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Abstract: The Major Temporal Arcade (MTA) is a critical component of the retinal structure that
facilitates clinical diagnosis and monitoring of various ocular pathologies. Although recent works
have addressed the quantitative analysis of the MTA through parametric modeling, their efforts
are strongly based on an assumption of symmetry in the MTA shape. This work presents a robust
method for the detection and piecewise parametric modeling of the MTA in fundus images. The model
consists of a piecewise parametric curve with the ability to consider both symmetric and asymmetric
scenarios. In an initial stage, multiple models are built from random blood vessel points taken
from the blood-vessel segmented retinal image, following a weighted-RANSAC strategy. To choose
the final model, the algorithm extracts blood-vessel width and grayscale-intensity features and
merges them to obtain a coarse MTA probability function, which is used to weight the percentage of
inlier points for each model. This procedure promotes selecting a model based on points with high
MTA probability. Experimental results in the public benchmark dataset Digital Retinal Images for
Vessel Extraction (DRIVE), for which manual MTA delineations have been prepared, indicate that
the proposed method outperforms existing approaches with a balanced Accuracy of 0.7067, Mean
Distance to Closest Point of 7.40 pixels, and Hausdorff Distance of 27.96 pixels, while demonstrating
competitive results in terms of execution time (9.93 s per image).

Keywords: vessel segmentation; major temporal arcade; numerical modeling; retinal fundus images;
spline approximation; weighted RANSAC

MSC: 68U10

1. Introduction

The analysis of vascular structures in the retina can facilitate the monitoring and
diagnosis of different types of ocular pathologies. The Major Temporal Arcade (MTA) is
the thickest vascular structure in the retina and it is composed of the superior and inferior
temporal arcades [1]. In clinical practice, the visual examination of the morphological
integrity of the MTA and the angle between the two temporal arcades, also called Temporal
Arcade Angle (TAA), are used as an indicator of the severity of diabetic retinopathy, myopia,
or hypertension. Consequently, the numerical modeling of the MTA plays an essential role
in achieving its quantitative analysis, while improving medical diagnosis.

In literature, a handful of works have addressed the analysis of the MTA. Oloumi
et al. [2] introduced image processing techniques for the segmentation, tracking, and mea-
surement of the MTA width in order to detect plus disease and retinopathy of prematurity.
Nabi et al. [3] proposed a two-step method for the identification of the MTA. Firstly, the
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retinal vessels are detected through Gabor filters. Then, the Hough transform along with
graph theory were applied to separate the MTA. Fleming et al. [4,5] considered the MTA
length as a criterion to measure the quality of fundus images, along with other elements
such as the optic disc location and the macula size. The MTA was automatically determined
by semi-elliptical templates in a range of sizes, using the generalized Hough transform.
Fledelius and Goldschmidt [6] studied the changes in the MTA geometry for patients with
high myopia, finding a correlation between the increase in myopia and the reduction in the
TAA. The analysis was performed manually by ophthalmologists, who located MTA and
measured the TAA.

To simplify the task of automatic tracking of MTA morphological alterations over
time, Oloumi et al. [7] proposed the parameterization of the MTA by using a parabolic
model. A weighted version of the Hough Transform was applied to fit a parabola on the
detected vascular tree. A similar approach was presented by Oloumi et al. [8], where a
dual parabolic model was designed (i.e., two parabolas adjusted to the upper and lower
parts of the MTA) as a solution to the problem of MTA non-symmetry for some fundus
images, especially those belonging to sick patients. These models were used to prove
that the openness of the MTA decreases when patients suffer from Proliferative Diabetic
Retinopathy and Retinopathy of Prematurity [9].

More recently, population-based methods have been presented as an alternative for the
detection of parabolic objects in medical images. Guerrero-Turrubiates et al. [10] introduced
a method that applied a Univariate Marginal Distribution Algorithm (UMDA) to approxi-
mate a parabola for retinal images. The approach creates individuals by concatenating three
pixel indices in the image domain. Then, each individual is evaluated using as a fitness
function the Hadamard product between the input image and the resulting parabola image.
Valdez et al. [11] developed a parabola detection algorithm for the MTA localization in
fundus images. Instead of using the Hough transform, which is computationally expensive,
a fast hybrid method was proposed that combined the UMDA algorithm with the Simulated
Annealing (SA) strategy, which guided the search towards promising regions. The objective
function used a segmented image of the vascular structure, weighing pixels according to
the distance to the parabola vertex. These two UMDA-based methods obtained superior
performance in terms of computational time compared to Hough-based methods.

