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Abstract: Measurement delays and model parametric uncertainties are meaningful issues in actual
systems. Addressing the simultaneous existence of random model parametric uncertainties and
constant measurement delay in the discrete-time linear systems, this study proposes a novel ro-
bust estimation method based on the combination of Kalman filter regularized least-squares (RLS)
framework and state augmentation. The state augmentation method is elaborately designed, and
the cost function is improved by considering the influence of modelling errors. A recursive program
similar to the Kalman filter is derived. Meanwhile, the asymptotic stability conditions of the pro-
posed estimator and the boundedness conditions of its error covariance are analyzed theoretically.
Numerical simulation results show that the proposed method has a better processing capability for
measurement delay and better robustness to model parametric uncertainties than the Kalman filter
based on nominal parameters.

Keywords: constant measurement delay; random parametric uncertainties; state augmentation;
robust state estimation; regularized least squares
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1. Introduction

State estimation, which is generally applied in automatic control and signal processing,
is a method for estimating the internal state of a dynamic system based on available
measurement data. For linear systems with external disturbances of normal distribution
characteristics, the standard Kalman filter (SKF) is the optimal filter under the minimum
mean square error (MMSE) criterion and is extensively used in many fields [1–4] such as
control, finance, communication, etc. The traditional state estimation methods assume
that the measured data is transmitted to the filter with no delay. However, in practical
systems, such as spacecraft systems [5], satellite [6], and photoelectric tracking systems [7],
all the measurements have time delays, which are mainly composed of the acquisition time,
processing time, and transmission time of the sensor data. Meanwhile, the modelling errors
are generally unavoidable [8], and will further influence the performance of the systems.
Therefore, both measurement delay and random model parametric uncertainties are the
interest of this article.

Plenty of detectors have the characteristic of constant measurement delay. Frequently
occurring severe network congestion or packet loss may cause a time-varying delay in
many systems [9–11]. Most sensors have similar or slightly changed measurement delay
because of their fixed transmission environment, acquisition environment, and acquisition
algorithm. Considering these subtle changes would have a weaker influence in the discrete
domain, the measurement delay can be reasonably treated as a constant. For instance,
in the field of our research, the target detector in the photoelectric tracking system has a

Mathematics 2022, 10, 1365. https://doi.org/10.3390/math10091365 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10091365
https://doi.org/10.3390/math10091365
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-6708-3627
https://orcid.org/0000-0003-1785-2018
https://doi.org/10.3390/math10091365
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10091365?type=check_update&version=1


Mathematics 2022, 10, 1365 2 of 24

considerable constant measurement delay, which is an increasingly attractive issue in high-
precision tracking. Many innovative methods [7,12,13] have been proposed to compensate
its affect on tracking performance.

The measurement delay problem in state estimation is called the out-of-sequence mea-
surement (OOSM) problem, the time-delayed measurement problem, or the time-varying
measurement problem [14]. For the problems with known delays, backward prediction,
state augmentation, and extrapolation are three distinctive approaches. The backward pre-
diction (or retrodiction) was originally proposed by Bar-Shalom [15] to solve the one-step
delayed OOSM problem under the Kalman filter algorithm framework. In this approach,
the state and covariance matrices at the time OOSM occurs are backward predicted when
the filtering system receives the OOSM. Then, the delayed measurement is utilized to
update the current state and covariance. When the process noise satisfies the discrete
continuous-time model, the approach can achieve optimal performance.The extended
version for multiple-step delayed OOSM is proposed in [16]. Zhang et al. [17] proposed
a sub-optimal version to reduce the computing burden under certain circumstances. The
second valuable approach for the time-delayed measurement problem is summarized as
the state augmentation approach, in which the delayed measurement is used to estimate the
state of the corresponding past moment, and the prediction of the current state is obtained
from the corrected past state. The key point to this approach is to elaborately augment the
state vector and establish the correlation between the augmented state vector containing
the corresponding past state and the delay measurement. One estimator based on the
augmented state vector is proposed in [18] to deal with the problem that the change of
current state could be affected by the d-step preceding state. However, it could not be
adopted to solve the problem in this paper that detectors have measurement delay and
the preceding state has no influence in the target’s state transition. Based on the Bayesian
theory, a state augmentation Kalman filter solution to the time-delayed measurement prob-
lem is suggested in [19]. The third practical approach is called the extrapolation approach.
In [19], by assuming that the current measurement residual is equal to the residual at
the corresponding time of the OOSM, the measurement for the current time is calculated
by extrapolation. Then, the current state is estimated by incorporating the extrapolated
measurement into the Kalman filter. Ref. [7] suggested to use the delayed measurement to
estimate the state at the corresponding time first, then use the process matrix to iteratively
multiply the past state to extrapolate the current state.

The researches on the time-delayed measurement problem are fruitful. However,
the problem that this article focuses on is the simultaneous existence of constant measure-
ment delay and random model parametric uncertainties in state estimation.

The estimator to solve the problem of random parametric uncertainties in state esti-
mation is collectively referred to as a robust filter/estimator. Here are three representative
robust state estimation methods. The H-infinity filter is developed based on the H-infinity
linear control theory proposed by Zames in 1980 [20,21]. Unlike the Kalman filter that
uses the mean square error criterion, the H-infinity filter adopts the minimax criterion to
minimize the maximum estimation error. It does not need to know prior information such
as the statistical characteristics of environmental noise, and can minimize the influence of
external interference on the state estimation results. Therefore, this method is more robust
to system model errors and external interference. The blemish of the H-infinity filter is
that it needs to continuously test specific existence conditions when performing recursive
filtering operations. If these conditions fail during any iteration, the desired performance
will be lost and the filter may diverge. The method of set-valued estimation assumes that
the noise disturbance of the measurement is norm-bounded. Based on this assumption,
ellipsoids are constructed around the state estimate [22,23]. Here again, this method is
encountered with the requirement of inspecting for certain existence conditions, which may
limit the application of this method to recursive filtering. The third solution to the robust
filter design is a regularized least-squares (RLS)-based framework, which is first proposed
by Sayed in [24]. In this framework, the standard Kalman filter is regarded as the solution
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of a regularized least squares problem. Then, the objective function of this regularized least-
squares problem is further improved considering the uncertainties of model parameters.
Although this robust filter focuses on a worst-case analysis that may be conservative under
relatively "small" uncertainties, it has many attractive properties. For example, it does not
need to verify certain existence conditions at every moment of recursive filtering; it has a
similar structure to the Kalman filter, and it also has low computational complexity, etc.
Therefore, scholars have further extended this robust filter framework. In [25], a new robust
filter method that weighs nominal performance and uncertainty is proposed. Refs. [8,26]
propose sensitivity penalization-based robust state estimation methods.

According to the above analysis, the research studies on the model parametric uncer-
tainties are also prolific. However, in the public references, few papers specifically address
the method of simultaneously overcoming the constant measurement delay and random
model parametric uncertainties in the discrete-time linear systems. Fortunately, there are
many similar studies in the published literature for reference. For example, the robust
estimation problem of a class of discrete-time systems with delays and lossy measurements
is studied in [27]. Compared with the problem studied in this paper, the robust H-infinity
filter designed by [27] focuses more on the reduction of delay-dependent conditions and
the processing of lossy measurements. Basically, there have been two ways to model the
measurement of missing phenomena, that is, using a binary switching sequence and using
a Markov chain. Refs. [27–29] all pay more attention to the problem of lossy measurements.
Excessive attention leads to these similar works, unable to focus on solving the problems
of the content of this research. Meanwhile, in [27], the H-infinity filtering method is used
to handle the model parametric uncertainties. As mentioned earlier, the H-infinity filter
needs to continuously test specific existence conditions when performing recursive filtering
operations. To solve the problem of model parametric uncertainties, in [27], the robust
Kalman filtering is derived in the linear minimum variance sense by using the innovation
analysis approach. The dimension of the designed filter is the same as the original systems.
However, the recursive filtering process is complicated and is not conducive to engineering
realization. In [27], the robust recursive estimator is designed based on the orthogonal
projection theorem. The stochastic uncertainties of the system model are described by
multiplicative noises, which lead to a narrow applicability of the estimator to the actual
systems. For more specific issues, the attitude estimation filtering problem with model
uncertainties in the state, output, and process noise matrices and star sensor delays has been
studied in [30]. In [30], the uncertain attitude estimation model is established for the actual
system. Combined with star sensor delays, a new finite-horizon robust Kalman filter design
is derived for the uncertain attitude estimation system. The optimized filter parameters can
be obtained to minimize the upper bound on the estimation error covariance. However,
the method proposed in [30] is not universal enough, its application scenario is limited to a
specific type of system, and the assumption about measurement delay is also different from
this research. In addition, for the model uncertainties and time-delayed measurements of
different types of nonlinear systems, refs. [31–33] are worthy of reference. According to
the above analysis, similar published documents are not suitable for solving the problems
of this research. This research should provide a more focused and universal estimator
design solution, and the final-designed estimator should be simple, reliable, and easy
to implement.

