. Cur-

rent research, on the other hand, has revealed certain flaws in such strategies; for example, 

if certain selected infeasible solutions that are always near the search space boundary (i.e., 

good infeasible solutions) were allowed to exist in the population, the search trajectory 

could be significantly shorter, resulting in significant savings in the number of function 

evaluations [39]. In our suggested technique, infeasible solutions are not ignored, but ra-

ther updated, resulting in improved search effectiveness, as well as balancing between 

exploration and exploitation. 

Salp swarm algorithm (SSA) is a recent technique of optimization that has been uti-

lized to handle a variety of optimization issues [40]. It is a mathematical model approach 

to finding the optimal solution that imitates the swarming behavior of salps in the sea. In 

SSA, a set of solutions is generated at random, which is modified by salp swarm equations 

by shifting the solutions outside or inside the solution space to generate new solutions. 

SSA is suitable for many kinds of optimization problems in different fields, and it has 

good convergence acceleration. It has important characteristics such as adaptability and 

robustness [40]. Although SSA is a new optimization method, it has some limitations that 

degrade its performance characteristics. For example, the leading strategy in SSA depends 

on a set of random parameters that could obstruct the variety of solutions and cause local 

optima to become stuck. Additionally, SSA lacks an effective strategy to improve the qual-

ity of solutions during each generation, as it can generate poor-quality solutions as gener-

ations evolve. Furthermore, according to our information, no endeavors to insert SSA to 

solve SNLEs and their implementations in power systems have been reported in the liter-

ature. 

In this paper, an intelligent approach called chaotic salp swarm algorithm (CSSA) is 

presented by combining the SSA and CST to solve SNLEs. CSSA hybridizes the salp 

swarm algorithm’s features and the chaotic search technique. The essential objective of 

the new approach is to fine-tune the solution area for the destination solution; the solution 

area is decreased progressively with an augmented number of iterations. SSA is used to 

update the feasible solutions, and the infeasible solutions are updated by CST. The CST is 

incorporated with concentrations on using the infeasible solution to enhance the efficacy 

of the solutions, increasing the variety and intensification of the solution, reaching the 

optimum solution and avoiding snaring inside the local optimum. Our proposed ap-

proach has been assessed with several benchmarks and two distinctive electrical applica-

tions. The results have high precision and show good agreement in comparison with sim-

ilar methods. 

The major contributions of this paper include: 

(1) Presenting a new hybrid algorithm, CSSA, to solve SNLEs. 

(2) Introducing a variety of solutions effectively, and preventing CSSA from dropping 

into the local optima by using CST. 

(3) Providing a fine balance between exploration and exploitation trends in CSSA by 

combining SSA’s exploration and CST’s exploitation abilities. 

(4) Applying CST, with a focus on using the infeasible solution, has helped improve per-

formance, avoid the local optima trap, speed up convergence and optimize the search 

process. 

(5) Enhancing the quality of solutions and accelerating convergence to the best results 

with the hybridization between SSA with CST. 
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(6) Testing CSSA by using several benchmark problems, as well as two real-world power 

system applications. 

(7) Using the Wilcoxon test to evaluate the significance of the CSSA results. 

(8) Displaying that CSSA is competitive and better than other optimization algorithms 

through statistical analysis and computational results. 

The structure of this research paper is as follows: in Section 2, the system of nonlinear 

equations is shown. Section 3 presents the preliminary information about the main char-

acteristics of SSA and CST. Section 4 explains the proposed approach. Numerical studies 

are provided in Section 5. Section 6 demonstrates how CSSA may be used to tackle power 

system applications. Finally, in Section 7, a conclusion is given. 

2. System of Nonlinear Equations (SNLEs) 

The definition of SNLEs is: 

��(��,  ��, … , ��) = 0  

��(��,  ��, … , ��) = 0  

… … … … … 

��(��,  ��, … , ��) = 0 ; 

(1)

where, �� , � = 1, 2, … , � is a nonlinear equation system, and � = (��,  ��, … , ��) are the 

unknown variables. For SNLEs, the solution requires finding a solution that makes each 

of the functions above ��, � = 1, 2, … , � equal to zero. 

Converting the SNLEs into an Optimization Problem 

Many methods exist for converting SNLEs ��, � = 1, 2, … , � into a problem of opti-

mization. In Nie [41,42], the first method is used, in which the SNLEs ��, � = 1, 2, … , � 

are recast as a restricted optimization problem. The original equations have been divided 

into two sets, S1 and S2; S1 refers to the equations that make up the objective function, 

and S2 refers to the equations that serve as equality constraints. Furthermore, at each stage 

of the optimization process, the two sets are changed. The constrained problem of optimi-

zation can then be expressed as follows: 

�(�) = ��� � ��
�(�)

�∈��

 

Subject to: ��(�) = 0,   � ∈ �� 

(2)

In the second method, the SNLE is recast as a multi-objective problem of optimization 

[43,44] as follows: 

�

��(�) = 0

��(�) = 0
⋮

��(�) = 0

− −−→ �

�� = ���(|��(�)|) = 0

�� = ���(|��(�)|) = 0
⋮

�� = ���(|��(�)|) = 0

 (3)

The purpose of these functions is to reduce the absolute value difference between the 

equations’ right and left sides. This technique does not need any additional constraints 

and is capable of finding solutions even for a wide range of SNLEs. 

Finally, the SNLEs are turned into a restricted optimization problem by adding the 

left hand side of all equations and applying the absolute value function [45]: 

�(�) = ������(�) + ��(�) + ⋯ + ��(�)� (4)
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������� �� ∶  �

��(�) = 0

��(�) = 0
⋮

��(�) = 0

 

This objective function’s description differs greatly from Abraham’s and Grosan’s 

[43]. If whole equations of the system are equal to zero (�� = 0   ∀� = 1, … , �), Equation 

(4)’s objective function has a global minimum. 

3. Preliminaries 

In this section, we provide a brief overview of both the salp swarm algorithm (SSA) 

and the chaotic search technique (CST). 

3.1. The Main Characteristics of SSA 

SSA is one of the most recent meta-heuristic algorithms, presented by Mirjalili [40] in 

2017. The swarming behavior of salps in the ocean inspired this algorithm. Salps are mem-

bers of the Salpidae family. Their body is diaphanous and barrel-shaped. They are very 

similar to jellyfish in terms of their tissues and movement. They move by contracting and 

changing postures by pushing water through their jellied bodies. Salps usually live in 

groups, and they often make a swarm, known as a chain of salps. The major cause for their 

actions has remained unknown till now. It is thought that this behavior reaches optimal 

motion through speedy regulated shifts and foraging. The salps’ population consists of 

two groups. These groups are leaders and followers. The chain’s leader is in front, and 

followers follow the leader to find a food source. 

The position of the salps is defined in �-dimensions of a problem’s solution area, 

where � denotes the number of variables in the problem. Therefore, the position of all 

salps is stored in a two-dimensional matrix called �. The swarm’s target is a food source 

in the search space, which is called �. The leader should update his location, frequently 

referring to the later equation: 

��
�

= �
�� + ���(��� − ���)�� + ����,               �� ≥ 0 

�� − ���(��� − ���)�� + ����,               �� < 0 
; (5)

where � = 1, ��
�
 ∀ � = 1, 2, … , � refers to the position of the first salp (leader) in ��� di-

mension, ���  is the lower limit at ��� dimension, ��� is the upper limit at ��� dimension, 

��  is the position of the food source in ��� dimension and ��, �� and �� are values in 

range [0, 1], which generate randomly. In SSA, coefficient �� is the most important factor, 

as it decreases as the number of iterations increases, resulting in high exploration in the 

early phases of the optimization and high exploitation in the later stages, resulting in a 

balanced optimization. It is defined as follows: 

�� = 2�
��

�

����
�
; (6)

where � is the present iteration, ���� is the maximum number of iterations and �� is in 

charge of determining whether the following position should be toward −∞ or + ∞, as 

well as the step size. Newton’s law of motion is used to adjust the location of the followers, 

as seen in the equation below: 

��
� = 0.5 ��� + ���; (7)

where  � ≥  2 , ��
� ∀ � = 1, 2, … , �  indicates the position of the ���  follower salp in the 

���dimension, ��  is the start speed; � =  
������

�
 , where ������ =

����

�
, ������  is the final 

speed motion of the salp, and � is time. The time in the optimization process is the current 

iteration; the iteration discrepancy is equivalent to one. Assuming that �� = 0, we can de-

fine this equation as follows: 
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��
�,���

= 0.5���
���,���

+ ��
�,�

� ; (8)

The salp chains can be modeled using Equations (5) and (8). Figure 1 shows the main 

steps of SSA. 

 

Figure 1. The pseudo-code of the general SSA. 