In this paper, a robust method for the detection and piecewise parametric modeling
of the MTA in fundus images is presented. The algorithm follows a weighted-RANSAC
strategy, building multiple MTA models from random blood-vessel points taken from the
blood-vessel segmented retinal image. Each model consists of a piecewise parametric curve
with the ability to consider both symmetric and asymmetric scenarios. To choose the best
MTA model, the method considers blood-vessel-width and foreground-location features,
extracted through the Distance Transform and grayscale intensities, respectively. Both
attributes are merged and used as a probability function to weight the percentage of inlier
points for each model. This procedure promotes selecting a model based on points with
high MTA probability.

The contributions of this work are summarized as follows:

1. Blood-vessel-width and intensity features are integrated into the MTA detection and
modeling process.

2. A modeling strategy addressing both symmetric and asymmetric scenarios is pre-
sented to improve the MTA characterization.

3. A weighted-RANSAC scheme is included to robustly select a MTA model configuration.
4. A set of MTA manual delineations for the benchmark DRIVE dataset has been released

for scientific purposes.

The rest of this paper is organized as follows. In Section 2, the proposed method is
explained in detail. The dataset, evaluation metrics and experimental results are discussed
in Section 3. Finally, in Section 4, the conclusions obtained from this work are presented.
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2. Methods

The proposed method consists of the following steps: (1) pre-processing of the raw
images to deal with the illumination and contrast changes expected in medical images;
(2) automatic segmentation of the vascular tree to reduce the MTA search space; (3) the
extraction of features from the segmentation carried out in the previous step; and (4) the
construction of a numerical model of the MTA from the extracted features. Each of these
steps is described in detail in this section.

2.1. Pre-Processing

Fundus images are affected by uneven illumination and low contrast, producing
variations in pixel intensity [12–14]. In this work, the original RGB fundus image is
converted to grayscale and then pre-processed through the Contrast Limited Adaptive
Histogram Equalization (CLAHE) algorithm, which addresses these intensity changes
and improves blood-vessel segmentation accuracy by applying a re-distribution of their
intensity histogram [15–17].

The CLAHE algorithm partitions the image into small rectangular regions and applies
a histogram-based local-contrast enhancement procedure. First, the intensity occurrences
that exceed a particular value in the histogram of each region in the image are truncated.
Then, the truncated occurrences are redistributed uniformly over the histogram. This
redistribution of occurrences results in an increase in contrast between the background and
the objects of interest, while the truncation procedure aims to avoid noise amplification
problems, which are typical issues of traditional histogram equalization methods. Further
information on this pre-processing technique for retinal images can be found in [18–20].

2.2. Automatic Segmentation of the Vascular Tree

The inclusion of the automatic blood-vessel segmentation step in the proposed algo-
rithm aims to delimit the MTA search space efficiently. Hence, a good trade-off between
high accuracy and computational time must be considered in order to select the adequate
approach for this step.

In literature, the problem has been widely addressed by unsupervised methods [21–24],
machine learning strategies [25–27], and deep learning techniques [28–31]. Many recent
models improve blood-vessel segmentation. However, their advances are generally cor-
related to a greater number of parameters or increased numerical complexity. Moreover,
these methods focus on refining specific cases, such as thin vessel detection, which is less
relevant in the MTA detection task.

Considering this context, a Convolutional Neural Network (CNN) with the U-Net
architecture has been adopted to perform the task. This approach has proven high ef-
ficiency for biomedical image segmentation on reasonable computational time [32–35].
Moreover, this model constitutes an end-to-end system with learnable parameters and few
hyper-parameters to calibrate.