Motivated by the aforementioned analysis, this study suggests a novel robust esti-
mation method, which combines an RLS-based robust filter design framework and state
augmentation. The main contributions of the paper are as follows: (1) This study elaborately
designs the specific state augmentation method to deal with the constant measurement
delay, and modifies the cost function of the Kalman filter RLS problem for the random
model parametric uncertainties. (2) Based on this design, a recursive filtering procedure
is derived. As long as the probability distribution of parametric uncertainties are known
and the two matrices related to the filter are calculated offline in advance, online filtering
can be performed. Compared with the similar works in [27–29], the recursive filtering
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procedure designed in this study has similar computational complexity to the Kalman
filter. Meanwhile, it does not need to design optimal parameters and continuously test
specific existence conditions, which shows that the proposed estimator is simple and easy to
implement. (3) The asymptotic stability conditions and the error covariance boundedness
conditions of the proposed estimator are derived to guarantee the reliability of the proposed
estimator. (4) Besides, this paper designs numerical simulations to verify the effectiveness
of the proposed estimator.

The remaining structural arrangement of this article is as follows: The problem state-
ment and the design of robust state estimation are presented in Section 2. Section 3 focuses
on the recursive procedure, the asymptotic stability conditions of the estimator as well
as the conditions for the boundedness of the estimation error matrix. The numerical
simulations and verification of practical experimental system are discussed in Section 4.
Conclusions are presented in Section 5. The appendices exhibit the derivation of recursive
estimation procedures and proof of the proposed theory in this study.

Notations: Suppose x is a column vector and W is a positive definite matrix. Define
‖x‖ and ‖x‖W to represent the Euclidean norm of x and its weighted form, respectively.
That is, ‖x‖ =

√
xTx and ‖x‖W =

√
xTWx. δkj is the Kronecker delta function and col

{
Xj
}

represents the vector/matrix stacked by Xj. E(∗) expresses the mathematical expectation
of a stochastic variable, vector, or matrix. Rn represents an n-dimensional Euclidean space.
0m×n represents a matrix of all zeros with n rows and m columns. diag{A, B} is a simplified

representation of
[

A 0
0 B

]
.

2. Problem Statement and the Design of Robust State Estimator

Consider the following discrete-time linear system with constant measurement delay
and random parametric uncertainties:{

xk+1 = Ak(εk)xk + Bk(εk)wk

yk = Ck−d(εk−d)xk−d + vk
(1)

where xk ∈ Rn is the state vector, yk ∈ Rm is the measurement vector, and d is the frames
of the measurement delay. The modelling error εk is composed of L real-valued bounded
scalars εi,k, i = 1, · · · , L. εi,k represents the parametric modelling error at moment k in
the i-th experiment. That is E =

{
εk
∣∣∣∣εk,i

∣∣ ≤ 1, i = 1, · · · , L
}

. Ak(εk), Bk(εk), Ck(εk) are
matrices related to εk and of size n× n, n× n, m× n. wk ∈ Rn and vk ∈ Rm are uncorrelated
and gaussian random noise with variances Q and R, respectively. That is,

E
[
wkwT

j

]
= δkjQ ≥ 0

E
[
vkvT

j

]
= δkjR ≥ 0

E
[
wkvT

j

]
= 0

. (2)

Remark 1. Unlike [8,24,34], System (1) neither requires the system matrices to be linearly depen-
dent on the norm bounded uncertainty matrix nor requires the elements of the system matrices to be
differentiable functions of εk. The way the modelling errors εk affect the plant parameters can be
arbitrary. This feature makes it possible for the System (1) to capture more actual-system behavior
than the ones in [8,24,34].

Assuming that d is known and time-invariant, System (1) can be equivalently recon-
structed into a delay-free System (3).{

x̄k+1 = Āk(εk)x̄k + B̄k(εk)wk

yk = C̄k(εk)x̄k + vk
(3)
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in which, x̄k =
[

xT
k , ∆T

k , ∆T
k−1, . . . , ∆T

k−d+1

]T
, ∆k = Ck−1(εk−1)xk−1−Ck(εk)xk. Furthermore,

the definitions of Āk(εk),B̄k(εk), and C̄k(εk) are shown in (4).

Āk(εk) =

 Ak(εk) 0n×(d−1)m 0n×m
Ck(εk)− Ck+1(εk+1)Ak(εk) 0m×(d−1)m 0m×m

0(d−1)m×n I(d−1)m 0(d−1)m×m


B̄k(εk) =

 Bk(εk)
−Ck+1(εk+1)Bk(εk)

0(d−1)m×n

, C̄k(εk) =

Ck(εk),

d︷ ︸︸ ︷
Im, · · · , Im


(4)

After converting System (1) to an augmented delay-free model, the random parametric
uncertainties of the system are considered. According to [24,35], a clear explanation of the
SKF is to solve the RLS (regularized least squares) problem which is presented in (5).(

x̂k|k+1
ŵk|k+1

)
= arg min

xk ,wk

[∥∥∥xk − x̂k|k

∥∥∥2

P−1
k|k

+ ‖wk‖2
Q−1

k
+‖yk+1 − Cxk+1‖2

R−1
k+1

]
. (5)

Considering the estimation performance deterioration caused by modeling errors,
the cost function of the RLS problem is expanded as follows:

J(αk) = E

{∥∥∥x̄k − ˆ̄xk|k

∥∥∥2

P−1
k|k

+ ‖wk‖2
Q−1

k
+
∥∥yk+1 − C̄k+1(εk+1)x̄k+1

∥∥2
R−1

k+1

}
= ‖αk‖2

Φk
+ E

{
‖Hk(εk, εk+1)αk − βk(εk, εk+1)‖2

Ψk

}
.

(6)

where, 

Ψk = R−1
k+1

Hk(εk, εk+1) = C̄k(εk+1)
[

Āk(εk) B̄k(εk)
]

βk(εk, εk+1) = yk+1 − C̄k(εk+1)Āk(εk) ˆ̄xk|k

Φk = diag
{

P−1
k|k , Q−1

k

}
αk = col

{
x̄k − ˆ̄xk|k, wk

}
. (7)

In (6), the expanded cost function has used mathematical expectations to handle
the random parametric uncertainties of the augmented delay-free model. When there is
no modelling error, the state estimator in (6) degenerates into a SKF. According to the
definitions of Φk and Ψk, the cost function J(αk) is a strictly convex function. That is, there
is a global minimum αkopt at ∂J(αk)

/
∂αk = 0. Expanding the cost function in (6),

J(αk) = αT
k Φkαk+E

{
αT

k Hk(εk, εk+1)
TΨk Hk(εk, εk+1)αk

+ β(εk, εk+1)
TΨkβ(εk, εk+1)-α

T
k Hk(εk, εk+1)

TΨkβ(εk, εk+1)

− β(εk, εk+1)
TΨk Hk(εk, εk+1)αk

} (8)

is obtained. Find the partial derivative of (8) for αk and let ∂J(αk)
/

∂αk = 0,(
Φk+E

{
Hk(εk, εk+1)

TΨk Hk(εk, εk+1)
})

αk

=E
{

Hk(εk, εk+1)
TΨkβ(εk, εk+1)

} (9)
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is obtained. Substituting (7) into (9), (10) is obtained.([
P−1

k|k 0

0 Q−1
k

]
+ E

{[
ĀT

k (εk)
B̄T

k (εk)

]
C̄T

k+1(εk+1)

× R−1
k+1C̄k+1(εk+1)

[
Āk(εk) B̄k(εk)

]})[x̄k − ˆ̄xk|k
wk

]
= E

{[
ĀT

k (εk)
B̄T

k (εk)

]
C̄T

k+1(εk+1)

}
R−1

k+1yk+1

− E
{[

ĀT
k (εk)

B̄T
k (εk)

]
C̄T

k+1(εk+1)R−1
k+1C̄k+1(εk+1)Āk(εk)

}
ˆ̄xk|k

. (10)

The following matrices are defined for further simplification.