3.2. Chaotic Search Technique (CST) 

CST is a section of mathematics that transacts with nonlinear dynamical systems, 

which follows deterministic laws but appears unpredictable and random. CST is more 

appealing to many systems in different fields, such as physics, robotics, microbiology and 

computer science [46]. There are three main characteristics of chaos theory: sensitivity to 

initial conditions, quasi-stochastic and ergodicity. Sensitivity to initial conditions charac-

teristics means that any little alterations in the initial starting points make a difference in 

behavior. Quasi-stochastic means the capacity to substitute random variables with values 

from chaotic maps. An ergodic characteristic is defined as chaotic variables’ capacity to 

search non-frequently for all states in a given range. When all of these qualities are com-

bined, meta-heuristic optimization techniques can considerably improve their perfor-

mance. CST minimizes local optima and increases convergence [47]. In this section, we 

present several well-known chaotic maps from the literature [48–56]. 

 Chebyshev map: the Chebyshev map [48] is formulated as: 

���� = ����� ����������. (9)

 Singer map: Singer’s chaotic one-dimensional map [49] is defined as the following 

equation:  

���� = ��7.86 �� − 23.31 ��
� + 28.75 ��

� − 13.302875 ��
��; (10)

where � ∈ (0.9, 1.08).  

 Sinusoidal map: the following equation is used to create a sinusoidal map [50]: 

���� = � ��
� ����� ���; (11)

where � = 2.3. 

 Piecewise map: a piecewise map [51] can be defined as follows: 
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���� =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

��

�
,                     0 < �� < �

��� − ��
(0.5 − �)

,              � ≤ �� < 0.5

�1 − � − ���
(0.5 − �)

,           0.5 ≤ �� < 1 − �

1 − ��

�
 ,                    1 − � < �� < 1  

; (12)

where � ∈  (0, 0.5) and � ∈  (0, 1). 

 Sine map: the equation for a sine map [52] is as follows:  

���� = 4� ����� ��� ; (13)

where 0 < � ≤ 4. 

 Circle map: a circle map [53] is described as:  

���� = �� + ℎ − (� − 2�) ����2� ��� ���(1) (14)

where � = 0.5 and ℎ = 0.2. 

 Logistic map: a logistic map [54] shows how a simple deterministic system can pro-

duce complex behavior without the use of a random sequence. It depends on a simple 

polynomial equation that explains biological population dynamics [50]. 

���� = � ���1 − ��� ,    � = 4. (15)

 Intermittency map: the intermittency map [55] can be formulated as: 

���� = �

 � + �� + � ��
�         ��       0 < �� ≤ �

��� − ��

1 − �
,                 ���� ��        � < �� < 1

; (16)

where � =
�����

�� , � = 2 and � is very close to zero. 

 Gauss map/Mouse map: the Gauss map [56] is given by the Gaussian function: 

���� = ��� ��
�

+ �; (17)

where � and � are real parameters. 

 Iterative map: we can formulate the iterative chaotic map [51] as follows: 

���� = ��� �
��

��
�  (18)

where ℎ ∈ (0,1) . 

 Liebovitch map: we can formulate the Liebovitch chaotic map [48] as follows: 

���� = �

� ��                            0 < �� ≤ ℎ�

�����

��� ��
                        ℎ� < �� ≤ ℎ�

1 − ��1 − ���             ℎ� < �� ≤ 1

; (19)

where ℎ�,  ℎ�  ∈ (0, 1), ℎ� <  ℎ�, � =
�����(�����)�

��
 and � =

�(����)� ��(�����)�

����
. 

 Tent map: the tent map [57] is represented as: 

���� = �
    

��

�.��
     ,   �� < 0.7

��������

�
 ,   �� ≥ 0.7

. (20)
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4. Chaotic Salp Swarm Algorithm (CSSA) 

This section explains our proposed algorithm, CSSA, which is a composite of SSA 

and CST to solve nonlinear equations system. SSA updates its agents about the potential 

solution according to Equations (5) and (8). Although it is a highly effective algorithm, in 

some states, the SSA remains susceptible to convergence in local optima. As a result, SSA’s 

difficulties with unripe convergence and poor results may persist. In some cases, the basic 

SSA is not able to move seamlessly from the phases of exploration to the phases of exploi-

tation. In this respect, the SSA needs enhanced agents to overcome issues and more ex-

ploration/exploitation ability. To alleviate the aforementioned problems, CST is presented 

as a local search phase. The combination of SSA with CST and using infeasible solutions 

achieves better searching quality, improves the performance and increases the variety of 

solutions, while avoiding entrapment in local optima and accelerating the optimum 

searching operation and the convergence features. Our proposed algorithm operates in 

two phases. Firstly, we transformed the SNLEs into an optimization problem. Secondly, 

we used CSSA to solve this optimization problem. SSA was used to update the feasible 

solutions, and the infeasible solutions were updated by the CST. When we allowed some 

infeasible solutions to exist in the population, the search trajectory became significantly 

shorter, resulting in significant savings in the number of function evaluations. We used 

the logistic map to generate the chaos sequence, because it is more convenient to use 

[37,38,58]. 

4.1. Steps of the Proposed Algorithm 

The following are detailed descriptions of our algorithm’s steps: 

1. Initialize the parameters. Search agents (all salps’ number) are set as � = �� + ��� , 

where (��) is the number of salps in the feasible list, and (���) is the number of 

salps in the infeasible list. The maximum number of iterations (�) are set up to be 

utilized as the algorithm’s end conditions, using � = 0 as the iteration counter, lower 

boundary (��), upper boundary (��) and the number of variables (�). 

2. Initialize the salps’ positions. In the first generation, the salps’ positions are initialized 

randomly to fulfill the solution space � (each variable’s upper and lower limits), us-

ing the following equation. 

Each individual’s position|� = �� + (�� − ��) ×  ����; (21)

where � = 1, 2, . . ., �, and random numbers dispersed uniformly throughout the 

range [0, 1] are known as rand. 

3. Evaluate the salps. According to the needed objective function, every salp is esti-

mated based on the quality of its place, as given in Equation (2), where the best solu-

tion (destination) has been documented thus far. 

4. Update the salps’ positions. Update salps’ positions in the feasible list according to 

Equation (5) and salps’ positions in the infeasible list with CST according to the fol-

lowing equations: 

���� = 4�� �1 − ���, (22)

�� = ���� × ����  + �1 − ����� × �� (23)

where �� ∈ (0,1), �� ∉ (0.25,0.5,0.75,1), � = 1, 2, … , ��� , �� is the updated salps’ 

position, ����  is the position of the infeasible salps and ��  is the best position of 

feasible salps. Figure 2 shows the updated infeasible solution using the CST. 

5. Check the feasibility of solutions. Maybe after updating positions, the feasibility of 

solutions is changed, so we should check the salps’ positions; if the salp exists in the 

search space, the salp is then considered feasible and is added to the feasible list. 

Then, we compute the fitness values of the salps. In this case, if the salp is infeasible, 

it should be added to the infeasible list, and set the fitness value of infeasible as the 

best value. 
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6. Evaluation of the feasible solutions. Feasible solutions are evaluated. 

7. Update the best value. Compare the present fitness value with the updated value. If 

the present value is better than the updated value, then set the present value as the 

best value. If the updated value is better than the present value, then set the updated 

value as the best value; then, the corresponding position is the best. 

8. Termination criteria. Set � = � + 1. If the iterations’ number is greater than the maxi-

mum (�), go to Step 9; otherwise, go to Step 4. 

9. Output the results. Output the best position and the best fitness value. 

The pseudo-code for CSSA is presented in Figure 3, and Figure 4 shows the flow 

diagram. 

 
Figure 2. Updating infeasible solutions using the CST. 

 

Figure 3. The pseudo-code of the CSSA. 
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Figure 4. Flowchart of the proposed CSSA algorithm. 

4.2. Computational Complexity of the CSSA 

The computational complexity, which is linked to the algorithm’s structure and im-

plementation, must be considered when determining the processing time of any meta-

heuristic algorithms. It is worth mentioning that the recommended CSSA’s computing 

cost is largely determined by two factors: the startup method and the solution update. 

�(� ∙ �) is the complexity of the initialization process, where � shows the population size 
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and � is the number of parameters in the problem (dimension). ��� ∙ �� ∙ �� is the com-

plexity of evaluating solutions by SSA, where � indicates iterations and �� = � − ��� is 

the number feasible solution. Hence, the computational complexity of the proposed CSSA  
is �(� ∙ �) + ��� ∙ �� ∙ ��. We can see that the computational complexity of the proposed 

CSSA, which evaluates only feasible solutions �� , is less than other algorithms that eval-

uate all populations �. In the next section, we used several benchmark tests and real-

world optimization problems to assess and certify the performance of the proposed CSSA 

in handling systems of nonlinear equations. 

