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Abstract: The soft set is one of the key mathematical tools for uncertainty description and has
many applications in real-world decision-making problems. However, most of the time, these
decision-making problems involve less important and redundant parameters, which make the
decision making process more complex and challenging. Parameter reduction is a useful approach to
eliminate such irrelevant and redundant parameters during soft set-based decision-making problems
without changing their decision abilities. Among the various reduction methods of soft sets, normal
parameter reduction (NPR) can reduce decision-making problems without changing the decision
order of alternatives. This paper mainly develops a new algorithm for NPR using the concept of
σ-algebraic soft sets. Before this, the same concept was used to introduce the idea of intersectional
reduced soft sets (IRSSs). However, this study clarifies that the method of IRSSs does not maintain
the decision order of alternatives. Thus, we need to develop a new approach that not only keeps
the decision order invariant but also makes the reduction process more simple and convenient. For
this reason, we propose a new algorithm for NPR using σ-algebraic soft sets that not only overcome
the existing problems of IRSSs method but also reduce the computational complexity of the NPR
process. We also compare our proposed algorithm with one of the existing algorithms of the NPR
in terms of computational complexity. It is evident from the experimental results that the proposed
algorithm has greatly reduced the computational complexity and workload in comparison with the
existing algorithm. At the end of the paper, an application of the proposed algorithm is explored by a
real-world decision-making problem.

Keywords: fuzzy sets; soft sets; σ-algebraic soft sets; normal parameter reduction; algorithm;
multi-attribute decision making

MSC: 03E99; 90B50; 03D15

1. Introduction

As one of the basic activities of human society, decision making generally exists in
all aspects of today’s life. It is usually defined as a mental process that involves judging
multiple options or alternatives to select one, so as to best fulfill the aims or goals of
the decision makers. As the real world is complex and changeable, the relationships
between things are mostly random, imprecise and fuzzy, which are the main source of
uncertainty in our daily life decision making. A number of mathematical theories have

Mathematics 2022, 10, 1297. https://doi.org/10.3390/math10081297 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10081297
https://doi.org/10.3390/math10081297
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-7208-6518
https://orcid.org/0000-0002-4907-3548
https://orcid.org/0000-0001-9142-2441
https://orcid.org/0000-0003-3950-6618
https://doi.org/10.3390/math10081297
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10081297?type=check_update&version=2


Mathematics 2022, 10, 1297 2 of 17

been introduced so far to address the problem of uncertainty, such as Kolmogorov’s theory
of probability [1], Zadeh’s theory of fuzzy sets (FSs) [2], Atanassov’s theory of intuitionist
FSs [3], Gorzalzany’s theory of interval FSs [4], Pawlak’s theory of rough sets [5] and
so on. As a result of these theories, different mathematical models are developed to
deal with different kinds of uncertainties. However, due to the lake of parameterization
tools, these theories failed to successfully describe some uncertainty problems, which
greatly limit the applications of these theories in decision making [6]. In order to solve
the blind areas of the above-mentioned theories, Molodtsov [6] described things from
the perspective of parameterization and introduced the concept of soft set theory. Due
to sufficient parametrization tools, a real-world object can easily be described by soft
sets in a more realistic and simple way. The applications of soft set theory had been
explored in many directions, especially in decision making. Maji et al. [7] applied soft set
theory to solve a decision-making problem using the rough set approach. Cagman and
Enginoglu [8] introduced matrix representation for soft sets and defined some product
operations in soft set theory. Using the product operations, they proposed the uni-int
decision-making method and applied it to a decision-making problem based on soft sets.
Cagman and Karatas [9] introduced a novel algorithm for intiutionistic fuzzy soft sets
(IFSSs)-based decision making. Xu and Xiao [10] proposed a financial ratio selection
model to predict business failure by using soft set theory. Khameneh et al. [11] introduced
an adjustable approach to multi-criteria group decision-making based on a preference
relationship under FS information. Ali et al. [12] presented a novel approach to multi-
attribute decision making using complex intuitionistic fuzzy soft sets (CIFSSs) based on
prioritized aggregation operators. Ali et al. [13] introduced the idea of interval-valued
fuzzy soft preordered (IVFSpreordered) set and discussed its applications in decision-
making. Ali et al. [14] developed a new multi-attribute decision-making framework under
q-rung orthopair fuzzy bipolar soft sets (q-ROFBSSs). Saqlain et al. [15] discussed distance
and similarity measures for neutrosophic hypersoft set (NHSS) and presented an NHSS-
TOPSIS method for decision making. Some useful decision-making approaches were also
presented by using the concepts of soft matrices [16,17] and N-soft sets [18,19]. Recently,
Mahmood et al. [20] introduced the concept of bipolar complex fuzzy soft set (BCFSS) and
discussed its applications in decision-making. For more study about applications of soft set
theory and its extended models, we refer to [21–23].