Unlike the original four-level model with an initial depth of 64 channels, a simplified
three-level model with an initial depth of 32 channels is employed here. The architecture
is assembled by the contracting path (or encoder), the latent path (or bottleneck), and the
expanding path (or decoder). Skip-connections are added between feature maps from
encoder to decoder to propagate previous information to deeper network layers. Figure 1
illustrates the overall design. Each level in the contracting path consists of a double 3× 3
convolutional layer + ReLu block and a Maxpooling layer. Similarly, each level in the
expanding path consists of a double 3× 3 convolutional layer + ReLu block followed by
a Upsampling layer. A dropout layer has been added between each block to improve
generalization [36].
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Figure 1. The three level U-Net architecture employed for the blood-vessel segmentation. The
model consists of a contracting path (or encoder), a latent path (or bottleneck), and a expanding path
(or decoder). Skip-connections are added between feature maps from the contracting path to the
expanding path.

Moreover, a patch-based approach has been adopted in the design to increase the
number of images available for training: random 48× 48 pixel patches are extracted from
the grayscale pre-processed train images and are used as input for training the model.
Figure 2 shows an overview of this process. For the testing part, ordered 48× 48 pixel
patches with an overlapping of five pixels are extracted from the test images. The final
prediction is obtained by averaging the predictions made over each pixel.

Binary cross entropy has been selected as a loss function to adjust the network
parameters.

L(θ) = − 1
m

m

∑
i=1

yi log ŷi + (1− yi) log(1− ŷi), (1)

where θ represents the parameters of the network, m is the number of samples or pixels to
classify, yi is the true label of sample i and ŷi is its predicted label, i.e., the network output.

Figure 2. U-Net network training. (a) original images; (b) CLAHE enhanced images; (c) random
patches taken from enhanced images; (d) a 48 × 48 pixel patch; (e) the U-Net is trained with patches;
(f) a 48× 48 pixel segmented patch is obtained.

2.3. Feature Extraction

The MTA is the thickest blood vessel that appears in the foreground of the fundus
image. The presented method proposes to quantify blood-vessel thickness and its location
in the foreground of the image, so that both attributes contribute to a robust MTA detection
and modeling.

2.3.1. Vessel Thickness

Determining blood-vessel-width is a difficult task in fundus retinal imaging due to the
variety of blood-vessel amplitudes. A quick and indirect measurement can be performed by
using the Distance Transform [37–39], since it results in a map containing each blood-vessel
pixel’s distance to its nearest background pixel.

The two-dimensional distance transform can be formulated as follows. Let L be the
set of sites or pixels in a two-dimensional binary image I ∈ RN×M, and let A and B be two
non-overlapping subsets of L, i.e., L = A ∪ B and A ∩ B = ∅, such that set A contains all
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the sites u = (x, y), u ∈ L that belong to the foreground of the image and set B contains all
the sites u ∈ L that belong to the background of the image:

A = {u ∈ L | I(u) = 1} (2)

B = {u ∈ L | I(u) = 0}. (3)

The Distance Transform is a function that generates a map D ∈ RN×M for which each
value at site u corresponds to the smallest distance from u to B:

D(u) = min
v∈B

d(u, v), (4)

where d(·, ·) is a distance metric between two points, usually the Euclidean distance metric.
Through a normalization process, i.e., dividing each element in D by the maximum

value, and using the segmented image of the vessels as input, the Distance Transform can
be used as a metric to determine the vessel width in each position of the image, allowing
for the distinction of the following cases:

• When a pixel is not located in a blood vessel, the metric returns a value of zero.
• When a pixel is located in the center of a thin blood vessel, the metric returns a value

close to zero.
• When a pixel is located in the center of a thick blood vessel, the metric returns a value

close to one.

The metric has a drawback in determining blood-vessel width: as the pixels get closer
to the edges, their value gets closer to zero, even when they belong to thick blood vessels.

A strategy to avoid these misleading values is to preserve only the center-line pixels
of the vascular structure. However, this approach alters the percentage of pixels belonging
to thick blood vessels in the image, which may lead to performance decreasing in the
numerical modeling procedure.

2.3.2. Foreground Location

Notice that having an indicator of blood-vessel width is helpful to some extent in
locating sites of the image that may belong to the MTA. However, considering that some
thick blood vessels appearing in the background of the image could also obtain high
responses in the Distance Transform, additional information is required to make a more
robust MTA detection.

The blood vessels in the foreground can be identified because their intensities are
visibly darker than those that appear in a second plane. Following this idea, a naive
foreground location map F ∈ RN×M can be calculated by taking the complement of the
normalized grayscale blood-vessel intensity image G ∈ RN×M.