5. Numerical Studies 

We checked the effectiveness of the proposed method by several various benchmark 

problems for a system of nonlinear equations. In each case study, we compared the best 

results with the obtained solutions of the gravitational search algorithm (GRAV) [59], 

quantum behaved particle swarm optimization (QPSO) [60,61], the intelligent tuned har-

mony search method (ITHS) [62], salp swarm algorithm (SSA), the evolutionary algorithm 

approach (EAA) [43] and with the results of other studies. The comparison established the 

suggested algorithm’s efficiency and robustness. The proposed algorithm is coded in 

MATLAB R2013a, and the simulations were run on an Intel(R) Core (TM) i5-2430cpu 

2.4GHZ, 2.4 GHz processor. 

5.1. Testing CSSA on Benchmark Problems 

Benchmark 1: It has been solved in [63,64], where the following are its system equa-

tions: 

��(�) = 2�� + �� + �� + �� + �� − 6 = 0, 

��(�) = �� + 2�� + �� + �� + �� − 6 = 0, 

��(�) = �� + �� + 2�� + �� + �� − 6 = 0, 

��(�) = �� + �� + �� + 2�� + �� − 6 = 0, 

��(�) = ���������� − 1 = 0; 

(24)

where −2 ≤ �� ≤ 2, � = 1, 2, … , 5. Table 1 compares the results of the proposed CSSA ap-

proach to those of existing methods and literature studies. Figure 5 shows the history of 

convergence for benchmark 1. Table 1 shows that CSSA outperforms the other ap-

proaches, except for L-QPSO. Figure 5 indicates, on the other hand, that CSSA is superior 

to most other algorithms, since it found the optimal solution after 100 iterations, whereas 

other algorithms did not get close to the optimal solution within 200 iterations. 

Table 1. Best results for benchmark 1. 

 CSSA SSA L-QPSO QPSO ITHS GRAV 

�� 0.995903811683832 0.992951171841475 1.418227087330760 1.000144199216134 0.999999983928838 0.916566028481882 

�� 0.995903811683831 0.992980846443041 0.916354582533385 1.000120111355508 0.999999984261559 0.916262407670433 

�� 0.995903811683832 0.993004941523888 0.916354582533385 1.000131686228283 0.999999984646038 0.916981249858047 

�� 0.995903811683831 0.992853011911152 0.916354582533385 1.000129832805469 0.999999984062309 0.916141646585271 

�� 1.020480941580842 1.034169125949290 0.916354582533385 0.999369060482274 1.000000076182086 1.417478352612262 

�� 0.00000000000000 −1.08973048967975 × 10−3 0.00000000000000 3.90893038000 × 10−5 −2.9903315370 × 10−9 −4.2863102200 × 10−6 

�� 0.00000000000000 −1.06005588811442 × 10−3 0.00000000000000 1.50014431730 × 10−5 −2.6576110240 × 10−9 −3.0790712167 × 10−4 

�� 0.00000000000000 −1.03596080726653 × 10−3 0.00000000000000 2.65763159490 × 10−5 −2.2731319030 × 10−9 4.10935065933 × 10−4 

�� 0.00000000000000 −1.18789042000245 × 10−3 0.00000000000000 2.47228931350 × 10−5 −2.8568605230 × 10−9 −4.2866820683 × 10−4 

�� 0.00000000000000 5.30235449108307 × 10−3 0.00000000000000 −1.05338195890 × 10−4 1.3080826866 × 10−8 5.32877402310 × 10−5 
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Figure 5. Convergence history for benchmark 1. 

Benchmark 2: This benchmark has been studied and solved in [63], where its system 

equations are as follows: 

��(�) = �� +
��

�����

4
+ 0.75 = 0, 

��(�) = �� + 0.405 �(������) − 1.405 = 0, 

��(�) = �� −
����

2
+ 1.5 = 0, 

��(�) = �� − 0.605 ������
�� − 0.395 = 0, 

��(�) = �� −
����

2
+ 1.5 = 0, 

��(�) = �� − ���� = 0. 

(25)

Table 2 displays the best benchmark 2 results obtained by CSSA and other compara-

tive techniques, and Figure 6 displays the objective function’s convergence history for all 

comparison techniques. In solving benchmark 2, CSSA beats the other techniques, as seen 

in Table 2. According to the objective function’s convergence history, CSSA approaches 

the best solution at 800 iterations, whereas the others, except for SSA, fail to approach the 

best solution until 1700 iterations, as shown in Figure 6. 

Table 2. Best results for benchmark 2. 

 CSSA SSA LQPSO QPSO ITHS GRAV 

�� −0.999999999976066 −0.999999946014511 −1.0000007185712 −1.06006024401217 −1.00469360193614 −0.94769257629329 

�� 0.999999999982547 0.999999996807600 1.000000450917130 1.037892210927400 1.002699552010810 0.959910343740040 

�� −1.00000000000000 −1.000000099827310 −0.9999992090087 −0.96490791149742 −0.99763045117792 −1.03187245704251 

�� 1.000000000000000 0.999999868085587 1.000009575627950 1.043046172266930 1.002704645251820 0.961169009727670 

�� −1.00000000000000 −1.000000017251620 −0.99999966616156 −0.96783925322234 −0.99763694114471 −1.03086507223002 

�� 0.999999999976066 0.999999935719242 1.000000474541350 1.025883305127200 1.002627773888710 0.976336307899310 

�� 4.9782400424192 × 10−13 1.7442991495642 × 10−9 9.037302239889 × 10−8 3.6034275521 × 10−4 −6.3374448056 × 10−4 1.49483833089 × 10−3 

�� −6.910028105267 × 10−13 1.9964645714410 × 10−8 −2.272550148060 × 10−8 −7.3227698937 × 10−4 −2.8872794332 × 10−4 −1.81606786960 × 10−3 

�� 1.1967316027040 × 10−11 −1.7297323573473 × 10−9 7.493891107651 × 10−8 7.0261199790 × 10−5 −3.0021434625 × 10−4 −1.08455815450 × 10−3 

�� 0.000000000000000 −1.1123369669797 × 10−8 4.630491545750 × 10−10 −1.4208871243 × 10−4 −1.6590037166 × 10−4 −8.92448862560 × 10−4 

�� 2.0693669000593 × 10−11 1.6484962284125 × 10−8 −1.288909150520 × 10−7 −2.1739907838 × 10−4 −3.0415100062 × 10−4 5.37267309180 × 10−4 

�� 0.0000000000000000 −2.7546884551200 × 10−8 8.980881838205 × 10−8 −8.4609808280 × 10−5 3.0832206541 × 10−4 −6.06868221310 × 10−4 
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Figure 6. Convergence history for benchmark 2. 

Benchmark 3: It has been solved in [63], and it is made up of the following system 

equations: 

�� − ��� �2�� − � ��

�

���

� = 0 , 1 ≤ � ≤ 4. (26)

Table 3 displays the simulation results obtained by all algorithms for benchmark 3, 

and Figure 7 depicts the convergence behaviors. The results show that our algorithm is 

competitive with other methods. 

Table 3. Best results for benchmark 3. 

 CSSA SSA LQPSO QPSO ITHS GRAV 

�� 0.514933264661129 0.984951602469349 0.98495160246935 0.514933264661129 0.514933264661129 0.514933264661129 0.514931340034248 

�� 0.514933264661129 −0.81124902849969 0.98495160246935 0.514933264661129 0.514933264661129 0.514933264661129 0.514934600978757 

�� 0.514933264661129 0.984951602469349 −0.81124902849969 0.514933264661129 0.514933264661130 0.514933264661129 0.514923716523520 

�� 0.514933264661129 0.984951602469349 0.98495160246935 0.514933264661129 0.514933264661129 0.514933264661129 0.514944432722957 

�� 0.000000000000000 0.000000000000000 
1.11022302462516 × 

10−16 
0.000000000000000 0.000000000000000 0.000000000000000 

2.25940766129 × 

10−6 

�� 0.000000000000000 0.000000000000000 0.00000000000000 0.000000000000000 0.000000000000000 0.000000000000000 
−7.0413942500 × 

10−8 

�� 0.000000000000000 0.000000000000000 
−1.11022302462516 × 

10−16 
0.000000000000000 0.000000000000000 0.000000000000000 

7.70620340042 × 

10−6 

�� 0.000000000000000 0.000000000000000 0.00000000000000 0.000000000000000 0.000000000000000 0.000000000000000 
−7.0946910128 × 

10−6 
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Figure 7. Convergence history for benchmark 3. 

Benchmark 4 (neurophysiology application): The neurophysiology application 

[43,63] is used to test the effectiveness and robustness of our method. There are six non-

linear equations in this problem, which are defined as: 

��(�) = ��
� + ��

� − 1 = 0, 

��(�) = ��
� + ��

� − 1 = 0, 

��(�) = ����
� + ����

� = ��, 

��(�) = ����
� + ����

� = ��, 

��(�) = ������
� + ����

��� = ��, 

��(�) = ����
��� + ����

��� = ��; 

(27)

where −10 ≤ �� ≤ 10, � = 1,2, … ,6. The values of �� in this equation are sets are chosen 

at random. For simplicity, we setthese values equal to 0.0 in this study. 