It is evident from the last paragraph that the soft set with its extended models has many
applications, especially in decision making. However, with the increasing amount of data
in these decision-making problems, there exist increasingly useless or redundant data that
need to be excluded; otherwise, the decision-making goals become increasingly complex.
Therefore, parameter reduction is a useful process which can be used to eliminate such
unnecessary or redundant information in soft set-based decision-making problems without
changing their decision abilities. Generally, it is a minimum subset of parameters that
can provide the same descriptive or decision ability as the entire set of parameters. Some
successful implementations had been made by different researchers towards parameter
reduction of soft sets. The first attempt was made by Maji et al. [7], who displayed soft
sets in the form of an information table and given the idea of a reduction of soft sets by
using the rough set approach. Chen et al. [24] showed that Maji’s reduction method can
be used for attribute reduction in rough set theory, but it cannot be used for parameter
reduction in soft set theory. Therefore, Chen et al. [24] introduced a new method for
parameter reduction of soft sets. However, Chen et al.’s method failed to maintain the entire
decision order of decision alternatives after the reduction process. Later, Kong et al. [25]
addressed the problem of suboptimal choices and added new parameters to soft set theory.
According to Kong et al. [25], most of the methods related to soft set reduction, such as
Maji et al. [7] and Chen et al. [24], have only considered the optimal choice, but they ignored
suboptimal choices at the time of decision making. However, in many real-world decision-
making problems, such as evaluation of supply chain partners, scholarships evaluation,
etc., we consider the entire ranking order of alternatives rather than the optimal one. Thus,
much time is needed to make new reductions in most datasets where the data of optimal
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choice is deleted. Similarly, in some cases, we do not have sufficient parameters to fully
characterize the alternatives in decision-making problems so that we need to add some
more parameters to existing parameter sets. However, in this case, we may also need a
new reduction, as the new parameters may change the decision order of decision-making
problems. To overcome these two drawbacks, Kong et al. [25] introduced the concept of
normal parameter reduction (NPR) of (fuzzy) soft sets and presented its heuristic algorithm.
NPR can reduce the number of parameters without changing the entire ranking (or decision)
order of decision alternatives. However, the algorithm of NPR, as proposed in [25], was
based on the parameter importance degree, which was hard to compute and involved
a great amount of computation. Therefore, Ma et al. [26] proposed the new efficient
normal parameter reduction algorithm (NENPR) for soft sets to reduce the computational
complexity of the NPR process. Renukadevi and Sangeetha [27] discussed some interesting
characterizations of NPR of soft sets. Kong et al. [28] used the particle swarm optimization
algorithm to provide proper mathematical representation to the problem of NPR of soft
sets. Danjuma et al. [29] considered the case of repeated columns in soft set reduction and
proposed the alternative normal parameter reduction (ANPR) algorithm of soft sets. Ma
and Qin [30] introduced soft set-based parameter value reduction which keeps the entire
decision ability of decision alternative with a high success rate of finding reduction and
low amount of computation. Khan and Zhu [31] developed another improved algorithm
for NPR of soft sets. Akram et al. [32] proposed four different algorithms for parameter
reduction of N-soft set and discussed their application in decision making. For more study
about soft set reduction and its applications, we refer to [33–35].

Kandamir [36] introduced the concept of σ-algebraic soft sets by taking the cardinality
of sets as a measure on all subsets of the universal set. Furthermore, he defined two
different relations (i.e., preferability and indiscernibility relations) on the parameter set,
which further led to the idea of the intersectional reduced soft sets (IRSSs). However, in this
study, we show that the IRSSs method is unable to maintain the entire decision order of
alternatives. The main contributions of the study are summarized below:

• We present some useful examples to show that the IRSSs method does not keep the
decision order invariant.

• We propose a new algorithm for NPR using σ-algebraic soft sets that not only over-
comes the existing problems of IRSSs method, but also makes the reduction process
more simple and convenient.

• We provide a comparative study to show that the proposed algorithm has less
computational complexity and workload as compared to the previous algorithm
of Kong et al. [25].

• We present an application of the proposed algorithm in a real-life decision-making problem.

The rest of the paper is organized as follows. Section 2 recalls some basic definitions
and results related to soft set theory. In Section 3, We discuss the basic idea of NPR of
soft sets and give its initial algorithm proposed by Kong et al. [25]. Section 4 highlights
some setbacks of Kandamir’s approach to soft set reduction. In Section 5, first we derive
some useful results, and then develop a new algorithm for NPR of soft set. In Section 6,
we compare our new algorithm with Kong et al’s algorithm in terms of computational
complexity. Section 7 provides an application of the proposed algorithm in a real-world
decision-making problem. Finally, Section 8 presents the conclusion of the paper.

2. Preliminaries

This section briefly reviews some basic definitions and results related to soft set theory.
Let U denote a finite universe of objects, E represent the set of parameters which can
describe the properties of objects in U, and P(U) denote the power set of U.

Definition 1 ([6]). A pair (F, E) is called a soft set over U, where F is a mapping given by

F : E→ P(U).
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The following example will clarify the concept of soft sets.

Example 1. Suppose that U = {u1, u2, u3, u4} is the set of four houses under consideration,
and E = {e1, e2, e3, e4, e5} is the set of parameters where each ei for 1 ≤ i ≤ 5 stands for beautiful,
new, cheap, reliable and well-furnished, respectively. A soft set (F, E) can be defined to describe “the
attractiveness of the houses" by:

(F, E) =


beauti f ul houses = {u1},
new houses = {u3, u4},
cheap houses = φ,
reliable houses = {u2, u3, u4},
well − f urnished houses = {u1, u4}

.

Maji et al. [7] represented a soft set by a binary table to store it in computer memory.
The choice value of each ui ∈ U is defined by fE(ui) = ∑j(uij), where uij are the entries
in the table of the soft set (F, E) for 1 ≤ i ≤ n and 1 ≤ j ≤ m. For example, the tabular
representation of the soft set (F, E) as defined in Example 1 is given by Table 1, where the
last column shows the choice values of all ui ∈ U. From Table 1, it is clear that u4 has the
maximum choice value in the table. Therefore, by choice value criteria, the optimal choice
object is u4 and it can be selected as the best house among the four houses.

Table 1. Tabular form of (F, E) in Example 1.

U/E e1 e2 e3 e4 e5 fE(.)

u1 1 0 0 0 1 2
u2 0 0 0 1 0 1
u3 0 1 0 1 0 2
u4 0 1 0 1 1 3

It is seen in the last example that soft sets can be applied to decision-making problems
under uncertain environment. However, sometimes, these decision-making problems
involve such parameters which do not take any part in the decision-making process. For ex-
ample, if we consider e3 in Table 1, then we see that it has no role in the decision-making
process. That is, E− e3 provides the same decision ability (order) as the entire set of pa-
rameters. Therefore, it is necessary to reduce such useless parameters from E to minimize
the workload and processing time in the decision-making process. Some successful imple-
mentations have been made by different researchers towards soft set reduction. Normal
parameter reduction is one of them, which is described in the next section.

3. Normal Parameter Reduction of Soft Sets

Normal parameter reduction is a good approach to soft set reduction which was
introduced by Kong et al. [25]. It eliminates unnecessary parameters from E without
changing the decision order of decision alternatives.

Definition 2 ([25]). For any nonempty subset B ⊆ E, an indiscernibility relation IND(B) is
defined by:

IND(B) = {(ui, uj) ∈ U ×U | fB(ui) = fB(uj)}.

