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Abstract: In this paper, a localized boundary knot method is adopted to solve two-dimensional 

inverse Cauchy problems, which are controlled by a second-order linear differential equation. The 

localized boundary knot method is a numerical method based on the local concept of the localization 

method of the fundamental solution. The approach is formed by combining the classical boundary 

knot method with the localization method. It has the potential to solve many complex engineering 

problems. Generally, in an inverse Cauchy problem, there are no boundary conditions in specific 

boundaries. Additionally, in order to be close to the actual engineering situation, a certain level of 

noise is added to the known boundary conditions to simulate the measurement error. The localized 

boundary knot method can be used to solve two-dimensional Cauchy problems more stably and is 

truly free from mesh and numerical quadrature. In this paper, the stability of the method is verified 

by using multi-connected domain and simply connected domain examples in Laplace equations. 
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1. Introduction 

In the engineering field, due to the limitations of engineering measurement 

technology, some information that is required for engineering calculations can be difficult 

to obtain. Such problems are called inverse problems. The lack of information about 

inverse problems can be mainly classified into two modes: the detection of the boundary 

location and the determination of boundary conditions. Chang, Yeih and Shieh (2001) [1] 

showed that neither the traditional Tikhonov’s regularization method, nor the singular 

value decomposition method can yield an acceptable numerical result for the inverse 

Cauchy problem of Laplace equations, when the influence matrix is highly ill-posed. In 

order to obtain sufficiently stable and accurate numerical results for inverse Cauchy 

problems, different numerical methods have been studied by scholars in previous works. 

In order to obtain stable solutions, some mesh-based methods have been widely used 

to solve inverse problems, including the finite element method (FEM) [2], the finite 

difference method (FDM) [3] and the boundary element method (BEM) used by Lesnic et 

al. [4–6]. However, as a mesh-based method, it is still nontrivial of the BEM to generate a 

well-behaved mesh for complex-shaped surfaces. As a competitor to the mesh-based 

method, the meshless method has been proposed by researchers to solve inverse Cauchy 

problems. Similar to the FEM, the domain-type meshless method needs to employ 

arbitrarily distributed interior and boundary collocations to represent the domain and 
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boundary of the problem. The domain-type meshless methods are the radial basis 

function method (RBFCM) and the generalized finite-difference method (GFDM), which 

are commonly used recently. The RBFCM was proposed by Kansa in 1990 [7,8], after 

which the selection of its optimal parameters was studied [9–11], and then this method 

became popular [12]. The GFDM has been applied to inverse problems and is widely used 

for engineering problems [13–16]. Similar to the BEM, boundary-type methods have the 

advantages of reducing the calculation dimensions and can easily obtain highly accurate 

numerical results. Considering their merits, boundary-type methods, including the 

Trefftz method [17–19], the modified collocation Trefftz method (MCTM) [20,21], the 

singular boundary method (SBM) [22] and the boundary particle method (BPM) have 

been widely studied for use in inverse Cauchy problems [23]. 

It is worth emphasizing that among the boundary-type meshless methods, the 

method of fundamental solutions (MFS) proposed by Kupradze and Aleksidze in 1964 

[24] is the most popular in the application of inverse problems [25,26] due to its high 

accuracy. Young [27] studied the condition number of MFS in a Cauchy problem, and Fan 

[28] further extended the scheme to solve a Cauchy problem involving Stokes equations. 

Despite the popularity of the method, determining the appropriate location of the source 

nodes is one of the difficulties that the MFS needs to overcome. Therefore, in 2002, Chen 

and Tanaka [29,30] proposed a boundary-type method with a nonsingular general 

solution instead of a singular fundamental solution as its basis function, named the 

boundary knot method (BKM). Since then, the BKM has also been applied to solve 

different problems [31,32], especially inverse problems [33,34]. 

In recent years, the concept of localization has been proposed to overcome the 

problems caused by the full matrix. The localized radial basis function collocation method 

(LRBFCM) [35–38], the first localized meshless method, was developed from the 

combination of the localization method and the RBFCM. Then, this method was applied 

to the study of an inverse Cauchy problem by Chan and Fan in 2013 [39]. After that, in 

2019, in order to expand the application of the MFS in large-scale problems, Fan [40] 

proposed the localized method of fundamental solutions (LMFS) by combining a similar 

localization concept with MFS. This localized method was used to solve inverse Cauchy 

problems by Wang [41], who proved its accuracy. In addition, the localized Trefftz method 

(LTM) and the localized singular boundary method (LSBM) were studied by Liu et al. [42] 

and Wang et al. [43], respectively. In this paper, the traditional BKM is improved into a 

localized meshless method, which is called the localized boundary knot method (LBKM). 

