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Abstract: In this paper, an Artificial Neural Network (ANN) for accurate estimation of the speed and
flux for induction motor (IM) drives has been presented for industrial applications such as electric
vehicles (EVs). Two ANN estimators have been designed, one for the rotor speed estimation and the
other for the stator and rotor flux estimation. The input training data has been collected based on the
currents and voltage data, while the output training data of the speed and stator and rotor fluxes has
been established based on the measured speed and flux estimator-based mathematical model of the
IM. The designed ANN estimators can overcome the problem of the parameter’s variations and drift
integration problems. Matlab/Simulink has been used to develop and test the ANN estimators. The
results prove the ANN estimators’ effectiveness under various operation conditions.

Keywords: artificial neural network; induction machines drives; speed; flux; estimation

1. Introduction

In recent years, the principle of vector-control for induction motors (IMs) has become
very popular since the ability to control precise motor torque enables high-performance
motor drive systems to be designed, such as electric vehicles (EVs) [1–4]. In conjunction
with the low cost and ease of maintenance due to the robustness of the structure, reliability,
and high-performance of the IM, this has led to replacing direct current (DC) machines
with IMs in many applications in the last few years. Such advantages have determined the
significant creation of electrical drives for all relevant aspects, with the IM as the execution
component: starting, braking, speed-reversal, and speed change [2]. AC drives require
extensive advanced control techniques, often more expensive but more reliable [5].

Dynamic operation of the IM drive plays an important role in the general system
performance [6,7]. In many IM applications, vector-control is the most widely used tech-
nique owing to its high rendering for controlling IMs [8]. The vector-control theory for
IMs, is based on acquiring the phase and magnitude of voltages or currents. That control
is carried out based on the transformations of Clarke and Park, which are responsible for
producing torque and flux, respectively. IMs works like a separately excited DC-motor in
which two independent orthogonal variables control the torque and flux, namely armature
and field currents, respectively [4,9]. This characteristic leads to an unfavorable coupling
of electromagnetic torque and flux, resulting in the complexity and difficulty of using
IM controllers. Via field-oriented control (FOC), this issue would be solved. The basic
concept of vector control is that the torque and flux are regulated in a separable manner
through vector control, and the action of a DC-motor is reproducing. The most direct way
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of achieving field orientation is to split the stator current into two appropriate elements and
control them separately. The first element is selected to generate an MMF wave spatially in
phase with the rotor-flux-density; this element is related directly to the rotor-flux-amplitude
and is the flux-producing-current component. Also, the second element is selected for
generating the MMF wave spatially in quadrature with rotor-flux-density; this element is
equivalent to motor torque and is referred to as a torque-producing-current component.

Blaschke and Hasse proposed the FOC-based direct field orientation control (DFOC) [7,10].
With DFOC, two Hall-effect sensors are mounting in the air-gap to get rotor flux based
on air-gap measurements. The DFOC’s block diagram for the IM drive is displayed in
Figure 1. Since it is impracticable to sense rotor flux directly, some rotor-flux-orientation
(RFO) computation has to be done for extracting the desirable information from a directly
sensed signal. The essence of these computations for terminal voltage and current sensing
is demonstrated in Figure 1. The stator and rotor resistance variation may affect the
performance of the DFOC method at low speed. There is an undesirable dip in speed at
the instant of resistance deviation, but the restoring time of this dip occurs in a short time.
The rotor-flux amplitude rises to compensate for the excess voltage drops on the stator and
rotor windings. In general, DFOC offers poor dynamic performance when stator and rotor
resistance increase [11–13].
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Figure 1. Block diagram of DFOC for IM drive. 
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Figure 1. Block diagram of DFOC for IM drive.

Most of the reported references concluded that the implementation of the rotational
transducers for establishing the speed feedback loop for high dynamic AC drives results
in reliability reduction and raises the system cost and implementation. Many sensorless
schemes have been introduced in the literature. In the most introduced schemes, the
sensitivity to parameter variations, especially the stator resistance, affects the precision of
the estimation at a low speed [7,14–16]. The estimation process may suffer instability at a
certain speed region, especially at low speeds.