Hk1 = E
{[

ĀT
k (εk)

B̄T
k (εk)

]
C̄T

k+1(εk+1)R−1
k+1C̄k+1(εk+1)

[
Āk(εk) B̄k(εk)

]}
Hk2 =

[
ĀT

k (εk)
B̄T

k (εk)

]
C̄T

k+1(εk+1)

Hk3 = E
{[

ĀT
k (εk)

B̄T
k (εk)

]
C̄T

k+1(εk+1)R−1
k+1C̄k+1(εk+1)Āk(εk)

} (11)

Obviously, Hk3 = Hk1
[

I(n+dm) 0(n+dm)×n
]′

. Finally, (10) can be simplified as

(Φk+Hk1)αk=Hk2R−1
k+1yk+1 − Hk3 ˆ̄xk|k. (12)

Remark 2. Assume that the statistical property of εk is known, if the relationships between the
modelling errors εk and matrices A, B, and C are simple, Hk1 and Hk2 can be solved by direct
algebraic operations. Otherwise, Hk1 and Hk2 are calculated by stochastic simulations [36]. For
example, according to the statistical property of εk, 10,000 realizations of Hk1 and Hk2 by stochastic
simulations are constructed, then the Hk1 and Hk2 can be calculated by averaging. In contrast,
if the statistical property of εk is not known, Hk1 and Hk2 can also be calculated according to plenty
of realizations of matrices A, B, and C obtained during the modelling process. According to the
above analysis, it can be obtained that Hk1 and Hk2 can be calculated offline, which means that the
filter proposed in this study may be more conducive to implementation and application than those
in [8,24,34].

Remark 3. The proposed estimator is characterized by the ingenious combination of the Kalman
filter RLS framework and state augmentation, which can cope with the simultaneous existence
of model parametric uncertainties and time-delayed measurement. Since the proposed estimator
is an improvement on the Kalman filter RLS framework, the proposed estimator has a recursive
filtering form similar to the Kalman filter, which is conducive to engineering realization. Moreover,
the proposed estimator does not require additional parameter design and optimization, as well as
the online test of certain existing conditions. This property makes the proposed estimator more
reliable and convenient. However, the computational cost of the state augmentation in the proposed
estimator cannot be ignored. Fortunately, this article is not aimed at long-term trajectory prediction,
and a short-term measurement delay that can be regarded as constant in most systems. For example,
the time delay of the target detector of the photoelectric tracking system is generally 2 to 4 frames [7],
and the computational cost of state augmentation is affordable.

3. Recursive Procedure and Asymptotic Stability Conditions of the Estimator

Based on the analysis and explanation in Section 2, the recursive procedure is provided
in this section. Simultaneously, the asymptotic stability conditions of the proposed estimator
and the conditions for the boundedness of estimation error matrix are explicitly presented.
The recursive procedure is composed of three steps. The first step is initialization.
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ˆ̄x0|0 = P0|0E
{

C̄0(ε0)
}

R−1
0 y0, P0|0 =

(
Π̄−1

0 + E
{

C̄T
0 (ε0)R−1

0 C̄0(ε0)
})−1

(13)

In (13), Π̄0 = E
{
(x̄0 − E(x̄0))(x̄0 − E(x̄0))

T
}

. The second step is parameter modifica-
tion. A matrix is defined as

Gk
∆
= Hk1 −

[
ĀT

k (0)
B̄T

k (0)

]
C̄T

k+1(0)R−1
k+1C̄k+1(0)

[
Āk(0) B̄k(0)

]
=

[
Gk11 Gk12
GT

k12 GT
k22

] , (14)

in which, Gk is a (2n + md) × (2n + md) matrix, Gk11, Gk12, and Gk22 are (n + md) ×
(n + md), (n + md) × n, and n × n matrices, respectively. The definitions of the matri-
ces ˆ̄Ak(0), ˆ̄Bk(0), P̂k|k and Uk are

P̂k|k =
(

P−1
k|k + Gk11

)−1

Uk =
(

Q−1
k + Gk22 − GT

k12P̂k|kGk12

)−1

ˆ̄Bk(0) = B̄k(0)− Āk(0)P̂k|kGk12

ˆ̄Ak(0) =
(

Āk(0)− ˆ̄Bk(0)UkGT
k12

)(
In+md − P̂k|kGk11

)
. (15)

In the third step, the state estimation ˆ̄xk+1|k+1 is calculated by updating Pk+1|k, Re,k+1,
Pk+1|k+1. The definitions of updated formulas Pk+1|k, Re,k+1, Pk+1|k+1 are as follows:

Pk+1|k = Āk(0)P̂k|k ĀT
k (0)+

ˆ̄Bk(0)Uk
ˆ̄BT

k (0)

Re,k+1 = Rk+1 + C̄k+1(0)Pk+1|kC̄T
k+1(0)

Pk+1|k+1 = Pk+1|k − Pk+1|kC̄T
k+1(0)R−1

e,k+1C̄k+1(0)Pk+1|k

(16)

Then
ˆ̄xk+1|k+1 = ˆ̄Ak(0) ˆ̄xk|k + Pk+1|k+1

×
(

P−1
k+1|k

(
Āk(0)P̂k|k

[
In+md 0

(n+md)×n

]
+ ˆ̄Bk(0)Uk

ˆ̄BT
k (0)

[
−GT

k12P̂k|k In

])
Hk2R−1

k+1yk+1

−C̄T
k+1(0)R−1

k+1C̄k+1(0) ˆ̄Ak(0) ˆ̄xk|k

)
. (17)

The specific derivations of the recursive procedure is provided in Appendix A.
The asymptotic stability of the proposed estimator is discussed next. Suppose that

the modelling errors εk,i are normalized to be contracted, a set E can be constituted as
E =

{
ε|
∣∣εk,i

∣∣ ≤ 1, i = 1, · · · , L
}

. For the convenience of discussion, the matrices Āk(0), B̄k(0),
C̄k(0) are abbreviated as Āk, B̄k, C̄k. Then, related matrices are defined as follows:

Uk =
(

Q−1
k + Gk22 − GT

k12G−1
k11Gk12

)−1
, Dk = B̄kU1/2

k

Jk =
[

0 U1/2
k GT

k12G−1/2
k11

]
Wk =

[
I 0
0 I + G−1/2

k11 Gk12UkGT
k12G−1/2

k11

]
, Fk =

[
R−1/2

k C̄k
G1/2

k11

] (18)

Theorem 1. Assuming that Āk, B̄k, C̄k, Rk, Qk, Hk1, Hk2 are time-invariant, (A, C) is detectable,
rank(A) = n, and (M1, M2) is stabilizable, the estimator is asymptotically stable in this study.
The definitions of M1 and M2 are as follows:
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M1 =

 A 0n × (d−1)m 0n×m
C− CA 0m × (d−1)m 0m×m

0(d−1)m × n
I(d−1)m × (d−1)m 0(d−1)m × m

−
 B
−CB

0(d−1)m × n

Ω1, M2 =

 B
−CB

0(d−1)m × n

Ω2

where
Ω1 =

(
Q−1

k + Gk22 − GT
k12G−1

k11Gk12

)−1
GT

k12

×
(

I + G−1
k11Gk12

(
Q−1

k + Gk22 − GT
k12G−1

k11Gk12

)−1
GT

k12

)−1

Ω2 =
(

Q−1
k + Gk22 − GT

k12G−1
k11Gk12

)−1/2

×
(

I +
(

Q−1
k + Gk22 − GT

k12G−1
k11Gk12

)−1/2
GT

k12G−1
k11Gk12

×
(

Q−1
k + Gk22 − GT

k12G−1
k11Gk12

)−1/2
)−1/2

.