A comparison of the best results for benchmark 3 discovered by CSSA and other 

comparative techniques can be seen in Table 4, and Figure 8 shows its convergence be-

havior. CSSA beats other algorithms, as seen in Table 4 and Figure 8, where the optimal 

solution was determined after just 300 iterations. 

Table 4. Best results for benchmark 4. 

 CSSA SSA LQPSO QPSO ITHS GRAV EAA 

�� 0.670705000548366 0.275927502515214 0.446209184554328 −0.796616684320047 0.757992217157792 0.835326847252122 0.045943625 

�� 0.710697050025244 −0.275921585990909 −0.446209184554328 0.796616684320047 0.757995636725586 0.782860693935276 −0.1626952821 

�� 0.741724209015329 −0.961189213584485 0.894928691918726 −0.604484787453692 0.652290147139058 0.549753670392631 −0.9215324786 

�� 0.703498189823838 0.961168603463013 −0.894928691918726 0.604484787453692 0.652305698905455 −0.622197020332733 0.9841530788 

�� 0.000000000000000 −1.398559646254270 0.366779058332292 −0.343529649687506 0.026046699540825 −0.000000012589636 −0.6789794019 

�� 0.000000000000000 −1.398649615180130 0.366779058332292 −0.343529649687506 −0.026009939089497 0.000000014361731 −0.9070329917 

�� 0.000000000000000 
2.0690955444546 × 

10−5 
0.000000000000000 0.000000000000000 3.463732647923 × 10−5 3.98503403642 × 10−8 

1.489636110 × 

10−1 

�� 0.000000000000000 
2.2194101222616 × 

10−5 
0.000000000000000 0.000000000000000 6.011011956097 × 10−5 

−1.78024639200 × 

10−9 

4.972962500 × 

10−3 

�� 0.000000000000000 0.00000000000000 0.000000000000000 0.000000000000000 9.686086290410 × 10−6 
−5.55110631700 × 

10−9 

3.332320690 × 

10−1 

�� 0.000000000000000 
6.9388939039072 × 

10−18 
0.000000000000000 0.000000000000000 1.585609322857 × 10−5 

−4.47429924000 × 

10−10 

3.853671100 × 

10−3 

�� 0.000000000000000 0.00000000000000 0.000000000000000 0.000000000000000 1.141785526275 × 10−5 1.17420316830 × 10−9 
1.183698936 × 

10−1 

�� 0.000000000000000 0.00000000000000 0.000000000000000 0.000000000000000 1.345652755927 × 10−5 
−1.03059189220 × 

10−8 

2.249327540 × 

10−2 
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Figure 8. Convergence history for benchmark 4. 

Benchmark 5: This benchmark shows the interval arithmetic problem that has been 

presented in [43,63,65]. It was formulated as follows: 

��(�) = �� − 0.25428722 − 0.18324757������ = 0, 

��(�) = �� − 0.37842197 − 0.16275449������� = 0, 

��(�) = �� − 0.27162577 − 0.16955071������� = 0, 

��(�) = �� − 0.19807914 − 0.15585316������ = 0, 

��(�) = �� − 0.44166728 − 0.19950920������ = 0, 

��(�) = �� − 0.14654113 −  0.18922793������� = 0, 

��(�) = �� − 0.42937161 −  0.21180476������ = 0, 

��(�) = �� − 0.07056438 −  0.17081208������ = 0, 

��(�) = �� − 0.34504906 −  0.19612740������� = 0, 

���(�) = ��� − 0.42651102 −  0.21466544������ = 0. 

(28)

Table 5 shows the best results obtained by all algorithms for benchmark 5, and Figure 

9 depicts the convergence history. The results show that the proposed algorithm produces 

solutions very close to the optimal solution and better than the SSA, ITHS, GRAV and 

EAA methods. Therefore, CSSA is competitive with other methods for benchmark 5. 

 

Figure 9. Convergence history for benchmark 5. 
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Table 5. Best results for benchmark 5. 

 CSSA SSA LQPSO QPSO ITHS GRAV  EAA 

�� 0.2578333937003700 0.257833393701697 0.257833393700504 0.257833393700504 0.254686410312621 0.257839946926554 0.0464905115 

�� 0.3810971546027980 0.381097154598265 0.381097154602807 0.381097154602807 0.378523004753339 0.381079261668136 0.1013568357 

�� 0.2787450173464350 0.278745017349933 0.278745017346440 0.278745017346440 0.276525468374490 0.278737809172705 0.0840577820 

�� 0.2006689642178670 0.200668964222069 0.200668964225344 0.200668964225344 0.201804033260634 0.200676775829179 −0.1388460309 

�� 0.4452514248306970 0.445251424835867 0.445251424841042 0.445251424841042 0.443869219215441 0.445251560409610 0.4943905739 

�� 0.1491839199689970 0.149183919962789 0.149183919969355 0.149183919969355 0.147985685015705 0.149185582343140 −0.0760685163 

�� 0.4320096977378360 0.432009697733842 0.432009698983720 0.432009698983720 0.432376554488803 0.432006811493179 0.2475819110 

�� 0.0734027777680547 0.073402777761918 0.073402777776249 0.073402777776249 0.069871690818600 0.073403712784558 −0.0170748156 

�� 0.3459668268754490 0.345966826879356 0.345966826875554 0.345966826875554 0.349297348759015 0.345965056291278 0.0003667535 

��� 0.4273262759931690 0.427326275992379 0.427326275993291 0.427326275993291 0.432318039408281 0.427333090362260 0.1481119311 

�� 
2.25514051876985 × 

10−17 
1.16767316302 × 10−12 0.000000000000000 0.000000000000000 −0.003172703109397 

6.52503548950 × 

10−6 
2.077959240 × 10−1 

�� 
−1.51788304147971 × 

10−17 

−4.43043605275 × 

10−12 
0.000000000000000 0.000000000000000 −0.002550893777805 

−1.80334006456 × 

10−5 
2.769798846 × 10−1 

�� 
1.56125112837913 × 

10−17 
3.55920674877 × 10−12 0.000000000000000 0.000000000000000 −0.002166747254159 

−7.16837992760 × 

10−6 
1.876863212 × 10−1 

�� 
8.67361737988404 × 

10−19 
4.32001049516 × 10−12 0.000000000000000 0.000000000000000 0.001185071568625 

7.73423072990 × 

10−6 
3.367887114 × 10−1 

�� 
2.73218947466347 × 

10−17 
5.30765232112 × 10−12 0.000000000000000 0.000000000000000 −0.001328103066942 

2.12270381200 × 

10−7 
5.303913210 × 10−2 

�� 
−1.25767452008319 × 

10−17 

−6.01313096538 × 

10−12 
0.000000000000000 0.000000000000000 −0.001092587590357 

1.58576124970 × 

10−6 
2.223730535 × 10−1 

�� 
2.25514051876985 × 

10−17 

−3.77326642154 × 

10−12 
0.000000000000000 0.000000000000000 0.000518467284375 

−2.79803507510 × 

10−6 
1.816084752 × 10−1 

�� 
−1.73472347597681 × 

10−18 

−6.00684389382 × 

10−12 
0.000000000000000 0.000000000000000 −0.003476285138268 

8.50208862100 × 

10−7 
8.748963860 × 10−2 

�� 
6.83047368665868 × 

10−18 
4.02272019948 × 10−12 0.000000000000000 0.000000000000000 0.003371565377805 

−1.80713729210 × 

10−6 
3.447200366 × 10−1 

��� 
−1.34441069388203 × 

10−17 

−7.42877656092 × 

10−13 
0.000000000000000 0.000000000000000 0.005036117718070 

6.75152562420 × 

10−6 
2.784227489 × 10−1 

Benchmark 6 (combustion application): The combustion problem is taken as a bench-

mark problem that occurred at a temperature of 3000 °C [43,63,65]. The nonlinear system 

equations for this problem are described as: 

��(�) = �� + 2�� + �� + 2��� − 10�� = 0, 

��(�) = �� + �� − 3 × 10�� = 0, 

��(�) = �� + �� + 2�� + 2�� + �� + ��� − 5 × 10�� = 0, 

��(�) = �� + 2�� − 10�� = 0, 

��(�) = 0.5140437 × 10�� �� − ��
� = 0, 

��(�) = 0.1006932 × 10�� �� − ��
� = 0, 

��(�) = 0.7816278 × 10��� �� − ��
� = 0, 

��(�) = 0.1496236 × 10�� �� − ���� = 0, 

��(�) = 0.6194411 × 10�� �� − ���� = 0, 

���(�) = 0.2089296 × 10��� ��� − ����
� = 0. 