In the resulting map, the highest values correspond to pixels belonging to first-
plane blood vessels, while lower values correspond to pixels belonging to background
blood vessels.

2.3.3. MTA Probability Map

The foreground location and blood-vessel thickness feature maps are averaged in
order to consider a joint contribution. The average image can be interpreted as a coarse
MTA Probability Map P ∈ R, where each pixel represents the probability of that position in
the image belonging to the structure of the MTA. The process of obtaining P is illustrated
in Figure 3.
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Figure 3. Extraction of features for the MTA Probability Map. From left to right: (a) CLAHE-enhanced
grayscale image; (b) blood-vessel segmentation; (c) foreground location feature map estimated
through grayscale blood-vessel intensities; (d) blood-vessel thickness feature map estimated through
Distance Transform; (e) MTA Probability Map estimated through averaging foreground location and
blood-vessel thickness feature maps.

The values of this map are taken into account in the numerical modeling step, ex-
plained below.

2.4. Numerical Modeling of the MTA
2.4.1. Piecewise Parametric Modeling

Previous works regarding the MTA curvature approximation have presented models
using parabolic Hough-based techniques that assume a symmetric shape. However, the
MTA is not strictly symmetrical. It may present shape alterations derived from a disease or
vascular damage. To address this issue, a piecewise parametric approach using quadratic
spline curves is proposed.

The spline curve is a piecewise low-order polynomial function that approximates
intrinsic shapes while avoiding abrupt oscillations (Runge’s phenomenon) [40–42]. Con-
sider a set of n + 1 ordered points or knots x0, x1, ..., xn and an integer k > 0 that have
been specified. Let S(x) be a piecewise polynomial function defined on the interval [x0, xn]
as follows:

S(x) =


p0(x) x0 ≤ x ≤ x1

p1(x) x1 < x ≤ x2
...
pn−1(x) xn−1 < x ≤ xn

, (5)

where each piece pi with 0 ≤ i ≤ n− 1 is a polynomial function of degree at most k. To
guarantee the continuity and smoothness of S(x), the two polynomials pi−1 and pi must
share the values of their derivatives from the order (i.e., the value of the function) up to
the derivative of order m at knot xi. Then, S(x) is said to be a spline curve of degree k and
smoothness Cm, or S ∈ Cm in the neighborhood of xi.

For instance, to build a model with a quadratic spline curve S ∈ C1 from a set of
ordered pairs u0, u1, ..., un with ui = (xi, yi) and 0 ≤ i ≤ n, a function S(x) as described in
(5) must be defined, where the polynomial functions pi are of the form:

pi(x) = aix2 + bix + ci , i = 0, 1, · · · , n− 1. (6)

Then, S(x) interpolates the given set of points, that is:

S(xi) = yi, i = 0, 1, · · · , n. (7)
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The polynomials pi and pi+1 must interpolate the same value at the point xi+1 to
ensure continuity along the interval [x0, xn], thereby the following expression have to
be satisfied:

pi−1(xi) = pi(xi) = yi , i = 1, 2, · · · , n− 1. (8)

Furthermore, S′(x) is also required to be continuous, i.e.,

p′i−1(xi) = p′i(xi) , i = 1, 2, · · · , n− 1. (9)

The expressions in (7)–(9) can be used to construct an equation system to find the
values of the 3n unknown coefficients of the polynomial functions pi, adding an additional
constraint to the value of p′0, typically p′0 = 0.

2.4.2. Weighted RANSAC

In the proposed method, the knots for the quadratic spline curve are randomly taken
from the set of non-zero pixels in the MTA Probability Map obtained from the previous
step. However, the MTA Probability Map values are noisy, since they were obtained
from an estimation based on features extracted from the segmented image. A weighted
RANSAC methodology is proposed to robustly select the points that best accomplish the
particularities of the MTA.

The RANSAC method is a non-deterministic iterative algorithm for computing the
parameters of a modelM given a set of N points or observations that contain noise [43,44].
It consists of taking a minimum subset of points Q = u1, u2, ..., uh, h < N, necessary to
compute the model parameters and observe the number of points that are well explained
by it, i.e., the number of points that are within a margin distance from the points estimated
by the model (inliers). This process is repeated a number of iterations or until a percentage
of inliers is reached, keeping the model that best explains the dataset.

