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Abstract: In spatial data analysis, outliers or influential observations have a considerable influence
on statistical inference. This paper develops Bayesian influence analysis, including the local influence
approach and case influence measures in skew-normal spatial autoregression models (SSARMs). The
Bayesian local influence method is proposed to evaluate the impact of small perturbations in data,
the distribution of sampling and prior. To measure the extent of different perturbations in SSARMs,
the Bayes factor, the φ-divergence and the posterior mean distance are established. A Bayesian
case influence measure is presented to examine the influence points in SSARMs. The potential
influence points in the models are identified by Cook’s posterior mean distance and Cook’s posterior
mode distance φ-divergence. The Bayesian influence analysis formulation of spatial data is given.
Simulation studies and examples verify the effectiveness of the presented methodologies.

Keywords: skew-normal distribution; spatial autoregression model; Bayesian local influence; Bayesian
case influence; MCMC algorithm
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1. Introduction

In the fields of econometrics, air quality monitoring and epidemic monitoring, spatial
data are often encountered. Spatial data are a kind of data with location attributes, which
usually have spatial dependence. If the spatial correlation of data is not considered, the
conclusion will often be inaccurate or even wrong. Spatial autoregressive models (SARMs)
can effectively deal with the data with spatial correlation [1]. Therefore, SARMs have
attracted the extensive attention of many scholars over the past few years. For example,
Piribauer and Cuaresma [2] proposed two Bayesian variable selection approaches and
compared their performance in SARMs. Xie et al. [3] investigated the variable selection
problem in SARMs; Du et al. [4] studied the generalized method of moments estimator
for partially linear additive SARMs; Li et al. [5] considered a variable selection method
for SARMs based on the minimum prediction error criterion; Jay et al. [6] introduced
SARMs for the statistical inference of ecological data, which discussed model selection,
spatial regression, the estimation of autocorrelation, the estimation of other connectivity
parameters, spatial prediction and the spatial smoothing of practical ecological inference;
Anik et al. [7] investigated a Lagrange multiplier test of spatial dependence for SARMs with
latent variables; Song et al. [8] proposed a class of penalized robust regression estimators
based on exponential squared loss for SARMs with independent identically distributed
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errors. The above studies of SSARMs are mainly based on the hypothesis that the de-
pendent variable follows a normal distribution. However, the normal hypothesis is often
excessively restrictive of the variability of spatial data in the actual statistical inference, and
unreasonable results may be generated.

In the actual spatial data, there are few cases of strict symmetry. At this time, if the
spatial data is studied based on the assumption of normality, it is difficult to capture the
changes in the data. In recent years, the skew-normal distribution has attracted widespread
attention. A large number of studies on skew-normal distribution have appeared under
various statistical models. For example, Marcos et al. [9] developed nonlinear mixed-effects
models for a mixture of scales with a skew-normal distributions family and gained an
estimate of the parameters by the maximum likelihood method; Yin et al. [10] introduced a
variable selection procedure for a finite mixture of regression models using the skew-normal
distribution; Tatsuya et al. [11] investigated the decision–theoretic properties of Stein-type
shrinkage estimators in multivariate skew-normal distribution under the condition of
quadratic loss; Liu et al. [12] considered an autoregressive model based on the skew-
normal distribution; Mahdi [13] adopted the EM algorithm to research the maximum
likelihood estimation of the mixed model with a skewed-normal assumption. However,
as far as we know, there are few studies on SARMs with the response variables following
skew-normal distribution.

In recent years, the Bayesian methods of local influence and case influence analysis
have become widely used statistical diagnostic methods. For Bayesian local influence
analysis, it is extensively studied within different models based on several objective func-
tions. For example, Zhu et al. [14] established a universal framework of Bayesian influence
analysis to evaluate the impact of simultaneous perturbations of prior, data and sample dis-
tribution for a set of statistical models; Zhang et al. [15] proposed Bayesian local influence
analysis to evaluate the impact of different perturbations of individual observations, prior
distribution and nonignorable missing data mechanisms in general EEs. Ouyang et al. [16]
applied the Bayesian local influence method to semiparametric structural equation models
and the effects of minor perturbations were evaluated using different perturbation options;
Dai et al. [17] studied two Bayesian local diagnostic procedures for heteroscedastic SARMs;
Ju et al. [18] developed a new SDPDMs by assuming that the random effects and error
terms obey a skew-normal distribution and also developed a Bayesian local influence
analysis method for it. For Bayesian case influence diagnostics, they are widely researched
in various statistical models based on conditional predictive coordinates and K-L distance.
Cancho et al. [19] presented Bayesian case deletion influence diagnostics for nonlinear
regression models with scale mixtures of skew-normal distributions based on the K-L
divergence; Zhu et al. [20] proposed three Bayesian case influence measures to identify
influential points for a class of statistical models with missing data, which included the
Cook’s posterior mean and mode distance and φ-divergence; Tang et al. [21] detected the
influence observations of generalized partial linear mixed models for longitudinal data
based on φ-divergence and Cook’s posterior mean distance; Hao et al. [22] investigated
Bayesian case influence analysis based on the K-L divergence of a generalized autore-
gressive conditional heteroscedasticity model; Duan et al. [23] developed a Bayesian case
deletion influence measure based on the φ-divergence of a semiparametric reproductive
dispersion mixed model and presented computationally feasible formulas. So far, there
are few research results regarding the Bayesian influence analysis of skew-normal spatial
autoregression models (SSARMs). The importance of SSARMs is mainly reflected in the fact
that SSARMs not only consider the spatial correlation of economic individuals in different
regions but also consider the skewness of spatial data. It is more effective to make statis-
tical inferences by the autoregressive model of skewed normal space than the traditional
regression model. However, the observed data may deviate greatly from the established
SSARMs. The motivation of this paper is that there are outliers or strong influential cases
in the actual spatial data, which have an effect on the statistical analysis and inference.
Therefore, based on references [14,20], a methodology of Bayesian statistical diagnosis for
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SSARMs is developed in this paper. The contribution of this paper is that Bayesian influence
analysis, including the local influence approach and case influence measures in SSARMs,
is proposed. The Bayesian local influence method is proposed to evaluate the impact of
small perturbations in the data, distribution of sampling and prior. To measure the extent
of different perturbations in SSARMs, the Bayes factor, the φ-divergence and the posterior
mean distance are established. A Bayesian case influence measure is presented to examine
the influence points in SSARMs. The potential influence points in the models are identified
by Cook’s posterior mean distance and Cook’s posterior mode distance φ-divergence. The
Bayesian influence analysis formulation of spatial data is given.