The proof of Theorem 1 is postponed to Appendix B.

Theorem 2. Assuming that System (3) is exponentially stable in the sense of Lyapunov and the
relevant matrices Āk, B̄k, C̄k, Rk, Qk are all bounded for k > 0 and εk ∈ E, all conditions and
assumptions of Theorem 2 are satisfied. Then, the estimation error covariance matrix of the proposed
estimator is bounded.

The proof of Theorem 2 is postponed to Appendix C.

4. Numerical Simulations

Before verifying the overall scheme of the proposed estimator, the processing capability
of the proposed state augmentation method on the time-delayed measurements is verified
first. Without loss of generality, a single-axis constant velocity model is employed to
simulate the movement of a target. The state vector of the system is composed of the
target’s position and velocity. (19) specifies the detailed system model parameters.

A=

[
1 T
0 1

]
, B =

[
1 0
0 1

]
, C =

[
1 0

]
, Q =

[
1.9 0
0 0.5

]
,

R = 1, x0 =

[
−30.04
−3.492

]
, Π0 =

[
1 0
0 1

]
.

(19)

In (19), T = 0.01 represents the sampling period, Q and R represent the process noise
covariance and measurement noise covariance, respectively. x0 is the initial state vector.
Π0 is the initial estimation error covariance.

Figure 1 shows the simulated target trajectory and its measurements with Gaussian
noise and three-frame time delay. These measurements are used as the input of the standard
KF and the state augmentation-based KF. Figure 2 shows the estimation errors of the two
methods. According to the comparison results in Figure 2, it can be seen that the proposed
state augmentation method effectively reduces the estimation error in the measurement
delay situation because the proposed state augmentation method indirectly establishes the
correlation between the delayed measurement and the current state.
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Figure 1. Actual state and time-delayed measurements.
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Figure 2. Comparison of estimation errors between SKF and improved KF using state augmentation.

In the proposed method, by elaborately designing a state augmentation method, the re-
lationship between the delayed measurements and the current state is established, and then
the original model is converted into a delay-free augmentation model. Since the current
state is included in the augmented state vector, the augmented delay-free model can be
further used in the filter design. If the system has no model parametric uncertainty, then the
standard Kalman filter is the optimal linear estimator. When considering the influence of
random parametric uncertainties, this work enters the mathematical expectation method to
improve the cost function of the RLS-based Kalman filter framework. The recursive filtering
procure derived from the modified cost function has a significant feature; that is, when the
system model does not have random parametric uncertainties, the estimator degenerates
into standard Kalman filter. When the system has random parametric uncertainties, the es-
timator can effectively suppress the influence of random parametric uncertainties on the
estimation performance. In order to verify this part of the work individually, this research
further designs a simulation experiment.

Without loss of generality, we add uncertain parameters with known statistical char-
acteristics to the single-axis constant velocity model, and then compare the estimation
performance between the standard Kalman filter and the proposed estimator to illustrate
the effectiveness of this part of the work. The specific model parameters are as follows:
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A=

[
1 0.01 + 0.005 · ζ
0 1

]
, B =

[
1 0
0 1

]
, C =

[
1 0

]
,

Q =

[
1.9 0
0 0.5

]
, R = 1, x0 =

[
−35.7101
−10.4338

]
, Π0 =

[
1 0
0 1

] (20)

In (20), we assume ζ ∼ N(0, 1).
Figure 3 shows the simulated target trajectory which is affected by model parametric

uncertainties and its measurements with Gaussian noise. These measurements are used
as the input of the standard KF and the proposed robust estimator. Figure 4 shows the
estimation errors of the two methods. According to the comparison results in Figure 4, it
can be seen that the proposed robust design effectively reduces the estimation error when
the state is affected by model parametric uncertainties.
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Figure 3. The real state affected by model parametric uncertainties and the measurements.
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Figure 4. Comparison of estimation errors between SKF and the proposed robust design.

Through a comparative approach, 5× 102 random simulations have been performed
to demonstrate the effectiveness of the proposed estimator. Each simulation generates
1000 time-domain input/output data pairs for the state estimation of the plant, in which all
initial states are set to 0, and the disturbances wk and vk are produced following normal
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distributions. The ensemble-average estimated error variance of these 5× 102 random
simulations at each sampling time is calculated as follows:

E
∥∥∥xk − x̂k|k

∥∥∥2
≈ 1

500∑500
i=1

∥∥∥xk − x̂(i)k|k

∥∥∥2
, (21)

in which i is the serial number of the random simulations.
Two other Kalman-based estimation methods are also simulated to compare with the

proposed one in order to illustrate the effectiveness of the proposed method. One of them
combines both the nominal parameters and the proposed augmented delay-free model
(KFND). The other one combines with the actual parameters and the proposed augmented
delay-free model (KFAD). Referencing the nominal parameters of [8,24,34], the system
parameters selected in this example are as follows:

Ak(εk) =

[
0.9802 0.0196
0.0000 0.9802

]
, Bk(εk) =

[
1.0000 0.0000
0.0000 1.0000

]
,

Ck(εk) =
[

0.5000 + p · εk 0
]
, Rk = 1.0000,

Qk =

[
1.9608 0.0195
0.0195 1.9605

]
, Π0 =

[
1.0000 0.0000
0.0000 1.0000

] (22)

In which the sampling period is T = 0.01 and the measurement delay frames of the
system is d = 3. Besides, p ∈ [0, 1] and εk ∼ N(0, 1).

The convergence properties of the example could be confirmed by the given theorems
before the experiment. Definitions in (4) and (11), together with the determined distribution
of εk, exhibit that Āk, B̄k, C̄k, Rk, Qk, Hk1, Hk2 are time-invariant. According to [37], the de-
tectability of (A, C) is equal to that if Re(λi) ≥ 0, then rank[col(A− λi I, C)] = n, where λi
is the eigenvalue of A. In the example of this article, λ1 = λ2 = 0.9802, and

rank
([

A− 0.9802I
C

])
= rank

 0 0.0196
0 0

0.5 0

= 2 =n.

Therefore, (A, C) is detectable. Similarly, the stabilization of (M1, M2) has similar
equivalent conditions. That is, if Re(λi) ≥ 0, then rank

[
M1− λi I M2

]
= n, where

λi is the eigenvalue of M1. It can be further verified by direct algebraic operations that
(M1, M2) is stabilizable. From the conditions required by Theorem 2, it can be proved
that the estimator proposed in this paper is asymptotically stable when applied to the
example in this section. Obviously, Āk, B̄k, C̄k, Rk, Qk are all bounded for k > 0 and εk ∈ E.
Simple algebraic operations show that the eigenvalues of System (3) can be obtained as
λ1 = λ2 = λ3 = 0, λ4 = λ5 = 0.9802. They are all inside of the unit circle. With reference
to [38], it can be drawn that System 3 is exponentially Lyapunov stable. On the basis
of Theorem 2, the estimation error matrix of the proposed estimator of System (22) is
confirmed to be bounded.

Next, the simulation is divided into two cases: Case 1. In these 5× 100 simulations,
the modelling errors εk follow a normal distribution(εk ∼ N(0, 1)). However, in the
same simulation, εk at each moment does not change. Case 2. In the same simulation,
the modelling errors εk at each moment follow a normal distribution(εk ∼ N(0, 1)). For the
two cases mentioned above, three sets of experiments are made. The differences among
these three sets of experiments are the change of p. The purpose is to change the “size” of
uncertainty. p = 0.1 is in the first group, p = 0.5, and p = 1 are in the second and third
group, respectively.

Figures 5 and 6 show the simulation results of Case 1 and Case 2, respectively. Ac-
cording to the experimental results, the proposed method is robust to model parametric
uncertainties. Especially when the uncertainty is “large”, the contrast is more obvious.
From the third group of experiments in Case 1, it can be concluded that the estimation
error of the proposed method is about 50% lower than that of the KFND method. The
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result of Case 2 shows that even if the model changes all the time, the proposed method
is still robust. As the uncertainty decreases, the estimated performance of the three meth-
ods tends to be a similar level. This is because the method proposed in this article is an
improvement on Kalman filter’s RLS framework. When the uncertainty is 0, the proposed
method degenerates into a standard Kalman filter.
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Figure 5. The experimental results of Case 1.
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Figure 6. The experimental results of Case 2.