In the original RANSAC, each point inside the margin distance makes the same
contribution to the inlier counting. In contrast, in a weighted-RANSAC scheme, the
contribution w(u) of each point u = (x, y), u ∈ L to the counting is weighted using a
criteria [45]. In the proposed method, the criteria is given by the MTA Probability Map P :

w(u) =

{
P(u) d(u, û) ≤ ε

0 otherwise
, (10)

where d(·, ·) represents a distance metric between two points –in this case, the distance
between point u and the prediction û obtained with modelM– and ε > 0 is the tolerance
error value that determines if point u is considered as an inlier.

Algorithm 1 describes in detail the weighted-RANSAC scheme. This strategy prefers
models containing points at the center of thick vessels with strong intensities are preferred.
This behavior is also imposed from the task of selecting points to estimate the model:
although a uniform probability distribution is used to choose the points acting as knots,
the proportion of points belonging to thick vessels is greater than the one corresponding to
thin points. Hence, points belonging to thick vessels are selected more frequently.
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Algorithm 1: The weighted-RANSAC algorithm
Data:
Blood-vessel segmented image (I);
MTA Probability Map (P);
Number of points(n);
Polynomial degree (k);
Margin distance (ε);
Maximum number of iterations (max_iter);
Result:
Piecewise parametric modelM;
Model points model_points

1 max_inliers← 0;
2 model_points← ∅;
3 for i← 1 to max_iter do
4 Create a set C of randomly select n blood-vessel points from I:

C = {u|I(u) = 1},

with |C| = n ;
5 Sort elements in C with respect to y-axis;
6 Compute model S with polynomial fuctions of degree k with respect to y-axis,

using Equations (7)–(9) and set C;
7 Compute inlier count W as:

W(S) = ∑
u

w(u), ∀u|I(u) = 1

with w(u) defined as in Equation (10);
8 if W(S)>max_inliers then
9 UpdateM← S;

10 Update max_inliers←W(S);
11 Update model_points← C;
12 end
13 ReturnM and model_points;
14 end

2.4.3. Constraints on Point Selection

Point selection can result in models that do not cover the entire length of the MTA.
On that account, a restriction has been added to choose points from three image regions
(top, middle and bottom) in balanced parts, as shown in Figure 4. Under these conditions,
the search for the optimal model with RANSAC is always conducted considering points
around a larger area in the image, which improves the results of the MTA modeling.
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Figure 4. The weighted RANSAC method for MTA modeling. The image is divided into three
sections, n points are chosen from each section in balanced portions and are used to compute the
spline model. The model is evaluated by means of the inliers account, defined from a tolerance value
ε. Each point has the inlier weight that corresponds to its value on map P , represented here by its
grayscale intensity.

3. Results and Discussion

The proposed method was evaluated through multiple comparisons with state-of-
the-art algorithms using the dataset DRIVE. First, the dataset DRIVE and its MTA manual
delineations are presented. Secondly, the evaluation metrics are described. Third, the
implementation details are explained. Finally, the comparative analysis is discussed.

3.1. Dataset and Delineation of the MTA

The dataset DRIVE [46], consisting of 40 retinal fundus images with size 565× 584 pixels,
is used to evaluate the performance of the proposed method. The partitions used for
training and testing were taken as recommended by the dataset authors.

The DRIVE dataset has been designed for the blood-vessel segmentation task and does
not provide ground-truth images for the MTA detection problem. Hence, hand-labeled
MTA annotations have been created for this work by an expert ophthalmologist of the
Ophthalmology Department of the Mexican Social Security Institute (IMSS) T1-León [47].
The set of MTA manual delineations is freely available (http://personal.cimat.mx:8181
/~ivan.cruz/Journals/MTA_drive.html, accessed on 11 April 2022). To the authors’ best
knowledge, this dataset is the first in the literature that releases MTA manual delineations
for scientific purposes.

3.2. Evaluation Metrics

The metrics considered to evaluate the closeness between the model and the MTA
ground-truth are Mean Distance to Closest Point (MDCP) and Hausdorff Distance, as pro-
posed by Oloumi et al. [7].