(29)

Table 6 describes the comparison between CSSA and other comparative techniques 

according to the best results obtained. Figure 10 depicts the objective function’s conver-

gence history for all algorithms. As shown in Table 2, CSSA surpasses the other methods 

in obtaining the best solution for benchmark 6. CSSA and SSA, on the other hand, have a 

faster convergence to the optimal solution than other techniques, as seen by the objective 

function’s convergence history in Figure 10. 
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Table 6. Best results for benchmark 6. 

 CSSA SSA LQPSO QPSO ITHS GRAV EAA 

�� 
2.90530634472166 × 

10−10 

4.96555026855323 × 

10−6 

−5.92864500 × 

10−8 

−4.88278463 × 

10−7 

0.00724587840930

6 

−0.0012978833822

00 
−0.0552429896 −0.3383785580 

�� 
−2.15930703246316 × 

10−8 

−4.65992582665477 × 

10−6 

−6.94279000 × 

10−5 

6.47373030 × 

10−3 

0.01018017693116

3 

0.00918114480881

1 
−0.0023377533 0.0185669333 

�� 
1.31232272837984 × 

10−8 

1.00000000000000 × 

10−5 

−2.98022727 × 

10−1 

9.88680886 × 

10−1 

−0.0029051737965

40 

0.35197654344787

5 
0.0455880930 0.0534924988 

�� 
−7.33338519034429 × 

10−9 

9.85198390404581 × 

10−6 

−8.85260400 × 

10−5 

6.88493552 × 

10−3 

−0.0023229158180

70 

0.01344978613674

8 
−0.1287029472 0.0392783417 

�� 
1.30613689078792 × 

10−12 

8.49139051091713 × 

10−6 

−4.12726852 × 

10−1 

2.49330592 × 

10−1 

−0.0025709928896

10 

0.38106003737840

5 
0.0539771728 0.0183882247 

�� 
−4.81568921923995 × 

10−12 

6.64457118737294 × 

10−6 

−5.47120683 × 

10−2 

−4.75443378 × 

10−3 

−0.0001285135424

00 

0.32834051546693

0 
−0.0151036079 0.0005246892 

�� 
5.00366669259517 × 

10−6 

7.40081065763225 × 

10−8 

4.92534440 × 

10−5 

−3.43749623 × 

10−3 

0.00107527109720

3 

−0.0067220101518

5 
0.1063159019 −0.1024269629 

�� 
2.99868767727162 × 

10−5 

9.99999958141491 × 

10−6 

2.98052730 × 

10−1 

−9.88651264 × 

10−1 

0.00282171705293

6 

−0.3519435919284

2 
0.0386267592 0.0500461848 

�� 
−2.99959425329520 × 

10−5 

−5.26744550810345 × 

10−6 

9.45338532 × 

10−1 

9.76976826 × 

10−1 

0.00017060562664

2 

−0.1515959194047

4 
−0.1144905135 −0.1013361102 

��� 
2.00087726173275 × 

10−5 

3.31911440986020 × 

10−6 

−4.17917503 × 

10−1 

−4.86965844 × 

10−1 

−0.0049371582467

20 

−0.2571440431172

4 
0.0872294353 0.0404252678 

�� 
−1.6940658945086 × 

10−21 

−1.402919477773 × 

10−13 

−3.718425434 × 

10−8 

7.579336100 × 

10−12 
2.094389795 × 10−4 

−3.182989656 × 

10−5 

2.741338780 × 

10−2 

8.794626000 × 

10−4 

�� 0.0000000000000000 
−1.000000041859 × 

10−5 

3.403141215 × 

10−9 

−3.777878940 × 

10−7 

−1.134567436 × 

10−4 
2.951519453 × 10−6 

8.418485220 × 

10−2 

1.035086837 × 

10−1 

�� 0.0000000000000000 
−6.450259434649 × 

10−13 

−1.524300123 × 

10−8 

3.476367522 × 

10−8 
2.560031932 × 10−5 1.215884437 × 10−4 

1.482418893 × 

10−1 

9.556261970 × 

10−2 

�� 0.0000000000000000 1.171984584440 × 10−13 
−1.915259325 × 

10−8 

−5.695425910 × 

10−8 

−1.823736237 × 

10−4 

−4.234166957 × 

10−7 

8.391885670 × 

10−2 

2.441423777 × 

10−1 

�� 
−1.7266905562087 × 

10−20 

−2.422019488989 × 

10−11 

−2.121593269 × 

10−8 

1.281644356 × 

10−8 
5.250288608 × 10−5 

−1.664913123 × 

10−6 

3.051785100 × 

10−3 

1.144999500 × 

10−3 

�� 
−5.6931520725757 × 

10−19 

−2.398762633404 × 

10−11 

−1.514954299 × 

10−8 

−8.381884680 × 

10−5 
2.072720176 × 10−4 

−1.685537783 × 

10−4 

1.093170000 × 

10−5 

6.894619000 × 

10−4 

�� 
−5.3774627344972 × 

10−17 

−9.706158684552 × 

10−11 

−7.836859219 × 

10−9 

−4.740233710 × 

10−5 
5.395937898 × 10−6 

−1.808967471 × 

10−4 

1.656444860 × 

10−2 

1.542796700 × 

10−3 

�� 
4.4867406427906 × 

10−12 

−4.815926674816 × 

10−11 

2.196726011 × 

10−8 

3.348260222 × 

10−7 
2.105095828 × 10−5 4.567718476 × 10−4 

2.518428300 × 

10−3 

1.810078900 × 

10−3 

�� 
−1.8580656903664 × 

10−12 
2.281280871601 × 10−11 

5.855288223 × 

10−8 

6.367894304 × 

10−8 

−7.376431366 × 

10−5 
1.190666480 × 10−5 

1.291515000 × 

10−4 

6.282589000 × 

10−4 

��� 
4.1804113131279 × 

10−20 

−1.078195361637 × 

10−16 

−5.071595221 × 

10−16 

2.046233460 × 

10−11 
7.509338719 × 10−8 1.094030285 × 10−7 

3.019000000 × 

10−7 

1.166490000 × 

10−5 

 

Figure 10. Convergence history for benchmark 6. 
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Benchmark 7: This problem consists of eight equations [63,64,66], demonstrated as 

follows: 

��(�) = 4.731 × 10�� ���� − 0.3578���� − 0.1238�� + �� − 1.637 × 10�� �� − 0.9338�� − 0.3571 = 0 

��(�) = 0.2238���� + 0.7623���� + 0.2638�� − �� − 0.007745�� − 0.6734�� − 0.6022 = 0 

��(�) = ���� + 0.3578�� + 4.731 × 10���� = 0 

��(�) = −0.7623 �� + 0.2238�� + 0.3461 = 0 

��(�) = ��
� + ��

� − 1 = 0 

��(�) = ��
� + ��

� − 1 = 0 

��(�) = ��
� + ��

� − 1 = 0 

��(�) = ��
� + ��

� − 1 = 0 

(30)

According to [64], this problem has 16 solutions. Table 7 displays a comparison of 

CSSA and other comparative approaches based on the best findings obtained. Figure 11 

shows the convergence history of the objective function for all methods. As demonstrated 

in Table 2 and Figure 11, CSSA gives good results and outperforms most other algorithms 

in terms of convergence speed and the best solution. 

Table 7. Best results for benchmark 7. 

 CSSA SSA LQPSO QPSO ITHS GRAV 
Abdollahi et al. 

[66] 

Wang et al. 

[67] 

�� 0.164431665854327 0.67155424583808 0.16443166585432 0.1644316658540 0.16364139102365 
0.671708013238

77 

0.164431665854

33 
0.6715446500 

�� −0.986388476850967 0.74095543967366 −0.98638847685090 −0.9863884768500 −0.98627002980711 
0.740773292936

97 

−0.98638847685

097 
0.7409711100 

�� 0.683029894886492 −0.67897885223585 0.94762379640808 0.9476237964080 0.95152343463466 
−0.25300250019

163 

0.718452601027

60 
0.9518945900 

�� −0.730390417989823 −0.73415797499040 −0.31938869811110 −0.3193886981110 −0.30706727299400 
−0.96749642401

711 

−0.69557591970

731 

−0.306437250

0 

�� 0.997901815405138 −0.96316859991350 −0.99842747393700 −0.9984274739370 −0.99686071791680 
0.957898268905

61 

0.997964383970

43 
0.9638147000 

�� 0.064745399922544 −0.26889813599773 −0.05605871286120 −0.0560587128610 0.03838334619587 
0.287126008079

64 

0.063773727557

00 

−0.266574050

0 

�� −0.547789599039993 −0.42195486257455 −0.25758509950460 −0.2575850995040 −0.25765415743645 
−0.52841723679

413 

−0.52780910528

355 
0.4046369300 

�� −0.836616133709842 0.90661694998613 0.96625561654937 0.9662556165493 −0.96464846447580 
−0.84896958414