The process of flux estimation is an essential assignment to implement IM drives
accurately. The flux estimation is generally based on the currents and voltages associated
with the machine models. Problems such as pure integrations, draft, and initial conditions
may affect the performance and accurate flux estimation [17]. Other issues may be consid-
ered based on the possibility of parameter uncertainty. These problems may be solved by
applying the low-pass filter, which may overcome the problem of initial conditions and the
DC offset of the integration but in a narrow speed range. Parameter estimations, especially
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the stator resistance, may improve the estimation process at low-speed ranges by increasing
the implementation time and cost [7,14–16].

Many control schemes using artificial neural networks have been applied to enhance
the performance of AC drives [1,2,5,9,14,15,18–20]. Moreover, the mathematical model-
based control systems may result in low dynamic performance and suffer from parameter
variation dependency [17]. So, applying ANN-based schemes can overcome the disadvan-
tages of mathematical model-based control systems. ANNs can introduce many advantages
for improving the performance with error tolerance [11,18,21].

ANN has been introduced to overcome the mentioned problems for flux estimation,
but the estimator still needs the rotor speed [17]. In Ref. [18], the motor speed has been
measured using speed sensors which reduce the system’s reliability and increase the cost of
the drive system. The elimination of the speed sensor has been presented with reducing the
accuracy of the flux estimation in [5,12,16]. ANNs have been utilized in many industrial
applications; for example, in [22], ANNs were applied considering the measured data
to introduce a model of magnetorheological fluids’ relative magnetic permeability. The
reported results show the effectiveness of the introduced neural network approaches
considering a reduced parameters model [22].

In this paper, to improve the reliability of the flux estimator with the elimination of
the speed sensor, two ANN estimators have been designed and implemented. The first is a
speed estimator based on the voltage and current measurements. The other one is for flux
estimator considering its inputs as the currents and voltages measurements as well as the
estimated speed from the first one. ANN-based estimators can overcome the drift problem
of pure integrators and enhance the robustness of stator resistance variations. Offline
training of the two ANNs has been used to save implementation time. The validation of
the overall control scheme with the two ANNs has been achieved using Matlab/Simulink
simulation of the IM drive in different operation conditions. The same methodology can be
applied for other machine drives and industrial applications.

The article is developed as follows: Section two illustrates the mathematical model of
induction motor. The field-oriented vector control of IM has been introduced in Section 3.
The methodology of implementing ANN-based speed and flux estimator has been pre-
sented in Section 4. The ANN-based speed estimator has been introduced in Section 5.
The ANN-based flux estimator has been described in Section 6. The numeric results and
discussions are executed in Section 7. The last section contributes to the conclusion of the
proposed work.

2. Mathematical Model of Induction Motor

The mathematical model of induction motor can be represented in the stationary
reference frame (α − β) as follows [6]:

p
[

is
λr

]
=

[
A11 A12
A21 A22

][
is
λr

]
+

[
B
0

]
us, (1)

is = C.
[

is
λr

]
(2)

where is =
[

iαs iβs
]T , λr =

[
λαr λβr

]T , µs =
[

Vαs Vβs
]T,.

Matrices elements of A11, A12, A21, and A22 can be defined as the following:

A11 = −
{(

Rs
σLs

+ 1−σ
σTr

) }
I,

A12 =
{

Lm
σLs LrTr

}
I −

{
Lm

σLs Lr
ωr

}
J,

A21 =
(

Lm
Tr

)
I, and

A22 = −
(

1
Tr

)
I + ωr J.
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The reset matrices elements of Equation (2) can be represented as:
B =

(
1

σLs

)
I, C =

[
I 0

]
, and I, J denote unit and skew symmetric matrices respec-

tively and can be defined as, I =
[

1 0
0 1

]
, J =

[
0 −1
1 0

]
.

The electromagnetic torque can be represented as:

Te = kt
(
λdriqs − λqrids

)
.

The rotor speed ωr can be defined as follows:

pωr =
1
Jm

(Te − fdωr − Tl) (3)

where kt =
3PLm
2Lr

. Lm, Lr, and Ls denote magnetizing, rotor self-leakage, and stator self-
leakage inductances (H), p denotes d/dt, σ denotes the leakage coefficient and is defined

as
(

1 − L2
m

Ls Lr

)
and Tr =

Lr
Rr

. Moreover, Tl and Te denote load and electromagnetic torques
(Nm), Rs, Rr denote the stator and rotor resistances (Ω), fd denotes friction coefficient and
Jm denotes a moment of inertia (kg·m2).