Moreover, large-scale problems that were difficult to solve in the past using the traditional 

methods can be solved efficiently by the LBKM, and successful tests for solving direct 

problems can be found in recent works [44,45]. Considering the merits of the LBKM, we 

take the Laplace equation as the governing equation and discuss the application of the 

LBKM for the inverse Cauchy problem for the first time. 

The structure of this paper can be studied as follows: In the first section, we introduce 

previous research on the use of numerical methods in inverse problems and discuss their 

merits and drawbacks. In the second section, we give the details and formulations of the 

inverse Cauchy problem. In the third section, we illustrate the LBKM calculation process 

with a specific description. Six numerical examples are shown in the fourth section. Then, 

the defined errors and numerical results are compared and analyzed. In the last section, 

the discussion and conclusions about the entire work can be found. 

2. Inverse Cauchy Problem 

In this paper, we use the localized boundary knot method to solve the two-

dimensional Cauchy inverse problem. The core of the problem is that some of the 

boundary conditions are unknown, so we need to add the overdetermined boundary 

condition to the known boundary section. The governing equation and boundary 

conditions are: 
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2 ( , ) 0,    ( , ) ,U x y x y =   (1) 

( , ) ( , ),    ( , ) ,DU x y p x y x y=   (2) 

( ) ( , ),    ( , ) ,N

NU U n q x y x y=   =   (3) 

( , ) ( , ),    ( , ) ,osU x y k x y x y=   (4) 

( ) ( , ),    ( , ) ,os

NU U n d x y x y=   =   (5) 

where 
2 2

2

2 2x y

 
 = +

 
 is the two-dimensional Laplacian, ( , )U x y  represents any 

unknown variable in the field  , 
D N os  =     is the boundary of the 

computational domain and we assume that the boundary   consists of two 

components that are disjointed from each other =os   . 
D  and 

N  are the 

Dirichlet boundary condition and the Neumann boundary condition, respectively. 
os  

represents the boundary portions with overspecified boundary conditions.   represents 

the boundary portions without boundary conditions. ( ),x yn n n=  is the unit outward 

normal vector on the boundary. ( , )p x y  and ( , )q x y  are the given boundary 

conditions. 

3. Numerical Method 

In this study, we used a localized BKM to solve this two-dimensional Cauchy inverse 

problem, whose governing equation is the Laplace equation. However, the traditional 

boundary knot method is extended from the method of the fundamental solution, and this 

study improves the global-type meshless method by changing it into the local type. 

1 2i b bN n n n= + +  is assumed to represent the total number of points to be calculated, 

where in  represents the number of internal points, while 1bn  and 2bn  represent the 

points of two kinds of boundary, i.e., 
D  and 

N , respectively. A schematic diagram of 

the calculation nodes of the localized BKM method is shown in Figure 1a. 

In the localized BKM method, a subdomain is formed in each node, as shown in 

Figure 1b. The numerical solution for each subdomain can be approximately expressed as 

follows: 

1

( , ) ( ),    , ,
kn

i i k k

k

U x y G r x y
=

=   (6) 

in which 
j  stands for the unknown coefficients, and N is the number of adjacent nodes. 

2 2( ( ))( ) cos(2 )c x y

kG r e cxy− −=  is the BKM basis function, which satisfies the two-

dimensional Laplace equation. kn  is the number of nodes in a subdomain. c is the shape 

parameter. 0.1c =  is adopted in the following case.

2 2  ,  )k kr x y x x x y y y= + = − = −(  is the Euclidean distance, where kx  and ky  

represent the x and y coordinates of the local node near the computing node, respectively. 

The source points are obtained from the nearest computing nodes in the subdomain. 

By introducing the spatial coordinates of the nearest nodes into Equation (6), the 

following system is obtained: 
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( ) ( ) ,i iU C=  (7) 

where ( ) ( ) ( ) ( )

1 2 3[    ... ]i i i i i T

NU u u u u=  is the vector of unknown variables at kn  nodes, and 

( ) ( ) ( ) ( ) ( )

1 2 3[    ... ]i i i i i T

m    =  is the vector of the unknown coefficients. C is the 

coefficient matrix. The unknown coefficients can be expressed by unknown variables: 

( ) 1 ( ).i iC U −=  (8) 

The inverse matrix 
1C−
 is calculated by using the MATLAB command pinv, and we 

set the tolerance to be 10−3–10−4 in this article. 