Using the above indiscernibility relation, a decision partition:

CE = {{u1, u2, . . . , ui} f1 , {ui+1, ui+2, . . . , uj} f2 , . . . , {uk+i, uk+2, . . . . . . , un} fs}
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is obtained for (F, E) which ranks or classify the objects in U according to their choice
values fE(.). If we delete a parameter ei from E, then we obtain a new decision partition,
which is denoted by:

CE−ei = {{u1́, u2́, . . . , uí} f1́
, {ui+1́, ui+2́, . . . , u j́} f2́

, . . . , {uḱ, uk+1́, . . . , uń} f ś}.

For simplicity, we take CE = {E f1 , E f2 , . . . , E fs} and CE−ei = {E− ei f1́
, E− ei f2́

, . . . ,
E− ei f ś

}.

Definition 3 ([25]). For a soft set (F, E) over U, if A = {ē1, ē2, . . . , ēp} ⊂ E such that fA(u1) =
fA(u2) = . . . = fA(un), then A is said to be dispensable; otherwise, it is called indispensable
in E. B ⊆ E is called the normal parameter reduction (NPR) of E, if B is indispensable and
fE−B(u1) = fE−B(u2) = . . . = fE−B(un).

Definition 4 ([25]). For a soft set (F, E) over U, if CE = {E f1 , E f2 , . . . , E fs} and CE−ei =

{E− ei f1́
, E− ei f2́

, . . . , E− ei f ś
} are the decision partition and the decision partition deleted ei,

respectively, then for each parameter ei, the parameter importance degree rei is defined by rei =
1
|U| (α1,ei + α2,ei + . . . + αs,ei ), where:

αk,ei
=


|E fk
− E− ei fź

|, if there exits ź, such that
fk = fź, 1 ≤ ź ≤ ś,
1 ≤ k ≤ s;

|E fk
|, otherwise,

and |.| denotes the cardinality of set.

Theorem 1 ([25]). For a soft set (F, E) over U. If A = {ē1, ē2, . . . , ēp} ⊂ E such that E− A is
the NPR of E, then rA = 1 or rA = 0 and rē1 + rē2 + . . . + rēp = fA(.).

Based on Theorem 1, an algorithm for NPR of soft sets was proposed by Kong et al. [25]
which is labeled by Algorithm 1. The following example will illustrate Algorithm 1.

Algorithm 1 NPR algorithm proposed by Kong et al. [25]

Step 1. Input the (F, E) and its parameter set E;
Step 2. Calculate rej for all ej, where 1 ≤ j ≤ m;

Step 3.
Find A ⊂ E such that ∑ej∈A rej is a nonnegative integer and put it into the feasible
parameter reduction set (FPRS);

Step 4. If the condition fA(u1) = fA(u2) = . . . = fA(un) is satisfied for a subset A in the
FPRS, then A is saved, otherwise it will be deleted;

Step 5. Calculate E− A as the optimal NPR of (F, E), where A has the maximum cardi-
nality in the FPRS.

Example 2. If we consider the soft set (F, E) as given by Table 1, then according to Algorithm 1:
Step 1. Take (F, E) and its parameter set E as an input.
Step 2. Compute the choice values for all ui ∈ U and obtain the decision partition CE as

given by:
CE = {{u4}3, {u1, u3}2, {u2}1}. (1)

Similarly, obtain the deleted-decision partitions CE−ej , for all ej ∈ E as:

CE−e1 = {{u4}3, {u3}2, {u1, u2}1}, CE−e2 = {{u1, u4}2, {u2, u3}1, CE−e3 = CE,

CE−e4 = {{u1, u4}2, {u3}1, {u2}0}, CE−e5 = {{u3, u4}2, {u1, u2}1.
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Compute the importance degrees for all ej ∈ E by Definition 4 as:

re1 =
1
4
(|{u4} − {u4}|+ |{u1, u3} − {u3}|+ |{u2} − {u1, u2}|) =

1
4
(0 + 1 + 0) =

1
4

.

Similarly, we can compute re2 = 1
2 , re3 = 0, re4 = 3

4 , re5 = 1
2 .

Step 3. Find A ⊂ E such that ∑ej∈A rej is a nonnegative integer and put A into FPRS. In this
way we obtain the subsets, such as {e3}, {e1, e4}, {e1, e3, e4}, {e2, e3, e5} and so on.

Step 4. Filter the FPRS. If fA(u1) = fA(u2) = . . . = fA(un) is satisfied for a subset A, then
it will be saved. Otherwise, it will be deleted from the FPRS. In this way, we obtain only three subsets
which satisfy the given condition, such as A1 = {e1}, A2 = {e3, e4} and A3 = {e1, e3, e4}.

Step 5. Finally, select A3 = {e1, e3, e4} as the maximum cardinality in the FPRS. Thus,
B = E− A3 = {e2, e5} is the optimal NPR of (F, E) as given by: Table 2.

Table 2. NPR of (F, E) in Example 3.

U/B e2 e5 fB(.)

u1 0 1 1
u2 0 0 0
u3 1 0 1
u4 1 1 2

We can verify that NPR can solve the problems of suboptimal choices and update
the parameter set. For this, we consider the decision partition of (F, E) as given by (1).
Similarly, the decision partition for the reduced soft set (F, B) is given by

CB = {{u4}2, {u1, u3}1, {u2}0}. (2)

By comparing (1) with (2), we observe that the optimal choice and all the levels of
suboptimal choices are invariant after the NPR. This shows that NPR not only maintains the
optimal choice but also keep the entire ranking order of decision alternatives to be invariant.

We next discuss the problem of updated parameter sets. We assume that the character
of objects (houses) in U cannot be completely embodied by the given parameter set E.
Assume that we add some new parameters Ê = {ê1, ê2, ê3} to the existing parameter
set E, where each êi stand for good color, in a hilly area and near the road, respectively.
The updated soft set (F, E∪ Ê) is represented by Table 3. From Table 3, the decision partition
for (F, E ∪ Ê) is given by:

CE∪Ê = {{u2, u4}4, {u1, u3}3}. (3)

Similarly, if we add the new parameter set Ê to the reduced soft set (F, B), then we
obtain another soft set (F, B∪ Ê), which is represented by Table 4. From Table 4, the decision
partition for (F, B ∪ Ê) is given by:

CB∪Ê = {{u2, u4}3, {u1, u3}2}. (4)

It is clear from (3) and (4) that after adding the new parameters, we obtain the same
decision partition for (F, E) and its NPR (F, B). This implies that one can use (F, B) instead
of (F, E) as the new parameters have the same affect on both of the soft sets. This shows
that NPR can support the case of updated parameter sets.
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Table 3. Tabular form of (F, E ∪ Ê).

