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Abstract: In this paper, a hybrid gradient simulated annealing algorithm is guided to solve the
constrained optimization problem. In trying to solve constrained optimization problems using
deterministic, stochastic optimization methods or hybridization between them, penalty function
methods are the most popular approach due to their simplicity and ease of implementation. There
are many approaches to handling the existence of the constraints in the constrained problem. The
simulated-annealing algorithm (SA) is one of the most successful meta-heuristic strategies. On the
other hand, the gradient method is the most inexpensive method among the deterministic methods.
In previous literature, the hybrid gradient simulated annealing algorithm (GLMSA) has demonstrated
efficiency and effectiveness to solve unconstrained optimization problems. In this paper, therefore,
the GLMSA algorithm is generalized to solve the constrained optimization problems. Hence, a new
approach penalty function is proposed to handle the existence of the constraints. The proposed
approach penalty function is used to guide the hybrid gradient simulated annealing algorithm
(GLMSA) to obtain a new algorithm (GHMSA) that finds the constrained optimization problem. The
performance of the proposed algorithm is tested on several benchmark optimization test problems
and some well-known engineering design problems with varying dimensions. Comprehensive
comparisons against other methods in the literature are also presented. The results indicate that
the proposed method is promising and competitive. The comparison results between the GHMSA
and the other four state-Meta-heuristic algorithms indicate that the proposed GHMSA algorithm is
competitive with, and in some cases superior to, other existing algorithms in terms of the quality,
efficiency, convergence rate, and robustness of the final result.

Keywords: nonlinear function; constrained optimization; hybrid algorithm; global optima; line
search; gradient method; meta-heuristics; simulated annealing algorithm; constraint handling; penalty
function; evolutionary computation; numerical comparisons

MSC: 65D05

1. Introduction

Optimization problems arise in different applications fields, such as technical sciences,
industrial engineering, economics, networks, chemical engineering, etc. See for example [1–5]
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In general, the constrained optimization problem can be formulated as follows:

min
x∈Rn

f (x),

s.t gl (x) ≤ 0, l = 1, 2, . . . , q,
hd(x) = 0, d = 1, 2, . . . , m, m < n
ai ≤ xi ≤ bi , i = 1, 2, . . . , n,

(1)

where ai ∈ {R∪ {−∞}}, and bi ∈ {R∪ {∞}}.
The functions f (x), gl(x), hj(x) : Rn → R are real valued functions, n denotes the

number of variables in x, q is the number of inequality constraints, m is the number of
equality constraints, a is a lower bounded on x and b is an upper bounded on x. The
objective function f , the inequality constraints gl , l = 1, 2, . . . , q, and the equality constraint
hd , d = 1, 2, . . . , m, are assumed to be continuously differentiable nonlinear functions.

Recently, there has been great development of optimization algorithms that are pro-
posed to find global solutions to optimization problems. See for example [2,6–8].

The global optimization methods are used to prevent convergence to local optima and
increase the probability of finding the global optimum [9].

The numerical global optimization algorithms can be classified into two classes: deter-
ministic and stochastic methods. In stochastic methods, the minimization process depends
partly on probability. In deterministic methods, in contrast, no probabilistic information is
used [9].

So, for finding the global minimum of the unconstrained problem by using determin-
istic methods, it needs an exhaustive search over the feasible region of the function f and
additional assumptions for the function f . On the contrary, to find the global minimum of
the unconstrained problems, by using stochastic methods, one can prove the asymptotic
convergence in probability, i.e., these methods are asymptotically successful with prob-
ability 1, see for example [10–12]. In general, the computational results of the stochastic
methods are better than those of the deterministic methods [13].

Due to those reasons, a meta-heuristics strategy (stochastic method) is used to guide
the search process [13]. Hence a meta-heuristic is a technique designed for solving a
problem more quickly when classic methods are too slow, or for finding an approximate
solution when classic methods fail to find any exact or near-exact solution. This is achieved
by trading optimality, completeness, accuracy, or precision for speed [14–16].

The simulated-annealing algorithm (SA) is one of the most successful meta-heuristic
strategies. In fact, the numerical results display that the simulated annealing technique is
very efficient and effective for finding the global minimizer. See, for example, [2,5,17–19].

On the other hand, the gradient method is the most inexpensive method for finding
a local minimizer of a continuously differentiable function. It has been proved that the
gradient algorithm converges locally to a local minimizer [20]. Therefore, if a line-search
(L) is added to the gradient method (G) as a globalization strategy, the resulting algorithm
is globally convergent to a local minimizer (GL) [9,21,22].

Hence, when the simulated-annealing algorithm (SA) as a global optimization algo-
rithm is combined with the line-search gradient method (GL) as a globally convergent
method, the result is the hybrid gradient simulated annealing algorithm (GLMSA) [23].
The idea behind this hybridization is to gain the benefits and advantages of both the GL
algorithm and the MSA algorithm.

As a matter of fact, the numerical results demonstrated that the (GLMSA) algorithm
is a very efficient, effective and strong competitor for finding the global minimizer. For
example, Table 4 of [23] shows that the GL algorithm is able to reach the optimum point of
all test problems whose objective functions have only one minimum point (no local minima
except the global one. i.e., convex function) and it is stuck at a local minimum for test
problems whose objective functions have several local minima (with one global minimum,
i.e., non-convex function). Table 6 of [23] demonstrates that the SMA modified simulated
annealing algorithm finds the global minimum of all test problems from any starting point
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of the feasible search space S. However, the GLMSA hybrid gradient simulated annealing
algorithm is faster than MSA; also, GLMSA is efficient and effective compared to other
meta-heuristic algorithms.

All the above have motivated and encouraged us to generalize the GLMSA algorithm
to solve Problem (1).

The literature review analysis shows that the handling constraint which is based on a
penalty function is considered the most popular implemented mechanism; this is due to its
simplicity and ease of implementation [24–27]. A penalty technique transforms Problem (1)
into an unconstrained problem by adding the penalty term of each constraint violation
to the objective function value. The remainder of this paper is organized as follows. The
next section provides a brief description of the GLMSA algorithm. Constraint handling,
the penalty function method, proposed penalty method and interior-point algorithm are
presented in Section 3. A guided hybrid simulated annealing algorithm to solve constrained
problems is presented in Section 4. Numerical results are given in Section 5. Section 6
contains some concluding remarks.

Note: Section Abbreviations provides a list of the abbreviations and symbols which
are used in this paper.

2. Summarized Description of GLMSA Algorithm

The GLMSA algorithm has been designed for solving unconstrained optimization
problems; in this paper the GLMSA algorithm is generalized to solve Problem (1). The
GLMSA algorithm contains two approaches to find a new step at each iteration, the first
one is the gradient method. In this approach, a candidate point is generated and it might
be accepted or rejected. If the objective function f is decreased at this point, then it will be
accepted, otherwise, the second approach will be used to generate another point.

2.1. The First Approach (Gradient Method)

The gradient method solves an unconstrained optimization problem iteratively, such
that at each iteration, a step in the direction of the negative gradient is computed and
added to the current point as follows. Given an initial guess x0 ∈ Rn, the gradient method
generates a sequence {xk}, k ≥ 0 of the objective function of the unconstrained optimization
problem such that:

xk+1 = xk + dk , (2)

where dk is the first step, and it is defined by:

dk = −|αk|g(xk ), (3)

where g(xk ) the gradient vector of the function f at point xk and αk is a step length along
the negative gradient direction (−g(xk )). The step length αk along the −g(xk ) is defined by:

αk =
f (xk)

‖ g(xk ) ‖2
2

. (4)

The G gradient algorithm is listed in Algorithm 1 of [23]. The step length λk that is
computed by the backtracking line-search approach is very important for global conver-
gence of the gradient method. The following section presents a brief description of the
backtracking line-search approach for globalizing the gradient method.

Globalizing the First Approach (Gradient Method)

To make the gradient method capable of finding a local minimizer x∗ of the objective
function of the unconstrained optimization problem from any starting point x0 , the G
algorithm (gradient algorithm) is combined with the L algorithm (line-search algorithm) in
order to obtain globally convergent algorithm GL. This algorithm is listed in Algorithm 1
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below and it contains the first approach (gradient algorithm G) and the backtracking
line-search algorithm L.