The numerical solution for the ith node can be obtained from introducing the node 

coordinates of this point into Equation (7). The form is as follows: 

( ) ( ) ( ) ( ) ( 1) ( )

( )

1 1

( ) ,
k kn n

i i T i i T i i i

i k k k k

k k

U G r c c C U U  −

= =

= = = =   (9) 

where 
( )

1 2 3[ ( ) G(r ) ( ) ... ( )]
k

i T

i i i inc G r G r G r=  is the vector of the fundamental solution 

at the ith node. ( )

1{ } kni

k k =
 represents the weighting coefficients. 

In addition, according to Equation (3), we have 

( ) ( ) ( ) ( ) 1 ( ) ( )

1 1

( ) ,
k kn n

i i T i i T i x i i

k k x x k k

k ki i

U
G r h h H U U

x x
  −

= =

 
= = = =

 
   (10) 

and 

( ) ( ) ( ) ( ) 1 ( ) ( )

1 1

( ) ,
k kn n

i i T i i T i y i i

k k y y k k

k ki i

U
G r h h H U U

y y
  −

= =

 
= = = =

 
   (11) 

where 

( ) 31 2
( ) ( )( ) ( )

   ... ,

T

i k
x

i i i i

G r G rG r G r
h

x x x x

   
=  

    
 (12) 

( ) 31 2
( ) ( )( ) ( )

   ...

T

i k
y

i i i i

G r G rG r G r
h

y y y y

   
=  

    

 (13) 

In order to obtain the expression for the Neumann boundary conditions, we can bring 

Equations (10) and (11) into Equation (3): 

( , ),    , N

x y

U U U
n n q x y x y

n x y

  
= + = 

  
 (14) 

The linear equations that satisfy the Laplace equation, Dirichlet boundary conditions 

and Neumann boundary conditions are combined to form sparse linear algebraic 

equations, 

,=AU b  (15) 

where N NA  is the sparse coefficient matrix that avoids the ill-conditioned matrix,

 1 2 3   ...
T

NU U U U=U  is the unknown field quantity at every node and b  represents 

the known conditions. Therefore, U  can be calculated from Equation (15). The localized 

BKM, which combines BKM with the localization concept of localized MFS, is simple and 
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clear, and the method of determining local points is also novel. In addition, due to the 

sparse matrix generated in the calculation of linear algebraic equations, it can also be 

applied to some complex fields. 

 

Figure 1. Schematic diagram of the localized boundary knot method. (a) The global domain. (b) 

The local domain of the ith node. 

4. Numerical Results and Comparisons 

In this section, we present an analysis and comparison of the results of five cases. 

These five examples include a simply connected domain and a multi-connected domain. 

At the same time, different levels of noise are added to the boundary conditions to verify 

the stability of the localized BKM. For the last case, we carry out the process of forward 

calculation and then reverse calculation by guessing the analytical solution and relative 

error of the Laplace equation. In this paper, we compare the analytical solution au  with 

the numerical solution U  and take the maximum relative error as the index of error 

analysis. 

( ( ) / )a aerror max U u u= − .  

4.1. Case 1 

In the first example, we use a square computing field, as shown in Figure 2. The field 

is denoted by 1 2 3 4 =  + + + . The boundary corner points are removed, and 

the internal points and boundary points are evenly distributed throughout the entire 

calculation domain. The analytical solution of the applied boundary condition is as 

follows: 

( , ) cos( ) sin( ) 5,x y

au x y e y e x= + +  (16) 

where the 
1  boundary is unknown, and the overdetermined boundary conditions 

(Dirichlet and Neumann) are added to the remaining edges, which are 2 3,   and 4 . 

Hence, the points on this edge are calculated as interior points. The following parameters 

are used in this example: 4896,  272,  100,  0.1b kN n n c= = = = , where N is the 

number of total nodes, while bn is the number of boundary nodes. 
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In order to reflect the real boundary conditions, different levels of noise s  are added 

to the boundary to consider possible errors in advance. Therefore, the boundary 

conditions take the following forms: 

2 3 4( , )(1 ),   ( , ) ,
100

a

s
u f x y rand x y= +   + +  (17) 

2 3 4

[( ) ](1 ) ( , )(1 )
100 100

[ ( ( , )) ](1 ),    ( , )
100

an

a

s s
u u n rand g x y rand

s
u x y n rand x y

=   +  = + 

=   +   + +

 (18) 

where s is the percentage of added noise, rand is the random number and the range is 

1 1rand−   . The function rand in MATLAB software is used in this paper to generate 

the noise. 