MDCP measures the average of the distances of each point belonging to one set to
the nearest point of the other set. Let A and B be two sets of points, where A is the set of
points estimated by the model and B is the set of points in the ground-truth delineation.
The MDCP can be defined as follows:

MDCP(A, B) =
1
N

N

∑
i=1

DCP(ai, B), (11)

http://personal.cimat.mx:8181/~ivan.cruz/Journals/MTA_drive.html
http://personal.cimat.mx:8181/~ivan.cruz/Journals/MTA_drive.html
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where N is the cardinality of set A, ai its i-th element and DCP is the distance to the closest
point, which is computed as follows:

DCP(ai, B) = min ||ai − bj||, (12)

for j = 1, 2, ..., M, M being the cardinality of set B, bj its j-th element and || · || any norm op-
erator, typically the Euclidean norm. Moreover, Hausdorff Distance also uses the previous
definition of DCP to find the smallest distance of each point of A to the ground-truth set B,
however it does not calculate an average. Instead, Hausdorff Distance takes the maximum
DCP distance:

H(A, B) = max DCP(ai, B). (13)

In both measures, small values indicate that the model is a good fit for the ground-truth.
The metrics regarding the MTA detection, taking into consideration that the model

corresponds to a one-pixel wide curve, are: Precision, skeleton-based Recall and skeleton-
based balanced Accuracy.

The Precision is calculated as follows:

Pre(M) =
TP

TP + FP
, (14)

where TP (true positives) represents the number of pixels belonging to modelM within
the MTA delineation and FP (false positives) represents the number of pixels belonging to
modelM outside the MTA delineation.

Following this idea, a skeleton-based Recall can also be defined, as shown in (15), to
indicate the ratio of correct positive pixels out of the total positive pixels that a perfect
model should contain.

Rec(M) =
TP
P

, (15)

where P represents the number of pixels in the skeleton of the MTA delineation, which will
be taken as the ideal number of pixels that a one-pixel wide model should contain.

Finally, a skeleton-based balanced Accuracy is considered to measure the general
performance of the model, using the following definition:

bACC(M) =
TPR + TNR

2
, (16)

with

TPR = TP/P, (17)

TNR = TN/N, (18)

and using N (skeleton negatives) as the number of pixels that do not belong to the skeleton
of the MTA delineation.

3.3. Implementation Details

The proposed method was evaluated using the dataset DRIVE with MTA manual
delineations.

Firstly, for the segmentation part, The U-Net network was trained with 200,000 random
patches with size 48× 48 pixels, from which 180,000 were used for training and 20,000 were
used for validation. The optimization process was performed for 150 epochs, using the
Stochastic Gradient Descent (SGD) optimizer with minibatch size of 32 patches.

Secondly, for the spline curve construction in the numerical modeling part, a configu-
ration of five points with quadratic functions has been chosen.
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Finally, since the numerical modeling part contains a stochastic component for point
selection and model construction, 30 independent executions were carried out and the
averaged results are reported.

All the experiments were executed using a computer with an Intel Core i5 2.4GHz
processor and 12GB of RAM, excepting the segmentation step, for which a Nvidia Tesla
K80 GPU with 12GB of RAM was used. The source code is freely available (https://github.
com/dora-alvarado/robust-MTA-detection-modeling, accessed on 11 April 2022).

3.4. Comparative Analysis

The proposed method was evaluated using the test set of the dataset DRIVE, consisting
of 20 images with size 565× 584 pixels. In Figure 5, some examples of the MTA numerical
modeling are presented.

Figure 5. Determination and modeling of MTA process using the test set of retinal fundus images.
ROWS: (1) 03_test; (2) 05_test; (3) 06_test; (4) 07_test; (5) 08_test; (6) 09_test. COLUMNS: (a) Grayscale
Enhanced Image; (b) MTA Probability Map; (c) Top 20 models with the higher inlier count in the
Weighted RANSAC algorithm; (d) Result of the best Spline-based model obtained from the Weighted
RANSAC algorithm: blue curve represents the ground-truth delineation, green curve represents the
resulting model, red dots represents the knots used to build the spline curve.

https://github.com/dora-alvarado/robust-MTA-detection-modeling
https://github.com/dora-alvarado/robust-MTA-detection-modeling
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The performance analysis was carried out considering four Hough-based state-of-the-
art MTA detection methods: the Gabor-based enhancement combined with a Hough detec-
tor (Gabor+Hough) [7], the General Hough detector (General Hough) [48], the parabola de-
tection algorithm from MIPAV software (MIPAV) [49], and the hybrid UMDA+SA parabola
detector (UMDA+SA) [11].