Algorithm 1 Line-Search Gradient Algorithm “GL”

Input: f : Rn → R, f ∈ C1, γ ∈ (0, 1), k = 0, a starting point xk ∈ Rn and ε > 0.
Output: x∗ = xac the local minimizer of f , f (x∗), the value of f at x∗

1: Set xac = x0. . xac is accepted solution.
2: Compute fac = f (xac), gac = g(xac) and dk .
3: while ‖gac‖2 > ε do . gac is the value of the gradient vector at the accepted point xac.
4: Set k = k + 1.
5: xk = xac + dk . xac is the accepted point form the previous iteration.
6: Compute fk = f (xk )
7: Set λ = 1.
8: while fk > fac + γλgT

ac dk do
9: Set λ = λ

2
10: xk = xac − λgac . in this paper the value of γ is 10−4.
11: Compute fk = f (xk )
12: end while
13: Set xac ← xk and fac ← f (xk ).
14: Compute gac = g(xac) and dk .
15: end while
16: return xac the local minimizer and its function value fac

For more details about the gradient method and the backtracking line-search ap-
proach see [23]. The second approach of the GLMSA algorithm is presented in the
following subsection.

2.2. The Second Approach (Simulated Annealing SA)

It must be noted that the modified simulated annealing algorithm in [23] contains
three alternatives to generate a new point, but in this paper, the first alternative is consid-
ered to generate a new point. This procedure is very important for reducing the function
evaluations from three times at each iteration to one function evaluation for every iteration,
because we need to allow for more inner iterations when solving constrained optimization
problems. This procedure guarantees that the parameters of the penalty function are increas-
ing enough because it is a necessary condition for non-stationary penalty functions [28],
i.e., when k→ ∞, parameters must also go to infinity.

The second point is generated by

xk′+1 = xac + ψ′
k
, (5)

where xac is the best point which is accepted so far and ψ′
k

is the step of the second approach
and computed by Algorithm 2 below.

The gradient line-search algorithm (GL) has been listed in Algorithm 1 and a modified
simulated annealing algorithm (MSA) is illustrated by Algorithm 3.
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Algorithm 2 The second approach to generate the step ψ′
k
.

Step 1: Set k′ = 0.
Step 2: Compute ωk′ = 10(0.1∗k′).
Step 3: Generate a random vector X′k ∈ [−1, 1]n.

Step 4: Compute Di
′
k
=
−1+(1+ω′

k
)
|Xi
′
k
|

ω′
k

, i = 1, 2, . . . , n. . n is the number of variables.

Step 5: Set DXi
′
k
= sign(Xi

′
k
).

Step 6: Compute DEj
′
k
= Di

′
k
∗ DX j

i .

Step 7: Compute ψi
′
k
= bi ∗ DEi

′
k
. . bi is the upper bound of the feasible search space.

Step 8: k′ ← k′ + 1.
Step 9: Repeat steps 2–8 until k′ = N. . N is the number of iterations and it is given
in advance.

Algorithm 3 Modified Simulated-Annealing “MSA”.

Input: xac, fac, N and T. . T control parameter (Temperature)
Output: xbest is the best point of N points and it value fbest

1: for k′ = 0→ N do
2: x′

k
= xac + ψ′

k
, using Equation (5).

3: Compute ∆ f = f (x′
k
)− fac.

4: if ∆ f < 0 then
5: Set xac′

k
← x′

k
, fac′

k
← f (x′

k
).

6: else
7: Generate a random number β ∈ (0, 1)

8: if β < e−
∆ f
T then

9: Set xac′
k
← x′

k
, fack

← f (x′
k
).

10: end if
11: end if
12: end for
13: return xac and its function value fac. . fac = f (xac).

where N is the maximum number of possible trials (Length Markov Chains of MSA)
and T is the control parameter (temperature). For more details about the MSA algorithm,
please, see [23].

For a detailed description of the simulated annealing algorithm SA see for exam-
ple [18,29–31].

As we have mentioned above, Algorithm 1 (gradient line-search algorithm (GL)) is
hybridized with Algorithm 3 (a modified simulated annealing algorithm (MSA)) to get the
LGMSA algorithm that solves the unconstrained optimization problem.

In the next section, the LGMSA algorithm is guided to solve Problem (1) by using
the penalty function method. There are many methods for handling the existence of the
constraints in the constrained problem.

3. Constraints Handling

The algorithms which have been proposed to solve unconstrained optimization prob-
lems are unable to deal directly with constrained optimization problems. There are several
approaches proposed to handle the existence of the constraints, see for example [27,32,33].
The most popular of them is the penalty function method.

The penalty function method is a successful technique for handling constraints [27,34,35].
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3.1. Penalty Function Methods

The penalty methods have been most widely studied and used due to their simplicity
in implementation. The major definition of the penalty function methods is the degree to
which each constraint is penalized [28]. There are several types of penalty methods that are
used to penalize the constraints in constrained optimization problems.

Three groups of penalty function methods are most popular; the first one is a group of
methods of static penalties. In these methods, the penalty parameter does not depend on the
current iteration, i.e., parameters remain constant through the evolutionary process [24,36].

The second one is a set of methods of dynamic penalties. In these methods the penalty
parameters are usually dependent on the current iteration, in other words, the penalty
parameters are functions in the iteration k, i.e., they are non-stationary. See [24,37,38].

The third is a set of methods of adaptive penalties; in this group penalty parameters
are updated for every iteration [24].

The next section presents a suggested penalty function method with dynamic and
adaptive parameters.

Proposed Penalty Function Method

This section shows how Problem (1) is transformed to an unconstrained optimization
problem which is simple bounded as follows:

min
x∈Rn

θ(x, r) = f (x) + rp(x),

s.t ai ≤ xi ≤ bi , i = 1, 2, . . . , n,
(6)

where f (x) is the original objective function in Problem (1), r is a penalty parameter. The
penalty term p(x) is defined by:

p(x) =
q

∑
l=1

(
max{0, gl (x)}

)2
+

m

∑
j=1
|hj(x)|2. (7)

The difference between the penalty function methods is in the way of defining the
penalty term and its parameter r [24].

The penalty function methods force infeasible points toward the feasible region by
step-wise increasing the penalty; r is used in the penalizing function p(x).

Therefore, the solution x∗ minimizes the objective function of Problem (6) and also
minimizes the objective function of Problem (1), i.e., as long as k → ∞ and rk → ∞, x∗

approaches the feasible region and rk p(x)→ 0 [28].
In this paper, the penalty function method has two parameters—the first one is r

which penalizes the inequality constraint that is violated , i.e., when gl (x) > 0. The second
parameter is t which penalizes the equality constraint hj(x) whose value is not equal to zero.

Accordingly, the θ(x, r) function is defined by:

θ(x, r) = f (x) +
r
2

p1(x) +
t
2

p2(x), (8)

where p1(x) =
q
∑

l=1

(
max{0, gl (x)}

)2, p2(x) =
m
∑

j=1
|hj(x)|2 and r and t are the parameters for

inequality and equality constraints respectively.
The parameters r and t are updated at each iteration k as follows.

rk+1 = rk + ϕk ∗Φk ,
tk+1 = tk + 1,

(9)

where the parameter ϕk is updated by:
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ϕk =

{
0 if gl (x) ≤ 0,
2 otherwise.

(10)

The parameter ϕk is an adaptive parameter, i.e., when the candidate solutions are
out of the feasible region then ϕk penalizes a violated constraint by multiplying the term
Φk by 2, where r0 = 1 is the initial value of r. The parameter Φ is updated as follows:
Φk+1 = Φk + 1, t0 = 1.

Note: The equality constraint is more difficult than the inequality constraint because
the size of the feasible region of the equality constraint is smaller than the size of the feasible
region of the inequality constraint. For example, f (x, y) = xy s.t h(x, y) = x2 + y2 − 1 = 0
and f (x, y) = xy s.t g(x, y) = x2 + y2 − 1 <= 0. The first problem is much harder than the
second because in the first problem the size of the feasible region is the circumference of the
circle while in the second problem, the feasible region is the whole disk. So, the parameter
t(k) must be taken carefully.

3.2. Mechanism of Working of the Penalty Function Method

The penalty method solves the general Problem (1), during a succession of uncon-
strained optimization problems.

Let us discuss two examples in order to illustrate how the parameters of the penalty
function are run.

The first example is very easy (one dimension); minimize f (x) = x2 − 3 subject to
g(x) = 0.5− 0.5x ≤ 0, where S = [−6, 6] is the search domain.