In order to show the calculation results more clearly, we draw the solution along the 

boundary 1 , as shown in Figure 3. In this figure, we can see that, although different 

degrees of noise interference are added, the numerical solution along the boundary 1  

is relatively stable, and the line-fitting degree with the analytical solution is relatively 

high. 

In Figure 4, we use a solid line to represent the internal numerical solution and a 

dotted line to represent the internal analytical solution. It can be seen from these four 

pictures that the errors increase with an increase in added noise, but they are all within 

the acceptable range, and those near the unknown boundary increase significantly. In 

Table 1, we describe the maximum relative error corresponding to different degrees of 

disturbance in detail. 

 

Figure 2. Schematic diagram for case 1. 
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Figure 3. The profiles of numerical solutions along 1  for case 1. 

  

(a) (b) 

  

(c) (d) 

Figure 4. The distributions of numerical (solid lines) and analytical solutions (dashed lines) (a) s = 1 

(b) s = 2 (c) s = 3 (d) s = 4. 
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Table 1. The maximum relative error obtained by adding different percentages of noise for case 1. 

Percentage of 

Noise 
s = 1 s = 2 s = 3 s = 4 s = 5 s = 6 s = 7 

Maximum 

relative error 0.00943 0.0136 0.0147 0.0184 0.0189 0.0209 0.0286 

4.2. Case 2 

In this case, a circle is used as the calculation domain, as shown in Figure 5. The 

radius of the circle is 1, and half of the boundary is unknown. 1  is an unknown 

boundary, while 2  is a known boundary. The analytical solution for this example is: 

2 2 5au x y xy= − + +  (19) 

The following parameters are used in this example: 2809,  200,bN n= =

 100,  0.1kn c= = . The boundary conditions take the following forms: 

2 2

2

( , )(1 )
100

( 5)(1 ),      ( , )
100

s
u f x y rand

s
x y xy rand x y

= + 

= − + + +  

 (20) 

2 2

2

[( ) ](1 ) ( , )(1 )
100 100

    [ ( 5) ](1 ),     ( , )
100

an

s s
u u n rand g x y rand

s
x y xy n rand x y

=   +  = + 

=  − + +  +  

 (21) 

The marked solid lines in Figure 6 represent the numerical results for the unknown 

boundary 1  under different noise disturbances, and the dotted line represents the 

analytical solution curve of 1 . Obviously, the numerical solutions are in good 

agreement with the analytical solution. 

 

Figure 5. Schematic diagram for case 2. 
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Figure 6. The profiles of numerical solutions along 1  for case 2. 

In Table 2, we list the maximum relative error obtained when adding different 

degrees of noise, and they are all very small. In Figure 7, we draw the internal 

distributions under different disturbances. The error near the unknown boundary is 

relatively large but is still within the acceptable range. The analytical solution line and the 

numerical solution line near the boundary with known boundary conditions fit well. 

  

(a) (b) 
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(c) (d) 

Figure 7. The distributions of numerical (solid lines) and analytical solutions (dashed lines). (a) s = 

1 (b) s = 2 (c) s = 3 (d) s = 4. 

Table 2. The maximum relative error obtained by adding different percentages of noise for case 2. 

Percentage of 

Noise 
s = 1 s = 2 s = 3 s = 4 s = 5 s = 6 s = 7 

Maximum 

relative error 0.0198 0.0272 0.0347 0.0428 0.0504 0.0596 0.0779 

4.3. Case 3 

For the third inverse problem, we use a doubly connected domain. The 

computational domain is concentric annular, as shown in Figure 8. The radius of the outer 

circle is 2, and the radius of the inner circle is 1. The analytical solution for this example 

is: 

sinh( )sin( ) cosh( )cos( ) 5au y x x y= + + . (22) 

The outer boundary has two kinds of boundary conditions, while the inner boundary 

has no boundary conditions. The given boundary conditions are obtained by the 

analytical solution, and the nodes are uniformly distributed in the computational domain 

and on the boundary. The parameters used in this example are as follows: 

1 21476,  380, =180 60,  0.1b b kN n n n c= = = = , where 1bn  and 2bn  represent 

the numbers of nodes on the outer and inner boundaries, respectively. 

