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Abstract: We propose a new goodness-of-fit test for the Rayleigh distribution which is based on
a distributional fixed-point property of the Stein characterization. The limiting null distribution
of the test is derived and the consistency against fixed alternatives is also shown. The results of a
finite-sample comparison is presented, where we compare the power performance of the new test to
a variety of other tests. In addition to existing tests for the Rayleigh distribution we also exploit the
link between the exponential and Rayleigh distributions. This allows us to include some powerful
tests developed specifically for the exponential distribution in the comparison. It is found that the
new test outperforms competing tests for many of the alternative distributions. Interestingly, the
highest estimated power, against all alternative distributions considered, is obtained by one of the
tests specifically developed for the Rayleigh distribution and not by any of the exponentiality tests
based on the transformed data. The use of the new test is illustrated on a real-world COVID-19
data set.

Keywords: asymptotics; goodness-of-fit; Monte Carlo simulation; Rayleigh distribution; Stein char-
acterization
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1. Introduction

In 1880 an acoustics problem gave rise to a distribution that nowadays plays a promi-
nent role in research fields such as reliability theory, life testing and survival analysis (see,
e.g., [1]). The Rayleigh distribution was introduced by [2], while undertaking a study
regarding the resultant of a great number of sound waves with differing phases. Refs. [3,4]
demonstrated the importance of the Rayleigh distribution in communication engineering
and electro-vacuum devices, respectively. Ref. [5] found that the Rayleigh distribution
has clinical applications, specifically estimating the noise variance of Magnetic Resonance
Images (MRI). Ref. [6] discusses this phenomenon and proposed that this estimation can be
done by fitting the density function of the Rayleigh distribution to the partial histogram of
the MRI. Ref. [7] improved this estimation with the use of background segmentation, by fit-
ting the density function of the Rayleigh distribution to the histogram of the segmented
background in order to estimate the noise variance. The estimation of the noise forms a
crucial part in efficiently denoising the MRI as well as in the quality assessment of these
images. The Rayleigh distribution has also become a popular model in survival analysis
and reliability theory, see, e.g., [8,9].

For any of the above-mentioned applications to be relevant, it is crucial to test the
hypothesis that the observed data are indeed realisations from a Rayleigh distribution.
Since the square of a Rayleigh distributed variable is exponentially distributed, goodness-
of-fit tests designed for the exponential distribution can be used to test for the Rayleigh
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distribution—a fact that we investigate further in Section 4. However, even though the
applications of the Rayleigh distribution increased significantly over the past few decades,
literature on tests specifically developed for the Rayleigh distribution is relatively scarce.
Some of these include a test proposed by [10] based on the empirical Laplace transform,
a test based on entropy suggested by [11] as well as [12] and an empirical likelihood based
test by [13]. It has become a common approach to use distributional characterizations to
propose goodness-of-fit testing procedures, see, e.g., Ref. [14] and the references therein. In
this paper, we propose a new test for the Rayleigh distribution based on a modification of
Stein’s characterization discussed by [15].

The standard Stein characterization (see [16]) of the normal distribution states that Z
is standard normal if, and only if,

E[g′(Z)− Zg(Z)] = 0 (1)

is true for all absolute continuous functions g for which the expectation exists. Some
applications, such as goodness-of-fit tests based on (1), are rather complicated, since the
results depend on the choice of g. Instead of using this relationship, Ref. [17] characterised
the standard normal distribution based on the zero bias distribution. A real valued random
variable X∗ is said to have a X zero-bias distribution if

E[g′(X∗)] = E[Xg(X)]

holds for all absolutely continuous functions g for which the expectation exists. If EX = 0
and Var(X) = 1, the X zero-bias distribution exists, is unique and has distribution function

F(t) = E[X(X− t)1{X ≤ t}], t ∈ R.

Using this distribution function, ref. [17] showed that Z is standard normal if, and only
if, the distribution function of Z is given by F(t). Ref. [15] generalised this method to
a wide range of continuous distributions by generalising Stein’s characterization. They
showed that if X has support [0, ∞), then it has distribution F if, and only if, the distribution
function of X is given by

F(t) = E
[
− f ′(X)

f (X)
min{X, t}

]
, t ∈ (0, ∞), (2)

where f is the density of X. The result in (2) is true under some regularity conditions on f ,
which will be discussed in Section 2. The characterization in (2) will be used to develop a
new goodness-of-fit test specifically for the Rayleigh distribution.

Before proceeding some notation is introduced. Let X1, . . . , Xn be independent and
identically distributed (i.i.d.) continuous realisations of a positive random variable X with
unknown distribution function F and density f . If X follows a Rayleigh distribution with
density function

f (x) =
x
θ2 e−

x2

2θ2 , x ≥ 0, θ > 0,

it will be denoted by X ∼ Ral(θ). The composite goodness-of-fit hypothesis to be tested is

H0 : the distribution of X is Ral(θ), (3)

for some θ > 0, against general alternatives.
The remainder of the article is organised as follows: In Section 2, the new test statistic

is introduced. Section 3 contains the basic theoretical results pertaining to the asymptotic
behaviour of the test. The results of a Monte Carlo study, where the power performance of
the newly proposed test is compared to some existing tests, is given in Section 4. The com-
peting tests also include five powerful tests for exponentiality based on transformed data.
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The paper concludes in Section 5 with an application of the test to a real-world COVID-19
data set and some concluding remarks.