590 

−0.84936302508

396 
0.9144747000 

�� 0.00000000000000 
−2.7662843682386 × 

10−9 
0.00000000000000 0.00000000000000 

−1.01417138663 × 

10−2 

−1.85198337832 

× 10−4 

2.77555756156 × 

10−16 
−3.7500 × 10−6 

�� 0.00000000000000 
−3.6325513486091 × 

10−8 
0.00000000000000 0.00000000000000 

−1.13945729434 × 

10−2 

−9.17918618815 

× 10−5 

−1.11022302463 

× 10−16 
1.5370 × 10−5 

�� 
2.60208521396521 × 

10−18 

−3.8569253142835 × 

10−8 

2.60208521390 × 

10−18 

1.73472347590 × 

10−18 

1.68584102280 × 

10−2 

8.04779088699 × 

10−5 

1.73472347598 × 

10−18 
8.9900 × 10−6 

�� 0.00000000000000 
2.5796597469263 × 

10−8 
0.00000000000000 

1.66533453690 × 

10−16 

6.28934951840 × 

10−4 

−1.57955532621 

× 10−4 

1.66533453694 × 

10−16 
1.0840 × 10−5 

�� 0.00000000000000 
6.8685144682945 × 

10−8 
0.00000000000000 0.00000000000000 

−4.92923448120 × 

10−4 

−6.32734221494 

× 10−5 

0.000000000000

00 
1.0390 × 10−5 

�� 0.00000000000000 
2.1402552352612 × 

10−7 
0.00000000000000 0.00000000000000 

−3.12843197070 × 

10−4 

5.95955891025 × 

10−5 

0.000000000000

00 
7.0900 × 10−6 

�� 0.00000000000000 
−4.0597615824645 × 

10−8 
0.00000000000000 0.00000000000000 

−4.79542780918 × 

10−3 

1.04380881087 × 

10−5 

0.000000000000

00 
4.9000 × 10−7 

�� 0.00000000000000 
2.0005246814669 × 

10−7 
0.00000000000000 0.00000000000000 

−3.06767514011 × 

10−3 

−2.55869053997 

× 10−5 

0.000000000000

00 
−4.9800 × 10−6 
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Figure 11. Convergence history for benchmark 7. 

Benchmark 8: The goal of this benchmark is to find the optimum solution for a thin 

wall rectangular girder section [29,32,63,66,68]. The following is a description of the non-

linear equations system for this problem: 

�� = �� − (� − 2�)(� − 2�) = 165, 

�� =
���

12
−

(� − 2�)(� − 2�)

12
= 9369, 

�� =
2�(� − �)�(� − �)�

� + � − 2�
= 6835; 

(31)

where � is the width of the section, � is the height of the section and � is the thickness 

of the section. Table 8 demonstrates the best solutions provided by our suggested com-

petitive technique CSSA and other algorithms. The suggested algorithm outperformed 

some of the other approaches in terms of efficacy and optimum value. Figure 12, on the 

other hand, presents the history of the convergence behavior of this benchmark problem. 

As shown in Figure 12, CSSA converged to the optimum result with lower iterations com-

pared to the other algorithms. 

 

Figure 12. Convergence history for benchmark 8. 
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Table 8. Best results for benchmark 8. 

 w L k �� ��  �� 

CSSA 13.17896439 20.43927047 2.98361764 165 9369 6835 

SSA 13.19004771 20.43358431 2.970077717 164.4441539 9368.996533 6835.012704 

LQPSO 12.25651961 22.89493892 2.789817737 165 9369 6835 

QPSO 12.25667461 22.90303527 2.784985796 165.1859 9369.0052 6834.9887 

ITHS 8.915790282 23.2914526 12.88535322 165.8741 9366.4924 6831.8042 

GRAV 12.26024391 22.77563468 2.857554308 167.5713 9362.2016 6836.7276 

Abdollahi et al. [66] 8.943088779 23.27148188 12.91277429 165 9369 6835 

Jaberipour et al. [29] 43.15556605 10.1289502 12.94404846 709.2412 9369 6835 
 −7.602995198 −24.54198238 −11.57671567 208.1851 9369 6835 

Mo et al. [32] 8.943089 23.271482 12.912774 165 9369 6835 

Luo et al. [68] 12.5655 22.8949 2.7898 166.7229 9369 6835 
 −12.5655 −22.8949 -2.7898 166.7229 9369 6835 
 8.943089 23.271482 12.912774 165 9369 6835 
 −8.943089 −23.271482 −12.912774 165 9369 6835 
 −2.3637 35.7564 3.0151 165 9369 6835 
 2.3637 −35.7564 −3.0151 165 9369 6835 

Finally, Table 9 compares the statistical data for each benchmark problem, which are 

best and worst objective values and standard and mean deviations, and compares these 

data to the other algorithms to evaluate the efficacy and feasibility of our proposed CSSA 

algorithm. Table 9 shows that CSSA outperforms other algorithms in terms of solution 

correctness and stability. 

Table 9. Statistical results for all benchmark problems. 

 LQPSO QPSO 
 Best Sta. Dev. Mean Dev. Worst Best Sta. Dev. Mean Dev. Worst 

Benchmark 

1 
0.000000000000 0.000000000000 0.000000000000 0.000000000000 

1.190238420 × 

10−4 
0.306154753220 0.196859612150 1.77293447420 

Benchmark 

2 

3.210753720 × 

10−8 
0.075730680450 0.025461613410 0.752622884890 

8.634949370 × 

10−4 
0.225990422210 0.228434870310 1.31704660560 

Benchmark 

3 
0.000000000000 

4.24594670 × 

10−33 

1.40611580 × 

10−33 

2.46519030 × 

10−32 

0.000000000000

0 
0.007605882530 0.001043577890 0.07364986790 

Benchmark 

4 
0.000000000000 

2.99648960 × 

10−73 

2.39145910 × 

10−74 

3.77850530 × 

10−72 

0.000000000000

0 
0.006962211870 0.002762056610 0.06168524010 

Benchmark 

5 
0.000000000000 0.000000000000 0.000000000000 0.000000000000 

0.000000000000

0 
0.141672132510 0.102737254690 0.55483088300 

Benchmark 

6 
6.20831492 × 10−62.06229320 × 10−4 6.44202910 × 10−4 

1.13727040 × 

10−3 

9.629560810 × 

10−5 
0.460256660890 0.319865848140 2.67500696480 

Benchmark 

7 

2.60208520 × 

10−18 

3.18574390 × 

10−15 

8.46968200 × 

10−16 

1.92128600 × 

10−14 

1.665424800 × 

10−16 
0.175672734050 0.207396539150 0.73534258810 

Benchmark 

8 

1.62982150 × 

10−10 
102.025240148 168.7054837790 551.4606323440 

1.860767480 × 

10−1 
176.0526102180 228.5159259170 767.757960040 

 GRAV ITHS 

Benchmark 

1 

6.710356250 × 

10−4 

5.135141020 × 

10−3 

6.216924520 × 

10−3 

1.72821113 × 

10−2 

1.41577466 × 

10−8 
1.66313944 × 10−2 1.23694080 × 10−2 1.15315200 × 10−1 

Benchmark 

2 

2.856977540 × 

10−3 

8.672001200 × 

10−4 

4.668242410 × 

10−3 

6.26278271 × 

10−3 

8.88941958 × 

10−4 
6.36274540 × 10−2 8.84356492 × 10−2 3.01422250 × 10−1 

Benchmark 

3 

1.148300900 × 

10−10 

7.162948370 × 

10−8 

6.735700620 × 

10−8 

3.07558863 × 

10−7 
0.00000000 2.14825657 × 10−3 4.67800603 × 10−4 1.82132216 × 10−2 

Benchmark 

4 

4.159110120 × 

10−8 

2.975234980 × 

10−4 

2.550744330 × 

10−4 

8.30651132 × 

10−4 

7.395709810 × 

10−5 
7.20973854 × 10−3 6.89635827 × 10−3 5.41546139 × 10−2 

Benchmark 

5 

2.321516780 × 

10−5 

9.275790350 × 

10−5 

1.647237870 × 

10−4 

3.81861144 × 

10−4 

8.64367972 × 

10−3 
1.29614798 × 10−2 2.84851053 × 10−2 8.82327076 × 10−2 
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Benchmark 

6 

5.345489820 × 

10−4 

1.599892620 × 

10−3 

2.649030450 × 

10−3 

5.60918745 × 

10−3 

3.77206677 × 

10−4 
2.32644338 × 10−2 2.01043301 × 10−2 1.62034142 × 10−1 

Benchmark 

7 

2.872005150 × 

10−4 

8.897540130 × 

10−2 

1.383110850 × 

10−1 

2.91779881 × 

10−1 

2.34529275 × 

10−2 
7.19144829 × 10−2 1.56549347 × 10−1 4.15978152 × 10−1 

Benchmark 

8 
7.4708993593300 17.805724748100 37.155629330300 130.470752028 4.155044146940 338.2946656533 312.651184712 5555.0798892 