3. Field-Orientation Control Scheme of IM

The field-orientation control can be defined in the d − q synchronous reference frame.
The basic of the FOC is based on controlling the rotor flux to be in d− axis while the q− axis
component equal to zero. Moreover, the rotor flux λr can be written as follows [2,7]:

λr = Lmi∗ds (4)

where ids and iqs are orthogonal components of the stator currents in the d − q axis, and
the slip-speed ωsl can be controlled as follows:

ωsl = sωs = (ωs − ωr) =
Rr

Lr

i∗qs

i∗ds
=

Lm

Tr

i∗qs

λr
(5)

where, Tr denotes the rotor time constant and the superscript ∗ denotes the reference value.
The electromagnetic torque is stated considering the peak phasor values of ids and iqs

as follows:

Te =
3PLm

2Lr
λriqs =

3PLm
2

2Lr
idsiqs (6)

where P is the pair-pole-number and λr is the rotor flux.
The electromagnetic torque can be expressed as:

Te =
3
2

PLm
(
iqsidr − idsiqr

)
(7)

The rotor-flux-linkages are stated by:

Lm
(
iqs + iqr

)
+ Lriqr = λqr and

Lm(ids + idr) + Lridr = λdr (8)

The rotor equations in terms of the rotor-flux-linkages are:

Rriqr + pλqr + sωsλdr = 0, and

Rridr + pλdr − sωsλqr = 0 (9)
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With the application of FOC principle, the rotor-flux-space vector’s q− axis component
will always remain zero. So, the rotor flux can be written as follows:

λr =

{
λdr

λqr = pλqr = 0
(10)

Therefore, the rotor circuit in Equation (7) can be stated as:

Rriqr + sωsλr = 0 and Rridr + pλr = 0 (11)

Consequently, the rotor currents in Equation (8) would be written as:

iqr = − Lm

Lm + Lr
iqs and idr =

λr

Lm + Lr
− Lm

Lm + Lr
ids (12)

Generating the reference values of the stator current components i∗qs and i∗ds can be
obtained using the torque-command T∗

e and rotor-flux-command λ∗
r values as:

i∗qs =
1
Kt

T∗
e

λ∗
r

and i∗ds =
1

Lm
(1 + Tr p)λ∗

r (13)

where Kt =
3PLm
2Lr

, Tr is the rotor-time constant, and p is a differential operator. T∗
e is the

output of the speed controller.

4. Methodology of ANN Application for Speed and Flux Estimation

Implementing the ANNs speed and flux estimators has the training, testing, and
validation stages. This section presents the methodology of the design and implementation
of the two parallel ANNs.

4.1. Step 1. Collecting Training Data

The training data has been collected by simulation of the direct vector control scheme
of Figure 1. The collected data has been achieved by assuming random reference speed
and load torque, as shown in Figure 2. The collected data are the measured voltages and
currents in αβ. Also, the actual rotor speed has been logged. The data has been saved and
exported for training the ANN.
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Figure 3 shows the reference speed, which is assumed to be changed over the simula-
tion time. Moreover, the figure shows that the assumed load torque disturbance has been
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randomly changed with the speed variation. The speed and load torque have been assumed
to cover a wide range of operating conditions. The simulation time is 250 s. The simulation
has been done with a step time of 5 × 10−3. So, the size of data points is 50,000 points.
Moreover, 25 starting points have been removed from the data set.
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Figure 3. Imposed noise for rotor and stator fluxes, stator currents, rotor speed, and stator resistance.

Measurement noise has been injected into the measured signals. The variations of
the flux amplitude have been enforced for enriching the learning set. A variation in the
stator resistance has been assumed. Moreover, noise in the measured speed has been added
to enhance the feed-forward neural network (FFNN) robustness against noise. Figure 3
shows the imposed noise for rotor and stator fluxes, rotor speed, stator currents, and stator
resistance. Parameters and data specifications of the tested induction motor have been
reported in Table A1.

4.2. Step 2. Design ANN

The type of ANN is a very important issue for accurate estimation of the flux and
speed. In this paper, each ANN has been designed as a FFNN. The Matlab toolbox has
been used for this purpose. One can apply another NN type. The training function has
been selected as Levenberg-Marquardt (trainlm). One can note that other training functions
may be used. The objective function has been chosen as mean squared error (MSE). One
can tune how many hidden layers can be used to accurately estimate the rotor speed. In
the paper, the hidden layers are 2, with 10 and 5 neurons for the first and second layers,
respectively.