The rest of this paper is structured as follows. The Markov chain Monte Carlo (MCMC)
algorithm and skew-normal spatial autoregression models are introduced in Section 2.
Three Bayesian local influence methods are used to evaluate the effects of minor perturba-
tion on the data, priors and distribution of sampling in Section 3. Section 4 shows three
Bayesian case influence methods, which are used to recognize the outliers or influential
points. Section 5 illustrates the effectiveness of the proposed approach through simulation
studies and examples. The concluding section is presented in Section 6.

2. Models Introduction and MCMC Algorithm

Y = (y1, . . . , yn)
T is a n × 1 dimensional dependent variables vector; X is a n × p

dimensional explanatory variables matrix; W is a n× n dimensional spatial weights matrix;
ρ represents the strength of the spatial dependence, which can be used to measure the effect
of geographic correlation on the dependent variable; β is a p× 1 dimensional regression
coefficients vector, which can indicate the degree of influence of the corresponding inde-
pendent variable on the dependent variable; and ε = (ε1, . . . , εn)

T is a n× 1 dimensional
vector of disturbances. The traditional assumption on ε is ε ∼ Nn(0, σ2

ε In). We assume the

distribution of ε follows skew-normal, that is, ε
ind.∼ SNn

(
0, σ2

ε In, δ2
ε In

)
. The advantages

we assume are (1) the skewness and heavy tails can be simultaneously explained; (2) the
assumption of normal distribution can be relaxed; and (3) the accurate representation
of the structure present in spatial data can be provided. Therefore, SSARMs have the
following expression:

Y = ρWY + Xβ + ε. (1)

Similar to Arellano-Valle et al. [24], skewed-normal distribution is defined as follows.

Definition 1. If a n-dimensional random vector z obeys a n-variate skew-normal distribution, its
position vector τ ∈ Rn, the scale matrix ∑ is a n× n positive definite matrix and ∆ is a n×m
skewness matrix, the density function is expressed as

f (z|τ, ∑, ∆) = 2mφn(z|τ, ∑+∆∆T)×Φm(∆
T(∑+∆∆T)

−1
(z− τ)|0, (Im + ∆T∑

−1
∆)
−1

(2)

which is denoted as z ∼ SNn,m(τ, ∑ , ∆). z ∼ SNn(τ, ∑ , ∆) when n = m, which can be given

a stochastic representation as z d
= ∆|z0|+ z1, where z0 ∼ Nn(0, In), z1 ∼ Nn(τ, ∑ ) and ‘ d

=’
represents ‘distributed as’, with z0 and z1 being independent.

According to the Definition 1, Equation (1) is represented as follows:

Y− ρWY
∣∣∣β, δε, σ2

ε , Rε
ind.∼ N

(
Xβ + δεRε, σ2

ε In

)
, (3)

where δε represents the skewness parameters, Rε
ind.∼ Nn(0, In)I{Rε > 0}, and I represents

the indicator function.
The log-likelihood function for SSARMs is given by

`(Y|θ) = (2π)−
n
2 |σ2

ε In|− 1
2
|In − ρW| exp

{
−1

2
eT(σ2

ε In)
−1

e
}

, (4)
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where e = Y− ρWY−Xβ− δεRε, θ =
(
ρ, β, σ2

ε , δε

)
.

To conduct Bayesian inference on SSARMs, we first take the random sample from the
joint posterior distribution p(ρ, β, σ2

ε , δε

∣∣Y, X) using the MCMC algorithm, and then use
the random sample to compute Bayesian estimates of the unknown parameters. During
the sampling process, the observations

{
ρ, β, σ2

ε , δε

}
of the sample are generated from the

following conditional distributions: p(ρ
∣∣Y, β, σ2

ε , δε) , p(β
∣∣Y, ρ, σ2

ε , δε) , p(σ−2
ε

∣∣Y, ρ, β, δε)
and p(δε

∣∣Y, ρ, β, σ2
ε ) . To obtain the conditional distributions of unknown parameters in{

ρ, β, σ2
ε , δε

}
, assigning their corresponding prior distributions is essential. Similar to

Arellano-Valle et al. [22], the prior distributions of ρ, β, σ−2
ε , δε are considered follows.

p(ρ) ∼ U(−1, 1)

p(β) ∼ N
(

β0, Mβ

)
p
(
σ−2

ε

)
∼ Γ(v, s)

p(δε) ∼ N(δε0, Mδε)I{δε > 0},

. (5)

where β0, Mβ, v, s, δε0 and Mδε
are hyperparameters whose values are given in advance,

and σ−2
ε = 1/σ2

ε .
The required posterior distributions are provided in Appendix A.

3. Bayesian Local Influence Analysis

This section uses the Bayesian local influence analysis method to evaluate the impact of
small perturbations in the data, prior distribution and sample distribution on the posterior
distribution in the SSARMs.