U/E ∪ Ê e1 e2 e3 e4 e5 ê1 ê2 ê3 fE∪Ê(ui)

u1 1 0 0 0 1 0 1 0 3
u2 0 0 0 1 0 1 1 1 4
u3 0 1 0 1 0 0 1 0 3
u4 0 1 0 1 1 1 0 0 4

Table 4. Tabular form of (F, B ∪ Ê).

U/B ∪ Ê e1 e2 ê1 ê2 ê3 fB∪Ê(.)

u1 0 1 0 1 0 2
u2 0 0 1 1 1 3
u3 1 0 0 1 0 2
u4 1 1 1 0 0 3

4. Intersectional Reduced Soft Set and Its Limitations

In this section, we analyze the method of the intersectional reduced soft set proposed
by Kandamir [36]. We also provide an example to show that the intersectional reduced soft
set method does not overcome the problems of suboptimal choices and updated parameter
sets. We start the section with some basic definitions from measure theory.

Definition 5 ([37]). A collection L of subsets of U is said to be a σ-algebra, if:

(i) U ∈ L,
(ii) if A ∈ L then Ac ∈ L,
(iii)

⋃
i=I Ai ∈ L, for any sequence (Ai)i∈I in L.

Definition 6 ([37]). A function ξ : L → R ∪ ∞ is called a measure if the following axioms
are satisfied:

(i) ξ(φ) = 0,
(ii) ξ(A) ≥ 0, for all A ∈ L,
(iii) For any pairwise disjoint sequence (Ai)i∈I taken from L, ξ(

⋃
i=I Ai) = ∑i=I ξ(Ai).

Definition 7 ([37]). The triplet (U,L, ξ) is called a measure space, where L is a σ-algebra on U
and ξ is a measure on L. The elements of L are called measurable sets.

The concept of σ-algebraic soft sets is defined as follows.

Definition 8 ([36]). Let (F, E) be a soft set over U and L ba a σ-algebra on U. Then (F, E) is
called a σ-algebraic soft set, if F(e) ∈ L, ∀ e ∈ E.

Definition 9 ([36]). Let (U,L, ξ) be a measurable universe and (F, E) be a σ-algebraic soft set
over U. Two parameters e1, e2 ∈ E are said to be indiscernible, denoted by e1 ∼ e2, if ξ(F(e1)) =
ξ(F(e2)).

The relation ∼ is an equivalence relation on E and the indiscernibility class of e ∈ E is
denoted by [e].

Definition 10 ([36]). Let (U,L, ξ) be a measurable universe and (F, E) be a σ-algebraic soft set
over U. The intersectional reduced soft set (IRSS) of (F, E) is denoted by (F∗, [E]), where F∗ is
defined by F∗([e]) =

⋂
e∼ē F(ē).

According to Kandemir [36], if the cardinality of set is taken as a measure on P(U), then
every soft set (F, E) over U can be regarded as a σ-algebraic soft set over the measurable
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universe (U, P(U), ξ). In this way, we can reduce a soft set (F, E) to IRSS (F∗, [E]) by using
the relation ∼. The following example will illustrate the idea of IRSS.

Example 3 (Example 3.38 in [36]). We consider the same soft set (F, E) over U as defined in
Example 1. The tabular representation of (F, E) is given by Table 1. If we take the cardinality of
sets as a measure on P(U), then clearly (F, E) is a σ-algebraic soft set over the measure universe
(U,L, ξ). Furthermore:

ξ(F(e1)) = 1, ξ(F(e2)) = 2, ξ(F(e3)) = 0, ξ(F(e4)) = 3, ξ(F(e5)) = 2.

That is, e2 ∼ e5 and by Definition 10, the IRSS of (F, E) is given by:

(F∗, [E]) = {F([e1]) = {u1}, F([e2]) = {u4}, F([e3]) = φ, F([e4]) = {u2, u3, u4}}.

The tabular representation of the IRSS (F∗, [E]) is given by Table 5.

Table 5. Tabular form of IRSS (F∗, [E]).

U/[E] [e1] [e2] [e3] [e4] f[E](ui)

u1 1 0 0 0 1
u2 0 0 0 1 1
u3 0 0 0 1 1
u4 0 1 0 1 2

Limitations of the IRSS Method

By analyzing Example 3, we observe that the IRSS method does not overcome the
problems of suboptimal choices and updated parameter sets. To verify this, we consider
the decision partition for (F∗, [E]) as given by:

C[E] = {{u4}2, {u1, u2, u3}1}. (5)

If we compare (5) with (1), then we see that the optimal choice for the soft set (F, E)
and its IRSS (F∗, [E]) is the same, but their suboptimal choices are different from each other.
This shows that the IRSS method does not overcome the problem of suboptimal choices.

Next, we show that the IRSS method does not solve the problem of updated parameter
sets. For this, we add the new parameter set Ê with [E] and obtain another soft set
(F, [E] ∪ Ê), which is represented by Table 6. From Table 6, the decision partition for the
soft set (F, [E] ∪ Ê) is given by:

C[E]∪Ê = {{u2}4, {u4}3, {u1, u3}3}. (6)

By comparing (6) with (3), we observe that the decision partitions for the soft sets
(F, E ∪ Ê) and (F, [E] ∪ Ê) are different from each other. This shows that the IRSS method
does not overcome the problem of updated parameter sets.

Table 6. Tabular form of (F, [E] ∪ Ê).