4.3. Step 3. Training ANNs

The training of each ANN has been done offline to save the implementation time. The
training step has been done by extracting the actual states for speed and flux estimation.
Firstly, the ANN-based speed estimation has been trained. The next step, the ANN-based
flux estimation, has been trained because it needs the speed as one input data vector. The
complete data set has been used for training the ANN.

4.4. Step 4. Validation of the ANNs

We should test and validate the ANNs to show their performance and accuracy in
this step. The testing should occur with consideration of the value of MSE, Regression.
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Moreover, testing the estimated values based on training and other testing data should
occur. If the accuracy of ANN is not satisfied, the repeating of steps 2, 3, and 4 should
be done.

4.5. Step 5. Exporting the Simulink Block for the Two ANNs

After releasing the effectiveness and accuracy of the ANN, exporting the ANN as a
Simulink block should be done using the neural network (NN) Matlab Toolbox.

The steps for achieving an accurate estimation of the flux and rotor speed can be
implemented as Listing 1 for the speed estimation, while the ANN flux estimator can be
implemented in the same manner. This code show that the feed forward ANN has been
selected. Moreover, two hidden layers have been used with 10 and 5 neurons, respectively.
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6. Configuration and traning of NN as (net_speed = configure (net_speed, input_signals, out-

put_signals)). 

5. ANN Speed Estimator

The input and output data of the ANN speed estimator can be collected during the
training by simulating the vector-controlled IM. The construction of the ANN block in
Simulink is shown in Figure 4a. Figure 4b presents the implantation of each block in the
ANN speed estimator. The ANN-based speed estimator is constructed as a linear time-
invariant dynamic system consisting of a nonlinear neural function approximator through
LPFs, as shown in Figure 4b.
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Figure 4. (a) Feed-forward neural network of speed estimator; (b) detailed implementation of ANN
speed estimator.

The neural network toolbox of Matlab has been used to train, test, and validate the
ANN speed estimator. Figure 5 shows implemented NN. The measured speed (which
is used for training) and the estimated speed after training the ANN has been shown in
Figure 6. The load torque of the motor, which has been applied for getting the training data,
is also shown in Figure 6.
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Figure 6. Network performance considering the measured speed and estimated speed.

The performance of the ANN-based speed estimator considering MSE has been shown
in Figure 7. Moreover, the error histogram and the regression between the estimated and
actual data have been displayed in Figure 8. The figures show a linear regression between
the predicted speed of the ANN-based speed estimator and the measured speed.
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6. ANN Flux Estimator

The input data of the ANN flux estimator are based on the measured voltages and
currents in α − β and the rotor speed. The output is the stator and rotor fluxes.

The input and output data can be collected during the training by simulating the
vector-controlled IM. The construction of the ANN block in Simulink can be shown in
Figure 9. In Figure 10, the implantation of each block in the ANN flux estimator has been
presented.
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Figure 9. The feed-forward neural network of flux estimator.

During the implementation of the ANN-based flux estimator, the exhaustive ANN-
based flux estimator has been designed in such a linear time-invariant dynamic system.
Moreover, the nonlinear neural function approximator has been interconnected among
the inputs and the ANN, including the Wiener model. The inputs of the ANN-based flux
estimator have been implemented through LPFs, as shown in Figure 10, with choosing the
wc1 and wc2 to enhance the overall dynamic response and noise attenuation.

The neural network toolbox of Matlab has been used to train, test, and validate the
ANN flux estimator. Figure 11 shows implemented ANN-based flux estimator. Figure 12
shows the input training data of the currents and voltages and the speed with adding
zoomed captures. The measured fluxes (which are used for training) and the estimated
fluxes after training the ANN are shown in Figure 13. The errors between the estimated
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and measured fluxes in αβ for the rotor and stator are demonstrated in Figure 13. The
figure shows the effectiveness and accuracy of the ANN-based flux estimator.
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7. Results and Discussions

The Matlab package has been used in order to validate the complete control system
associated with the ANNs for flux and speed estimation. Figure 14 shows the proposed
sensorless vector-controlled induction motor drive-based ANNs for speed and flux estima-
tors. The ANN-based flux and speed estimators have been shown in Figure 14b. Figure 14
has been presented and implemented in Simulink to reference researchers.