In Table 3, we list the maximum relative errors obtained when adding different 

degrees of noise, and the errors are also stable. A comparison of the analytical and 

numerical solutions drawn along the unknown boundary is shown in Figure 9. An 

internal contour map of different degrees of disturbance is shown in Figure 10. It can be 

seen from the figures that the numerical solution and the analytical solution are very 

similar. 
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Figure 8. Schematic diagram for case 3. 

 

Figure 9. The profiles of numerical solutions along 1  for case 3. 

  

(a) (b) 



Mathematics 2022, 10, 1324 12 of 19 
 

 

  

(c) (d) 

Figure 10. The distributions of numerical (solid lines) and analytical solutions (dashed lines). (a) s = 

1 (b) s = 2 (c) s = 3 (d) s = 4. 

Table 3. The maximum relative error obtained by adding different percentages of noise for case 3. 

Percentage of 

Noise 
s = 0 s = 1 s = 2 s = 3 s = 4 s = 5 s = 6 s = 7 

Maximum 

relative error 
9.45  10−5 0.0056 0.0146 0.0214 0.0274 0.0375 0.0465 0.0654 

4.4. Case 4 

In order to verify the stability of the numerical method, we use the multi-connected 

domain as the computational domain in this case, as shown in Figure 11. In this case, we 

take the outer boundary 2  as the unknown boundary and the inner boundary 1  as 

the known boundary. Therefore, two kinds of boundary conditions are added to the inner 

boundary. The analytical solution for this example is: 

2 2 5au x y xy= − + + . (23) 

The boundary of the peanut shape is regarded as an unknown boundary, so the 

points on the boundary are calculated as internal nodes. Two internal wave elimination 

blocks are used as known boundaries, and a Dirichlet boundary condition and Neumann 

boundary condition are added. The parameters used in this example are as follows: 

1 23068,   120, =102,  100,  0.1b b kN n n n c= = = = .  

In Table 4, we list the maximum relative errors obtained when adding different 

degrees of noise, and the errors are also stable. A comparison of the analytical and 

numerical solutions drawn along the unknown boundary is shown in Figure 12. The data 

from tables and graphs show that the error is relatively stable and small. 
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Figure 11. Schematic diagram for case 4. 

 

Figure 12. The profiles of numerical solutions along 2  for case 4. 
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Table 4. The maximum relative error obtained by adding different noise for case 4. 

Percentage of 

Noise 
s = 0 s = 1 s = 2 s = 3 s = 4 s = 5 s = 6 

Maximum relative 

error 
1.96  10−4 0.0154 0.0196 0.0277 0.0496 0.0590 0.0688 

4.5. Case 5 

In this example, the geometry of this computational domain is more complex and 

there are many sharp angles at the boundary; its schematic diagram is shown in Figure 

13. The equation for the gear shape is as follows: 

( ) ( ) ( )( ) ( ) ( )( ) , cos , sin ,x y x y        = = =  (24) 

where 
( ) ( )( ) ( ) ( )0.2 2 0.5sin 7 , 0.5sin , 0 2        = + = +  

. 

we set the boundary conditions ( 0    ) of the upper half as unknown and the 

boundary conditions of the lower half ( 2    ) as given. The Dirichlet boundary 

condition and the Neumann boundary condition are given by the following analytical 

solution:  

( ) ( ) 2 2cos sinh 1au x y x y xy= + − + +  (25) 

The following parameters are used: 

1 2901,   150, =150,  80,  0.1b b kN n n n c= = = = . 

From Table 5, it can be observed that even the geometry of the boundary is more 

complex under the setting of different levels of noise, and we can use the localized 

boundary knot method to solve this inverse Cauchy problem and still maintain a stable 

level of accuracy. Additionally, Figure 14 clearly shows the error curves obtained by 

applying different percentages of noise under different numbers of local points. This 

means that when the number of local points increases, the maximum relative error from 

the analytical solution approaches a stable state. In Figure 15, we show that (a) 1s = , (b) 

2s = , (c) 3s =  and (d) 4s = . These four graphs show that there is indeed a certain 

degree of deviation in the upper half of the lack of boundary information, but the 

numerical results in the domain are consistent with the analytical solution. 

 

Figure 13. Schematic diagram for case 5. 
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Figure 14. The maximum relative error of the different percentages of noise and local nodes for 

case 5. 