2. Test Statistic

For the characterization in (2) to be true the following regularity conditions, see [15],
should hold:

(I) f is continuously differentiable on [0, ∞);
(II) f (x) > 0 for every x ∈ [0, ∞);

(III) for κ f (x) =
∣∣∣ f ′(x)min{F(x),1−F(x)}

f 2(x)

∣∣∣ we have supx∈[0,∞] κ f (x) < ∞;

(IV)
∫ ∞

0 (1 + |x|)| f ′(x)|dx < ∞;

(V) limx→0
F(x)
f (x) = 0;

(VI) limx→∞
1−F(x)

f (x) = 0.

It can easily be seen that conditions (I), (II), (V) and (VI) hold for the Rayleigh distribu-
tion. For X ∼ Ral(θ), κ f in condition (III) becomes

κ f (x) =
θ2ex2/2θ2

x2 min{F(x), 1− F(x)}
∣∣∣∣1− x2

θ2

∣∣∣∣
and for x2 > θ2;

∣∣∣1− x2

θ2

∣∣∣ = x2

θ2 − 1. For x large enough we have that 1− F(x) < F(x); thus,

lim
x→∞

κ f (x) = θ2 lim
x→∞

(
exp(x2/2θ2)

x2

)
(1− F(x))

(
x2

θ2 − 1
)
= 1

Because x is sufficiently small, we have that F(x) < 1− F(x); thus, we have

lim
x→0

κ f (x) = θ2 lim
x→0

exp(−x2/2θ2)

(
1− x2

θ2

)(1− ex2/2θ2
)

x2 =
1

2θ2 θ2 =
1
2

.

Since κ f (x) is continuous with limits 1 and 1
2 as x tends to infinity and zero, respec-

tively, it implies that supx∈[0,∞) κ f (x) < ∞.
The integral in condition (IV) can be written as follows in terms of expectations:

∫ ∞

0
(1 + |x|)

(
1− x2

θ2

)(
1
θ2

)
e−x2/2θ2

dx = E
(
{1 + X}

{
1− X2

θ2

})
,

where X is Rayleigh distributed. The finite moments of the Rayleigh distribution exist,
i.e., E(Xk) < ∞, k ∈ N. Therefore,∫ ∞

0
(1 + |x|)| f ′(x)|dx < ∞.

In Proposition 1 below, the characterization in (2) is re-stated specifically for the
Rayleigh distribution.

Proposition 1. Let X : Ω→ (0, ∞) be a random variable with distribution function F and density
function f that satisfies conditions (I)–(VI) and E[X] < ∞. Then X ∼ Ral(θ) if, and only if,

E
[(

X
θ2 −

1
X

)
min{X, t}

]
− F(t) = 0, t > 0.
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Note that X ∼ Ral(θ) if, and only if, Y = X
θ ∼ Ral(1). This follows from the invariance

property of the Rayleigh distribution with respect to scale transformations. This implies
that Y ∼ Ral(1) if, and only if, for all t > 0

ψ(t) = TY(t)− FY(t) = 0, (4)

where TY(t) = E[(Y− 1/Y)min(Y, t)] and FY is the distribution function of Y. Our newly
proposed test is motivated by (4). Since ψ(t) will be unknown, we estimate it by its
empirical counterpart,

ψ̂n(t) = TY
n (t)− FY

n (t),

where TY
n (t) = 1

n ∑n
j=1
(
Yj − 1/Yj

)
min(Yj, t), FY

n (t) = 1
n ∑n

j=1 I(Yj ≤ t) and Yj = Xj/θ̂n,

with θ̂n =
√
(2n)−1 ∑n

j=1 X2
j the maximum likelihood estimator for θ.

We propose the following weighted L2−distance between ψ̂(t) and 0 to test the
hypothesis in (3):

Rn,a = n
∫ ∞

0
ψ̂2

n(t)wa(t)dt, (5)

where wa(t) is a positive, continuous weight function depending on a positive tuning
parameter a. The test rejects for large values of Rn,a. Throughout the paper we use
wa(t) = e−at as the weight function, which results in the following easily calculable form
of the test statistic:

Rn,a =
1
n

n

∑
j=1

−1
a

e−aY(j)

{Y(j) −
1

Y(j)

}2{
2
a

Y(j) +
2
a2

}
+ 2Y2

(j) − 3

+
2
a3

[
Y2
(j) − 2 +

1
Y2
(j)

]
+

2
n ∑

1≤j<k≤n

({
Y(j) −

1
Y(j)

}{
Y(k) −

1
Y(k)

}(
−1

a
e−aY(j)

{
1
a

Y(j) +
2
a2

}
+

2
a3 −

Y(j)

a2 e−aY(k)

)

+

{
Y(j) −

1
Y(j)

}{
−

Y(j)

a
e−aY(k)

}

+

{
Y(k) −

1
Y(k)

}{
1
a2 e−aY(k) − 1

a
e−aY(j)

(
Y(j) +

1
a

)}
+

1
a

e−aY(k)

)
,

where Y(1) < Y(2) < · · · < Y(n) denotes the order statistics of Y1, . . . , Yn.

Remark 1. The most commonly used choices for the weight function wa(·) are wa(t) = e−a|t| and
wa(t) = e−at2

(see, e.g., [18,19]). Due to the positive support of the Rayleigh distribution, we use
wa(t) = e−a|t| = e−at, t ≥ 0. This choice does not only provide a close form expression for the test
statistic, but also competitive powers which are reported in the Monte Carlo simulation study (see
Section 4).