If we want to find the optimal solution of the objective function f (x) = x2 − 3 as
an unconstrained problem, it is clear that the global solution to this problem is the point
x∗ = 0, such that f (x∗) = −3, for x ∈ R, but when we want to find the optimal solution of
the objective function f (x) = x2 − 3 subject to g(x) ≤ 0, in this case, the problem is very
difficult because we have to find the point x∗ that minimizes f (x) and at the same time it
must satisfy the condition of the constraint g(x) ≤ 0, which is why we need to apply the
penalty function.

Hence, the problem f (x) = x2 − 3 subject to g(x) = 0.5− 0.5x ≤ 0 is transformed into
θ(x, r) = x + r

2 (max{0, ( 1
2 − 0.5x)}2), if g(x) > 0; (g(x) is violated), the first derivative is

computed by the function θ(x, r); dθ(x,r)
dx = 1− r

2 (
1
2 − 0.5x), then 1− r

2 (
1
2 − 0.5x) = 0; x∗ =

1− 4
r , when r = {1, 2, 3, . . . , ∞}, then x∗ = {−3,−1, −1

3 , . . . , 1}, f (x∗) = {6,−2, −26
9 . . . ,−2}

and g(x∗) = {2, 1, 2
3 , . . . , 0}, i.e., when r → ∞, x∗ → 1, g(x∗)→ 0, rp(x∗)→ 0, f (x∗)→ −2,

and θ(x∗, r)→ −2.
Hence, the optimal point is x∗ = 1, such that f (x∗) = −2 and the constraint g(x∗) = 0

is satisfied.
Figure 1 illustrates the behavior of the penalty functions; rp1(x), rp2(x) and rp3(x)

and the objective function f (x) of the original problem (constrained problem) and the
objective function θ(x, r) of the transformed problem (unconstrained problem) for all
x ∈ S = [−6, 6].

Example 2: minimize−xy s.t g(x, y) = x+ 2y− 4 ≤ 0; θ(x, y, r) = −xy+ r
2 (max{0, (x+

2y − 4)}2), if g(x, y) > 0; (g(x, y) is violated), the gradient vector is computed by the
function θ(x, y); g(x, y) = [−y + r(x + 2y − 4),−x + 2r(x + 2y − 4)], hence, (x∗, y∗) =
( 2

1− 1
4r

, 1
1− 1

4r
), then (x∗, y∗)→ (2, 1) as r → ∞; this is why it must allow for the parameters

rk and tk to increase as long as there exists a violated constraint, i.e., when a process of
searching for a solution is an infeasible region.

To ensure that the process of searching for the optimal solution remains within the
search domain, the interior-point algorithm is used. Therefore, the next section presents a
brief description of this technique.
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Figure 1. Penalty function rp(x) converges to zero VS f (x) → −2 and θ(r, x) → −2 that is the
optimal solution of the constrained problem.

3.3. Interior-Point Method

The interior-point method is used in this paper, when a simple bounded exists in the
test problem. Therefore, the interior point technique is used to ensure that the candidate
solution lies inside a feasible region. This technique is used as follows at each iteration k, a
damping parameter τk is applied to insure that xk+1 is feasible with respect to the limits
ai ≤ xi ≤ bi, i = 1, 2, . . . n and k = 1, 2, . . . M as the inner loop of Algorithm 4, ref. [39].

Algorithm 4 Guided Hybrid Modified Simulated-Annealing Algorithm (GHMSA).

Input: f (x), gl (x) and hd(x) : Rn −→ R, x0 ∈ Rn, M, T, Tf , Tout, ε, r0 , Φ0 and t0 .
1: set xac = x0 . at the beginning we accept the initial point x0 as an optimal solution.

2: compute θ(xac) = f (xac) +
rk
2 p1(xac) +

tk
2 p2(xac) . Using Formula (8).

3: set θb = θ(xac) and θ
δ
= 1. . The values of θb and θ

δ
= 1 are updated after M iterations.

4: while
(

T > Tf and θδ > ε
)

or
(

T > Tout

)
do . Tout < Tf ≤ 10−4 are as stopping

criteria.
5: for k = 0 to M do
6: compute θ(xac) = f (xac) +

rk
2 p1(xac) +

tk
2 p2(xac).

7: set θac = θ(xac).
8: compute x1 = xac + dk . . dk is competed by (16).
9: go to Formula (8) to ensure that the point x1 lies inside [a, b]n. by Formula (14).

10: compute ∆θ = θ(x1)− θac

11: if ∆θ < 0 then
12: go to Algorithm 1.
13: else
14: go to Formula (5) to generate other point.
15: end if
16: end for
17: compute Φk+1 = Φk + 1 . here update penalty parameters.
18: T = rT ∗ T . decrease temperature, where rT = 0.8.
19: compute θδ = |θb − θac | and θb ← θac.. θδ is a stopping criterion when the solutions

converge in the accumulation point for all iterations.
20: end while
21: Set xg ← xac , θg ← θac
22: return xg the global minimizer and the value of the objective function θ(xg) at xg .
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The damping parameter τk is defined to be:

τk = min{1, min
i
{ui

k, vi
k}}, (11)

where

ui
k =


[

ai−xi
k

]
∆xi

k
if ai > −∞ and ∆xi

k < 0,

1, otherwise,
(12)

vi
k =


[

bi−xi
k

]
∆xi

k
if bi < ∞ and ∆xi

k > 0,

1 otherwise,
(13)

where ai and bi are the lower and upper bounds of the domain of the problem respectively,
i = 1, 2, . . . n , n is the number of variables of function in problem, xi

k
is the component

ith of variable x at iteration k and ∆xk denotes the steps which are obtained by either
Formula (2) or by Formula (5).

Since the {xk} is always required to satisfy, for all k, a < xk < b, and then the point
xk+1 is computed by:

xk+1 = xk + 0.99τk ∆xk , (14)

where the constant 0.99 is a damping parameter to ensure that xk is feasible with respect to
the domain of function in the problem.

4. The Proposed Algorithm for Solving Constrained Optimization Problems (GHMSA)

According to the above procedures the GLMSA Algorithm is capable of solving
Problem (1) as a constrained optimization problem during the solving of Problem (6) as
an unconstrained optimization problem, hence there are some changes to the objective
function θ(x, r) in Problem (6) to fit with the first step of the GLMSA Algorithm as follows.

• the function f (x) is replaced by the function θ(x, r) defined in Equation (8), and
then calculate

αk =
θ(xac)

‖ g(xac , rk ) ‖2
2

, (15)

where xac is the accepted solution at iteration k,

dk = −|αk |g(xac , rk ), (16)

where the parameter rk might denote r only or t only or both together according to
a type of constrained optimization problem, for example, if the constraints contain
mixed constraints inequality and equality, then rk = (rk , tk ).

• if the constrained problem contains simple bounded, we use Formula (14) to limit the
new point inside this simple bounded.

In light of the above procedures, we rename the GLMSA Algorithm the “Guided
Hybrid Modified Simulated-Annealing Algorithm” with the abbreviation “GHMSA”.

Setting Parameters of GHMSA Algorithm

The choice of a cooling schedule has an important impact on the performance of
the simulated-annealing algorithm. The cooling schedule includes two terms: the initial
value of the temperature T and the cooling coefficient rT which is used to reduce T. Many
suggestions have been proposed in the literature for determining the initial value of the
temperature T and the cooling coefficient rT , see for example [4,18,40–42].

In general, it is a unanimous fact that the initial temperature T must be sufficiently high
(to ensure escape from local points) and rT ∈ (0.1, 1) [7,43,44]. In this section, we suggest
that the initial value of T be related to the number of variables and the value of f (x) at
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the starting point x0. The cooling coefficient is taken to be rT ∈ [0.8, 1) to decrease the
temperature T slowly.

Therefore, the parameters used in Algorithm 4 are presented as follows. M is the
inner loop maximum number of iterations, T is the control parameter (Temperature),
Tout is a final value of T, rT is the cooling coefficient and Tf is a final value of T if it is
sufficiently small.

The setting of parameters is as follows: T = 104, ε = 10−6, Tf = 10−14, Tout = 10−20,
rT = 0.8, and M = 10 n.

5. Numerical Result

To test the effectiveness and efficiency of the proposed algorithm, the algorithm is
run on some test problems. The test problems are divided into two sets. The first set of
test problems are taken from [45]. They are 24 well-known constrained real-parameter
optimization problems. The objective functions in these problems take different shapes and
the number of variables is between 2 and 24. These test problems also contain four types of
constraints as follows: (LI) denotes a linear inequality, (LE) is a linear equality, (NI) refers
to a nonlinear inequality, and (NE) denotes a nonlinear equality. They are listed in Table 1,
where f (x∗) is the best known optimal function value and a denotes the active constraint
number at the known optimal solution. “The information mentioned in Table 1 is taken
from [46]”.