A comparison in terms of closeness between the numerical model and the MTA manual
delineation is shown in Table 1. The proposed method reaches the best value in MDCP
and Hausfford Distance, more than three pixels and six pixels away from the second best,
Gabor+Hough [7], respectively.

Table 1. Performance comparison of model closeness (in pixels) to the ground-truth MTA delineation
of the test set. Average of 30 runs of the MDCP and Hausdorff Distances.

Method MDCP (px.) Hausdorff (px.)
Mean ± Std. Mean ± Std.

Gabor+Hough [7] 12.10 ± 6.16 34.90 ± 16.60
General Hough [48] 31.28 ± 0.00 64.49 ± 0.00

MIPAV [49] 25.69 ± 0.00 59.91 ± 0.00
UMDA+SA [11] 30.45 ± 12.94 105.80 ± 27.54

Proposed method 7.40 ± 5.34 27.96 ± 17.66

A comparison for the MTA detection task has also been made using Precision, skeleton-
based Recall and skeleton-based balanced Accuracy. As shown in Table 2, the proposed
method obtains the best values in the three metrics, doubling the performance of the second
best (UMDA+SA [11]) in Precision.

Through a qualitative comparison presented in Figure 6, it can be inferred that the
difference in performance lies in the ability of the methods to adjust to a non-symmetric
MTA shape. The proposed method shows a robust behavior in these scenarios, while the
rest of the methods diverge from the manual delineation due to its parabolic foundation.

Figure 6. MTA modeling using different approaches and a set of images from the test set. For
all images, the blue line represents the ground-truth delineation and the green line represents the
model. ROWS: (a) General Hough by Sanchez [48], (b) MIPAV by McAuliffe [49], (c) UMDA+SA by
Valdez et al. [11], (d) Proposed method. COLUMNS: (1) 03_test; (2) 05_test; (3) 06_test; (4) 07_test;
(5) 08_test; (6) 09_test.
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Table 2. Performance comparison of MTA detection in terms of Precision, skeleton-based Recall (Rec)
and skeleton-based balanced Accuracy (bACC) using the test set.

Method Pre Rec bACC

General Hough [48] 0.0454 0.0338 0.5024
MIPAV [49] 0.1749 0.1785 0.5405
UMDA+SA [11] 0.2236 0.2426 0.6150
Proposed method 0.4517 0.4255 0.7067

Finally, a comparison considering execution time is reported in Table 3. The pro-
posed method obtains the second best value, only surpassed by the hybrid method
UMDA+SA [11], and with an execution time 20 times faster than the third best, Ga-
bor+Hough [7].

Table 3. Execution time comparison of MTA detection and modeling using the test set.

Method Execution Time (s)

Gabor+Hough [7] 200
General Hough [48] 4.7641 (per pixel)
MIPAV [49] 230
UMDA+SA [11] 1.68
Proposed method 9.93

4. Conclusions and Future Work

This paper proposes a new method for automatic MTA detection and modeling. The
segmentation step contributes to the computational efficiency of the proposed method,
reducing the search space to only blood-vessel-related pixels. Unlike the previous works,
based on semi-elliptical parabolas, the proposed method relies on a piecewise parametric
function with the ability to adequately represent both symmetric and asymmetric MTAs.
Through a weighted-RANSAC scheme that takes advantage of a priori knowledge about
the MTA characteristics, the algorithm makes a robust selection of points to build the
model. The inclusion of blood-vessel width and foreground-location estimations for inlier
counts promotes selecting a model built with high probability MTA points. The method
has proven to be robust and efficient in the MTA modeling task, obtaining a Balanced
accuracy of 0.7067, MDCP of 7.40 pixels, Hausdorff distance of 27.96 pixels, and an average
execution time of 9.93 s per image. These numerical results have also shown that the
proposed method is suitable for implementation in systems that perform computer-aided
diagnosis in ophthalmology.

A future direction of this work may be to determine the MTA openness for the pre-
sented piecewise-parametric model with the aim of classifying ophthalmological alterations.
The first approach to this task would be to quantify the area-under-the-curve and slope
variations for the function.
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