3. Asymptotics

In this section, we will first show that, under the null hypothesis, Rn,a converges in
distribution to a norm of a Gaussian element of the Hilbert space H = L2((0, ∞),B) of
measurable, square integrable functions. The norm || · ||H that will be used is defined in
terms of a random element Gn ofH, n ∈ N, by

||Gn||H =

(∫ ∞

0
{Gn(t)}2e−atdt

) 1
2
.

We will also show that the newly proposed test is consistent.
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First note that by substituting t with s
θ̂n

and Yj with
Xj

θ̂n
in (5) the test statistic Rn,a can

be rewritten as
Rn,a =

1
θ̂n

∫ ∞

0

(√
n
{

T̂X
n (s)− FX

n (s)
})2

e−as/θ̂n ds, (6)

where

T̂X
n (s) =

1
nθ̂2

n

n

∑
j=1

(
Xj −

θ̂2
n

Xj

)
min

{
Xj, s

}
(7)

is a continuous function.
To obtain our two main results, we use the following Lemma, in which the notation

Gn ≈ Hn is used when ||Gn − Hn||2H = oP(1), where oP(1) denotes a sequence of random
variables that converge to zero in probability. We also assume, w.l.o.g., that θ = 1.

Lemma 1. Suppose X, X1, X2, . . . are i.i.d. random variables with distribution function FX and
E
[
X4] < ∞. Let T̂X

n (s) be defined as in (7), then

T̂X
n (s) =

1
θ̂2

n

{
TX

n (s) +
(

1− θ̂2
n

)
rX

n (s)
}

,

where

rX
n (s) =

1
n

n

∑
j=1

1
Xj

min
{

Xj, s
}

,

and

TX
n (s) =

1
n

n

∑
j=1

(
Xj −

1
Xj

)
min(Xj, s).

We also have that

√
nT̂X

n (s) ≈
√

n
θ̂2

n

{
TX

n (s) +
(

1− θ̂2
n

)
rX(s)

}
,

where

rX(s) = E
[

1
X

min{X, s}
]

.

Proof. The first result follows immediately by rewriting T̂X
n (s) in (7) as

T̂X
n (s) =

1
nθ̂2

n

n

∑
j=1

[(
Xj −

1
Xj

)
min

{
Xj, s

}
+

(
1

Xj
− θ̂2

n
Xj

)
min

{
Xj, s

}]
.

To show the second result we notice that

√
n
{

T̂X
n (s)− 1

θ̂2
n

[
TX

n (s) +
(

1− θ̂2
n

)
rX(s)

]}
=

√
n
(
1− θ̂2

n
)

θ̂2
n

{
rX

n (s)− rX(s)
}

.

Applying a weak form of the law of large numbers in separable Hilbert spaces, we have
that rX

n (s) = rX(s) + oP(1) and by the continuous mapping theorem ||rX − rX
n ||2H = oP(1).

Since θ̂2
n is the maximum likelihood estimator of θ2, we have that

√
n
(
1− θ̂2

n
)
= OP(1),

where OP(1) denotes a sequence of random variables that is bounded in probability.
The result then follows from Slutsky’s theorem.

Theorem 1. Let X, X1, X2, . . . be i.i.d. standard Rayleigh random variables. There exists a centred

Gaussian elementW ofH such that Rn,a
D−→ ||W||2H, where the covariance kernel ofW is given by
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K(s, t) = Cov
[
Wj(s), Wj(t)

]
= FX(s ∧ t) + (s ∧ t)[I3(s ∧ t, s ∨ t)− 2I1(s ∧ t, s ∨ t) + I−1(s ∧ t, s ∨ t)]

+ st
[
2FX(s ∨ t)− 2 + I2(s ∨ t, ∞) + I−2(s ∨ t, ∞)

]
+ I4(0, s ∧ t)− 2I2(0, s ∧ t)

+ rX(s)rX(t) + 2FX(s)FX(t)

+

{
−1

2
I4(0, s) +

3
2

I2(0, s) + s
[
−1

2
I3(s, ∞) +

3
2

I1(s, ∞) + I−1(s, ∞)

]}
rX(t)

+

{
−1

2
I4(0, t) +

3
2

I2(0, t) + t
[
−1

2
I3(t, ∞) +

3
2

I1(t, ∞) + I−1(t, ∞)

]}
rX(s)

− 1
2
{I4(0, s)− I2(0, s) + s[I3(s, ∞) + I1(s, ∞)]}FX(t)

− 1
2
{I4(0, t)− I2(0, t) + t[I3(t, ∞) + I1(t, ∞)]}FX(s),

where
Ik(a, b) = E

[
Xk

j 1
(
a ≤ Xj ≤ b

)]
and

Ik(a, ∞) = lim
b→∞

Ik(a, b).

Proof. First note that

√
n
{

T̂X
n (s)− FX

n (s)
}
≈
√

n
θ̂2

n

{
TX

n (s) +
(

1− θ̂2
n

)
rX(s)− θ̂2

nFX(s)
}

,

since ||FX − FX
n ||2H = oP(1). We can therefore write

√
n
{

T̂X
n (s)− FX

n (s)
}
≈ 1
√

nθ̂2
n

n

∑
j=1

Wj(s),

where

Wj(s) =

(
Xj −

1
Xj

)
min

{
Xj, s

}
+

(
1− 1

2
X2

j

)
rX(s)− 1

2
X2

j FX(s).