Table 1. List of first and second types of test problems and their exact solutions.

pr n f (x∗) Kind of Function LI N I LE NE a

G1 13 −15 quadratic 9 0 0 0 6
G3 10 −1.0005001000 polynomial 0 0 0 1 1
G4 5 −30,665.5386717834 quadratic 0 6 0 0 2
G5 4 5126.4967140071 cubic 2 0 0 3 3
G6 2 −6961.8138755802 cubic 0 2 0 0 2
G7 10 24.3062090681 quadratic 3 5 0 0 6
G8 2 −0.0958250415 nonlinear 0 2 0 0 0
G9 7 680.6300573745 polynomial 0 4 0 0 2
G10 8 7049.2480205286 linear 3 3 0 0 6
G11 2 0.7499000000 quadratic 0 0 0 1 1
G12 3 −1.0000000000 quadratic 0 1 0 0 0
G13 5 0.0539415140 nonlinear 0 0 0 3 3
G14 10 −47.7648884595 nonlinear 0 0 3 0 3
G15 3 961.7150222899 quadratic 0 0 1 1 2
G16 5 −1.9051552586 nonlinear 4 34 0 0 4
G18 9 −0.8660254038 quadratic 0 13 0 0 6
G19 15 32.6555929502 nonlinear 0 5 0 0 0
G24 10 −5.5080132716 polynomial 0 0 0 1 1

The GHMSA Algorithm solved 18 test problems out of the 24 because the other
problems are either not continuous or not differentiable. The second set of test problems
contains four known non-linear engineering design optimization problems. These test
problems do not have known exact solutions.

5.1. Results of “GHMSA” Algorithm

The GHMSA algorithm is programmed using MATLAB version 8.5.0.197613 (R2015a)
and it is run on a personal laptop and the machine epsilon about 1× 10−16.

The results of our algorithm are compared against the results of the CB-ABC Algo-
rithm in [47], the CCiALF Algorithm in [48], the NDE Algorithm in [49] and the CAMDE
Algorithm in [50].

Liang et al. [45] suggested that the achieved function error values of the obtained opti-
mal solution x after 5× 103, 5× 104 and 5× 105 function evaluations (FES) are summarized
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in terms of {Best, Median, Worst, c, v (v = p(x)
q+m , p(x) is a penalty term in Equation (7)),

Mean, s.d}.
The results are listed in Tables 2–4; where c is a concatenation of three numbers

indicating the violated constraint number at the median solution by more than 1.0, between
0.01 and 1.0, and between 0.0001 and 0.1, respectively. v is the mean value of the violations
of all constraints at the median solution. The numbers in the parenthesis after the error
value of the Best, Median, Worst solution are the constraint numbers not satisfying the
feasible condition of the Best, Median, and Worst solutions, respectively. Tables 2–4 denote
that the GHMSA can determine feasible solutions at each run utilizing 5× 103 FES for
12 test problems {G01, G03, G04, G06, G08, G09, G10, G12, G13, G16, G18, G24}. As for
problems G11, G14 and G15, the GHMSA Algorithm finds feasible solutions by using
5× 104 FES. For the other three test problems, {G05, G07, G19}, the GHMSA Algorithm is
able to reach feasible solutions by using 5× 105 FES.

Assume that if the result x is a feasible one satisfying ( f (x)− f (x∗) ≤ 0.0001, then x is
in a neighborhood (near-optimal) of the optimal point x∗ = xg . Tables 2–4 indicate that the
GHMSA Algorithm can get near-optimal points for six problems, { G01, G04, G06, G08, G12,
G24,} by using only 5× 103 FES, { G03, G11, G13, G14, G15, G16,G18} by using only 5× 104

FES and { G07, G09, G13, G19} by using only 5× 105 FES. However, the GHMSA Algorithm
failed to satisfy ( f (x)− f (x∗) ≤ 0.0001, for two problems {G05, G10}. As suggested by [45],
Table 5 presents the Best, Median, Worst, Mean, and s.d values of successful run, feasible
rate, success rate, and success performance over 40 runs. Let us define the following:

Feasible run: A run through which at least one feasible solution is found in Max FES.
Successful run: A run during which the algorithm finds a feasible solution x satisfying
( f (x)− f (x∗) ≤ 0.0001.
Feasible rate (f.r) = (# of feasible runs)/ total runs.
Successrate(s.r) = (# of successful runs) / total runs.
Successperformance(s.p) = mean (FES for successful runs) × (# of total runs)/(# of
successful runs).

Table 2. Error values achieved if FES = 5× 103, FES = 5× 104, FES = 5× 105 for G1, G3, G4, G5, G6
and G7.

FES G1 G3 G4 G5 G6 G7

Best 1.93× 10−05 (0) 2.70× 10−04 (0) 2.68× 10−09 (0) 0.02 (3) 8.00× 10−08 (0) −1.26 (8)
Median 8.44× 10−05 (0) 9.34× 10−04 (0) 1.5× 10−05 (0) 0.41 (3) 3.7× 10−06 (0) 0.206 (8)
Worst 9.99× 10−05 (0) 1 (0) 4.25× 10−05 (0) 13.18 (3) 2.89× 10−04 (0) 28.16 (8)

5× 103 c 0, 0, 0 0 0, 0, 0 0, 3, 3 0, 0, 0 0, 8, 8
v 0 4.22× 10−04 0 0.02 0 0.016

Mean 8.15× 10−05 1.77× 10−01 1.9× 10−05 1.97 1.7× 10−05 6.644
s.d 1.70× 10−05 0.380881 1.48× 10−05 3.44 5.5× 10−05 9.222

Best 0 (0) 3.62× 10−06 (0) 1.09× 10−11 (0) 0.0016 (3) 8× 10−08 (0) −0.07 (4)
Median 0 (0) 3.64× 10−06 (0) 8.00× 10−11 (0) 0.02 (3) 1× 10−06 (0) − 4.55× 10−03 (4)
Worst 0 (0) 3.99× 10−06 (0) 9.82× 10−11 (0) 1.32 (3) 4× 10−05 (0) 0.819 (4)

5× 104 c 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 3 0, 0, 0 0, 0, 0, 4
v 0 1.51× 10−06 0 3.45× 10−04 0 2× 10−04

Mean 0 3.71× 10−06 6.90× 10−11 0.166 5× 10−06 −0.04
s.d 0 1.24× 10−07 2.86× 10−11 0.3237 8× 10−06 0.004

Best 0 (0) 9.99× 10−07 (0) 1.09× 10−11 (0) 0.0016 (0) 8× 10−08 (0) −1× 10−04 (0)
Median 0 (0) 2.58× 10−06 (0) 8.00× 10−11 (0) 0.0233 (0) 1× 10−06 (0) − 3× 10−05 (0)
Worst 0 (0) 8.50× 10−06 (0) 9.82× 10−11 (0) 1.3182 (0) 4× 10−05 (0) 410−05 (0)

5× 105 c 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0
v 0 4.05× 10−07 0 3.45× 10−05 0 2.3× 10−05

Mean 0 2.37× 10−06 6.90× 10−11 0.166 5× 10−06 −4× 10−05

s.d 0 1.92× 10−06 2.86× 10−11 0.03237 8× 10−06 4× 10−05
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Table 3. Error values achieved when FES = 5× 103, FES = 5× 104, FES = 5× 105 for Problems G8,
G9, G10, G11, G12 and G13.