U/[E]∪ Ê [e1] [e2] [e3] [e4] ê1 ê2 ê3 f[E]∪Ê(ui)

u1 1 0 0 0 0 1 0 2
u2 0 0 0 1 1 1 1 4
u3 0 0 0 1 0 1 0 2
u4 0 1 0 1 1 0 0 3

From the above discussion, we conclude that although the IRSS method is a simple
approach towards soft set reduction, it does not overcome the problems of suboptimal
choices and updated parameter sets, that is, it does not maintain the entire ranking or
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decision order of alternatives after the reduction process. On the other hand, NPR can
solve the above-mentioned problems, but estimating the parameter importance degree in
Algorithm 1 is a complex process which makes the algorithm very difficult to understand
and requires a great amount of computations. Therefore, we need to develop a new
approach for soft set reduction that can solve the above-mentioned drawbacks of the two
approaches. The next section will present our new approach to NPR that not only resolves
the problems of decision order but also reduces the processing time of NPR.

5. An Approach towards Normal Parameter Reduction Using σ-Algebraic Soft Sets

It is mentioned in the last section that every soft set can be regarded as a σ-algebraic
soft set (see Example 3). Therefore, from onwards, every soft set will be considered as
a σ-algebraic soft set over the measurable universe (U, P(U), ξ), where U is the initial
universe, P(U) is the power set of U and ξ is the cardinality of set defined as measure
on P(U).

Definition 11. For any soft set (F, E) over the measurable universe (U, P(U), ξ), the impact of a
parameter e ∈ E is defined by:

γe =
ξ(F(e))
|U| .

For any nonempty subset A ⊂ E, we have γA = ∑e∈A γe.

Definition 12. For any soft set (F, E) over the measurable universe (U, P(U), ξ), a parameter
e ∈ E is called a universal parameter denoted by eU , if γe = 1. Similarly, e ∈ E is called a null
parameter denoted by eφ, if γe = 0.

Proposition 1. For any soft set (F, E) over the measurable universe (U, P(U), ξ), if γe1 ≤ γe2

for any e1, e2 ∈ E, then ξ(F(e1)) ≤ ξ(F(e2)).

Proof. The proof is straightforward by using Definition 11.

Proposition 2. For a soft set (F, E) over the measurable universe (U, P(U), ξ), 0 ≤ γej ≤ 1,
∀ ej ∈ E.

Proof. According to the definition of ξ, ξ(F(ej)) ≥ 0 for all ej ∈ E. This implies that
ξ(F(ej))

|U| ≥ 0, which shows that γej ≥ 0. Again, by definition of ξ, we have ξ(F(ej)) ≤ |U|,

for all ej ∈ E. This implies that
ξ(F(ej))

|U| ≤ 1 and γej ≤ 1. Hence, 0 ≤ γej ≤ 1 ∀ ej ∈ E.

Definition 13. For a soft set (F, E) over the measurable universe (U, P(U), ξ), the impact of
e1 ∨ e2 and e1 ∧ e2 are defined by:

γe1∨e2 = 1
|U| ξ(F(e1 ∨ e2)), and γe1∧e2 = 1

|U| ξ(F(e1 ∧ e2)),
respectively, where F(e1 ∨ e2) = F(e1) ∪ F(e2) and F(e1 ∧ e2) = F(e1) ∩ F(e2).

Proposition 3. For a soft set (F, E) over the measurable universe (U, P(U), ξ), the following
results hold:

(i) γe1∨e2 ≥ max{γe1 , γe2}.
(ii) γe1∧e2 ≤ min{γe1 , γe2}.

Proof. (i). We know that for any e1, e2 ∈ E, F(e1) ⊆ F(e1)∪ F(e2) and F(e2) ⊆ F(e1)∪ F(e2).
This implies that F(e1) ⊆ F(e1 ∨ e2) and F(e2) ⊆ F(e1 ∨ e2). By using the definition of
measure ξ, we can write:

ξ(F(e1)) ≤ ξ(F(e1 ∨ e2)), ξ(F(e2)) ≤ ξ(F(e1 ∨ e2)),
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⇒ 1
|U| ξ(F(e1)) ≤

1
|U| ξ(F(e1 ∨ e2)),

1
|U| ξ(F(e2)) ≤

1
|U| ξ(F(e1 ∨ e2)),

⇒ γe1 ≤ γe1∨e2 , γe2 ≤ γe1∨e2 , ⇒ max{γe1 , γe2} ≤ γe1∨e2 .

The second part can be proved in similar way.

Theorem 2. For a soft set (F, E) over the measurable universe (U, P(U), ξ), if A = {ē1, ē2, . . . , ēp} ⊂
E such that E− A is the NPR of E, then γA = nonnegative integer and γA = fA(ui).

Proof. Suppose that E− A is the NPR of E. Then, by Definition 3, fA(u1) = fA(u2) =
. . . = fA(un) and obviously fA(ui) = nonnegative integer.
Case 1. Suppose that fA(ui) = 0. Then for all ē ∈ A, we have:

F(ē) = φ ⇒ ξ(F(ē)) = 0 ⇒ ξ(F(ē))
|U| = 0

⇒ γē = 0 ⇒ ∑
ē∈A

γē = 0 ⇒ γA = 0 ⇒ γA = fA(ui).

Case 2. Let fA(ui) = k, where k is any natural number. Then, fA(u1) = fA(u2) = . . . =
fA(un) = k, which further implies that:

n

∑
i=1

fA(ui) = nk ⇒ 1
n

n

∑
i=1

fA(ui) = k ⇒ 1
|U|

n

∑
i=1

fA(ui) = k

⇒ 1
|U|

n

∑
i=1

( p

∑
j=1

(uij)
)
= k ⇒ 1

|U|

p

∑
j=1

( n

∑
i=1

(uij)
)
= k

⇒ 1
|U|

p

∑
j=1

(
ξ(F(ej))

)
= k ⇒

p

∑
j=1

γej = k

⇒ γA = k ⇒ γA = fA(ui).

This completes the proof.

Based on the result of Theorem 2, we propose a new algorithm for NPR of soft
sets as labeled by Algorithm 2. To illustrate the idea of Algorithm 2, we present the
following example.

Algorithm 2 The proposed algorithm

Step 1. Input (F, E) and its parameter set E;
Step 2. Compute γej for all ej ∈ E, where (1 ≤ j ≤ m);

Step 3. Identify the parameters eU
j and eφ

j in E and put them into the reduced parameter
set Z;

Step 4. Find A ⊂ Ē = E− Z such that γA is a nonnegative integer, and put A into the
FPRS;

Step 5. If the condition fA(u1) = fA(u2) = . . . = fA(un) is satisfied for a subset A in the
FPRS, then A is saved, otherwise delete A from the FPRS;

Step 6. Calculate E− (A ∪ Z) as the optimal NPR of (F, E), where A has the maximum
cardinality in the FPRS.