We note that W1, . . . , Wn are i.i.d. random variables with E(W1) = 0 and E||W1||2H < ∞.
Therefore, by the central limit theorem for separable Hilbert spaces (see [20]) there exists a
centred Gaussian elementW ∈ H with

1√
n

n

∑
j=1

Wj(·)
D−→ W(·).

From this we have that
√

n
{

T̂X
n (s)− FX

n (s)
}
= OP(1). Therefore, since θ̂n = 1 + oP(1)

and by Holder’s inequality we have that∣∣∣∣∫ ∞

0

(√
n
{

T̂X
n (s)− FX

n (s)
})2

e−as/θ̂n ds−
∫ ∞

0

(√
n
{

T̂X
n (s)− FX

n (s)
})2

e−asds
∣∣∣∣

≤ sup
s>0

∣∣∣∣e−as
(

1
θ̂n
−1
)
− 1
∣∣∣∣||√n

{
T̂X

n − FX
n

}
||2H = oP(1).

Therefore,
Rn,a = ||

√
n
{

T̂X
n − FX

n

}
||2H + oP(1). (8)

The final result then follows from Slutsky’s theorem.
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Remark 2. A closed form expression for the covariance kernel for the limiting centred Gaussian
distribution does not exist. However, for non-negative even numbers of k closed form formulas for
functions Ik(a, b) exist by using the following recursive formulas

I0(a, b) = FX(b)− FX(a)

Ik(a, b) = ake−1/2a2 − bke−1/2b2
+ kIk−2(a, b).

Now that we have shown that, under the null hypothesis, Rn,a converges in distri-
bution to a norm of a Gaussian element of the Hilbert spaceH, we can continue to show
that the newly proposed test is consistent. Therefore, we will show that Rn,a

n = ∆ + oP(1),
where ∆ = ||TX − FX ||2H with the properties that ∆ = 0 under the null hypothesis and
∆ > 0 under fixed alternatives. This is as a result of the characterization of the Rayleigh
distribution in Proposition 1.

Theorem 2. Suppose X, X1, X2, . . . are i.i.d. random variables with distribution function FX and
E
[
X2] < ∞. As n→ ∞, we have

Rn,a

n
= ||TX − FX ||2H + oP(1).

Proof. From (8) we have that

Rn,a

n
= ||T̂X

n − FX
n ||2H + oP(1).

To prove the theorem we need to show that

||T̂X
n − FX

n ||2H = ||TX − FX ||2H + oP(1).

By a weak form of the law of large numbers for separable Hilbert spaces we have that
TX

n (s) = TX(s) + oP(1) and FX
n (s) = FX(s) + oP(1). Moreover, from Lemma 1 we have

that T̂X
n (s) = TX

n (s) + oP(1) and hence T̂X
n (s) = TX(s) + oP(1). We also have that

T̂X
n (s)− FX

n (s) =
(

T̂X
n (s)− TX(s)

)
+
(

TX(s)− FX(s)
)
+
(

FX(s)− FX
n (s)

)
,

and by the continuous mapping theorem the result follows.

4. Simulation Study

In this section, Monte Carlo simulations are used to compare the finite sample per-
formance of the newly proposed test to the following existing goodness-of-fit tests for the
Rayleigh distribution:

• The traditional Kolmogorov–Smirnov (KSn), Cramér-von Mises (CMn) and Anderson–
Darling (ADn) tests;

• A test based on the empirical Laplace transform proposed by [10], ELn,a;
• A test based on the cumulative residual entropy proposed by [11], CRn, and
• A test based on an estimator of the Kullback–Leibler divergence proposed by [12],

KLn,a.

The estimated powers of Rn,a, ELn,a and KLn,a are functions of a tuning parameter,
a. For Rn,a we report the results for a = 1 and a = 5, for ELn,a a is 1 and 5 and for KLn,a
results are reported for a = 3 and a = 4. The motivation for these choices of a will be
discussed in Section 4.2.

In addition to the existing tests, we also compare the performance of the new test to
the following five powerful tests for exponentiality (see, e.g., the overview papers by [21]
as well as [22] for a discussion on a variety of tests for exponentiality);
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• The modified Kolmogorov–Smirnov (K̃Sn) and Cramér-von Mises (C̃Mn) tests based
on the mean residual life proposed by [23];

• Two tests based on the empirical Laplace transform; one proposed by [24], BHn,a,
and the other one by [25], HMn,a, and

• A test based on the empirical characteristic function proposed by [26], EPn.

Here, we test for the Rayleigh distribution by testing for exponentiality of the trans-
formed data (using the well known property that the square of a Rayleigh distributed
random variable follows an exponential distribution). The estimated powers of BHn,a and
HMn,a are functions of a tuning parameter, a. For both BHn,a and HMn,a we report the
results for a = 0.75, 1 and 1.25.

4.1. Simulation Setting

A significance level of 5% is used throughout. Critical values of all the tests are ob-
tained using 50,000 independent Monte Carlo replications drawn from a standard Rayleigh
distribution (all the test statistics are invariant with respect to scale transformations). Power
estimates are calculated and reported for sample sizes n = 20 and n = 30 using 10,000
independent Monte Carlo replications obtained from various alternative distributions.
These include some ‘local’ alternatives as well as those given in Table 1. These alternative
distributions were chosen since they are frequently used alternatives for the Rayleigh distri-
bution, which has an increasing hazard rate. The hazard rates of the considered alternative
distributions include constant hazard rates (CHR), increasing hazard rates (IHR), decreas-
ing hazard rates (DHR) and non-monotone hazard rates (NMHR). These alternatives all
have support in R+ and are used in many other empirical studies for goodness-of-fit tests
of lifetime distributions (see, e.g., [10,21,27]). In Table 1, all scale parameters are set to one
due to the scale transformation Yj = Xj/θ̂n, j = 1, . . . , n. All simulations and calculations
are done in Ref. [28]. The tables are produced using the Stargazer package, see [29].