FES G8 G9 G10 G11 G12 G13

Best 1.05× 10−10 (0) 1.0467 (0) 4.77 (0) 1.9× 10−04 (1) 0 (0) 1.25× 10−04 (0)
Median 6.52× 10−09 (0) 1.494 (0) 17.67 (0) 1.04× 10−03 (1) 0 (0) 3.83× 10−03 (0)
Worst 4.13× 10−08 (0) 3.42 (0) 300.41 (0) 5.66× 10−03 (1) 0 (0) 9.83× 10−02 (0)

5× 103 c 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 1 0, 0, 0 0, 0, 0
v 0 0 0 0.00173 0 7.27× 10−05

Mean 9.24× 10−09 1.863 49.86 0.00161 0 0.01171
Std 1.20× 10−08 0.9631 75.17 0.00151 0 0.02013

Best 1.05× 10−10 (0) 0.3489 (0) 0.10 (0) 6.67× 10−05 (0) 0 (0) 8.96× 10−06 (0)
Median 6.52× 10−09 (0) 4.98× 10−01 (0) 0.35 (0) 9.60× 10−05 (0) 0 (0) 6.93× 10−05 (0)
Worst 4.13× 10−08 (0) 1.14 (0) 6.01 (0) 9.96× 10−05 (0) 0 (0) 2.94× 10−04 (0)

5× 104 c 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0
v 0 0 0 4.72× 10−06 0 2.02× 10−06

Mean 9.24× 10−09 6.21× 10−01 1.00 9.60× 10−05 0 4.39× 10−05

Std 1.20× 10−08 0.321034 1.50 1.70× 10−06 0 6.53× 10−05

Best 1.05× 10−10 (0) 6.58× 10−05 (0) 0.02 (0) 6.67× 10−05 (0) 0 (0) 8.50× 10−06 (0)
Median 6.52× 10−09 (0) 8.53× 10−05 (0) 0.09 (0) 9.60× 10−05 (0) 0 (0) 5.70× 10−05 (0)
Worst 4.13× 10−08 (0) 9.88× 10−05 (0) 1.50 (0) 9.96× 10−05 (0) 0 (0) 9.90× 10−05 (0)

5× 105 c 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0
v 0 0 0 4.72× 10−06 0 4.90× 10−07

Mean 9.24× 10−09 8.38× 10−05 0.25 9.60× 10−05 0 5.50× 10−05

Std 1.20× 10−08 1.52× 10−05 0.38 1.70× 10−06 0 2.70× 10−05

Table 4. Error values achieved when FES = 5× 103, FES = 5× 104, FES = 5× 105 for Problems G14,
G15, G16, G18, G19 and G24.

FES G14 G15 G16 G18 G19 G24

Best 4.25× 10−01 (3) − 5.83× 10−02 (2) 4.31× 10−04 (0) 0.01 (0) − 5.58× 10−02 (3) 5.10× 10−12 (0)
Median 1.4 (3) 0.18 (2) 0.0064 (0) 0.21 (0) 4.28× 10−01 (3) 9.05× 10−12 (0)
Worst 1.53 (3) 55.40 (2) 0.0181 (0) 0.79 (0) 27.6 (3) 9.99× 10−12 (0)

5× 103 c 0, 3, 3 0, 1, 2 0, 0, 0 0, 0, 0 0, 0, 3 0, 0, 0
v 2.62× 10−02 1.16× 10−03 0 0 9.80× 10−03 0

Mean 1.23 2.60 0.0076 0.27 4.07 8.57× 10−12

s.d 0.40 10.79 0.0046 0.21 7.69 1.32× 10−12

Best 2.85× 10−07 (0) 1.12× 10−07 (0) 7.70× 10−11 (0) 4.51× 10−06 (0) − 5.58× 10−03 (3) 5.10× 10−12 (0)
Median 4.68× 10−05 (0) 6.96× 10−06 (0) 8.40× 10−11 (0) 7.97× 10−05 (0) 4.28× 10−02 (3) 9.05× 10−12 (0)
Worst 9.11× 10−05 (0) 4.75× 10−04 (0) 8.90× 10−11 (0) 9.88× 10−05 (0) 2.76 (3) 9.99× 10−12 (0)

5× 104 c 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 3 0, 0, 0
v 3.62× 10−05 8.10× 10−06 0 0 9.80× 10−04 0

Mean 5.17× 10−05 5.08× 10−05 8.40× 10−11 6.83× 10−05 4.07× 10−01 8.57× 10−12

s.d 2.42× 10−05 1.20× 10−04 3.40× 10−12 2.65× 10−05 0.76855 1.32× 10−12

Best 2.85× 10−07 (0) 1.12× 10−07 (0) 7.70× 10−11 (0) 4.51× 10−06 (0) − 9.94× 10−05 (0) 5.10× 10−12 (0)
Median 4.68× 10−05 (0) 6.96× 10−06 (0) 8.40× 10−11 (0) 7.97× 10−05 (0) − 3.21× 10−05 (0) 9.05× 10−12 (0)
Worst 9.11× 10−05 (0) 4.75× 10−04 (0) 8.90× 10−11 (0) 9.88× 10−05 (0) 8.70× 10−05 (0) 9.99× 10−12 (0)

5× 105 c 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0
v 3.62× 10−05 8.10× 10−06 0 0 8.09× 10−05 0

Mean 5.17× 10−05 5.08× 10−05 8.40× 10−11 6.83× 10−05 − 1.86× 10−05 8.57× 10−12

s.d 2.42× 10−05 1.20× 10−04 3.40× 10−12 2.65× 10−05 6.76× 10−05 1.32× 10−12

Table 5 shows that the GHMSA Algorithm obtains a 100% feasible rate and success
rate for all 18 problems with the exception of problems G05 and G10.
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Table 5. Number of FES to achieve the fixed accuracy level (( f (x)− f (x∗)) ≤ 0.0001), success rate,
feasible rate and success performance.

pr Best Median Worst Mean s.d f.r (%) s.r (%) s.p

G1 1964 2360 2748 2386.68 172.3774278 100 100 2386.68
G3 7681 11,558 13,545 11,566.82353 1167.105632 100 100 11,566.82353
G4 1906 4417 4924 4295.6 563.9451037 100 100 4295.6
G5 - - - - - 0 0 -
G6 3628 4455 5409 4388.851852 390.8762903 100 100 4388.851852
G7 34,773 210,502 500,559 259,738.33 224,164.15 100 100 259,738.33
G8 794 1108 1350 1109.9615 133.37526 100 100 1109.9615
G9 417,565 4.33× 1005 495,232 444,552.9 31,764.59 100 100 444,552.9
G10 - - - - - 0 0 -
G11 6248 8146 9877 8233.92 917.8058 100 100 8233.92
G12 117 230 339 226.6 57.190209 100 100 226.6
G13 12,800 37,261 80,814 42,242.04 17,190.94051 100 100 42242.04
G14 28,366 54,687 71,293 52,486.30769 16,047.27821 100 100 52,486.30769
G15 9258 25,435 90,720 30,647.44 19,355.55703 100 100 30,647.44
G16 5758 9199 11,398 8970.76 1060.014463 100 100 8970.76
G18 10,300 36,198 85,882 42,434.56 20,906.48809 100 100 42,434.56
G19 73,800 193,000 499,000 247,000 187,852.1 100 100 247,000
G24 537 755.5 999 744.846154 103.587456 100 100 744.846154

For achieving the success condition during the view of success performance in Table 5,
the GHMSA Algorithm needs:

(1) 117 ≤ FES ≤ 4.924× 103 for 5 problems i.e., {G01, G04, G08, G12, G24}.

(2) 3628 ≤ FES ≤ 1.4× 104 for 4 problems i.e., {G03, G06, G11, G16}.

(3) 9258 ≤ FES ≤ 90,720 for 4 problems i.e., {G13, G14, G15, G18}.

(4) 34,773 ≤ FES ≤ 500,559 for 3 problems i.e., {G07, G09, G19}.

The GHMSA Algorithm failed to achieve the success condition for two problems,
i.e., {G05, G10}. More information about the performance of the GHMSA Algorithm for
solving these problems is given in Figures 2–4. We have plotted the relationship between
log10( f (x)− f (x∗)) and FES for showing the convergence of the GHMSA at the median
run over 40 independent runs. So the convergence graphs of these problems in Figures 2–4
show that the error values decrease dramatically with increasing FES for all test problems.

Figure 2. Convergence graph for G01 to G07.



Mathematics 2022, 10, 1312 14 of 25

Figure 3. Convergence graph for G08 to G13.

Figure 4. Convergence graph for G14 to G24.

5.2. Performance of GHMSA Algorithm Using Statistical Hypothesis Testing

In this section, we use statistical hypothesis testing to evaluate the efficiency of the
GHMSA Algorithm versus the efficiency of the CB-ABC, the CCiALF, the NDE and the
CAMDE Algorithms.