Example 4. Once again, we consider the same soft set (F, E) over U as given by Table 1. According
to Algorithm 2:

Step 1. Take (F, E) and its parameter set E as an input.
Step 2. From Example 3, we can write:

ξ(F(e1)) = 1, ξ(F(e2)) = 2, ξ(F(e3)) = 0, ξ(F(e4)) = 3, ξ(F(e5)) = 2.
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Using Definition 11, we can compute γej for all ej ∈ E, which are listed in the last row of
Table 7.

Step 3. From Table 7, γe3 = 0, so it can be put into the reduced parameter set Z.
Step 4. Find A ⊂ Ē = E− Z such that γA is a nonnegative integer and put it into FPRS.

In this way, we obtain only two subsets, such as A1 = {e1, e4} and A2 = {e2, e5}.
Step 5. After filtering the FPRS, we observe that only A1 can satisfy the condition fA1(u1) =

fA1(u2) = . . . = fA1(u5) = 1.
Step 6. Finally, B = E− (A1 ∪ Z) = {e2, e5} is the required NPR of (F, E), which is the

same as obtained by Algorithm 1 in Example 2.

Table 7. Tabular form of (F, E) with impact of parameters.

U/E e1 e2 e3 e4 e5 fE(ui)

u1 1 0 0 0 1 2
u2 0 0 0 1 0 1
u3 0 1 0 1 0 2
u4 0 1 0 1 1 3

γei
1
4

1
2 0 3

4
1
2

It is evident from the last example that our proposed algorithm has greatly reduced
the computational complexity of Algorithm 1 by computing the impact of parameters
rather than parameter importance degrees. This shows that the proposed algorithm not
only overcomes the existing problems of the IRSS method (already verified in Example 2),
but also minimizes the workload of the NPR process.

6. Comparative Analysis

In this section, we compare the proposed algorithm with Algorithm 1 in terms of
computational complexity. We also provide some experimental results to show that the
proposed algorithm is more efficient than Algorithm 1 in capturing the NPR of soft sets.

6.1. Computational Complexity

We compare the computational complexity of both algorithms from the following
three aspects.

1. Estimating the parameter importance degrees and impact of parameters: It is
clear from Algorithms 1 and 2 that both of the algorithms follow the same footsteps to
reach the NPR of soft sets. However, Algorithm 1 uses parameter importance degrees
while Algorithm 2 uses impact of parameters to calculate the FPRS. For estimating the
parameter importance degrees, Algorithm 1 first needs to obtain the decision partition
CE and all deleted-decision partitions CE−ej for ej ∈ E. In this process, the total number
of access elements is given by m2n + mn + n. Then, for estimating αk,ej

and rej for each
ej ∈ E, it needs to access 2n elements. Since there are total m parameters in E, the total
number of access elements in this step is given by 2mn. That is, for computing all parameter
importance degrees, Algorithm 1 needs to access m2n + mn + n + 2mn = m2n + 3mn + n
elements. On the other hand, to estimate the impact of parameters, Algorithm 2 first
computes ξ(F(ej)) for each ej ∈ E, and then obtains γej for all ej ∈ E. The number of access
elements in this whole process is mn + n, which is much less compared to m2n + 3mn + n.

2. Estimating the FPRS: To compute the FPRS, Algorithm 1 needs to test the sum
of all possible combinations of parameter importance degrees from combination-1 to
combination-m, that is, the number of access parameter importance degrees is given by
C1

m + C2
m + . . . + Cm

m . On the other hand, Algorithm 2 first puts the parameters eU
j and eφ

j

into the reduced parameter set Z. Suppose that the parameter number in eU
j and eφ

j is z.
Then, Algorithm 2 tests the sum of all possible combinations of the parameter impacts from
combination-1 to combination-ḿ, where ḿ = m− z. That is, the number of access impact of
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parameters is given by C1
ḿ + C2

ḿ + . . . + Cḿ
ḿ . This shows that if the value of z is increasing,

then the number of accessed entries for Algorithm 2 will be decreasing.
3. Filtering the PFRS: Suppose that there are k FPRSs for Algorithm 2 and z is the

total parameter number of eU
j and eφ

j . Then, the total number of FPRSs for Algorithm 1
must be equal to k(2z) + z (can be verified from Table 8). The difference between FPRSs of
both algorithms is given by k(2z − 1) + z. Thus, once again, a large value of z will cause a
large difference between the FPRSs of Algorithms 1 and 2.

6.2. Experimental Results and Discussion

Here, we consider some experimental results to compare the computational com-
plexity of Algorithm 1 with Algorithm 2. We apply both algorithms to the same soft set
(F, E), whose tabular representation is given by Table 9. The results obtained from both
algorithms are summarized in Table 8. According to Table 8, the optimal NPR of E obtained
from both algorithms is the same, which is given by Table 10. However, Algorithm 1
accesses 3688 entries to estimate the parameter importance degrees, while Algorithm 2
accesses just 168 entries to estimate all parameter impacts. Similarly, Algorithm 1 ac-
cesses 1,048,575 parameter importance degrees to estimate the PFRS, while Algorithm 2
accesses only 131,071 parameter impacts for the same PFRS. Furthermore, Algorithm 1
checks 122,879 PFRSs for the dispensability condition fA(u1) = fA(u2) = . . . = fA(un),
while Algorithm 2 only checks 16,383 PFRSs for the same dispensability condition. This
shows that Algorithm 2 has reduced the computational complexity at every stage in the
NPR process and provides better results than Algorithm 1.

Table 8. Comparison table.