Table 1. Probability density functions of the alternative distributions considered in the Monte
Carlo study.

Alternative f(x) Notation

Gamma 1
Γ(θ) xθ−1 exp(−x) Γ(θ)

Weibull θxθ−1 exp(−xθ) W(θ)

Power 1
θ x(1−θ)/θ , 0 < x < 1 PW(θ)

Linear Failure Rate (1 + θx) exp
(
−x− θx2

2

)
LFR(θ)

Lognormal exp
{
− 1

2

(
log(x)

θ

)2
}{

θx
√

2π
}−1 LN(θ)

Inverse Gaussian
(

θ
2πx3

)1/2
exp

{
−θ(x−1)2

2x

}
IG(θ)

Gompertz exp(−θx) exp
{
−
(

1
θ

)
(exp(θx)− 1)

}
GO(θ)

Exponential θ exp(−θx) Exp(θ)
Extreme value 1

θ exp
(

x +
1−exp(x)

θ

)
EV(θ)

Exponential geometric (1− θ) exp(−x)(1− θ exp(−x))−2 EG(θ)

We first consider some local power estimates. Here, we consider a mixture distribution,
which is obtained by sampling with probability p from a standard exponential distribu-
tion (Exp(1)) and with probability (1− p) from a Ral(1) distribution. The value p = 0
corresponds to the standard Rayleigh distribution, whereas increasing values of p implies
a larger deviation from the null distribution. These estimated powers are given in Table 2
and the estimated powers for the exponentiality tests based on the transformed data are
given in Table 3. The estimated powers for sample sizes 20 and 30 against every alternative
distribution in Table 1 are given in Tables 4 and 5, respectively. The estimated powers,
obtained using the tests for exponentiality based on the transformed data, for sample sizes
20 and 30 are given in Tables 6 and 7, respectively. The entries in these tables are the
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percentages of 10,000 independent Monte Carlo samples that resulted in the rejection of the
null hypothesis (rounded to the nearest integer). For the reader’s convenience, the highest
estimated power for each alternative distribution among the existing tests, as well as the
tests for exponentiality based on the square of the data, are displayed separately in bold
in each of their respective tables. The last column of Tables 2, 4 and 5 contain the highest
estimated powers from the corresponding exponentiality tests based on the transformed
data (i.e., the highest powers obtained from Tables 3, 6 and 7 are also reported in the last
column of Tables 2, 4 and 5); this will make comparison easier.

Table 2. Estimated local powers for the mixture of the Rayleigh and exponential distributions for
various choices of the mixture parameter, p.

p n KSn CMn ADn ELn,1 ELn,5 CRn KLn,3 KLn,4 Rn,1 Rn,5 Exp

0
20 5 5 5 5 5 5 5 5 5 5 5
30 5 4 5 4 5 4 5 5 6 5 5

0.05
20 6 6 7 8 7 7 6 5 7 9 7
30 6 7 8 9 8 9 6 6 8 9 8

0.1
20 8 8 12 15 10 10 6 6 10 13 10
30 8 9 14 16 13 13 8 7 13 16 12

0.15
20 9 11 17 20 15 14 8 8 14 20 14
30 12 14 21 25 19 16 12 11 18 23 17

0.2
20 12 14 22 27 19 17 11 11 19 27 18
30 15 17 27 34 25 21 14 15 25 34 23

0.25
20 15 18 29 34 25 21 14 14 24 34 25
30 21 24 36 44 34 27 19 20 32 44 18

0.3
20 19 22 35 42 30 24 16 15 30 42 30
30 26 30 44 54 41 32 25 27 41 53 42

0.35
20 22 27 42 50 37 30 21 22 37 50 36
30 32 37 54 62 49 38 31 32 50 61 49

0.4
20 28 32 48 56 43 35 26 27 42 56 43
30 41 45 62 70 58 44 39 38 57 70 57

0.45
20 34 39 56 64 52 41 32 32 49 62 51
30 46 51 69 77 65 52 46 46 64 76 66

0.5
20 39 43 61 69 57 45 36 36 55 69 57
30 51 59 76 82 72 57 52 53 71 83 72

Table 3. Estimated local powers for the mixture of the Rayleigh and exponential distributions, using
transformed data, for various choices of the mixture parameter, p.

p n K̃Sn C̃Vn EPn BHn,0.75 BHn,1 BHn,1.25 HMn,0.75 HMn,1 HMn,1.25

0
20 5 5 5 5 5 5 5 5 5
30 5 5 5 5 5 5 5 5 5

0.05
20 6 6 7 7 7 7 7 6 7
30 6 7 7 8 7 8 7 7 7

0.1
20 7 9 10 10 10 10 10 9 9
30 8 10 11 11 12 10 12 12 11

0.15
20 8 12 12 14 13 13 14 13 13
30 10 15 15 17 16 17 17 16 16

0.2
20 10 15 16 18 17 17 18 18 17
30 14 19 20 23 22 22 23 22 22
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Table 3. Cont.

p n K̃Sn C̃Vn EPn BHn,0.75 BHn,1 BHn,1.25 HMn,0.75 HMn,1 HMn,1.25

0.25
20 14 18 20 23 22 22 25 23 22
30 18 25 27 31 30 29 34 31 31

0.3
20 15 23 24 28 28 26 30 28 27
30 23 31 34 40 37 36 42 39 38

0.35
20 19 29 30 35 33 33 36 34 34
30 27 38 40 46 44 44 49 46 45

0.4
20 23 35 36 41 39 38 43 41 40
30 36 46 49 55 54 52 57 55 55

0.45
20 29 41 43 49 46 46 51 48 48
30 42 53 55 63 61 59 66 63 62

0.5
20 32 46 47 53 52 51 57 54 53
30 47 60 62 70 67 67 72 70 69

Table 4. Estimated powers for general alternatives for the Rayleigh distribution for sample size
n = 20.