3.1. Perturbation Model and Manifold

Following Zhu et al. [14], the following perturbation model with skew-normal spatial
data is considered:

p(Y, θ
∣∣X, ω) = p(θ

∣∣ωp)p(Y
∣∣X, θ, ωd, ωs) (6)

and
∫

p(Y, θ
∣∣X, ω)dYdθ = 1 , where Y = (y1, . . . , yn)

T is a n× 1 dimensional dependent
variables vector of expression (1), ωp ∈ <kp represents the perturbations to the prior, ωd ∈
<kd represents the perturbations to the data and ωs ∈ <ks represents the perturbations

to sampling distribution. Denote k = kp + kd + ks. Suppose ω0 = (ω0T
p , ω0T

d , ω0T
s )

T
∈ <k

represents no perturbation.
Similar to Zhu et al. [14], the perturbed model M =

{
p(Y, θ

∣∣∣X, ω) : ω ∈ <k
}

is
regarded as the k-dimensional manifold under some regular conditions. The tangent
space Tω ofM at each ω ∈ M is spanned by k functions ∂ωq`(ω), where ∂ωq = ∂/∂ωq,
`(ω) = log p(Y, θ|X, ω) and ωq is the qth element of ω. So,

giq(ω) = Eω

{
∂ωj`(ω)∂ωq`(ω)

}
= Eω

{
−∂2

ωjωq`(ω)
}

, j, q = 1, · · · , k. (7)

where ∂2
ωjωq`(ω) = ∂2`(ω)/∂ωj∂ωq, the expectation of the joint probability density func-

tion p(Y, θ|X, ω) is denoted as Eω. The diagonal element gjj(ω) is considered to measure

the amount of perturbation ωj and the quantity riq = gjq(ω)/
√

gjj(ω)gqq(ω) is considered

to measure the association between perturbations ωj and ωq. If G
(
ω0) is a diagonal matrix,

all elements of ω are mutually orthogonal and the relevant perturbation is referred to as
a suitable perturbation. If G

(
ω0) is not a diagonal matrix, the relevant perturbation is

referred to as an improper perturbation. However, we can always find an appropriate

perturbation vector ω̃ = ω0 +
{

G
(
ω0)} 1

2
(
ω−ω0) such that G(ω̃) evaluated at ω0 equals

cIk, where c is a positive number.
The Bayesian local influence analysis method is designed to quantify the degree of

dependence of the posterior distribution on these three key elements of Bayesian analysis,
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including the prior distribution, the sampling distribution and the data. To illustrate the
effect of small perturbations of the prior distribution, the sampling distribution and the data
on SSARMs, the following four forms of perturbation are considered. The perturbation
of covariate is considered in Example 1. The perturbation of the dependent variable
is considered in Example 2. The perturbation of the prior distribution is considered in
Example 3. The perturbation of the sampling distribution is considered in Example 4.

Example 1. The Bayesian perturbation model for the spatial data includes many pertur-
bation schemes. The perturbation scheme to data points is proposed for identifying
outliers and influential observations. Consider the perturbation covariate
X : X(ωx) = (X1 + ω11p, . . . , Xn + ωn1p)

T = X + ωx1T
p , in which ωx = (ω1, . . . , ωn)

T ,

1p = (1, . . . , 1)T is a p × 1 vector and ω0
x = (0, . . . , 0)T stands for no perturbation. A

Riemann manifold is formed by a perturbation modelM = {p(Y, θ|X, ωx) : ωx∈<n}. The
tangent space Tωx ofM can be spanned by

∂ωx`(ωx) = (1T
p β)

T
(σ2

ε In)
−1
[
Y− ρWY−

(
X + ωx1T

p

)
β− δεRε

]
, (8)

when ωx = ω0
x. We have

∂ωx`
(

ω0
x

)
= (1T

p β)
T
(σ2

ε In)
−1

(Y− ρWY−Xβ− δεRε). (9)

It is easily shown that G
(
ω0

x
)
= E

{
−∂2

ωx`
(
ω0

x
)}

= (1T
p β)

T
(σ2

ε In)
−1
(

1T
p β
)

. When G
(
ω0

x
)

is a diagonal matrix, the perturbation is referred to as a suitable perturbation. Otherwise, the
perturbation is deemed to be inappropriate.

Example 2. Bayesian local influence analysis methods have many more perturbation schemes
for spatial data points. In Example 1, perturbations of X are considered. However, perturba-
tions of the dependent variable Y also have an impact on the Bayesian analysis. Consider the
perturbation to the response variables Y:Y

(
ωy
)
= (y1 + ω1, . . . , yn + ωn)

T = Y + ωy, in which
ωy = (ω1, . . . , ωn)

T and ω0
y = (0, . . . , 0)T stands for no perturbation. A Riemann manifold is

formed by a perturbation modelM =
{

p(Y, θ
∣∣X, ωy) : ωy ∈ <n}. The tangent space Tωy of M

can be spanned by

∂ωy`
(
ωy
)
= (In − ρW)T(σ2

ε In)
−1

[Ỹ
(
ωy
)
−Xβ− δεRε, (10)

in which Ỹ
(
ωy
)
= Y + ωy − ρW

(
Y + ωy

)
. Whenωy = ω0

y, we have

∂ωy`
(

ω0
y

)
= (In − ρW)T(σ2

ε In)
−1

(Y− ρWY−Xβ− δεRε). (11)

It is easily shown that G
(

ω0
y

)
= E

{
−∂2

ωy`
(

ω0
y

)}
= (In − ρW)T(σ2

ε In)
−1

(In − ρW).

When G
(

ω0
y

)
is a diagonal matrix, the perturbation is referred to as a suitable perturbation.

Otherwise, the perturbation is deemed to be inappropriate.

Example 3. The Bayesian perturbation model for the prior distribution includes many existing
schemes. Consider the perturbation to the prior distribution of β: p(β

∣∣ωβ) ∼ N
(
ωββ, Mβ

)
, in

which ωβ is a positive number. Additionally, ω0
β = 1 stands for no perturbation. A Riemann

manifold is formed by a perturbation modelM =
{

p(Y, θ
∣∣∣X, ωβ) : ωβ ∈ <1

}
. The tangent space

Tωβ
of M can be spanned by

∂ωβ
`
(
ωβ

)
= βT

0 (Mβ)
−1(β−ωββ0

)
. (12)
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It is easily shown thatG
(

ω0
β

)
= E

{
−∂2

ωβ
`
(

ω0
β

)}
= βT

0 (Mβ)
−1β0. WhenG

(
ω0

β

)
is a di-

agonal matrix, the perturbation is referred to as a suitable perturbation. Otherwise, the perturbation
is deemed to be inappropriate.