Comparison Algorithm 1 Algorithm 2 Improvement (in %Age)

Optimal normal parameter
reduction


e1, e3, e5, e6, e8,
e9, e11, e13, e15,
e16, e18, e19, e20




e1, e3, e5, e6, e8,
e9, e11, e13, e15,
e16, e18, e19, e20

 The same

Accessed entries For estimating parameter
importance degrees = 3688

For estimating impact of
parameters = 168 95.44%

Estimating the FPRS Total parameter importance
degree accessed = 1,048,575

Total impact of parameters
accessed = 131,071 87.50%

Total number of FPRSs 122,879 16,383 86.66%

Involved operations
Addition, subtraction,

division and classification of
objects

Only addition and division Algorithm 2 requires fewer
operations than Algorithm 1

Table 9. Tabular form of the soft set (F, E).

U/E e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18 e19 e20 fE(ui)

u1 0 1 0 0 0 0 0 1 0 0 0 1 1 1 0 1 0 0 0 0 6
u2 0 1 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 1 0 0 6
u3 1 1 0 0 0 1 1 1 0 0 1 0 0 1 0 1 0 0 1 0 9
u4 0 1 0 0 1 0 0 0 0 1 1 1 1 0 0 1 0 1 0 1 9
u5 1 1 0 0 0 1 1 0 1 0 1 1 1 0 1 0 0 0 1 0 10
u6 0 1 0 0 1 0 1 1 0 1 0 0 0 0 0 0 0 1 0 1 7
u7 0 1 0 0 1 0 0 1 1 1 1 1 0 0 1 0 0 1 0 1 10
u8 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 0 0 1 11

γei
1
4 1 1

8 0 1
2

1
4

1
2

1
2

3
8

1
2

5
8

3
4

1
2

1
4

1
2

5
8 0 1

2
1
4

1
2
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Table 10. NPR of the soft set (F, E).

U/B e1 e3 e5 e6 e8 e9 e11 e13 e15 e16 e18 e19 e20 fB(ui)

u1 0 0 0 0 1 0 0 0 1 1 0 0 0 3
u2 0 0 0 0 0 0 1 0 0 1 1 0 0 3
u3 1 0 0 1 1 0 0 1 0 1 0 1 0 6
u4 0 0 1 0 0 0 1 1 1 1 1 0 1 6
u5 1 0 0 1 0 1 0 1 1 0 0 1 0 7
u6 0 0 1 0 1 0 1 0 0 0 1 0 1 4
u7 0 0 1 0 1 1 1 1 0 0 1 0 1 7
u8 0 1 1 0 0 1 0 1 1 1 0 0 1 8

7. Application in Multi-Attribute Decision Making

In this section, we present an application of the proposed algorithm in a multi-attribute
decision-making problem. We consider the scholarship selection problem of the Kano state
scholarship board (KSB), Nigeria. The KBS works under the ministry of education Kano
state that award a scholarship position to the indigene of the state whose parents are of
Kano state origin and obtain admissions into tertiary institutions in Nigeria (or in some
cases overseas). The board is responsible for:

• Awarding the scholarship and improving the welfare of the state-sponsored students
for foreign training;

• Formulation and review of policies governing the awarding of scholarships;
• Providing guidance and counseling for students;
• Contacting Government establishment, institutes of learning and foreign universities;
• Applying the selection criteria to all the applicants;
• Providing a formal recommendation of suitably qualified applicants for overseas

training to the governor of the state through the commissioner of education.

Here, we take the dataset of 35 students sponsored with a foreign scholarship by
the KSB (available in [29]). Each student is evaluated with respect to 15 decision at-
tributes (or parameters). Let U = {u1, u2, . . . , u35} denote the set of all students and
E = {e1, e2, . . . , e16} represent the set of parameters, where each ei for 1 ≤ i ≤ 16 stands
for English proficiency, mathematics, physics, chemistry, biology, agricultural sciences,
Hausa language, Islamic studies, having attended public school, being above 17 years,
having leadership potential, having ambassadorial potential, being an indigene of the
state, being healthy, scoring a 2.1 in their undergraduate education and having completed
NYSC, respectively. The views of the selection board are described by the soft set (F, E),
whose tabular representation is given by Table 11. It is clear from Table 11 that the students
{u8, u11, u12, u15, u22, u23, u24, u25, u27, u31, u32} have the highest choice values in the table,
so they can be recommended as the best candidates for the scholarship awards by the KBS,
while the students with suboptimal choice values, such as {u4, u16, u21}, can be considered
as the second-best choice for the scholarship awards if the total number of scholarships
exceeds the number of first priority students.

Table 11. Tabular form of (F, E) in the scholarship award problem.

U/E e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 fE(ui)

u1 1 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 12
u2 1 1 1 1 0 0 1 1 1 0 0 0 0 0 1 1 9
u3 1 1 0 1 1 1 1 0 1 1 1 0 0 1 1 1 12
u4 1 1 1 1 1 1 0 1 0 1 1 1 1 0 1 1 13
u5 1 1 1 1 1 1 0 0 1 1 1 0 0 0 1 1 11
u6 1 1 0 1 1 1 1 0 1 1 0 1 0 1 1 1 12
u7 1 1 1 1 0 1 1 1 0 0 0 1 1 0 0 1 10
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Table 11. Cont.

U/E e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 fE(ui)

u8 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 14
u9 1 1 1 1 1 1 0 0 0 1 1 0 1 1 1 1 12
u10 1 1 0 1 0 1 1 1 0 0 1 0 1 1 1 1 11
u11 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 14
u12 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 14
u13 1 1 0 1 0 1 1 1 0 0 1 0 1 1 1 1 11
u14 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0 1 11
u15 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 14
u16 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 1 13
u17 1 1 1 1 1 0 1 1 0 1 1 0 0 1 1 1 12
u18 1 1 1 1 1 1 0 1 0 1 1 0 0 0 1 1 11
u19 1 1 1 1 1 0 1 1 0 1 1 0 0 1 1 1 12
u20 1 1 1 1 1 0 1 0 1 1 0 0 0 1 1 1 11
u21 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 1 13
u22 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 14
u23 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 14
u24 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 14
u25 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 14
u26 1 1 1 1 1 0 1 1 0 1 0 0 1 1 1 1 12
u27 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 14
u28 1 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 11
u29 1 1 1 1 1 1 1 0 1 1 0 0 0 0 0 1 10
u30 1 1 1 1 1 0 1 1 0 1 0 0 0 1 1 1 11
u31 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 14
u32 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 14
u33 1 1 1 1 0 1 0 0 1 0 0 0 0 0 1 1 8
u34 1 1 1 1 1 0 1 1 1 1 0 0 0 0 1 1 11
u35 1 1 1 1 0 1 0 1 0 0 0 0 0 0 1 1 8