F KSn CMn ADn ELn,1 ELn,5 CRn KLn,3 KLn,4 Rn,1 Rn,5 Exp

CHR

Exp(1) 86 90 96 97 94 89 84 85 94 97 95

IHR

Γ(1.5) 57 63 73 75 73 64 44 44 72 77 72
Γ(2) 32 38 44 43 46 41 19 18 44 44 44

W(1.2) 64 69 80 84 79 68 54 55 79 85 79
W(1.4) 37 42 53 58 53 43 26 25 52 60 52
PW(1) 16 20 40 42 13 21 45 46 18 41 21
LFR(2) 38 45 63 70 56 42 36 36 56 69 59
LFR(4) 26 29 47 56 41 29 25 25 40 55 42
EV(0.5) 56 61 79 84 74 58 54 55 73 84 76
EV(1.5) 22 24 46 56 33 20 26 28 35 56 38
GO(0.5) 56 62 79 84 74 57 54 54 75 84 76
GO(1.5) 22 25 44 54 33 20 27 29 33 55 38

DHR

Γ(0.4) 100 100 100 100 100 100 100 100 100 100 100
Γ(0.7) 97 98 100 100 99 97 98 98 99 100 99
W(0.8) 97 98 100 100 100 98 98 98 100 100 100
EG(0.2) 94 96 99 100 99 95 95 95 98 96 98
EG(0.5) 97 98 99 88 100 97 98 98 92 71 99
EG(0.8) 86 90 95 55 100 99 100 99 75 60 94

NMHR

PW(2) 87 89 98 99 93 83 96 96 95 99 95
PW(3) 99 99 100 100 100 99 100 100 99 100 100

LN(0.8) 67 71 72 66 75 74 51 50 75 68 75
LN(1) 90 92 94 93 95 92 82 82 94 94 94

LN(1.5) 100 100 100 100 100 100 99 99 100 100 100
IG(0.5) 97 98 98 98 98 97 94 93 99 98 98
IG(1.5) 56 61 60 48 62 64 42 42 64 52 63
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Table 5. Estimated powers for general alternatives for the Rayleigh distribution for sample size
n = 30.

F KSn CMn ADn ELn,1 ELn,5 CRn KLn,3 KLn,4 Rn,1 Rn,5 Exp

CHR

Exp(1) 96 98 99 100 99 97 96 96 99 100 99

IHR

Γ(1.5) 76 81 87 89 88 79 63 65 88 90 87
Γ(2) 47 53 57 56 59 54 28 28 60 57 59

W(1.2) 81 86 92 94 92 83 74 76 91 95 92
W(1.4) 53 58 69 72 69 56 37 39 68 74 68
PW(1) 22 28 55 51 14 37 66 68 24 50 27
LFR(2) 53 59 76 83 71 53 51 53 72 84 74
LFR(4) 36 43 61 69 55 37 37 37 54 68 56
EV(0.5) 74 80 90 94 88 72 71 73 88 94 89
EV(1.5) 32 35 58 68 42 23 39 41 46 69 51
GO(0.5) 74 78 91 94 88 72 73 74 88 94 89
GO(1.5) 33 37 58 68 44 25 41 42 47 68 51

DHR

Γ(0.4) 100 100 100 100 100 100 100 100 100 100 100
Γ(0.7) 100 100 100 100 100 100 100 100 100 100 100
W(0.8) 100 100 100 100 100 100 100 100 100 100 100
EG(0.2) 99 99 100 100 100 99 100 99 99 96 100
EG(0.5) 100 100 100 87 100 100 100 100 93 68 100
EG(0.8) 96 98 99 52 100 100 99 99 75 59 99

NMHR

PW(2) 97 98 100 100 98 94 100 100 99 100 99
PW(3) 100 100 100 100 100 100 100 100 99 100 100

LN(0.8) 83 86 87 81 88 87 70 71 89 82 88
LN(1) 97 98 99 99 99 98 94 95 99 99 99

LN(1.5) 100 100 100 100 100 100 100 100 100 100 100
IG(0.5) 100 100 100 100 100 100 99 99 100 100 100
IG(1.5) 73 77 77 62 78 79 62 62 80 67 80

Table 6. Estimated powers for general alternatives for the exponential distribution for sample size
n = 20.

F K̃Sn C̃Vn EPn BHn,0.75 BHn,1 BHn,1.25 HMn,0.75 HMn,1 HMn,1.25

CHR

Exp(1) 82 90 90 94 93 93 95 94 93

IHR

Γ(1.5) 52 66 68 72 71 70 72 71 71
Γ(2) 29 40 43 43 43 43 43 43 44

W(1.2) 57 70 72 77 77 76 79 78 76
W(1.4) 31 44 46 52 50 50 52 52 51
PW(1) 12 11 7 17 14 11 21 17 14
LFR(2) 30 43 46 55 53 52 59 57 54
LFR(4) 20 30 31 40 36 36 42 39 39
EV(0.5) 48 61 62 72 71 68 76 72 71
EV(1.5) 15 21 22 34 30 27 38 35 33
GO(0.5) 47 62 63 72 71 68 76 72 71
GO(1.5) 14 22 23 33 29 28 38 34 31
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Table 6. Cont.