Example 4. The Bayesian perturbation model for the sampling distribution includes many
perturbation schemes. Consider the perturbation to the distribution of the disturbances
ε: p(ε

∣∣ωε) ∼ SNn
(
0, σ2

ε In, ωεδεIn
)

, in which ωε is a scalar and ω0
ε = 1 means no perturba-

tion. A Riemann manifold is formed by a perturbation modelM =
{

p(Y, θ
∣∣∣X, ωε) : ωε ∈ <1

}
.

The tangent space Tωε ofM is spanned by

∂ωε`(ωε) = (δεRε)
T(σ2

ε In)
−1

(Y− ρWY−Xβ−ωεδεRε). (13)

It is easily shown that G
(
ω0

ε

)
= E

{
−∂2

ωε
`
(
ω0

ε

)}
= (δεRε)

T(σ2
ε In)

−1
(δεRε). When G

(
ω0

ε

)
is a diagonal matrix, the perturbation is referred to as a suitable perturbation. Otherwise, the
perturbation is deemed to be inappropriate.

3.2. Local Influence Measures

Following Zhu et al. [14], let objective function f (ω) :M → <r be the objective
function. The influence of perturbation can be measured by considering the Bayes factor,
φ-divergence and posterior mean distance. If ω(t) is a geodesic on the finite dimen-
sional manifoldM with ω(0) = ω0 and ∂tω(t)|t=0 = h ∈ <m , in practice, the geodesic
can be taken as ω0 = th. The Taylor expansion of objective function f (ω(t)) at t = 0
is f (ω(t)) = f (ω(0)) +

.
f h(0)t + O

(
t2), where

.
f h(0) = ∇T

f h, ∇ f = ∂ f (ω)/∂ω and
h = dω(t)/dt|t=0 ∈ <m .

Firstly, when ∇ f 6= 0, the first-order influence measure in the defined direction
h ∈ <m is

FI f ,h = FI f (ω(0)),h =
hT∇ f W f∇T

f h

hTGh
, (14)

where G = G
(
ω0), W f represents a positive semi-definite matrix. Notably, the first-order

influence measure can be rewritten with appropriate perturbations ω̃(ω), then further
defined as

FI f (ω̃),h|ω̃=ω0 = hTG−
1
2 ∇ f W f∇T

f G−
1
2 h. (15)

Following Poon and Poon [25], the first-order adjusted influence measure FIC f (ω̃0),h
can be defined as

FIC f (ω̃0),h = hTBh, (16)

in which B = Q/tr(Q) in which Q = G−
1
2 ∇ f W f∇T

f G−
1
2 , tr(A) denotes the trace of a

matrix A.
Let η1 ≥ . . . ηt > 0 be the non-zero eigenvalues of matrix B and u1, . . . , ut be the

corresponding orthogonal eigenvectors, where ui = (ui1, . . . , uik)
T for i = 1, . . . , ι. The

local maximum influence degree ω̃ is reflected by the maximum eigenvalue η1. The
corresponding eigenvector u1 is the direction of the most significant perturbations show-
ing the perturbations of the three components of the SSARMs to obtain the largest local
variation in f

(
ω0) and further identify influential observations, misspecified priors and

insufficient sampling distributions. Regrettably, it is not sufficient to assess u1 local impacts
by inspection alone (Poon and Poon [25]). Through their arguments, local influence is eval-
uated using the overall contribution vector of all eigenvectors associated with all non-zero
eigenvalues: M(0) = η1u2

1 + . . . + ηtu2
t , where u2

i = (u2
i1, . . . , u2

ik)
T . It is easy to show that

the jth component of M(0) is M(0)j =
ι

∑
i=1

ηiu2
ij = FIC f (ω̃0),vj

, for j = 1, . . . , k, where vj is

a k× 1 primary perturbation vector, the jth element is 1, the rest of the features are 0 and
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bjj is the jth diagonal element of matrixB . Similar to Zhu et al. [14], M(0) + 2SM(0) is

considered as a benchmark, where M(0) is the mean of
{

M(0)j : j = 1, . . . , k
}

and SM(0)

is the standard error of
{

M(0)j : j = 1, . . . , k
}

. That is to say, if M(0) + 2SM(0) ≤ bjj, the
jth observation is identified as an influential point.

Example 5 (Bayes factor). In this example, the perturbation change is measured by the Bayes
factor. It measures this change mainly by the difference between log

{
p(Y
∣∣ω0)

}
without per-

turbation and log{p(Y|ω)} with perturbation. Consider objective function as the Bayes factor:
f (ω) = log{p(Y|ω)} − log

{
p(Y
∣∣ω0)

}
, where p(Y

∣∣ω) = log
∫

p(Y, θ
∣∣X, ω)dθ . It is easy to

prove that
∇B = Eθ|Y,X,ω0

{
∂ω logp(Y, θ

∣∣∣X, ω0)
∣∣∣Y} 6= 0, (17)

in which ∇B can be approximated by∇B ≈ S−1
S
∑

s=1
∂ωlogp(Y, θ(s)

∣∣∣∣X, ω0)and
{

θ(s) : s = 1, . . . ,S
}

is

generated via the MCMC algorithm, unifying theGibbs sampler with the MH algorithm.

Secondly, when ∇ f = 0, the second-order Taylor expansion of the objective function f (ω)

is f (ω(t)) = f (ω(0)) + 0.5
..
f h(0)t

2 + O
(
t3), where

..
f h(0) = hTH f h and H f = ∂2

ω f (ω)
∣∣∣
ω=ω0

.