7.1. Case 1. Training Rotor Speed and Load Torque

The response of the ANN-based speed and flux estimators has been validated in this
section considering 50 s from the training speed and load torque. The speed reference
values are shown in Figure 15. Also, the load torque has been changed many times,
as shown in Figure 16. The speed reference with the assumed load torque disturbance
ensures testing the IM sensorless drive under many operation conditions. Figure 15
shows the study case’s reference actual and measured speeds. The reported actual and
estimated speeds have the same track, which validates the accuracy of the ANN-based
speed estimator. Figure 16 shows the load and electromagnetic torque under such a study
case. For further validation of the ANN-based estimators, Figure 17 shows stator currents.
Figure 18 shows the actual and estimated rotor fluxes. The zoomed capture of currents and
fluxes has also been shown in Figures 17 and 18. The results validate the control system’s
effectiveness by using the offline ANN speed and flux estimators. Figure 19 demonstrates
the successful implementation of vector control principles by visualizing αβ rotor flux
components. Figure 19a shows that the αβ rotor flux components formed a circle plot
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between the estimated and measured rotor flux components. Moreover, Figure 19b shows
that a good tracking of the estimated and actual rotor fluxes.
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Figure 19. (a) Actual and estimated α-β rotor flux components and (b) the error between the measured
and estimated values of rotor speed and rotor flux.

7.2. Case 2. Speed Reversal

In this case of study, the rotor speed and load torque have been assumed, as shown in
Figure 20. This case is not included in the training data set. The speed has been increased
from 0 to 50 rps, and the speed is constant in the interval from 1 s to 5 s, then the speed
is reversed to 50 rps. The load torque has been stepped to 10 Nm at 2 s. The reference
estimated and actual rotor speeds have been shown in Figure 20. The stator current
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and estimated and actual rotor flux are also shown in the figure. The results prove the
effectiveness of the ANN-based speed and flux estimators over the simulation time.
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Figure 20. Response of the proposed drive with ANN-based estimators considering reversal speed.

7.3. Case 3. Pulse Load Torque Disturbance

The studied case has been implemented to validate the ANN-based speed and flux
estimators against load torque disturbance. The load is pulsed from 5 Nm to 9 Nm over
4 s to 8 s. Figure 21 shows the performance of the ANN-based estimators. The presented
results validate the accuracy of the fluxes and rotor speed estimations.

7.4. Case 4. Speed Variation

The studied case has been implemented to validate the ANN-based speed and flux
estimators with a gradual rotor speed variation, as shown in Figure 22. Under this case of
study, the load is kept constant during the first 2 s and stepped to the double at 2 s. Figure 22
shows the performance of the ANN-based estimators. The presented results validate the
accuracy of the fluxes and rotor speed estimations. Moreover, the figure illustrates the good
estimation of the estimated and actual rotor flux. Figure 23 validates the high dynamic
performance of the vector-controlled IM drive with ANNs speed and flux estimation.
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8. Conclusions and Future Directions

Two ANNs for estimating the speed and fluxes of IM drives have been realized and
analyzed in this paper. The ANN estimators have been trained based on the data of the
currents and voltages as well as the measured speed and fluxes offline to save the implemen-
tation time and cost. The validation of the ANN-based estimators has been achieved via
MATLAB and Simulink. A successful representation of the training, testing, and validation
of the ANN estimators has been presented as a reference for engineers and researchers. The
simulation results demonstrate that the ANN-based speed and flux estimators accurately
estimate the speed and fluxes. The estimated speed and fluxes have the same track as
the actual ones via a wide speed range considering the load torque disturbance. Other
advanced ANN estimators can be applied for various AC drives and industrial applications
in future work. A limitation of this presented work, the selection of such basic ANN of
FFNN is due to hyperparameter optimization with an approximate gradient method that
may not be used with Recurrent Neural Network (RNN). In future work, RNNs should be
considered and tested, which may lead to improving the effectiveness of the estimation
process rather than FFNN. Moreover, real measurements with a speedometer, magnetic
field sensor, current sensors, and voltage sensors should be used with the experimental
setup up for more validation of ANN estimators.
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Appendix A

Table A1. Parameters and data specifications of the induction motor.

Rated power (kW) 1.5 Rated voltage (V) 127/220
Rated current (A) 12/6.9 Rated frequency (Hz) 60

Rs (Ω) 1.54 Rr (Ω) 1.294
Ls (mH) 100.4 Lr (mH) 96.9
Lm (mH) 91.5 Rated rotor flux, (wb) 0.6

Jm (kg·m2) 0.15 Rated speed (rpm) 930
P 3
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