5. Conclusions

Aiming at the simultaneous existence of constant measurement delay and random
parametric uncertainties in discrete-time linear systems, this paper proposes a new robust
state estimator based on the combination of state augmentation and the improved Kalman
filter RLS framework. A recursive filtering procedure similar to the Kalman filter is de-
rived. The conditions for the asymptotic stability of the proposed estimator as well as the
conditions for the boundedness of the estimation error matrix are explicitly given. The
experimental results manifest that the robust estimator performs excellently, especially
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when the system encounters a “large” uncertainty. At the same time, the robust estimator
is still trustworthy even in the severe case that the system matrix changes at each moment.
However, the computational cost of state augmentation makes the proposed estimator not
conducive to the situation where the measurement delay is large. For nonlinear systems,
the calculation of H1 and H2 will become more difficult. Both the asymptotic stability
conditions of the estimator and the boundedness conditions of the error covariance need to
be re-derived. Further research is needed in the future.
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Appendix A. Derivation of the Recursive Procedure

The first is the initial state estimation. There is no process noise at moment 0, the cost
function of the estimator can be expressed as

J0 = E
{
‖x̄0‖2

Π̄−1
0

+
∥∥y0 − C̄0(ε0)x̄0

∥∥2
R−1

0

}
(A1)

Find the partial derivative of J0 for x̄0 and let ∂J0/∂x̄0 = 0. (A2) is obtained.

ˆ̄x0|0 =
(

Π̄−1
0 + E

{
C̄T

0 (ε0)R-1
0 C̄0(ε0)

})−1
E
{

C̄0(ε0)
}

R-1
0 y0 (A2)

where Π̄0 is the initial estimated variance of x̄0.

Lemma A1. For any four matrices A, B, C, and D that have appropriate dimensions, assuming
that the inverse of the correlation matrix exists, the following conclusions can be drawn [39]:

[
A B
C D

]
=

[
I 0

CA−1 I

][
A 0
0 D− CA−1B

][
I A−1B
0 I

]
A(I + BA)−1 = (I + AB)−1 A
(A + BCD)−1 = A−1 − A−1B

(
DA−1B + C−1)−1DA−1

(A3)

According to Lemma A1 and (15), (A4) is obtained.([
P−1

k|k 0

0 Q−1
k

]
+ Gk

)
=

([
P−1

k|k 0

0 Q−1
k

]
+

[
Gk11 Gk12
GT

k12 Gk22

])

=

[
I 0

GT
k12P̂k|k I

][
P̂−1

k|k 0

0 U−1
k

][
I P̂k|kGk12
0 I

] (A4)
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Then, (A5) can be gained by substituting (A4) into (10),

Hk2R−1
k+1yk+1 − Hk3 x̂k|k =

(
diag

(
P−1

k|k , Q−1
k

)
+ Gk + col

[
ĀT

k (0), B̄T
k (0)

]
× C̄T

k+1(0)R−1
k+1C̄k+1(0)

[
Āk(0) B̄k(0)

])
col
(

x̂k|k+1 − x̂k|k, ŵk+1

)
=

([
I 0

GT
k12P̂k | k I

][
P̂−1

k|k 0

0 U−1
k

][
I P̂k | kGk12
0 I

]
+ col

[
ĀT

k (0), B̄T
k (0)

]
× C̄T

k+1(0)R−1
k+1C̄k+1(0)

[
Āk(0) B̄k(0)

])
col
(

x̂k|k+1 − x̂k|k, ŵk+1

)
.

(A5)

Pre-multiply the matrix
[

I 0
−GT

k12P̂k|k I

]
by the left side of (A5) and

[
I 0

GT
k12P̂k|k I

]−1

by the right side. The following derivations are obtained:[
P̂−1

k|k 0

0 U−1
k

][
I P̂k|kGk12
0 I

]( ˆ̄xk|k+1 − ˆ̄xk|k
ŵk+1

)
+

[
I 0

−GT
k12P̂k|k I

]
×
[

ĀT
k (0)

B̄T
k (0)

]
C̄T

k+1(0)R−1
k+1C̄k+1(0)

[
Āk(0) B̄k(0)

]( ˆ̄xk|k+1 − ˆ̄xk|k
ŵk+1

)
=

[
P̂−1

k|k

(
ˆ̄xk|k+1 − ˆ̄xk|k

)
+ Gk12ŵk+1

U−1
k ŵk+1

]
+

[
ĀT

k (0)
−GT

k12P̂k|k ĀT
k (0) + B̄T

k (0)

]
× C̄T

k+1(0)R−1
k+1C̄k+1(0)

[
Āk(0) B̄k(0)− Āk(0)P̂k|kGk12

]
×
(

ˆ̄xk|k+1 + P̂k|kGk12ŵk+1 − ˆ̄xk|k
ŵk+1

)

=

[
P̂−1

k|k

(
ˆ̄xk|k+1 + P̂k|kGk12ŵk+1 − ˆ̄xk|k

)
U−1

k ŵk+1

]

+

[
ĀT

k (0)
ˆ̄BT

k (0)

]
C̄T

k+1(0)R−1
k+1C̄k+1(0)

×
[

Āk(0) ˆ̄Bk(0)
]( ˆ̄xk|k+1 + P̂k|kGk12ŵk+1 − ˆ̄xk|k

ŵk+1

)
=

[
P̂−1

k|k 0

0 U−1
k

]( ˜̄xk|k+1 − ˆ̄xk|k
ŵk+1

)
+ ĤT

k ψk Ĥk

( ˜̄xk|k+1 − ˆ̄xk|k
ŵk+1

)

=

([
P̂−1

k|k 0

0 U−1
k

]
+ ĤT

k ψk Ĥk

)( ˜̄xk|k+1 − ˆ̄xk|k
ŵk+1

)
=

[
I 0

−GT
k12P̂k|k I

](
Hk2R−1

k+1yk+1 − Hk3 ˆ̄xk|k

)

That is, ([
P̂−1

k|k 0

0 U−1
k

]
+ ĤT

k ψk Ĥk

)( ˜̄xk|k+1 − ˆ̄xk|k
ŵk+1

)
=

[
I 0

−GT
k12P̂k|k I

](
Hk2R−1

k+1yk+1 − Hk3 ˆ̄xk|k

) (A6)
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where ˜̄xk|k+1 = ˆ̄xk|k+1 + P̂k|kGk12ŵk+1, Ĥk = C̄k+1(0)
[

Āk(0) ˆ̄Bk(0)
]

and ˜̄xk+1|k+1 =

Āk(0) ˜̄xk|k+1 +
ˆ̄Bk(0)ŵk+1. The derivation in (A7) is obtained by taking out the first row

of (A6).
P̂−1

k|k

(
˜̄xk|k+1 − ˆ̄xk|k

)
+ ĀT

k (0)C̄
T
k+1(0)R−1

k+1

×C̄k+1(0)Āk(0)
(

˜̄xk|k+1 − ˆ̄xk|k

)
+ĀT

k (0)C̄
T
k+1(0)R−1

k+1C̄k+1(0) ˆ̄Bk(0)ŵk+1

=
[

I 0
](

Hk2R−1
k+1yk+1 − Hk3 ˆ̄xk|k

)
⇓

˜̄xk|k+1 = ˆ̄xk|k + P̂k|k
[

I 0
](

Hk2R−1
k+1yk+1 − Hk3 ˆ̄xk|k

)
−P̂k|k ĀT

k (0)C̄
T
k+1(0)R−1

k+1C̄k+1(0)
(

˜̄xk+1|k+1 − Āk(0) ˆ̄xk|k

)
.

(A7)

In a similar fashion, the second row is taken out to obtain (A8).