Similar to Zhu et al. [14], the second-order influence measure in the direction h ∈ <m is given as

SI f ,h = SI f (ω(0)),h =
hTH f h

hTGh
. (18)

In particular, when the appropriate perturbation ω̃(ω) is added, the second-order
influence measure can be further simplified as

SI f (ω̃),h|ω̃=ω0 = hTG−
1
2 H f G−

1
2 h. (19)

Therefore, the second-order adjusted influence measure can be defined as

SCI f (ω̃0),h = hTB sh, (20)

in whichB s = Qs/tr(Qs), Qs = G−
1
2 H f G−

1
2 . The largest eigenvalue ofB s is an important

indicator to evaluate the local influence behavior of the model and the corresponding
eigenvector is the direction of the most significant local influence, which reveals how the
three elements of SSARMs are perturbed and can be identified as the potential influence
points, erroneous priors and improper modelling assumptions.

Example 6 (φ-divergence). In this example, the perturbation change is measured by the φ-
divergence. It measures this change mainly by the difference between two posterior probability
density functions. Setting the objective function f (ω) between the two posterior probability density
functions before and after the introduction of perturbation ω as φ-divergence can be defined as

Dφ(ω) =
∫

φ(R(θ
∣∣∣∣Y, X, ω))p(θ

∣∣∣∣Y, X)dθ, (21)

where R(θ
∣∣∣Y, X, ω) = p(θ|Y,X,ω)

p(θ|Y,X)
andφ(·) is a convex function withφ(1) = 0. It is easy to prove

that ∇φ = 0 and

Hφ =
..
φ(1)[Eω0

{
∂ω logp(Y, θ

∣∣∣X, ω0)
}⊗2
−
{

Eω0 ∂ω logp(Y, θ
∣∣∣X, ω0)

}⊗2
], (22)



Mathematics 2022, 10, 1306 8 of 19

where a⊗2 = aaT . Hφ is difficult to calculate directly because it involves higher dimensional
integrals. To solve this problem, the approximate expression of Hφ can be written as

Hφ ≈
..
φ(1)

 1
S
S
∑
s=1

{
∂ω logp(Y, θ(s)

∣∣∣X, ω0)
}⊗2
−
(

1
S
S
∑
s=1

∂ω logp
(

Y, θ(s)
∣∣∣X, ω0

))⊗2
. (23)

Example 7 (Posterior Mean Distance). In this example, the perturbation change is measured
by Cook’s posterior mean distance. It measures this change mainly by the difference between two
posterior means. Consider the objective function f (ω) as Cook’s posterior mean distance between
two posterior means of known function g(θ) before and after the introduction of perturbation ω,
which is defined as

CMg(ω) =
{

Qg(ω)−Qg

(
ω0
)}T

Gg

{
Qg(ω)−Qg

(
ω0
)}

, (24)

where Qg(ω) =
∫

g(θ)p(θ
∣∣∣Y, X, ω)dθ is the posterior mean of g(θ) and

Gg = [var
{

g(θ)
∣∣Y, X, ω0}]−1. It is easily shown that ∇CM = 0 and HCM = Q∗Tg GgQ∗g,

where Q∗g = covω0
{

g(θ), ∂ω logp(Y, θ
∣∣X, ω0)

}
, which can be approximated by

Q∗g ≈ S−1
S
∑
s=1

{
g
(

θ(s)
)

∂ω log p(Y, θ(s)
∣∣∣X, ω0)

}
−
(
S−1

S
∑
s=1

g
(

θ(s)
))(

S−1
S
∑
s=1

∂ω log p(Y, θ(s)

∣∣∣∣∣X, ω0)

)
. (25)

For the above considered objective functions and perturbation schemes, the following
steps are used to achieve Bayesian local influence analysis.

Step 1. A Bayesian perturbation model p(Y, θ|X, ω) is constructed.
Step 2. ∇ f = ∂ω f (ω(0)), H f = ∂2

ω f (ω)
∣∣∣
ω=ω0

and G = G
(
ω0) are calculated.

Step 3. If ∇ f 6= 0, the local effects of small perturbations are evaluated by computing
the influence measure FCI f (ω̃0),ej

of the first-order adjustment. However, if ∇ f = 0, the
second-order adjusted influence measure SCI f (ω̃0),ej

is calculated.

Step 4. For some given objective functions f (ω), if M(0)j = FCI f (ω̃0),ej
≥ M(0) +

2SM(0) or M(0)j = SCI f (ω̃0),ej
≥ M(0) + 2SM(0), the jth observation is detected as an

influential observation.

4. Bayesian Case Influence Analysis

According to the case deletion approach provided by Cook and Weisberg [26,27], three
Bayesian case influence measures are considered in this section. Let YS and XS denote
subsamples of Y and X, respectively, for which all observations are in S. Let Y[S] and X[S]
represent subsamples of Y and X, respectively, and delete all observations in YS and XS.

To order to measure the impact of deleting observations in {YS, XS} on the posterior
distribution of θ, the first type of Bayesian case influence measure is the φ-influence of Y[S],
defined as

Dφ(S) =
∫

φ
(

R[S](θ)
)

p(θ
∣∣∣∣Y, X[S])dθ, (26)

where φ(·) is a convex function with φ(1) = 0, and R[S](θ) = p(θ
∣∣∣Y[S])/p(θ

∣∣∣Y) . Dφ(S)

measures the difference between p(θ
∣∣∣Y[S], X[S]) and p(θ|Y, X) posterior distributions. If

Dφ(S) is large, the observations in S are detected to be influential.
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In order to measure the impact of deleting observations in S on the posterior mean of
θ, the second type of Bayesian case influence measure that Cook’s posterior mean distance,
denoted by CM(S), is considered as:

CM(S) = (θ̃[S] − θ̃)
T

Wθ

(
θ̃[S] − θ̃

)
, (27)

where Wθ is a positive definite matrix and can be seen as the inverse of θ’s posterior
covariance matrix. θ̃ =

∫
θp(θ

∣∣∣Y)dθ and θ̃[S] =
∫

θp(θ
∣∣∣Y[S])dθ are the posterior means

of θ based on data Y and Y[S], respectively. If the value of CM(S) is large, it points out that
deleting observations in S will have a significant impact on the posterior mean. Therefore,
the observations in S are considered to be strong influence points.