A statistical hypothesis is a surmise about a population parameter. This expectation
might be true or false. The null hypothesis is denoted by H0 , and it is a statistical hypothesis
that announces that there is no difference between a parameter and a specific value or that
there is no difference between two parameters. The alternative hypothesis is indicated by
Ha , and it is a statistical hypothesis that declares a specific difference between a parameter
and a specific value or states that there is a difference between two parameters. Hypothesis
testing is a form of inferential statistic which authorizes us to draw conclusions on a whole
population based on a representative sample [51]. Parametric tests can provide trustworthy
results with distributions that are skewed and non normal. Parametric analysis can produce
reliable results even if the continuous data are non normally distributed. We just have to be
sure that the sample size is greater than 30. A one sample t-test is one of the parametric tests
that is used to compare the mean (Average) of a sample with a mean of the population. The
important conditions for using the one-sample t-test are independence and normality (or
sample size > 30). In our study the sample size is 50, i.e., the number of runs is 50 randomly
(from any starting point) run; this criterion is suggested by [45]. The significance level in
this study is 95%, i.e., α = 0.05. Our hypotheses are formulated in the following:



Mathematics 2022, 10, 1312 15 of 25

H0 : the mean (average) of the results of the GHMSA Algorithm and the mean (average)
of the results of other algorithms are equal.

Ha : the mean (average) of the results of the GHMSA Algorithm and the mean of the
results of other algorithms are different.

The above hypotheses can be formulated in Equation (17).

H0 : MeGHMSA = MeAlgorithml
,

Ha : MeGHMSA 6= MeAlgorithml
,

(17)

where l denotes one of the algorithms, CB-ABC, CCiALF, NDE and CAMDE, and Me
denotes the average results of the algorithms.

In order to compare the performance of the GHMSA Algorithm with the CB-ABC,
the CCiALF, the NDE and the CAMDE Algorithms, the t-test with a significance level of
α = 0.05 is performed. To perform the t-test, the hypotheses in Equation (17) are considered.

Statistical processes are performed by using the SPSS Program. Rejecting or accepting
H0 is based on the value of the p-value (Sig. (2-tailed)) according to Column 1 of Table 6.
While the performance of the algorithm based on the value of the t-test is in Column 3 of
Table 6. So, Column 4 of Table 6 takes three values according to the probabilities in (18).

Decision =


1 then MeGHMSA < MeAlgorithmal

,

−1 then MeGHMSA > MeAlgorithml
,

0 then MeGHMSA = MeAlgorithml
.

(18)

The results of the GHMSA are compared to the results of the CB-ABC, the CCiALF, the
NDE and the CAMDE Algorithms. The statistical hypotheses in Equation (17) are tested by
using the t-test. Tables 7–10 present these results.

The results of the GHMSA are compared versus the four meta-heuristic algorithms in
the literature. The results of statistical tests are presented in Tables 7, 9 and 10. In Table 7,
Column 1 presents the abbreviation of the test problems denoted by pr. Column 2 presents
the results of the s.t which include {b.s, mean, s.d, Decision }, where Decision denotes wins,
losses and draws of the GHMSA compared with the other algorithms. Columns 3–7 give
the results of the five algorithms. Tables 9 and 10 are similar to Table 7.

After executing the pairwise t-test for all algorithms, if the GHMSA Algorithm is
superior, inferior or equal to the compared algorithm denoted by algorithml , then the
decision is set to 1, –1 and 0 respectively, as we have shown in Table 6. The left of Figure 5
summarizes the results that are presented in Tables 7–10 regarding the decision. The left of
Figure 5 shows that the GHMSA Algorithm was superior at {7, 6, 9, 5 } problems, equal at
{6, 6, 3, 5 } problems and inferior at {4, 5, 5, 7 } problems compared to the CB-ABC, the CALF,
the NDE and the CAMDE Algorithms, respectively. However, the GHMSA is inferior at
seven problems compared to the CAMDE, but the GHMSA needs 1,590,905 as a total FES
versus the CAMDE needing 4,320,000, as shown in Figure 6. To gain the success condition
from the point of view of successful execution, the GHMSA needs less than 5× 103 FES for
five problems, i.e., {G01, G04, G08, G12, G24} versus the CAMDE needing at least 5× 103

FES for two problems, i.e., {G08, G12}. We can say that the percentage of superior, equal
and inferior of the GHMSA are 40%, 30%, 30% respectively.

Table 6. How the null hypothesis is rejected (or accepted) and the decision is made.

p-Value H0 t Decision

<α reject <0 1
<α reject >0 −1
>α accept - 0
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Table 7. Comparison of results for test problems G01 to G08.

pr s.t CB-ABC CCiALF NDE CAMDE GHMSA

G1 b.s −15 −15 −15 −15 −15
mean −15 −15 −15 −15 −15

s.d 5.03× 10−15 2.39× 10−08 0 0 0
decision 0 0 0 0 0

FES 135,180 30,819 240,000 240,000 5773.84

G3 b.s −1.0005 −1.000501 −1.0005001 −1.000500 −1.000009
mean −1.0005 −1.000501 −1.0005001 −1.000500 −1.000002

s.d 3.64× 10−07 1.69× 10−08 0 6.80× 10−16 1.92× 10−06

decision ‡ ‡ ‡ ‡
FES 90,090 87,860 240,000 240,000 62,546.38462

G4 b.s −30,665.54 −30,665.539 −30,665.539 −30,665.53867 −30,665.53867
mean −30,665.54 −30,665.539 −30,665.539 −30,665.53867 −30,665.53867

s.d 8.72× 10−11 9.80× 10−06 0 3.71× 10−12 3.49× 10−07

decision 0 0 0 0
FES 45,045 26,268 240,000 240,000 9671.32

G5 b.s 5126.50 5126.4967 5126.49671 5126.496710 5126.49833
mean 5126.50 5126.497 5126.49671 5126.496710 5126.662712

s.d 1.07× 10−10 9.17× 10−08 0 2.78× 10−12 0.03442
decision −1 −1 −1 −1

FES 135,180 156,248 240,000 240,000 33,917.7702

G6 b.s −6961.81 −6961.814 −6961.813875 −6961.81388 −6961.813826
mean −6961.81 −6961.814 −6961.813875 −6961.81388 −6961.813811

s.d 1.82× 10−12 5.19× 10−11 0 0 9.20× 10−06

decision 1 0 1 1
FES 45,045 17,573 240,000 240,000 8921.518519

G7 b.s 24.3062 24.3062 24.306209 24.30621 24.30610911
mean 24.3062 24.3062 24.306209 24.30621 24.30617

s.d 4.16× 10−07 6.82× 10−07 1.35× 10−14 8.55× 10−15 4.34× 10−05

decision 1 1 1 1
FES 135,180 8745 240,000 240,000 259,738.33

G8 b.s −0.095825 −0.095825 −0.095825 −0.09583 −0.0958141
mean −0.095825 −0.095825 −0.095825 −0.09583 −0.0957819

s.d 2.87× 10−17 1.07× 10−15 0 1.42× 10−17 2.58× 10−05

decision 1 1 1 −1
FES 8000 4812 240,000 240, 000 2394.577

The mark ‡ means that we do not use G03 to compare the result of the GHMSA with results of the four algorithms
because the h(x∗) = 0.0001, i.e., v = 0.0001 in [45], but v for the GHMSA is 4.05× 10−07, see Tables 1, 2 and 8.

Table 8. Statistical results of “GHMSA” Algorithm for first set of test problems and four mechanical
engineering problems.

pr Best Median Worst Mean s.d FES

G1 −15 −15 −15 −15 0 5773.84

G3 −1.000009 −1.000003 −1.000001 −1.000002 1.91679× 10−06 62,546.38462
G4 −30,665.538672 −30,665.538672 −30,665.53867 −30,665.538672 3.49× 10−07 9671.32
G5 5126.49833 5126.520053 5127.81491 5126.662712 0.03442 33,917.7702
G6 −6961.813826 −6961.813811 −6961.81377 −6961.813811 9.19642× 10−06 8921.518519
G7 24.30610911 24.30618042 24.30625377 24.30617 4.34× 10−05 259,738.33
G8 −0.0958141 −0.095824999 −0.09582499 −0.0957819 2.58× 10−05 2394.577
G9 680.6301232 680.6301426 680.6301562 680.6301412 1.52× 10−05 444,552.9

G10 7049.271862 7049.689888 7049.460323 7049.336552 2.69× 10−02 290,146
G11 0.74999176 0.749996 0.75 0.7499961 0.0000001 8233.92
G12 −1 −1 −1 −1 0 1515
G13 0.053950002 0.053998358 0.054040318 0.053996327 2.73× 10−05 53,754
G14 −47.76497953 −47.76493525 −47.76488874 −47.76494056 2.51× 10−05 52,486.30769
G15 961.71502 961.71502 961.715107 961.7149837 1.31× 10−04 38,609.24
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Table 8. Cont.