γei 1 1 26
35 1 4

5
3
5

4
5

23
35

2
5

4
5

24
35

18
35

4
7

3
5

6
7 1

Now, our goal is to find such parameters in E which do not take any part in the decision-
making process, and eliminate them without changing the decision order of the alternatives
(students). In other words, we have to find those parameters in E which are jointly sufficient
and individually necessary for the decision order of the students. For this, we apply the
proposed algorithm to the given soft set (F, E). Initially, we compute γej for all ej ∈ E, which
are listed in the last row of Table 11. From Table 11, we see that γe1 = γe2 = γe4 = γe16 = 1.
Thus, these parameters can be put in the reduced parameter set Z. Next, we search for
those A ⊂ E− Z for which γA is a nonnegative integer. As a result, we obtain subsets such
as {e3, e6, e7, e15}, {e5, e7, e10, e14}, {e3, e6, e8, e9, e14}, {e5, e6, e7, e9, e10, e14}, and so on, which
are put in the FPRS. After filtering the FPRS, we observe that A = {e3, e6, e8, e9, e14} is the
maximum subset of E−Z that satisfies the condition fA(u1) = fA(u2) = . . . = fA(u35) = 3.
Therefore, by the proposed algorithm, R = E− (A ∪ Z) = {e5, e7, e10, e11, e12, e13, e15} is the
optimal NPR of (F, E) as given by Table 12. It is clear from Table 12 that the optimal choices
and all the levels of suboptimal choices of the reduced soft set (F, R) are the same as (F, E).
Thus, instead of taking the whole parameter set E, the selection board can take only seven
parameters in (F, R) to decide whether a student is suitable for the scholarship award or
not. This shows that our proposed algorithm is helpful to minimize the work-load and
processing time in decision-making problems.
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Table 12. NPR of (F, E) in the scholarship award problem.

U/R e5 e7 e10 e11 e12 e13 e15 fR3(ui)

u1 1 0 1 1 1 0 1 5
u2 0 1 0 0 0 0 1 2
u3 1 1 1 1 0 0 1 5
u4 1 0 1 1 1 1 1 6
u5 1 0 1 1 0 0 1 4
u6 1 1 1 0 1 0 1 5
u7 0 1 0 0 1 1 0 3
u8 1 1 1 1 1 1 1 7
u9 1 0 1 1 0 1 1 5
u10 0 1 0 1 0 1 1 4
u11 1 1 1 1 1 1 1 7
u12 1 1 1 1 1 1 1 7
u13 0 1 0 1 0 1 1 4
u14 1 1 1 1 0 0 0 4
u15 1 1 1 1 1 1 1 7
u16 1 1 1 1 1 1 0 6
u17 1 1 1 1 0 0 1 5
u18 1 0 1 1 0 0 1 4
u19 1 1 1 1 0 0 1 5
u20 1 1 1 0 0 0 1 4
u21 1 1 1 1 1 1 0 6
u22 1 1 1 1 1 1 1 7
u23 1 1 1 1 1 1 1 7
u24 1 1 1 1 1 1 1 7
u25 1 1 1 1 1 1 1 7
u26 1 1 1 0 0 1 1 5
u27 1 1 1 1 1 1 1 7
u28 0 1 0 0 1 1 1 4
u29 1 1 1 0 0 0 0 3
u30 1 1 1 0 0 0 1 4
u31 1 1 1 1 1 1 1 7
u32 1 1 1 1 1 1 1 7
u33 0 0 0 0 0 0 1 1
u34 1 1 1 0 0 0 1 4
u35 0 0 0 0 0 0 1 1

8. Conclusions and Future Work

Parameter reduction is a key step in soft set-based decision-making problems, which
eliminates unnecessary and redundant information without changing the decision ability
of the decision-making problem. To date, various methods have been developed for soft set
reduction; however, the problems of suboptimal choices and updated parameter sets are
only addressed by Kong et al. [25]. They introduced the concept of normal parameter reduc-
tion (NPR), which can reduce any soft set-based decision-making system without changing
the decision order of decision alternatives. In this paper, we developed a new algorithm
for NPR using the concept of σ-algebraic soft sets. Kandamir [36] also used the concept of
σ-algebraic soft sets for soft set reduction, but Kandamir’s method failed to maintain the
entire decision order of decision alternatives. Thus, it is desired to modify their approach
and develop such a method which does not suffer from the above-mentioned problems.
For this reason, we applied the concept of σ-algebraic soft sets to NPR, and proposed
a new algorithm that not only overcomes the existing problems of Kandamir’s method,
but also reduces the computational complexity of the NPR process. We compared the
proposed algorithm with Kong et al.’s algorithm in terms of computational complexity
and provided some experimental results. It is evident from the experimental results that
the proposed algorithm greatly reduced the computational complexity and work-load of
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NPR as compared to Kong et al.’s algorithm. At the end of the paper, we presented an
application of the proposed algorithm in a real-life decision-making problem.

Soft set-based decision making is a hot topic for researchers, but still, very limited
literature can be found regarding soft set reduction. Thus, additional attention from the
researchers is required to develop new reduction methods for soft sets. Some specific future
research directions can be suggested as follows.

• More general and efficient approaches are presented day by day for soft set-based
decision making, and thus, we need to develop new reduction methods regarding
these new decision criterions.

• We need to study parameter reduction of some useful extended models of soft sets,
such as picture fuzzy soft sets, probabilistic soft sets, neutrosophic soft sets and so on.

• At present, very limited applications of soft set reduction can be found in the literature.
Therefore, applications of soft set reduction require more attention and should be
explored further.
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17. Kamacı, H.; Atagün, A.O.; Sönmezoğlu, A. Row-products of soft matrices with applications in multiple-disjoint decision making.
Appl. Soft Comput. 2018, 62, 892–914. [CrossRef]

18. Riaz, M.; Razzaq, A.; Aslam, M.; Pamucar, D. M-parameterized N-soft topology-based TOPSIS approach for multi-attribute
decision making. Symmetry 2021, 13, 748. [CrossRef]
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