In order to measure the impact of deleting observations in S on the posterior mode
of θ, the third type of Bayesian case influence measure is Cook’s posterior mode distance,
denoted by CP(S), which is considered as:

CP(S) = (θ̂[S] − θ̂)
TGθ

(
θ̂[S] − θ̂

)
, (28)

where, Gθ is a positive definite matrix and θ̂ = argmaxθ logp(θ
∣∣Y) and

θ̂[S] = argmaxθ log p(θ
∣∣∣Y[S]) represent the posterior mode of parameter θ concerning Y

and Y[S], respectively. If the value of CP(S) is large, it indicates that deleting observations
in S will have a significant impact on the posterior mode. Therefore, the observations in S
are considered strong influence points.

To obtain Dφ(S), CM(S) and CP(S), it is necessary to calculate p(θ|Y) and p(θ
∣∣∣Y[S]) .

When pS(θ) = p(Y
∣∣∣θ)/p(Y[S]

∣∣∣θ) = p(YS

∣∣∣θ) , it is easily shown that

p
(

θ
∣∣∣Y[S]

)
=

{pS(θ)}−1 p(θ
∣∣∣Y)∫

{pS(θ)}−1 p(θ|Y)dθ
, (29)

where R[S](θ) = {pS(θ)} −1/Eθ|Y{pS(θ)}−1. Thus, Dφ(S) can be written as

Dφ(S) = Eθ|Y

[
φ

(
{pS(θ)}−1

Eθ|Y{pS(θ)}−1

)]
, (30)

where Eθ|Y represents the mathematical expectation of the posterior distribution p(θ|Y) .

The K-L divergence (φ(k) = − log(k)), Dφ(S) = log Eθ|Y{pS(θ)}−1 + Eθ|Y{log pS(θ)} can
be considered a computational formula of Dφ(S). To compute CM(S), we need to evaluate
θ̃ and θ̃[S]. Where θ̃ = Eθ|Y(θ) and θ̃[S] = Eθ|Y(θ{pS(θ)}−1)/Eθ|Y{pS(θ)}−1. In order to
obtain CP(S), it is necessary to calculate θ̂ and θ̂[S]. Typically, the posterior mode of θ is not
a closed-form, so an iterative algorithm is needed to obtain θ̂ and θ̂[S]. Gθ in CP(S) can be
analytically obtained by evaluating J(θ) = −∂2

θ log p(θ
∣∣Y) = −∂2

θ log p(Y
∣∣θ)− ∂2

θ log p(θ)
at θ̂. Wθ can be obtained by computing the value of Jθ at θ, which can also be equal to
the inverse of the posterior covariance matrix of θ. Thus, Dφ(S), CM(S) and CP(S) are
derived directly by averaging MCMC samples over the posterior distribution p(θ|Y) .

5. Simulation Studies and Real Examples

The proposed approaches in Sections 3 and 4 will be illustrated by three simulation
studies and practical cases of air quality from China (2020) in this section.
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5.1. Simulation Studies

The data set {yi : i = 1, · · · , n}was generated from Equation (1) with n = 30 and p = 3.
X was generated from the normal distribution N(0, I30); the measurement errors ε were
generated from the skew-normal distribution ε ∼ SN30

(
0, σ2

ε I30, δεI30
)
. The spatial weight

matrix W was generated from the Delaunay program in MATLAB. The true values of ρ, β,
δε and σ2

ε were taken to be ρ = 0.2, β = (1.25, 2, 1.2)T , δε = 0.1 and σ2
ε = 0.1, respectively.

The hyperparameters of β0, Mβ, δε0, Mδε
, v0 and s0 were taken to be β0 = (1.25, 2, 1.2)T ,

Mβ = 0.001I3, δε0 = 0.1, Mδε
= 0.001, v0 = 6 and s0 = 2, respectively. Such true values

of the parameters were selected randomly. The purpose of selecting parameter values
is only to test whether the proposed method is effective. The hyperparameters of the
prior distribution were selected to be similar to the true value to make the algorithm
converge quickly.

To illustrate the previously proposed Bayesian theory of local influence analysis, the
following two simulation studies were considered.

Simulation 1. In this simulation study, the outliers were generated in the following two ways (i) x16
was changed to x16 + 2 and x29 was changed to x29 + 2, and (ii) y7 was changed to y7 + 8 and y22
was changed to y22 + 8. For case (i), for the covariate perturbation in Example 1, the Bayesian local
influence measuresFICB,ej ,SICDφ ,ej and SICMd ,ej were calculated by using an MCMC algorithm
iteration 10,000 times, discarding the first 5000 times and using the last 5000 iteration values to
calculate them. The results are shown in Figure 1a–c, respectively. Cases 16 and 29 turned out to
be influential observations, as we expected. For case (ii), for the response variables perturbation in
Example 2, the Bayesian local influence measures FICB,ej , SICDφ ,ej and SICMd ,ej were calculated
by using an MCMC algorithm iteration 10,000 times, discarding the first 5000 times and using
the last 5000 iteration values to calculate them. The results are shown in Figure 2a–c, respectively.
Cases 7 and 22 turned out to be influential observations, as expected.
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Figure 1. Plots of covariate perturbation in Simulation 1.
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Simulation 2. In this simulation study, perturbations to the data, priors and sampling distribution
were considered simultaneously. The outliers generation method was similar to the first method
in Simulation 1. (i) The covariate perturbations were considered (see Example 1), (ii) the prior
distribution of β perturbations was considered (see Example 3) and (iii) the distributions of ε
perturbations were considered (see Example 4). The perturbed log-likelihood function is shown
as follows

log p(Y, θ |ω ) ∝ − 1
2 (Y− ρWY−Xω β− δεRε)