U−1
k ŵk+1 +

ˆ̄BT
k (0)C̄

T
k+1(0)R−1

k+1C̄k+1(0)Āk(0)

×
(

˜̄xk|k+1 − ˆ̄xk|k

)
+ ˆ̄BT

k (0)C̄
T
k+1(0)R−1

k+1C̄k+1(0) ˆ̄BT
k (0)ŵk+1

=
[
−GT

k12P̂k|k I
](

Hk2R−1
k+1yk+1 − Hk3 ˆ̄xk|k

)
⇓

ŵk+1 = Uk

[
−GT

k12P̂k|k I
](

Hk2R−1
k+1yk+1 − Hk3 ˆ̄xk|k

)
−Uk

ˆ̄BT
k (0)C̄

T
k+1(0)R−1

k+1C̄k+1(0)
(

˜̄xk+1|k+1 − Āk(0) ˆ̄xk|k

)
(A8)

From (A7) and (A8), the relationship between ˜̄xk+1|k+1 and ˜̄xk|k+1, as well as the
relationship between ˜̄xk+1|k+1 and ŵk+1, are obtained. Then, substituting the results of

(A7) and (A8) into ˜̄xk+1|k+1 = Āk(0) ˜̄xk|k+1 +
ˆ̄Bk(0)ŵk+1, (A9) is obtained.

˜̄xk+1|k+1 = Āk(0) ˜̄xk|k+1 +
ˆ̄Bk(0)ŵk+1

= Āk(0)
{

ˆ̄xk|k + P̂k|k
[
In+md 0(n+md)×n

](
Hk2R−1

k+1yk+1 − Hk3 ˆ̄xk|k

)
−P̂k|k ĀT

k (0)C̄
T
k+1(0)R−1

k+1C̄k+1(0)
(

˜̄xk+1|k+1 − Āk(0) ˆ̄xk|k

)}
+ ˆ̄Bk(0)

{
Uk

[
−GT

k12P̂k|k In

](
Hk2R−1

k+1yk+1 − Hk3 ˆ̄xk|k

)
(A9)

− Uk
ˆ̄BT

k (0)C̄
T
k+1(0)R−1

k+1C̄k+1(0)
(

˜̄xk+1|k+1 − Āk(0) ˆ̄xk|k

)}
=
{

Āk(0)P̂k|k
[
In+md 0(n+md)×n

]
+ ˆ̄BT

k (0)Uk

[
−GT

k12P̂k|k In

]}
Hk2R−1

k+1yk+1

− Pk+1|kC̄T
k+1(0)R−1

k+1C̄k+1(0) ˜̄xk+1|k+1 +
ˆ̄Ak(0) ˆ̄xk|k

For further simplifying (A9),

˜̄xk+1|k+1 =
(

I + Pk+1|kC̄T
k+1(0)R−1

k+1C̄k+1(0)
)−1

×
{(

Āk(0)P̂k|k
[
I 0

]
+ ˆ̄BT

k (0)Uk

[
−GT

k12P̂k|k I
])

× Hk2R−1
k+1yk+1 +

ˆ̄Ak(0) ˆ̄xk|k

} (A10)
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is obtained where(
I+Pk+1|kC̄T

k+1(0)R−1
k+1C̄k+1(0)

)−1

= I−1 − I−1Pk+1|kC̄T
k+1(0)

×
(

C̄k+1(0)I−1Pk+1|kC̄T
k+1(0) + Rk+1

)−1
C̄k+1(0)I−1

= I − Pk+1|kC̄T
k+1(0)

(
Rk+1 + C̄k+1(0)Pk+1|kC̄T

k+1(0)
)−1

C̄k+1(0)

(A11)

according to Lemma A1. Then, (A11) becomes (A12) according to the definitions in (16).(
I+Pk+1|kC̄T

k+1(0)R−1
k+1C̄k+1(0)

)−1
Pk+1|k

=
(

I − Pk+1|kC̄T
k+1(0)R−1

e,k+1C̄k+1(0)
)

Pk+1|k

= Pk+1|k+1

(A12)

Combining Lemma A1 and (16) to inverse matrix Pk+1|k+1,

P−1
k+1|k+1 =

[(
I − Pk+1|kC̄T

k+1(0)R−1
e,k+1C̄k+1(0)

)
Pk+1|k

]−1

= P−1
k+1|k

(
I − Pk+1|kC̄T

k+1(0)R−1
e,k+1C̄k+1(0)

)−1

= P−1
k+1|k

(
I + Pk+1|kC̄T

k+1(0)R−1
k+1C̄k+1(0)

)
= P−1

k+1|k+C̄T
k+1(0)R−1

k+1C̄k+1(0)

(A13)

is obtained. Further, (A14) is obtained by combining (A12) and (A13).(
I − Pk+1|k+1C̄T

k+1(0)R−1
k+1C̄k+1(0)

)
= Pk+1|k+1

(
P−1

k+1|k+1 − C̄T
k+1(0)R−1

k+1C̄k+1(0)
)

= Pk+1|k+1

(
P−1

k+1|k + C̄T
k+1(0)R−1

k+1C̄k+1(0)− C̄T
k+1(0)R−1

k+1C̄k+1(0)
)

= Pk+1|k+1P−1
k+1|k

=
(

I + Pk+1|kC̄T
k+1(0)R−1

k+1C̄k+1(0)
)−1

(A14)

Substituting (A12)–(A14) into (A10), (A10) is further simplified to

˜̄xk+1|k+1 = ˆ̄Ak(0) ˆ̄xk|k + Pk+1|k+1

×
(

P−1
k+1|k

(
Āk(0)P̂k|k

[
In+md 0

(n+md)×n

]
+ ˆ̄Bk(0)Uk

ˆ̄BT
k (0)

[
−GT

k12P̂k|k In

])
Hk2R−1

k+1yk+1

− C̄T
k+1(0)R−1

k+1C̄k+1(0) ˆ̄Ak(0) ˆ̄xk|k

)
.

(A15)

Note that the definition of ˜̄xk+1|k+1 = Āk(0) ˜̄xk|k+1 +
ˆ̄Bk(0)ŵk+1 is similar to [8,24,34],

which means that ˜̄xk+1|k+1 can be designated as ˆ̄xk+1|k+1. The derivation of the recursive
procedure is complete.
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Appendix B

Proof of Theorem 1.

Lemma A2. If (A, C) is detectable and rank(A) = n, then (Āk, Fk) is detectable.

Proof. Suppose Ākvi = λivi, λi is the eigenvalue of Āk and vi is the eigenvector of
Āk. According to [37], an equivalent condition for (Āk, Fk) to be detectable is that if
Re(λi) ≥ 0, then rank[col(Āk − λi I, Fk)] = n + dm. According to the definitions of Āk and
Fk in Theorem 2,

[
Āk − λi I

Fk

]
=



A− λi In 0n×dm[
C− CA

0(d−1)m × n

] [
0m × (d−1)m 0m×m

I(d−1)m 0(d−1)m × m

]
− λi Idm

R−1/2
k ·

Ck,

d︷ ︸︸ ︷
Im, · · · , Im


G1/2

k11


is obtained. Because the row rank is equal to column rank for any matrix,
rank[col(Āk − λi I, Fk)] ≤ n + dm. Since Rk 6= 0, R−1/2

k 6= 0. According to the expanded
expression of col(Āk − λi I, Fk), (A16) is obtained.

TR ∆
= rank





A− λi In×n 0n×dm[
C− CA

0(d−1)m × n

] [
0m× (d−1)m 0m×m

I(d−1)m 0(d−1)m × m

]
− λi Idm

R−1/2
k ·

Ck,

d︷ ︸︸ ︷
Im, · · · , Im






≤ rank[col(Āk − λi I, Fk)] ≤ n + dm

(A16)

If λi = 0, then TR = rank[col(A, C− CA)] + (d− 1)m + m. If λi 6= 0, then
TR = rank(A− λi I) + dm + m.

Because (A, C) is detectable and rank(A) = n, then rank[col(A− λi I, C)] = n for any
λi satisfying Re(λi) ≥ 0. Since rank(C) ≤ m, then rank(A− λi I) ≥ n−m. When λi 6= 0,
(A17) is established.

TR = rank(A− λi I) + dm + m ≥ n + dm. (A17)

The conclusion of rank[col(Āk − λi I, Fk)] = n + dm can be drawn by combining (A16)
and (A17) when λi 6= 0. Because rank(A) = n, rank[col(A, C− CA)] = n + dm. When
λi = 0, (A18) is obtained.