F K̃Sn C̃Vn EPn BHn,0.75 BHn,1 BHn,1.25 HMn,0.75 HMn,1 HMn,1.25

DHR

Γ(0.4) 100 100 100 100 100 100 100 100 100
Γ(0.7) 95 98 98 99 99 99 99 99 99
W(0.8) 96 98 98 99 99 99 100 100 99
EG(0.2) 91 95 95 98 98 97 98 98 98
EG(0.5) 95 98 98 99 99 99 99 99 99
EG(0.8) 82 90 90 93 93 93 94 94 93

NMHR

PW(2) 75 84 79 93 91 89 95 93 92
PW(3) 97 99 98 100 100 99 100 100 100

LN(0.8) 64 73 74 74 75 75 72 73 73
LN(1) 88 93 93 94 94 94 94 94 94

LN(1.5) 99 100 100 100 100 100 100 100 100
IG(0.5) 96 98 98 98 98 98 98 98 98
IG(1.5) 53 64 64 62 63 63 58 59 61

Table 7. Estimated powers for general alternatives for the exponential distribution for sample size
n = 30.

F K̃Sn C̃Vn EPn BHn,0.75 BHn,1 BHn,1.25 HMn,0.75 HMn,1 HMn,1.25

CHR

Exp(1) 95 98 98 99 99 99 99 99 99

IHR

Γ(1.5) 73 82 84 87 86 85 87 86 87
Γ(2) 43 57 58 57 59 59 58 57 58

W(1.2) 78 87 87 91 90 90 92 91 91
W(1.4) 47 60 62 67 66 65 68 68 66
PW(1) 17 15 6 21 18 14 27 22 18
LFR(2) 44 58 60 68 67 66 74 70 68
LFR(4) 31 43 44 53 51 48 56 54 51
EV(0.5) 67 79 80 87 86 84 89 87 87
EV(1.5) 22 30 29 45 41 37 51 46 42
GO(0.5) 67 78 79 87 85 84 89 88 86
GO(1.5) 22 31 29 46 42 39 51 47 44

DHR

Γ(0.4) 100 100 100 100 100 100 100 100 100
Γ(0.7) 100 100 100 100 100 100 100 100 100
W(0.8) 100 100 100 100 100 100 100 100 100
EG(0.2) 99 99 99 100 100 100 100 100 100
EG(0.5) 100 100 100 100 100 100 100 100 100
EG(0.8) 95 98 98 99 99 99 99 99 99

NMHR

PW(2) 93 96 91 99 98 97 99 99 98
PW(3) 100 100 100 100 100 100 100 100 100

LN(0.8) 82 88 89 88 88 88 86 87 88
LN(1) 97 98 99 99 99 99 99 99 99

LN(1.5) 100 100 100 100 100 100 100 100 100
IG(0.5) 99 100 100 100 100 100 100 100 100
IG(1.5) 72 80 80 78 78 80 73 75 76
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4.2. Simulation Results

We will now present some general conclusions regarding the tabulated estimated
powers of the different tests considered. Since the performance of the tests are affected
by the type of hazard rate of the alternative distribution, we will discuss the overall
performance as well as the performance when the results are grouped according to the type
of hazard rate.

First, we will consider the estimated local powers, presented in Tables 2 and 3. We
find that KSn and CMn exhibit poor power performance, displaying the lowest powers
among the tests for the majority of the choices of the mixture probability, p. We note that
ELn,1 and Rn,5 are tied for the best test for the majority of mixture proportions. Figure 1
displays the local powers of AD, ELn,1, CR and Rn,5 over the complete range of mixture
probabilities. The superior performance of ELn,1 and Rn,5, for this mixture distribution, is
clear from this figure.

Figure 1. Local powers for some of the tests over the entire range of mixture probabilities of the
Rayleigh exponential mixture distribution for n = 20.

For the transformed data, K̃Sn exhibits the lowest powers overall and HMn,0.75 has
the highest overall powers for the majority of the alternatives considered.

We will now consider the performance of the tests, developed specifically for the
Rayleigh distribution, in general against all of the general alternative distributions listed
in Table 1. From both Tables 4 and 5 we see that, in general, the powers of KSn and CRn
are lower for the majority of the alternatives considered and perform unfavourably in
comparison to the other tests, for both sample sizes. On the other hand, ELn,1 and Rn,5
perform quite well as we find that they outperform the other tests, having the highest
estimated power for the majority of the alternatives considered. All tests considered
perform quite well against the standard exponential distribution (which has a constant
hazard rate) for both sample sizes.

Shifting our attention now to results associated with alternatives with increasing
hazard rates, one finds, once again, that KSn and CRn have lower powers for both sample
sizes considered. For most of the alternatives in this category ELn,1 and Rn,5 have the
highest power, only being outperformed, or equaled, for a handful of these alternatives by
other tests.

Moving our attention to alternatives with a decreasing hazard, we see that all the tests
considered perform very well and, since there are such minor differences in the power
performance between all the tests, it is difficult to identify a single ‘best’ test for this set of
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alternatives. However, for the smaller sample size, KSn still attains powers that are slightly
lower than the rest of the tests.