pr Best Median Worst Mean s.d FES

G16 −1.905155259 −1.905155259 −1.905155259 −1.905155259 2.06× 10−10 36,346.76
G18 −0.866025404 −0.865945746 −0.865926597 −0.865958115 2.85× 10−05 42,434.56
G19 32.65549 32.65556 32.65568 32.6555744 6.76× 10−05 247,295.25
G24 −5.508013272 −5.508013272 −5.508013272 −5.508013272 1.09× 10−10 2460.038

Enp1 5885.332773 5885.332773 5885.332773 5885.332773 2.2× 10−12 32,129
Enp2 0.012665233 0.012665268 0.012665243 0.012665334 1.54× 10−09 9970
Enp3 1.724852306 1.724852306 1.724852306 1.724852306 1.33× 10−16 24,270
Enp4 2994.471066 2994.471066 2994.471066 2994.471066 4.27× 10−15 16,764

Table 9. Comparison of results for test problems G09 to G15.

pr s.t CB-ABC CCiALF NDE CAMDE GHMSA

G9 b.s 680.63 680.63 680.630057 680.63006 680.6301232
mean 680.63 680.63 680.630057 680.63006 680.6301412

s.d 2.77× 10−09 5.43× 10−08 0 2.32× 10−13 1.52× 10−05

decision 0 0 −1 −1
FES 45,045 12,801 240,000 240,000 444,552.9

G10 b.s 7049.25 7049.248 7049.24802 7049.24802 7049.271862
mean 7049.25 7049.248 7049.24802 7049.24802 7049.336552

s.d 3.98× 10−05 6.04× 10−07 3.41× 10−09 4.39× 10−12 2.69× 10−02

decision −1 −1 −1 −1
FES 135,180 2858 240,000 240,000 240,146

G11 b.s 0.7499 0.749896 0.749999 0.749900 0.74999176
mean 0.7499 0.749898 0.749999 0.749900 0.7499961

s.d 1.29× 10−10 2.05× 10−16 0 1.13× 10−16 0.0000001
decision −1 −1 1 −1

FES 90,090 168,448 240,000 240,000 8233.92

G12 b.s −1 −1 −1 −1 −1
mean −1 −1 −1 −1 −1

s.d 0 7.76× 10−11 0 0 0
decision 0 0 0 0

FES 13,500 17,892 240,000 240,000 1515

G13 b.s 0.053942 0.053942 0.0539415 0.05394 0.053950002
mean 0.06677 0.053943 0.0539415 0.05394 0.053996327

s.d 6.91× 10−02 4.03× 10−06 0 2.32× 10−17 2.73× 10−05

decision 1 −1 −1 −1
FES 198,270 19,883 240,000 240,000 53,754

G14 b.s −47.7649 −47.764900 −47.7648885 −47.764890 −47.76497953
mean −47.7649 −47.764900 −47.7648885 −47.764890 −47.76494056

s.d 1.02× 10−05 4.04× 10−08 5.14× 10−15 2.21× 10−14 2.51× 10−05

decision 1 1 1 1
FES 239,715 152,697 240,000 240,000 52,486.30769

G15 b.s 961.715 961.715 961.7150223 961.715020 961.71502
mean 961.715 961.715 961.7150223 961.715020 961.7149837

s.d 2.81× 10−11 1.86× 10−08 0 5.80× 10−13 1.31× 10−04

decision 0 0 1 1
FES 135, 180 77, 910 240, 000 240, 000 38, 609.24

For the four engineering problems, we give a brief description. The pressure ves-
sel problem is a practical problem that is often used as a benchmark problem for test-
ing optimization algorithms [52]. The left of Figure 7 shows the structure of this issue,
where a cylindrical pressure vessel is capped at both ends by hemispherical heads. The
aim of the problem is to find the minimum total cost of fabrication, including costs
from a combination of welding, material and forming. The thickness of the cylindri-
cal skin,x1(Ts), thickness of the spherical head, x2(Th), the inner radius, x3(R), and
the length of the cylindrical segment of the vessel, x4(L), were included as the opti-
mization design variables of the problem. The GHMSA Algorithm obtains these re-
sults: xGHMSA = {0.778168641375105, 0.384649162627902, 40.3196187240987, 200}, i.e.,
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f (xGHMSA) = 5885.332774, c = {0, –3.8858× 10−16, 1.1642× 10−97, −40}, i.e., v = 0; the left
of Figure 8 shows a convergence graph of the GHMSA to the best solution for this problem.

Table 10. Comparison of results for test problems G16, G18, G19, G24 and Enp1-Enp4.

pr s.t CB-ABC CCiALF NDE CAMDE GHMSA

G16 b.s −1.905 −1.905155 −1.90515525 −1.905160 −1.905155259
mean −1.905 −1.905155 −1.90515525 −1.905160 −1.905155259

s.d 7.90× 10−11 9.77× 10−09 0 4.53× 10−16 2.06× 10−10

decision 1 1 1 0
FES 45,045 196,196 240,000 240,000 36,346.76

G18 b.s −0.866025 −0.866026 −0.8660254 −0.86603 −0.866025404
mean −0.866025 −0.866026 −0.8660254 −0.86603 −0.865958115

s.d 1.72× 10−08 3.58× 10−07 0 4.53× 10−17 2.85× 10−05

decision −1 −1 −1 −1
FES 135,180 8742 240,000 240,000 42,434.56

G19 b.s 32.6556 32.655610 32.65559377 32.655590 32.65549
mean 32.6556 32.660770 32.65562603 32.655590 32.6555744

s.d 1.88× 10−05 2.35× 10−04 3.73× 10−05 7.11× 10−15 6.76× 10−05

decision 0 1 1 0
FES 198,270 240,000 240,000 240,000 247,295.25

G24 b.s −5.508 −5.508013 −5.50801327 −5.508010 −5.508013272
mean −5.508 −5.508013 −5.50801327 −5.508010 −5.508013272

s.d 7.15× 10−15 1.30× 10−08 0 9.06× 10−16 1.09× 10−10

decision 1 1 1 1
FES 27,000 6450 240,000 240,000 2460.038

Enp1 b.s 6059.71 6059.714335 6059.714335 6059.714335 5885.332773
mean 6126.62 6059.714335 6059.714335 6059.714335 5885.332773

s.d 1.14× 1002 1.01× 10−11 4.56× 10−07 1.22× 10−06 2.2× 10−12

Decision 1 1 1 1
FES 15,000 12,000 20,000 10,000 32,1290

Enp2 b.s 0.012665 0.012665233 0.012665232 0.012665233 0.01266523
mean 0.012671 0.012665251 0.012668899 0.012666981 0.01266533

s.d 1.42× 10−05 9.87× 10−08 5.38× 10−06 3.65× 10−06 1.54× 10−09

Decision 1 0 1 1
FES 15,000 5000 24,000 10,000 9970

Enp3 b.s 1.724852 1.724852 1.724852309 1.724852 1.724852
mean 1.724852 1.724852 1.724852309 1.724852 1.724852

s.d 0 5.11× 10−07 3.73× 10−12 2.32× 10−13 1.33× 10−16

Decision 0 0 1 0
FES 15,000 10,000 8000 10,000 24,270

Enp4 b.s 2994.471066 2994.471066 2994.471066 2994.471066 2994.471065
mean 2994.471066 2994.4710660 2994.47106610 2994.471066 2994.471065

s.d 2.48× 10−07 2.31× 10−12 4.17× 10−12 2.20× 10−12 4.27× 10−15

Decision 0 0 1 0
FES 15,000 10,000 18,000 10,000 16,764

Another well-known engineering optimization task is the design of a tension (com-
pression spring) for a minimum weight. This problem has been studied by several authors.
For example, [52]. The right of Figure 7 shows a tension (compression spring) with three
design variables. It needs to minimize the weight of a tension (compression string) subject
to constraints on minimum deflection, shear stress, surge frequency, limits on outside
diameter and on design variables. The design variables are the wire diameter, d(x1), the
mean coil diameter, D(x2), and the number of active coils, P(x3). The GHMSA obtains
these results: xGHMSA = {0.0516890825110813, 0.356718255308635, 11.2889355307237}, i.e.,
f (xGHMSA) = 0.01266523279, c = {−1.55× 10−10, 4.44× 10−16, –4.05379, –0.72773}, i.e.,
v = 1.11× 10−16. The convergence graph for Engp2 is presented on the right of Figure 8.
The welded beam design optimization problem has been solved by many researchers [52].
The left of Figure 9 shows the welded beam structure which consists of a beam A and the
weld required to hold it to member B. The goal of this problem is to minimize the overall
cost of fabrication, subject to some constraints. This problem has four design variables—x1,



Mathematics 2022, 10, 1312 19 of 25

x2, x3 and x4—with constraints of shear stress τ, bending stress in the beam σ, buckling
load on the bar Pc, and end deflection on the beam δ. The GHMSA obtains these results:
xGHMSA = {0.205729642092758, 3.4704886133955, 9.03662391715327, 0.205729639752274},
i.e., f (xGHMSA) = 1.7248523060, c = {–9.03× 10−08, –4.02× 10−05, 2.34× 10−09, –3.43298,
–0.08073, –0.23554, –8.73× 10−09 }, i.e., v = 3.3429× 10−10. The convergence graph for Engp3
is presented by the left of Figure 10.