TR = rank[col(A, C− CA)] + (d− 1)m + m = n + dm (A18)

Combining (A18) and (A16), it can be concluded that when λi = 0, rank[col(Āk − λi I, Fk)]
= n + dm, the proof of Lemma A2 is complete.
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According to Lemma A1 and the definition in (15), (A19)–(A21) can be obtained.

Pk|k = Pk|k-1 − Pk|k-1C̄T
k

(
Rk + C̄kPk|k-1C̄T

k

)
C̄kPk|k-1,

P̂k|k =
(

P−1
k|k + Gk11

)−1
=
(

P−1
k|k + G1/2

k11 IG1/2
k11

)−1

= Pk|k − Pk|kG1/2
k11

(
G1/2

k11 Pk|kG1/2
k11 + I

)−1
G1/2

k11 Pk|k,

Uk =

(
Q−1

k + Gk22 − GT
k12

(
P−1

k|k + Gk11

)−1
Gk12

)−1

=
(

Q−1
k + Gk22 − GT

k12G−1
k11Gk12 + GT

k12G−1/2
k11

×
(

I + G1/2
k11 Pk|kG1/2

k11

)−1
G−1/2

k11 Gk12

)−1
,

(A19)

B̄kUkGT
k12P̂k|k ĀT

k =B̄kUk

(
I + GT

k12G−1/2
k11

(
I + G1/2

k11 Pk|kG1/2
k11

)−1
G−1/2

k11 Gk12Uk

)−1

× GT
k12G−1/2

k11

(
I + G1/2

k11 Pk|kG1/2
k11

)−1
G1/2

k11 Pk|k ĀT
k = B̄kUkGT

k12G−1/2
k11

((
I + G1/2

k11 Pk|kG1/2
k11

)
×
(

I +
(

I + G1/2
k11 Pk|kG1/2

k11

)−1
G−1/2

k11 Gk12UkGT
k12G−1/2

k11

))−1
× G1/2

k11 Pk|k ĀT
k

= B̄kUkGT
k12G−1/2

k11 ×
(

I + G−1/2
k11 Gk12UkGT

k12G−1/2
k11 + G1/2

k11 Pk|kG1/2
k11

)−1
× G1/2

k11 Pk|k ĀT
k ,

(A20)

ĀkPk|kG1/2
k11

(
I + G1/2

k11 Pk|kG1/2
k11 + G−1/2

k11 Gk12UkGT
k12G−1/2

k11

)−1

× G1/2
k11 Pk|k ĀT

k

= ĀkPk|kG1/2
k11

(
I + G1/2

k11 Pk|kG1/2
k11

)−1
G1/2

k11 Pk|k ĀT
k

− ĀkPk|kG1/2
k11

(
I + G1/2

k11 Pk|kG1/2
k11

)−1

× G−1/2
k11 Gk12UkGT

k12G−1/2
k11

(
I + G1/2

k11 Pk|kG1/2
k11

)−1
G1/2

k11 Pk|k ĀT
k .

(A21)

According to the definitions of (15) and (16),

Pk+1|k = Āk P̂k|k AT
k + ˆ̄BkUk

ˆ̄BT
k

= Āk

(
Pk|k − Pk|kG1/2

k11

(
I + G1/2

k11 Pk|kG1/2
k11

)−1
G1/2

k11 Pk|k

)
ĀT

k

+
(

B̄k − Āk P̂k|kGk12

)
Uk

(
B̄k − Āk P̂k|kGk12

)T

= ĀkPk|k ĀT
k + B̄kUk B̄T

k − B̄kUkGT
k12P̂k|k ĀT

k

− Āk P̂k|kGk12Uk B̄T
k − ĀkPk|kG1/2

k11

(
I + G1/2

k11 Pk|kG1/2
k11

)−1
G1/2

k11 Pk|k ĀT
k

+ ĀkPk|kG1/2
k11

(
I + G1/2

k11 Pk|kG1/2
k11

)−1
G−1/2

k11 Gk11UkGT
k12G−1/2

k11

(
I + G1/2

k11 Pk|kG1/2
k11

)−1

× G1/2
k11 Pk|k ĀT

k

(A22)
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is obtained. Substituting (A20) and (A21) into Pk+1|k and combining (A19), (A23) is obtained.

Pk+1|k = ĀkPk|k−1 ĀT
k − ĀkPk|kG1/2

k11

×
(

I + G−1/2
k11 Gk12UkGT

k12G−1/2
k11 + G1/2

k11 Pk|kG1/2
k11

)−1
G1/2

k11 Pk|k ĀT
k

− B̄kUkGT
k12G−1/2

k11

(
I + G−1/2

k11 Gk12UkGT
k12G−1/2

k11 + G1/2
k11 Pk|kG1/2

k11

)−1

× G1/2
k11 Pk|k ĀT

k − ĀkPk|kG1/2
k11

×
(

I + G−1/2
k11 Gk12UkGT

k12G−1/2
k11 + G1/2

k11 Pk|kG1/2
k11

)−1

× G−1/2
k11 Gk12Uk B̄T

k − ĀkPk|k−1C̄T
k R−1/2

k (I + R−1/2
k B̄kPk|k−1C̄kR−1/2

k )−1

× R−1/2
k C̄kPk|k−1 ĀT

k − B̄kUkGT
k12G−1/2

k11

×
(

I + G−1/2
k11 Gk12UkGT

k12G−1/2
k11 + G1/2

k11 Pk|kG1/2
k11

)−1

× G−1/2
k11 Gk12Uk B̄T

k + B̄kUk B̄T
k

= ĀkPk|k−1 ĀT
k + B̄kUk B̄T

k

−
[

ĀkPk|k−1C̄T
k R−1/2

k ĀkPk|kG1/2
k11 + B̄kUkGT

k12G−1/2
k11

]

×


(

I + R−1/2
k C̄kPk|k−1C̄T

k R−1/2
k

)−1
0

0

(
I + G−1/2

k11 Gk12UkGT
k12G−1/2

k11
+G1/2

k11 Pk|kG1/2
k11

)−1


×
[

R−1/2
k C̄kPk|k−1 ĀT

k
G1/2

k11 Pk|k ĀT
k + G−1/2

k11 Gk12Uk B̄T
k

]

(A23)

Because of (A24), (A25) is obtained.[
ĀkPk|k−1C̄T

k R−1/2
k ĀkPk|kG1/2

k11 + B̄kUkGT
k12G−1/2

k11

]
=
(

ĀkPk|k−1FT
k + Dk Jk

)
×
[

I
(

I + R−1/2
k C̄kPk|k−1C̄T

k R−1/2
k

)−1
R−1/2

k C̄kPk|k−1G1/2
k11

0 I

]−1
, (A24)

Pk+1|k = ĀkPk|k−1 ĀT
k + B̄kUk B̄T

k −
(

ĀkPk|k−1FT
k + Dk Jk

)
×

 I+R−1/2
k C̄kPk|k−1C̄T

k R−1/2
k

(
I+R−1/2

k C̄kPk|k−1C̄T
k R−1/2

k

)−1
R−1/2

k C̄kPk|k−1G1/2
k11

G1/2
k11 Pk|k−1CT

k R−1/2
k I+G−1/2

k11 Gk12UkGT
k12G−1/2

k11 + G1/2
k11 Pk|kG1/2

k11

−1

×
(

ĀkPk|k−1FT
k + Dk Jk

)T

= ĀkPk|k−1 ĀT
k + B̄kUk B̄T

k −
(

ĀkPk|k−1FT
k + Dk Jk

)(
Wk + FkPk|k−1FT

k

)−1(
ĀkPk|k−1FT

k + Dk Jk

)T
.

(A25)

(17) can be rewritten as

ˆ̄xk+1|k+1 = A f k ˆ̄xk|k + Pk+1|k+1P−1
k+1|kB f kyk+1, (A26)
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in which,
A f k =

[
I − Pk+1|k+1CT

k+1(0)R−1
k+1Ck+1(0)

]
ˆ̄Ak(0)

B f k =
(

Āk(0)P̂k|k

[
In+md 0

(n+md) × n

]
+ ˆ̄Bk(0)Uk

ˆ̄BT
k (0)

[
−GT

k12P̂k|k In

])
Hk2R−1

k+1.