 CSSA SSA 

Benchmark 

1 

0.0000000000000

00000 

0.0000000000000

00000 

0.0000000000000

00000 

0.000000000000

000000 

3.291049261929

84 × 10−5 

3.9510813495940

9 × 10−5 

3.3358717040868

0 × 10−5 

1.29503618132905 

× 10−4 

Benchmark 

2 

5.7216990322050

4 × 10−22 

1.2745384652539

3 × 10−9 

9.5590243405657

0 × 10−10 

2.550624112581

50 × 10−9 

1.558935814850

26 × 10−15 

2.9414638598831

2 × 10−5 

2.7526616703633

6 × 10−5 

6.63152999553047 

× 10−5 

Benchmark 

3 

0.0000000000000

00000 

0.0000000000000

00000 

0.0000000000000

00000 

0.000000000000

000000 

2.465190328815

68 × 10−32 

7.4829241186504

4 × 10−7 

7.0538517301082

9 × 10−7 

1.60342282199816 

× 10−6 

Benchmark 

4 

0.0000000000000

00000 

0.0000000000000

00000 

0.0000000000000

00000 

0.000000000000

000000 

9.206937662879

13 × 10−10 

2.4348909061753

1 × 10−2 

2.2915721987255

6 × 10−2 

5.33342563177076 

× 10−2 

Benchmark 

5 

2.6271005697092

3 × 10−33 

2.4328966024523

5 × 10−24 

1.8246724518392

5 × 10−24 

4.865793369888

02 × 10−24 

1.837054428284

98 × 10−22 

4.5700831387281

3 × 10−15 

4.3083067560107

8 × 10−15 

9.77080461506118 

× 10−15 

Benchmark 

6 

3.5998906894356

6 × 10−9 

1.9999997399205

4 × 10−8 

1.4999998049403

3 × 10−8 

4.359989429866

62 × 10−8 

1.000000083852

23 × 10−10 

8.3115375752624

2 × 10−6 

7.8358395109649

4 × 10−6 

1.77271255508841 

× 10−5 

Benchmark 

7 

6.7708474607363

7 × 10−36 

8.5592086563015

3 × 10−15 

6.4194064922261

5 × 10−15 

1.711841731260

31 × 10−14 

9.567397723119

61 × 10−14 

4.7340175108614

0 × 10−13 

4.4628571947463

5 × 10−13 

1.10774526946331 

× 10−12 

Benchmark 

8 

0.0000000000000

00000 

0.0000000000000

00000 

0.0000000000000

00000 

0.000000000000

000000 

3.091383025728

01 × 10−1 

6.5137396704817

6 × 101 

6.1406314257555

6 × 101 

1.39570903957062 

× 102 

5.2. Wilcoxon Signed Ranks Test (WSRT) 

The Wilcoxon signed ranks test compares two related groups and is a nonparametric 

statistical test. The tests work by calculating the difference between sets of pairings and 

analyzing those differences to see if they are statistically significant. It is linked to the �-

value, where � signifies the chance that the null hypothesis is true. The result of the test 

is returned as � < 0.05, which shows that the null hypothesis was refused, and � > 0.05, 

which means the null hypothesis was not refused. The positive ranks’ sum is � +, and the 

negative ranks’ sum is � −. Table 10 shows the results of the Wilcoxon signed-rank test 

for the various methods, where our proposed CSSA is compared with SSA, QPSO, 

LQPSO, ITHS and GRAV. Table 10 demonstrates that all �-values < 0.05 and CSSA 

achieve better � − values than � + values in all benchmark problems, indicating that 

CSSA outperforms the other algorithms. 

Table 10. WSRT for results in Table 9. 

Compared Algorithms 
Solution Evaluations 

� − � + p-Value Best Algorithm 

CSSA SSA 36 0 0.012 CSSA 

CSSA LQPSO 14 1 0.08 CSSA 

CSSA QPSO 20 1 0.046 CSSA 

CSSA GRAV 36 0 0.012 CSSA 

CSSA ITHS 28 0 0.018 CSSA 

5.3. Convergence Analysis 

For studying the convergence analysis of our proposed algorithm, the statistical find-

ings for each approach, in terms of standard deviation, the best value, the worst value and 

the mean deviation value, were recorded in Table 9, and the Wilcoxon signed ranks 

(WSRs) test was employed as a non-parametric test. We can see from the simulation re-

sults in Table 9 that our proposed CSSA has better searching quality and outperforms 

other comparable algorithms. In addition to using non-parametric WSRs to determine the 

winning algorithm, Table 10 demonstrates that our proposed approach beats other meth-

ods in terms of the calculated p-value. Concerning the offered analyses, we may conclude 

that the ingrained property of this enhancement exists in the chaotic search technique, 
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with attention to the infeasible solution, which speeds the convergence behavior and 

avoids the algorithm’s regular running without any changes in the results. Our proposed 

algorithm CSSA is extremely competitive compared with other algorithms in terms of 

computing the statistical measurements, and it has a great possibility to solve nonlinear 

systems and their applications. 

6. Power system Applications 

Power system analysis is a branch of electrical engineering for designing whole 

power systems that consist of generators, transformers, shunt reactance, capacitor banks, 

transmission lines and so on. The purpose of power system analysis is to make certain the 

equipment works together so that the required power is sent to the load centers at the 

specified voltage and frequency, and an overloaded component in the network or any 

fault condition will not endanger the system. The load flow analysis is an essential instru-

ment in the power system; it is used for planning and determining the optimal power 

system operation and electricity reciprocation between utility firms. Under steady-state 

conditions, studies of power flow use disciplinarian mathematical methods for computing 

the phase angles, different bus voltages, active power and reactive power flows through 

various sections, transformers, generators settings and load [69]. Load flow analysis can 

give a balanced steady-state operation of the power system without considering system 

transient processes. It minimizes losses to the system and transformer tap settings for eco-

nomic operation. Hence, the mathematical model of the load flow problem is a nonlinear 

equations system. The power system increases because of developments in the industry 

in society, so the load flow equation dimension also increases. There is not a numerical 

method that can lead to the exact solution. Therefore, engineers exert more effort to find 

more reliable methods. The power industry faces the problem of how to find the best 

method for power system analysis. 

6.1. Formulation of Load Flow Problem 

6.1.1. Classification of Buses 

A bus is a node or point that connects one or more transmission lines, generators and 

loads. Each bus has four parameters: reactive power (�), active power (�), voltage phase 

angle (�) and voltage magnitude (|�|) [70]. Two parameters of the bus are known, but 

the other two parameters must be calculated by solving the node active and reactive 

power equations. The buses are categorized into three types based on the two known pa-

rameters, as shown in Table 11. 

Table 11. Bus classification. 

No. Type of Bus 
Variables 

� � |�| � 

1 Slack bus required required given given 

2 Generator bus (��) given required given required 

3 Load bus (��) given given required required 

 Slack bus 

In the power system, there should be one and only one slack node, and it is com-

monly set as bus 1. To achieve the power balancing criteria, this bus is considered a refer-

ence bus. The slack bus is used as a unit for generating, which is ably modified to meet all 

needs to ensure a balance of power [70]. At this bus, the effective generator provides losses 

to the utility network, which is necessary because the value of the losses will be unknown 

until the current is calculated completely. In this bus, |�| and � are known variables, and 

� and � are unknown variables. 

 Generator (��) bus 
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This is a voltage control bus, and it is linked to a generator unit. The prime mover 

may be adjusted to control the active power generated by this bus, and the generator’s 

excitation can be adjusted to control the voltage. Frequently, limits for reactive power val-

ues are defined based on the characteristics of each generator. � and |�| are known var-

iables in this bus, and � and � are unknown variables [70,71]. 

 Load (��) bus 

This is a bus that does not have a generator and may be computed using historical 

information, measurements or forecasts. Positive power is the energy that is supplied to a 

power system, whereas negative power is the energy that is consumed. In the power sys-

tem, most nodes are from the �� type. � and � are known variables in this bus, and 

|V| and δ are unknown variables [70,71]. 

6.1.2. Node Power Equations 

At the ��� bus, the node active and reactive power equations are as follows: 

��
� − ��

� = |��| �|��|[��� ���(�� − ��) + ��� ���(�� − ��)]

�

���

, (32)

��
� − ��

� = |��| �|��|[��� ���(�� − ��) − ��� ���(�� − ��)];

�

���

 (33)

where ���
� + ���

� � is the complex generation, ���
� + ���

� � is the complex load at the node 

�, (��� + ����) is the complex admittance between the � and � nodes, �� is the voltage 

magnitude at the node �, �� is the phase angle of voltage at the node � and � is the num-

ber of nodes. 

Power system application 1: Three-bus system  

This electrical application is taken as a benchmark problem in [70,72]. Figure 13 

shows the single line diagram of the three bus systems. Bus 1 is the slack bus. Its magni-

tude of voltage is 1.05 per unit, and its phase angle is zero. The loads on buses 2 and 3 as 

clear on the diagram. The impedance of the lines is shown per unit on a 100-MVA base, 

with the line charging capacitances ignored. 