Figure 5. The number of “wins-draws-losses” of GHMSA compared with other algorithms for G01 to
G24 and Enp1 to Enp4.

Figure 6. Comparison Between GHMSA With CAMDE Regarding FES.

Figure 7. Design engineering problems (Engp1 and Engp2).

Figure 8. Convergence graph for engineering problems (Engp1 and Engp2).
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Figure 9. Design engineering problems (Engp3 and Engp4 ).

Figure 10. Convergence graph for engineering problems (Engp3 and Engp4 ).

The speed reducer design problem is one of the benchmark structural engineer-
ing problems [52]. It has seven design variables as described in the right of Figure 9,
with the face width x1 , module of teeth x2 , number of teeth on pinion x3 , length of
the first shaft between bearings x4 , length of the second shaft between bearings x5 , di-
ameter of the first shaft x6 , and diameter of the first shaft x7 . The aim of this prob-
lem is to minimize the total weight of the decelerator. The GHMSA obtains these re-
sults: xGHMSA = {3.499999999, 0.7, 17, 7.3, 7.715319913, 3.350214666, 5.286654465}, i.e.,
f (xGHMSA) = 2994.471066, c = {−0.073915,−0.198,−0.49917,−0.90464, 8.6365× 10−11,
−1.0931× 10−11,−0.7025, 2.86× 10−10,−0.58333,−0.051326,−1.944210−10}, i.e, v = 2.6×
10−11. The convergence graph for Engp4 is presented by the right of Figure 10. The four
engineering problems are used to compare the performance of the GHMSA against the
CB-ABC, the CCiALF, the NDE and the CAMDE Algorithms. Statistical hypotheses in
Equation (17) are used to compare the mean of the GHMSA with means of the CB-ABC,
the CCiALF, the NDE and the CAMDE Algorithms. Rows 22–41 of Table 10 present
the statistical comparisons of the GHMSA versus the four Algorithms for engineering
problems Enp1 to Enp4. The right of Figure 5 gives the number of “wins-draws-losses” of
the GHMSA compared with the CB-ABC, the CCiALF, the NDE and the CAMDE for Enp1
to Enp4. Figure 11 shows the convergence graph of standard deviation for problems Enp1,
Enp2, Enp3 and Enp4 for the five algorithms. The relation between the four engineering
problems {Enp1, Enp2, Enp3 and Enp4} and their values for log10(s.d) are plotted. From
the right of Figures 5 and 11, it can be said that the performance of the GHMSA algorithm
is better than the other algorithms for problems Enp1 to Enp4, for the following reasons:

(1) The GHMSA obtains a minimum value of objective function (5885.332774) for
engineering problem Enp1 (pressure vessel), the point minimum x∗ is feasible; many of the
algorithms obtained a value of objective function equal to or greater than 6059.71. see for
example [48–50,52–58].

In addition to that, if 10 ≤ x4(L) < ∞, then f (x∗) = 5804.37621675626, otherwise if
10 ≤ x4(L) < 208, then f (x∗) = 5866.99226593889, where L is shown in the left of Figure 8.

(2) The right of Figure 5 shows that the GHMSA Algorithm does not fall at any problem
versus the other algorithms.

(3) The GHMSA is superior at {2, 1, 4, 2} problems versus the CB-ABC Algorithm, the
CCiALF Algorithm, the NDE and the CAMDE Algorithm, respectively.

(4) The GHMSA is equal at {2, 3, 0, 2} problems versus the CB-ABC Algorithm, the
CCiALF Algorithm, the NDE and the CAMDE Algorithm, respectively.
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(5) Figure 11 shows that the GHMSA Algorithm converges to zero for the standard
deviation (s.d). See the green color.

Figure 11. Convergence graph of standard deviation for Enp1 to Enp4.

6. Conclusions and Future Work

The unconstrained nonlinear optimization algorithms have been guided to find the
global minimizer of the constrained optimization problem. A result, Algorithm “GHMSA”,
has been proposed for finding the global minimizer of the non-linear constrained optimiza-
tion problem. Algorithm “GHMSA” contains a new technique that is applied to convert
the constrained optimization problem into the unconstrained optimization problem. The
results of the algorithm demonstrate that the proposed penalty function is a good tech-
nique to make the unconstrained algorithm able to deal with the constrained optimization
problem. The interior-point algorithm keeps the candidate solutions inside the domain
search. The results of some nonlinear constrained optimization problems and four non-
linear engineering optimization problems show that the GHMSA algorithm has superiority
over the other four algorithms in some test problems. For the future work, the proposed
algorithm can be enhanced and modified to solve the multi-objective function, and the
convergence analysis of the modified simulated annealing algorithm will be performed.

Moreover, it will be considered in future work to propose a new free derivative to
approximate the gradient vector that will be combined (hybridized) with a new simulated
annealing algorithm to solve unconstrained optimization, constrained, or multi-objective
optimization problems. Convergence analysis of the GMLSA and GHMAS algorithms will
be considered in future work.
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Abbreviations
The following abbreviations are used in this manuscript:

CB-ABC Crossover-Based Artificial Bee Colony Algorithm
CCiALF Cooperative Coevolutionary Differential Evolution Algorithm
NDE A novel Differential Evolution Algorithm
CAMDE Adaptive Differential Evolution with Multi-Population-based

Mutation Operators for Constrained Optimization
GLMSA Gradient Line-Search Modified Simulated-Annealing Algorithm
GHMSA Guided Hybrid Gradient Modified Simulated-Annealing Algorithm
Symbols
T Control Parameter (Temperature)
k Number Iteration
n Number of Variables
V ∈ [−1, 1]n A random Vector of n Dimension in Interval [−1, 1]
x0 Starting Point
x1 A point Computed by GHMSA Algorithm
x2 A point Computed by GHMSA Algorithm
xac the Best Point Accepted by Our Algorithm at Iteration k
θac Function Value at Point xac
θ1 Function Value at Point x1
θ2 Function Value at Point x2
4 f the Difference Between the Value fac and f1
M the Inner Loop Maximum Number of Iterations
ψ the Step Size which is Generated by First Approach in “EMSA”

Algorithm
d the Step Size which is Generated by GHMSA Algorithm
β A random Number in (0, 1)
rT the Cooling Coefficient
Tf A final Value of T it is Sufficiently Small
Tout A final Value of T; Tout < Tf2

ε A parameter has Small Value Used as A stopping Criterion
#pr Number of Test Problems
xg Global Minimizer Found by GHMSA Algorithm
θ(xg) Function Value at Global Minimum
g(x) the gradient vector
‖ g(xg) ‖2 Norm of the gradient vector of θ at xg
p(x) Penalty Term
gi (x) Inequality Constraint
hj (x) Equality Constraint
q A number of the Inequality Constraints
m A number of the Equality Constraints
r Penalty Parameter for the Inequality Constraints
t Penalty Parameter for the Equality Constraints
U Upper Feasible Region (Domain Search)
L Lower Feasible Region (Domain Search)
b.s the Best Solution Found by the Algorithm
w.s the Worst Solution Found by the Algorithm
s.d the Standard Deviation
w.b Absolute Value Between the Worst Solution and the Best Denoted

by |worst− best|
er Absolute Value Between the Best Solution and the Exact Denoted

by |best− exact|
e.c Error Constraint where e.c = max{0, gi(x)}+ max{0, hj(x)}
e : v1 the Average of {s.d, w.b, er}
e : v2 the Average of {s.d, w.b, e.c}
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FES Function Evaluation
c A sequence of 3 Numbers Denoting the Violated Constraint Number

at the Median solution
v Is the Mean Value of the Violations of All Constraints at the Median

Solution
H0 the Null Hypothesis
Ha the Alternative Hypothesis
Me the Average Results
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