We now observe the results associated with alternatives with non-monotone hazard
rates. The tests that generally perform well are ADn, ELn,1 and Rn,1. However, the test that
exhibits the highest power for the majority of the alternatives, for both sample sizes, is Rn,5.

Finally, we consider the performance of the tests for exponentiality based on the
transformed data. The tests with the lowest powers are K̃Sn and C̃Mn. BHn,1 and HMn,1.25
perform very well, exhibiting high powers for most of the alternatives considered, espe-
cially for alternatives with decreasing or non-monotone hazard rates. HMn,0.75 displays the
highest overall powers for the majority of the alternatives considered. However, the highest
estimated power, against all alternative distributions considered, is obtained by one of the
tests specifically developed for the Rayleigh distribution and not by any of the exponential-
ity tests based on the transformed data. Therefore, we recommend that the tests proposed
specifically for the Rayleigh distribution is used when goodness-of-fit testing is performed
for the Rayleigh distribution.

To conclude, we provide a brief demonstration of how the choice of the tuning param-
eter, a, influences the powers of the newly proposed test. In order to visualise the behaviour
of the powers for different values of a, Figure 2 present the powers for Rn,a over a grid of a
values and six different alternative distributions. This figure is also used to motivate the
choice of a values included in the study.

Figure 2. Estimated powers for R100,a for some alternatives appearing in Table 1.

The choice of a = 1 was made since it is the point where the powers for most of the
alternative distributions start to stabilize and reach a plateau. The choice for a = 5 is due to
the fact that it is the point where the powers for most of the alternative distributions reach
their maximum value.

5. Practical Application

As noted in Section 1, the Rayleigh distribution found various applications in the fields
of survival analysis and reliability theory. In this section we demonstrate the use of the
tests specifically developed for the Rayleigh distribution by applying them to a real-world
survival data set: the COVID-19 data set of Italy given in Table 8—for a discussion on the
data set, see [30]. The data set displays the COVID-19 mortality rates recorded for 59 days
in Italy from 27 February 2020 to 27 April 2020. Ref. [30] discussed and analysed the use
of an extended three parameter Rayleigh distribution to model the data. They concluded
that the newly extended Rayleigh distribution is a good fit to the data. We, however, will
investigate the goodness-of-fit of the traditional one parameter Rayleigh distribution as



Mathematics 2022, 10, 1316 15 of 17

well as that of the exponential distribution. Figure 3 represents the probability plots of both
the Rayleigh (grey dots) and exponential (black dots) distribution fitted to the data, where
θ̂ = 6.583 and λ̂ = 0.123 in the case of the exponential distribution.

Figure 3. Probability plot of a fitted Rayleigh (grey dots) and exponential (black dots) distribution.

The probability plot suggests that the underlying distribution of the data might be the
Rayleigh distribution instead of the exponential distribution.

Table 8. COVID-19 data set of Italy.

1.518 2.450 2.508 2.686 2.780 2.814 2.881 3.134 3.148 3.341
3.564 3.606 3.827 4.011 4.040 4.253 4.408 4.416 4.571 4.639
4.640 4.859 5.073 5.452 6.194 6.503 7.201 7.214 7.407 7.445
8.479 8.646 8.697 8.905 8.906 8.961 9.037 10.138 10.282 10.644

10.908 10.919 11.010 11.273 11.410 11.775 11.822 11.950 12.396 13.226
13.333 14.242 14.330 15.137 15.787 16.046 16.561 17.337 18.474

Table 9 contains the estimated p-value (calculated based on 50,000 samples of size
59 simulated from the standard Rayleigh distribution) of each test for testing formally
whether the data originated from a Rayleigh distribution.

Table 9. p-values for the COVID-19 data of Italy.

TestStatistic KSn CMn ADn ELn,1 ELn,5 CRn KLn,3 KLn,4 Rn,1 Rn,5

p-value 0.05974 0.12038 0.12906 0.62786 0.5679 0.4104 0.09604 0.07 0.8903 0.91866

From these p-values it is clear that all the tests do not reject the null hypothesis in (3)
at a 5% significance level and we can therefore conclude that the Rayleigh distribution is
also a feasible option to model the data.

Having found that the Rayleigh distribution is a good fit to the observed data, one can
now go about calculating quantiles, moments and other useful distributional properties
by using the theoretical Rayleigh distribution with estimated parameter θ̂ = 6.583. For ex-
ample, by fitting this Rayleigh distribution we find that the mean mortality rate over the
59 days is 8.2506.
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6. Conclusions and Future Research

In this article, a new goodness-of-fit test statistic specifically designed for the Rayleigh
distribution was considered. The finite-sample performance of this newly suggested test
was studied via the use of a Monte Carlo simulation. From the results, it is clear that this
new test is not only feasible when testing goodness-of-fit for the Rayleigh distribution, it
also outperforms or equals competitor tests for the majority of the alternative distributions
considered. For practical implementation we suggest using the choice a = 5 for Rn,a.
Alternatively, one can use a data-dependent choice of this tuning parameter suggested, e.g.,
in [31].

In analysing mortality or survival data (like the COVID-19 data set) one will, more
often than not, deal with observations that are censored. For our newly proposed test to be
applicable in these kinds of situations, it needs to be modified to accommodate censoring.
Naturally, this modification will complicate some of the asymptotic derivations and might
be an avenue for future research. Some work in this regard has been started by [32] as well
as [33].
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