T(σ2
ε In)

−1
(Y− ρWY−Xω β− δεRε)− 1

2 (β−ωββ0)
TM−1

β

(
β−ωββ0

)
−

1
2 (Y− ρWY−Xβ−ωεδεRε)

T(σ2
ε In)

−1
(Y− ρWY−Xβ−ωεδεRε )

where ω = (ω1, . . . , ω30, ωβ, ωε)
T and Xω = X + ωx1T

p . In this case, ω0 = (0, . . . , 0, 1, 1)T

represents no perturbation. After some calculations, we obtained G
(
ω0) = diag(a11, a22, a33),

where a11 = βT1p(σ2
ε In)

−11T
p β, a22 = βT

0 M−1
β β0 and a33 = (δεRε)

T(σ2
ε In)

−1
δεRε. The

Bayesian local influence measures FICB,ej , SICDφ ,ej and SICMd ,ej were concluded using an MCMC
algorithm iteration 10,000 times, discarding the first 5000 times and using the last 5000 itera-
tion values to calculate them based on prior distribution N

(
10β0, Mβ

)
of β and the distributions

SN30
(
0, σ2

ε In, 30δεRε

)
of ε. The results are shown in Figure 3a–c. The results showed that cases 16

and 29 were identified to be influential observations, and the prior distribution of β and distributions
of ε were detected to be misspecified distributions with having a large effect on FICB,ej , SICDφ ,ej
and SICMd ,ej .

To demonstrate the Bayesian case influence diagnostics methods, we consider the
following simulation research:

Simulation 3. In this simulation research, the outliers were generated in the following two ways
(i) x16 was changed to x16 + 2 and x29 was changed to x29 + 2, and (ii) y7 was changed to y7 + 8
and y22 was changed to y22 + 8. The Bayesian case influence measures Dφ(S),CM(S) and CP(S)
were calculated using an MCMC algorithm iteration 10,000 times, discarding the first 5000 times
and using the last 5000 iteration values to calculate them. The results are shown in Figures 4a–c
and 5a–c. In this simulation, samples 16 and 29 are created as outliers for x and the other points as
normal. Therefore, results are correct when samples 16 and 29 are detected to be outliers and the
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other points are less influenced or have no influence. Similarly, samples 7 and 22 are creased as
outliers for y and the other points as normal. Therefore, the results are correct when samples 7 and
22 are detected to be outliers and the other points are less influenced or have no influence. It can be
seen from Figure 4 that cases 16 and 29 were detected to be influential; it can be seen from Figure 5
that cases 7 and 22 were diagnosed as influence points. As we expected, the results are the same as
the previous diagnosis of Bayesian local influence measures.
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5.2. Real Example

A dataset concerning China’s air quality was used to demonstrate our proposed
approach in the subsection. Let Xp be a 31× 1 vector of the fine particulate matter (PM2.5)
in 31 provinces, let Xs be a 31× 1 vector of the sulfur dioxide (SO2) in 31 provinces, let Xc

be a 31× 1 vector of the carbon monoxide (CO) in 31 provinces and let Y = (y1, . . . , y31)
T

be a 31× 1 vector of the air quality index (AQI) in 31 provinces.
Firstly, the above data were exploited to illustrate the application of the Bayesian local

influence analysis method. The following three perturbation options were considered:
(i) perturbations to covariates; (ii) perturbations to response variables; (iii) covariates, prior
distributions of β and sampling distributions of ε are perturbed simultaneously. Bayesian
local influence measures FICB,ej , SICDφ ,ej and SICMd ,ej were calculated for three different
perturbation scenarios. The results are shown in Figures 6–8. The results of Figure 6a–c
show that cases 6 and 19 were diagnosed as influence points by FICB,ej , SICDφ ,ej and
SICMd ,ej in perturbation scheme (i). The results of Figure 7a–c show that cases 1 and 12
were diagnosed as influence points by FICB,ej , SICDφ ,ej and SICMd ,ej in perturbation scheme
(ii). The results of Figure 8a,b show that cases 6 and 19 were diagnosed as influence points
by FICB,ej , SICDφ ,ej and SICMd ,ej in perturbation scheme (iii). The results of Figure 8b show
that the prior distribution of β, the distributions of ε were diagnosed to have a significant
effect by SICDφ ,ej . The results of Figure 8c showed that the prior distribution of β was
diagnosed to have a significant effect by SICMd ,ej .

Secondly, the above data are used to illustrate the application of the Bayesian case
influence analysis method. We calculated Bayesian case influence measures Dφ(S), CM(S)
and CP(S). The results are presented in Figures 9 and 10. Figure 9a–c demonstrate that
cases 6 and 19 were diagnosed as influence points. Figure 10a–c demonstrate that cases 1
and 12 were diagnosed as influence points. As we expected, the results are the same as the
previous diagnosis of Bayesian local influence measures.
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Finally, by reviewing China’s air quality data for April 2020, it was found that cases
6 and 19’s influence points represent Harbin and Shenyang, respectively. In particular,
Harbin’s air quality is the second-lowest among the 31 provincial capitals in China, while
Shenyang’s air quality is the third-lowest among the 31 provincial capitals in China. This
indicates that the air quality situation in these two cities is more prominent among the
31 provinces. Similarly, it was found that cases 1 and 12 of the diagnosed impact points
represented Beijing and Lhasa, respectively. Among them, Beijing’s air quality ranks
17th among 31 provincial capital cities. The air quality of Lhasa ranks fourth among
the 31 provinces, indicating that the air quality of Lhasa is indeed outstanding among
the 31 provincial capital cities. Although Beijing’s air quality ranks in the middle of the
31 provincial capitals, there are many sandstorms in Beijing in April, which will lead to
abnormal air quality in Beijing. It is further illustrated that the impact point diagnosed is
consistent with the relevant air quality reality.