 
Figure 13. Single line diagram for the three-bus system. 

Table 12 shows a comparison between our proposed algorithm CSSA with other al-

gorithms. Further Figure 14 shows the history of the convergence behavior of this electri-

cal application. According to the presented results, the suggested algorithm surpasses the 

other approaches in terms of optimal value. In addition, it has faster convergence than the 

standard SSA. 
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Table 12. Results for the three-bus system. 

 CSSA SSA SCA [72] Q-SCA [72] Saadat [70] 

|��| 1.05 1.05 1.05 1.05 1.05 

|��| 0.981835016690686 0.982496442317607 0.981838079377364 0.981835016690686 0.98183 

|��| 1.001249219725040 1.001753708151100 1.001251283783532 1.001249219725039 1.00125 

�� 0.0000 0.0000 0.0000 0.0000 0.0000 

�� −3.50353164478445 −3.4603930381497400 −3.502382236093232 −3.503531644784462 −3.5035 

�� −2.86240522611174 −2.8425024238824500 −2.861380189597466 −2.862405226111747 −2.8624 

��� 409.50 405.73129813204 N.C. N.C. 409.50 

��� 189.00 183.25286594842 N.C. N.C. 189.00 

�� 0.000000000000000 −3.4795486078437 × 10−2 −5.05150474218397 × 10−4 8.8817841970013 × 10−16 N.C. 

�� 0.000000000000000 −2.0558824779045 × 10−3 −4.88402153445477 × 10−4 4.4408920985006 × 10−16 N.C. 

�� 0.000000000000000 −1.8891887805239 × 10−6 1.78159569490965 × 10−4 −2.44249065417534 × 10−15 N.C. 

�� 0.000000000000000 −1.1836177929517 × 10−2 1.54114917028381 × 10−4 2.66453525910038 × 10−15 N.C. 

�� 0.000000000000000 1.0080130330437 × 10−7 N.C. N.C. N.C. 

�� 0.000000000000000 −3.6960016677433 × 10−2 N.C. N.C. N.C. 

N.C. means that the result is not calculated. 

 

Figure 14. Convergence history for the three-bus system. 

Power system application 2: Five-bus system 

A five-bus system is an electrical network that has been selected as a benchmark 

problem [72]. Figure 15 shows a single-line diagram for the five-bus system, which con-

tains a slack bus (bus 1), two generators buses and two load buses. The voltage magnitude 

of the slack bus is 1.06 per unit, and its phase angle is zero, Table 13 shows the system’s 

whole data per unit on a 100-MVA base. 
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Figure 15. Single-line diagram for the five-bus system. 

Table 13. The complete data for the five-bus system. 

Line ����� Impedance Admittance 

��� 0.020 + j0.060 j0.03 

��� 0.080 + j0.240 j0.025 

��� 0.060 + j0.180 j0.02 

��� 0.060 + j0.180 j0.02 

��� 0.040 + j0.120 j0.015 

��� 0.010 + j0.030 j0.01 

��� 0.080 + j0.240 j0.025 

Node Data of Generator Data of Load Voltage of Node Type of Node 

1 Pg�  +  jQg� - 1.06 ∠ 0 Slake 

2 0.4 +  �Qg� 0.2 + j0.1 1.045 ∠ �� V. controlled 

3 0.3 +  �Qg� 0.2 + j0.15 1.03 ∠ �� V. controlled 

4 - 0.5 + j0.3 V� ∠ �� Load 

5 - 0.6 + j0.4 V� ∠ �� Load 

In Table 14, the results of this power system application are shown, and the optimum 

solution for active and reactive power, voltage and phase angle at each node are men-

tioned. Further, Figure 16 displays the convergence behavior. The obtained results 

demonstrated robustness and efficiency for our proposed technique in addressing this 

power system application, and it beats the other algorithms. Furthermore, CSSA has a 

faster convergence than the usual SSA, as shown in Figure 16. 
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Table 14. Results for the five-bus system. 

 CSSA SSA SCA [72] Q-SCA [72] 

|��| 1.06 1.06 1.06 1.06 

|��| 1.056 1.056 1.056 1.056 

|��| 1.03 1.03 1.03 1.03 

|��| 1.01863059295273 1.01952646373577 1.018435127204843 1.018630577870106 

|��| 0.990099003985225 0.99750656900719 0.989538210278804 0.990098992150422 

�� 0.0000 0.0000 0.0000 0.0000 

�� −1.78246929197204 −1.59427491015746 −1.944789603009603 −1.782148822376761 

�� −2.6640102508242 −2.42268934031169 −2.919882018480426 −2.66376758698785 

�� −3.24314133420668 −2.97827944424071 −3.511490409163109 −3.242881574384807 

�� −4.40507424178388 −4.11900384738152 −4.675411331717214 −4.404773706610992 

��� 83.052564864276 75.795550223517 N.C N.C 

��� 7.27097023180857 2.36345263841315 N.C N.C 

��� 40 40 40 40 

��� 41.8123141017395 34.2364944774385 N.C N.C 

��� 30 30 30 30 

��� 24.1494180415641 19.9147887667246 N.C N.C 

�� 0.0000000000000000 1.05025892427335 × 10−8 0.011471071353534 −0.279221090693227 

�� −1.77635683940025 × 10−15 −7.06283406052970 × 10−2 0.017876378728437 −0.374561492932912 

�� 0.0000000000000000 −1.01589935000534 × 10−2 0.018260614359347 −0.400235400377369 

�� 8.88178419700125 × 10−16 −2.51482193291963 × 10−7 0.015992420160200 −0.316413562018170 

�� 1.77635683940025 × 10−15 −4.03229812917516 × 10−6 −0.000366016023354 −0.026645352591004 

�� 0.0000000000000000 −1.05128974045066 × 10−2 −0.000323620656330 0.034972025275692 

�� −2.22044604925031 × 10−16 −2.10402859592851 × 10−2 N.C N.C 

�� −8.88178419700125 × 10−16 −1.97171408924390 × 10−5 N.C N.C 

�� −2.22044604925031 × 10−16 −3.65790017599030 × 10−2 N.C N.C 

��� 0.0000000000000000 −7.09655695185432 × 10−2 N.C N.C 

N.C. means that the result is not calculated. 

 

Figure 16. Convergence history for benchmark 10. 
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Finally, the obtained results demonstrate the effectiveness and robustness of CSSA 

in solving power system applications. Thus, we can deduce that it is suitable to solve real 

applications related to solving the nonlinear system equations. 

7. Conclusions 

This study presented the chaotic salp swarm algorithm (CSSA), an intelligent hybrid 

optimization technique for solving systems of nonlinear equations (SNLEs) that is a com-

bination of the salp swarm algorithm (SSA) and the chaotic search strategy (CST). Firstly, 

SNLEs were transformed into an optimization problem. Then, CSSA was used to solve 

this optimization problem; SSA was used to update the feasible solutions, and the infea-

sible solutions were updated by CST. CSSA was tested using several benchmark SNLEs 

problems and two electrical applications. The suggested method demonstrated various 

advantages, which we mention below: 

1. CSSA is simple in application, and it can solve many optimization problems. 

2. CSSA combines the SSA’s robust global searching capacity with the CST’s substantial 

chaotic searching ability. 

3. Only objective function information is used in CSSA; no derivatives or other auxiliary 

data is used. 

4. CSSA can transact with the non-continuous, non-differentiable and non-smooth 

functions that are common in problems of optimization. 

5. CSSA can give a globally optimal solution because it searches at a set of points, not a 

single point, unlike traditional techniques. 

6. The combination between SSA and CST and not ignoring infeasible solutions led to 

enhancing the efficacy of the search, increasing solution versatility, avoiding the local 

optima trap, speeding up convergence and optimizing the search process. 

7. Results have proven the superiority of CSSA over those reported in the literature, as 

it is significantly better than other comparison methods. 

8. Statistical results showed that CSSA solutions are more accurate and stable than most 

other algorithms’ solutions. 

9. CSSA converges more quickly to the optimal solution in the early iteration. 

10. A Wilcoxon signed ranks test showed the significance of the CSSA findings. 

11. By addressing power system applications with CSSA, we can conclude that it is 

suited for tackling real-world applications that are related to nonlinear system equa-

tions. 

Without any prejudice, our proposed approach, like other meta-heuristics ap-

proaches, has the probable drawback of not warranting a rise in computing speed or ac-

curacy when we tackle any optimization issue. This is because meta-heuristics approaches 

are random techniques, and the computational effectiveness as well as the CSSA’s solu-

tion quality are determined by the problem’s nature and complexity. In future works, we 

plan to solve more applications to prove the effectiveness and efficiency of our algorithm, 

and we will concentrate on advancing new algorithms for solving optimization problems. 
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