(A27)

From the relationship between Pk|k−1 and Pk|k in (16), the convergence of Pk|k−1 is
equivalent to Pk|k. Note that the last term of (A25) is a standard discrete Riccati alge-
braic equation. It follows the Theorem E.6.2 in [35]. That is, if (Āk, Fk) is detectable

and
Āk− B̄kUkGT

k12

(
I+G-1

k11Gk12UkGT
k12

)−1,Dk

(
I+U

1
2

k GT
k12G-1

k11Gk12U
1
2

k

)− 1
2

 is stabilizable, then Pk+1|k has a unique

positive-semi-definite solution. Combined with (A26), it can be seen that the above condi-
tions are the asymptotic stability conditions of the proposed estimator too. Considering
the conclusions of Lemma A2 and the relevant definitions in (4) and (18), the simplified
conditions for a asymptotically stable estimator is obtained. Furthermore, the conditions
are that (A, C) is detectable, rank(A) = n and (M1, M2) is stabilizable.

Theorem 1 is proved.

Appendix C

Proof of Theorem 2.
First, define a matrix, as shown in (A28).

Apk = Āk −
(

ĀkPk|k−1FT
k + Dk Jk

)(
Wk + FkPk|k−1FT

k

)−1
Fk (A28)

To simplify Apk, it is necessary to know that the following two equations are true.

ĀkPk|kG1/2
k11

(
I + G−1/2

k11 Gk12UkGT
k12G−1/2

k11 +G1/2
k11 Pk|kG1/2

k11

)−1
G1/2

k11

= Āk

(
P−1

k|k + Gk11

)−1
Gk11 − Āk

(
P−1

k|k + Gk11

)−1
Gk12UkGT

k12

(
I+Pk|kGk11

)−1

B̄kUkGT
k12G−1/2

k11

(
I + G−1/2

k11 Gk12UkGT
k12G−1/2

k11

+G1/2
k11 Pk|kG1/2

k11

)−1
G1/2

k11 = BkUkGT
k12

(
I + Pk|kGk11

)−1

(A29)

According to (18) and (A28), (A30) is obtained.

Apk = Āk −
(

ĀkPk|k−1

[
C̄T

k R−1
k G1/2

k11

]
+
[

0 B̄kQkGT
k12G−1/2

k11

])
×
([

I 0
0 I + G−1/2

k11 Gk12UkGT
k12G−1/2

k11

]
+

[
R−1/2

k C̄k
G1/2

k11

]
Pk|k−1

[
C̄T

k R−1/2
k G1/2

k11

])−1

= Āk −
(

ĀkPk|k−1C̄T
k R−1/2

k

)
×
(

I + R−1/2
k C̄kPk|k−1C̄T

k R−1/2
k

)−1
R−1/2

k C̄k

−
(

ĀkPk|k−1G1/2
k11 +B̄kQkGT

k12G−1/2
k11

)
×
(

I + G−1/2
k11 Gk12UkGT

k12G−1/2
k11 + G−1/2

k11 Pk|kG1/2
k11

)−1
G1/2

k11 ×
(

I + Pk|k−1C̄T
k R−1

k C̄k

)−1

= Āk

(
I + Pk|k−1C̄T

k R−1
k C̄k

)−1
−
(

ĀkPk|k−1G1/2
k11 +B̄kQkGT

k12G−1/2
k11

)
×
(

I + G−1/2
k11 Gk12UkGT

k12G−1/2
k11 + G−1/2

k11 Pk|kG1/2
k11

)−1
× G1/2

k11

(
I + Pk|k−1C̄T

k R−1
k C̄k

)−1

(A30)
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Note that

Āk −
(

ĀkPk|k−1G1/2
k11 + B̄kQkGT

k12G−1/2
k11

)
×
(

I + G−1/2
k11 Gk12UkGT

k12G−1/2
k11 + G−1/2

k11 Pk|kG1/2
k11

)−1
G1/2

k11

= Āk − ĀkPk|k−1G1/2
k11

(
I + G−1/2

k11 Gk12UkGT
k12G−1/2

k11

+G−1/2
k11 Pk|kG1/2

k11

)−1
G1/2

k11 − B̄kQkGT
k12G−1/2

k11

×
(

I + G−1/2
k11 Gk12UkGT

k12G−1/2
k11 + G−1/2

k11 Pk|kG1/2
k11

)−1
G1/2

k11

= Āk − ĀkPk|k−1Gk11 + Āk P̂k|kGk12UkGT
k12

(
I − P̂k|kGk11

)
− B̄kUkGT

k12

(
I − P̂k|kGk11

)
= Āk

(
I − P̂k|kGk11

)
+
(

Āk P̂k|kGk12 − B̄k

)
×UkGT

k12

(
I − P̂k|kGk11

)
=
(

Āk − B̄kUkGT
k12

)(
I − P̂k|kGk11

)
= ˆ̄Ak(0).

(A31)

Thus, Apk can be simplified to ˆ̄Ak

(
I + Pk|k−1C̄T

k R−1
k C̄T

k

)−1
. Because of

A f k=
(

I + Pk+1|kC̄T
k+1R−1

k+1C̄k+1

)̂̄
Ak(0), (A32) can be obtained.

A f k=
(

I + Pk+1|kC̄T
k+1R−1

k+1C̄k+1

)-1
Apk

(
I + Pk|k−1C̄T

k R−1
k C̄k

)
(A32)

It can be known from Theorem 1 that Pk|k−1 converges to a constant matrix under
certain conditions. When the nominal system matrix is assumed to be time-invariant,
this convergence means that limk→∞

(
Pk+1|kC̄T

k+1R−1
k+1C̄k+1 − Pk|k−1C̄T

k R−1
k C̄k

)
= 0. It can

be inferred from the above equation that as k increases, the set of eigenvalues of A f k
converges to the set of eigenvalues of Apk, and the latter converges to a stable constant
matrix. Assuming the conditions in Theorem 1 are satisfied, the robust state estimator con-
verges to a linear time-invariant stable system. Define Xk, X̂k|k, X̄k|k as Xk = [I + Γk(0)]x̄k,
X̂k|k = [I + Γk(0)] ˆ̄xk, X̃k|k = Xk − X̂k|k. Then, (A33) can be obtained directly from (A26)
and the derivation process of (A30) and (A31).[

X̃k+1|k+1
X̂k+1|k+1

]
= Ãk(εk, εk+1)

[
X̃k|k
X̂k|k

]
+ B̃k(εk, εk+1)

[
wk

vk+1

]
, (A33)

where

Ãk(εk, εk+1)=

[
Ãk11 Ãk12
Ãk21 Ãk22

]
,B̃k(εk, εk+1) =

[
B̃k11 B̃k12
B̃k21 B̃k22

]
, (A34)

and

Λk(εk) = (I + Γk+1(0))

 Ak(εk) 0n×(d−1)m 0n×m
Ck(εk)− Ck+1(εk+1)Ak(εk) 0n×(d−1)m 0n×m

0(d−1)m×n I(d−1)m 0(d−1)m×n

 (A35)


Ãk11 =

(
I + Γk+1(0)− B f kC̄k+1(εk+1)

)
(I + Γk+1(0))

−1Λk(εk)

Ãk21 = B f kC̄k+1(εk+1)(I + Γk+1(0))
−1Λk(εk)

Ãk22 = Ãk21 + Apk, Ãk12 = Ãk11 − Apk
B̃k11 =

(
(I + Γk+1(0))− B f kC̄k+1(εk+1)

)
B̄k(εk)

B̃k21 = B f kC̄k+1(εk+1)B̄k(εk)
B̃k12 = −B f k, B̃k22 = B f k

. (A36)
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Based on the above relationship and the stability of matrix Āk(εk), the estimation
error covariance matrix of the robust state estimator can be obtained with bounded and
asymptotically unbiased conditions. Note that (A33) is similar to (16) in [40], and it can be
proved in the same way, which is omitted here.

Theorem 2 is proved.
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