To further illustrate that the observed values of samples 6 and 19 may be the outliers,
the parameter estimates before and after deleting the 6th and 19th observations are cal-
culated, respectively, as shown in Table 1. Table 1 show that after deleting the 6th and
19th observations, the estimators of β1, β2, β3, ρ, σ2

ε , δε are changed from 1.1988, 1.9275,
1.1440, 0.1795, 1.0437, 0.0979 to 1.3440, 2.1451, 1.2767, 0.4755, 1.3488, 0.0000, respectively.
Similarly, to further illustrate that the observed values of samples 1 and 12 are the outliers,
the parameter estimates before and after deleting the 1st and 12th observations are calcu-
lated, respectively, as shown in Table 2. Table 2 show that after deleting the 1st and 12th
observations, the estimators of β1, β2, β3, ρ, σ2

ε , δε are changed from 1.1988, 1.9275, 1.1440,
0.1795, 1.0437, 0.0979 to 0.9898, 1.5838, 0.9491, 0.2086, 3.2987, 0.1989, respectively.

Table 1. Bayesian estimation with or without influence point 6 and 19 in the real example.

Par.
With Without

Est. SD. Est. SD.

β1 1.1988 0.0315 1.3440 0.0311
β2 1.9275 0.0320 2.1451 0.0315
β3 1.1440 0.0315 1.2767 0.0313
ρ 0.1795 0.1348 0.4755 0.2005

σ2
ε 1.0437 0.1023 1.3488 0.1430

δε 0.0979 0.0076 0.0000 0.0000
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Table 2. Bayesian estimation with or without influence point 1 and 12 in the real example.

Par.
With Without

Est. SD. Est. SD.

β1 1.1988 0.0315 0.9898 0.0316
β2 1.9275 0.0320 1.5838 0.0314
β3 1.1440 0.0315 0.9491 0.0315
ρ 0.1795 0.1348 0.2086 0.1701

σ2
ε 1.0437 0.1023 3.2987 0.7886

δε 0.0979 0.0076 0.1989 0.0019

6. Discussion

Based on SSARMs with response variables obeying skew-normal distribution, this
paper proposed a Bayesian local influence method to evaluate the impact of small perturba-
tions in data, prior distribution and sample distribution. Perturbation models with separate
or simultaneous perturbations of covariates, response variables, parameter prior and sam-
ple distributions were developed. A Bayesian perturbation manifold was constructed to
describe the internal structure of perturbation models and quantify the perturbation degree
of different perturbation models. The Bayesian local influence measures, including the
Bayes factor, the φ-distance and the posterior mean distance, were used to evaluate the im-
pact of various perturbations. In addition, three Bayesian case deletion influence measures,
including φ-distance, Cook’s posterior mean distance and Cook’s posterior mode distance,
were proposed to identify potential outliers in skew-normal spatial autoregression models.
The effectiveness of our proposed approach was illustrated by three simulation studies and
a real example. The results showed that: (1) our proposed Bayesian local influence approach
can effectively identify the potential influence points, misspecified prior distribution and
misspecified sampling distribution; (2) our proposed Bayesian case influence approach can
be used to effectively detect the potential influence observations; (3) the outliers detected by
the Bayesian local influence approach and Bayesian case influence approach are consistent,
which further explains the rationality of the two methods.
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Appendix A

To obtain Bayesian parameter estimates in the SSARMs, a random sequence of ob-
servations was produced from the joint posterior distribution p(ρ, β, σ2

ε , δε

∣∣Y, X) using
the MCMC algorithm combining Gibbs sampling and the MH algorithm. The sam-
pler was implemented by iteratively drawing observations from the conditional distribu-

https://www.mee.gov.cn/
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tions p(ρ
∣∣Y, β, σ2

ε , δε, Rε) , p(β
∣∣Y, ρ, σ2

ε , δε, Rε) , p(σ−2
ε

∣∣Y, ρ, β, δε) , p(δε

∣∣Y, ρ, β, σ2
ε , Rε) and

p
(
Rε

∣∣Yn, β, ρ, δε, σ2
ε

)
.

(1) The posterior distribution density of β is

p
(

β
∣∣∣Y, ρ, δε, σ2

ε , Rε

)
∼ N

(
µβ, Ωβ

)
,

where, Ωβ = (σ−2
ε XTX + M−1

β )
−1

, µβ = Ωβ

(
M−1

β β0 + σ−2
ε XTΛ1

)
and Λ1 = Y− ρWY−

δεRε.
(2) The posterior distribution density of δε is

p
(

β
∣∣∣Y, ρ, δε, σ2

ε , Rε

)
∼ N

(
µβ, Ωβ

)
,

where, Ωδε
= (σ−2

ε RT
ε Rε + M−1

δε
)
−1

, µδε
= Ωδε

(
M−1

δε
δε0 + σ−2

ε RT
ε Λ2

)
and Λ2 = Y −

ρWY−XT β.
(3) The posterior distribution density of Rε is

p
(

Rε

∣∣∣Y, β, ρ, δε, σ2
ε

)
∼ N(µRε , ΩRε)

where, ΩRε = (σ−2
ε δT

ε δε + In)
−1 and µRε = ΩRε

(
σ−2

ε δT
ε Λ2

)
.

(4) The posterior distribution density of σ−2
ε is

p
(

σ−2
ε |Y, β, ρ, δε, Rε

)
∼ Γ

(
n
2
+ v,

1
2

eTe + s
)

(5) The posterior distribution density of ρ is

p
(

ρ
∣∣∣Y, β, δε, σ2

ε , Rε

)
∝ |In − ρW| exp

{
−1

2
eT(σ2

ε In)
−1

e
}
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