  
(a) (b) 

  
(c) (d) 

Figure 15. The distributions of numerical (solid lines) and analytical solutions (dashed lines) for 

Case 6. (a) s = 1 (b) s = 2 (c) s = 3 (d) s = 4. 



Mathematics 2022, 10, 1324 16 of 19 
 

 

Table 5. The maximum relative error obtained by adding different noise for case 5. 

Percentage of 

Noise 
s = 0 s = 1 s = 2 s = 3 s = 4 s = 5 s = 6 

Maximum relative 

error 
7.39  10−4 0.0150 0.0265 0.0376 0.0473 0.0582 0.0675 

4.6. Case 6 

In order to further verify the accuracy of the localized BKM, in the last case, we also 

use the circle as the calculation domain, where a quarter of the boundary is used as the 

unknown boundary, namely 2

3
: 2

2
  

 
   

 
. We assume that the boundary 

conditions do not satisfy the analytical solution. This means that the corresponding 

analytical solution cannot be derived from the governing equations and boundary 

conditions. The known boundary satisfies the following conditions: 

sinh( ) cosh( ) cos( ) 50, ,
4 4 4

Dx x y
u x

 
= + +  
 

 (26) 

( )
( )

1
, ,

10

N
u x

x y x
n


+ 


=  (27) 

In Step 1, the boundary 
1

3
: 0

2
 

 
   

 
 is set as the Neumann boundary 

condition, and the boundary 2  is set as the Dirichlet boundary condition. The 

numerical solutions  
1

u


 can be solved by LBKM. 

In Step 2, 1  is selected as the unknown boundary condition and the numerical 

solution obtained from the previous solution  
1

u


 and the Neumann boundary 

condition on the 2  boundary are used. For the first of the step calculation, the total 

number of nodes is 2949N = , the number of boundary nodes is 200bn = , the number 

of local domain nodes is 100kn = , and the shape parameter is 0.1c = , and for the 

second step of the  calculation, the total number of nodes is 4249N = , the number of 

boundary nodes is 200bn = , and the shape parameter is 0.1c = . We analyze the 

maximum relative error of the numerical solutions for Step 1 and Step 2. 

To show the stability of the numerical method, we solved this problem by using 

different numbers of local points, and the maximum relative error is presented in Table 6. 

The change in maximum relative error corresponding to the change in total points is 

recorded in Table 7. It can be seen from the test of different total points N  and local 

points kn  that, in the case where the boundary conditions do not use analytical solutions, 

the maximum relative error can still remain accurate and stable. 

The distributions of numerical solutions to the direct and inverse problems are 

shown in Figure 16. In this figure, it can be seen that numerical solutions to the inverse 

problem are basically the same as in Step 1, and the maximum relative error is 
47.89 10− . 
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Figure 16. The numerical solution distribution of Step 1 (dashed lines) and Step 2 (solid lines) for 

case 6. ( 4093, 100kN n= = ). 

Table 6. The maximum relative error obtained with different values of kn  for case 6. ( 2949N = ). 

nk 40 70 100 130 150 

Maximum 

relative error 
3.75  10−3 7.22  10−4 1.20  10−3 1.92  10−3 1.72  10−3 

Table 7. The maximum relative errors with different values of N  for case 6. ( 100kn = ). 

N 3405 4093 5308 6380 8560 

Maximum relative 

error 
1.00  10−3 7.89  10−4 9.91  10−4 9.76  10−4 2.14  10−3 

5. Conclusions 

In this paper, the localized BKM was used to solve an inverse Cauchy problem 

controlled by a two-dimensional Laplace equation. The localized BKM is a method that 

combines the BKM of the meshless method with the localization concept. This method 

does not need grid generation and numerical integration, and it eliminates border radius 

issues with source points. For Cauchy problems, some boundary conditions are not 

readily available or there are measurement errors, so the numerical simulation is unstable. 

Therefore, we used the localized BKM to calculate such problems and verify the accuracy 

of this method. 

We presented five examples that illustrate the stability and accuracy of this method 

for solving inverse problems. With different percentages of noise on the boundaries, the 

maximum relative error remained stable and within the acceptable range. In particular, in 

the last case, the direct algorithm was first used to obtain the data with an extra boundary 

and was then applied to the reverse calculation in the second step. From the results of the 

error analysis presented in this paper, the localized BKM was shown to be more stable 

and accurate for solving Cauchy inverse problems. 

In the future, the localized BKM will be applied to various mathematical and physical 

problems as well as more complex problems, for example, moving boundary problems 

and three-dimensional problems. 
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