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Abstract: We investigated differential geometries of Bertrand curves and Mannheim curves in a
three-dimensional sphere. We clarify the conditions for regular spherical curves to become Bertrand
and Mannheim curves. Then, we concentrate on Bertrand and Mannheim curves of singular spherical
curves. As singular spherical curves, we considered spherical framed curves. We define Bertrand
and Mannheim curves of spherical framed curves. We give conditions for spherical framed curves to
become Bertrand and Mannheim curves.

Keywords: Bertrand curves; Mannheim curves; spherical regular curves; spherical framed
curves; singularity
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1. Introduction

In differential geometries, Bertrand and Mannheim curves are classical objects, which
have been deeply studied in the Euclidean space [1-5]. Given a curve 7, a Bertrand curve
is a curve % such that the principal normal vector field of y coincides with the principal
normal vector field of 7. Another type of associated curve is the Mannheim curve such
that the bi-normal vector field of 7y coincides with the principal normal vector field of 7.
Bertrand and Mannheim curves have an important role and a wide range of applications,
which are used in computer-aided geometric design, computer-aided manufacturing, and
physical sciences [6-8].

Recently, mathematicians have paid attention to Bertrand and Mannheim curves in
other spaces, such as in a three-dimensional sphere and in non-flat space form [9-14].
In the three-dimensional sphere, a Bertrand curve is a spherical curve whose principal
normal geodesic is the same as the principal normal geodesic of another spherical curve.
A Mannheim curve is a spherical curve whose principal normal geodesic is the same as
the bi-normal geodesic of another spherical curve. In order to define the principal normal
geodesic vector, a non-degenerate condition is required. However, for regular Bertrand
and Mannheim curves, the existence condition is not sufficient in general. In [15], the
non-degenerate condition for Bertrand or Mannheim curves of regular curves in the three-
dimensional Euclidean space was added. Moreover, the existence the conditions of the
Bertrand and Mannheim curves of framed curves were discussed.

In this paper, we would like to treat Bertrand and Mannheim curves in the three-
dimensional sphere. We investigate not only Bertrand and Mannheim curves of spherical
regular curves, but also Bertrand and Mannheim curves of spherical singular curves. In
Section 2, we clarify the conditions for spherical regular curves to become Bertrand and
Mannheim curves, respectively (Theorems 2 and 3). As an application of our results, we
clarify the relations between Bertrand curves (respectively, Mannheim curves) and general
helices. Then, we consider singular spherical curves. As singular spherical curves, we
considered spherical framed curves. A spherical framed curve is a smooth curve endowed
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7" (s) + () * =

with a moving frame. It is a generalization of a Legendre curve in the unit spherical bundle

over the unit sphere (cf. [16]) and of a framed curve in the Euclidean space (cf. [17]). In

Section 3, we define Bertrand and Mannheim curves of spherical framed curves. Then, we

give conditions for spherical framed curves to become Bertrand and Mannheim curves,

respectively (Theorems 6 and 7). Moreover, we give some examples to illustrate our results.
All maps and manifolds considered in this paper are differentiable of class C*.

2. Regular Spherical Curves

Let R* be the four-dimensional Euclidean space equipped with the inner product
a-b = ajby + ayby + azbz + azby, where a = (a1,a3,a3,a4) and b = (by,bo, b3, by) € R*
The norm of a is given by |a| = /a - a. Let a; € R* be vectors a; = (a;, a1, a;3,a;4) for
i = 1,2,3. The vector product is given by:

4
a1 X a X az = Zdet(ul,az, as,e;)e;,
i=1

where {e, e, e3,e4} is the canonical basis on R*. Then, we have (a; x ay x a3) - a; = 0 for
i=1,23.LetS® = {(x,y,z,w) € R*| x> + 2 + z2 + w? = 1} be the unit sphere. We define
the following two sets A = {(ay,a2,a3) € S x S? x S3 | ay-a; = a;-a3 = a - a3 = 0}
and A, = {(ay,a3) € S® x S® | a1 - ay = 0}. Then, A and A, are six- and five-dimensional
smooth manifolds.

Note that for (a,b,c) € A, if we denote a X b x ¢ = d, then:

dxaxb=—-c,cxdxa=b,bxcxd=—a.

Let I be an interval of R, and let 4 : I — S° be a regular spherical curve, that is
(t) # 0 forall t € I, where ¥(t) = (dy/dt)(t).

Definition 1. We say that vy is non-degenerate or vy satisfies the non-degenerate condition if

Y(t) X ¥(t) x ¥(t) #Oforallt € I.

Let s be the arc-length parameter of vy, that is |y/(s)| = 1 for all s. If |y (s)| # 1 for all
s, then the tangent vector, the principal normal geodesic vector, and the bi-normal geodesic
vector are given by:

respectively. In fact,

[V ()1 +29"(s) - v(s) + [y ()P = |7 ()P = 29/(s) - (5) + 1 = [y"(5) P - 1,

we have |7”(s)| # 1if and only if |7"(s) + v(s)| # 0. Then, {7(s), t(s),n(s),b(s)} is a
moving frame of 7, and we have the Frenet-Serret formula:

7' (s) 0o 1 0 0\ /()

t(s) | _[-1 0 x(s) 0 t(s) )
n'(s) 0 —x(s) 0 z(s) || n(s) |’

b'(s) 0 0 —1(s) 0 b(s)

k(s) = [7"(s) +7(s)] = [(7"(s) +7(5)) - (s )I = |7"(s) - n(s)
= [t'(s) - (=(b(s) x 1(s) x £(s)))| = [b(s) - ((s) x £(s) x #(s))]
= |7(s) x t(s) x ¥'(s)] = [7(s) x 7' (5) x 7v"(5)]



Mathematics 2022, 10, 1292 3 of 21

and

= det(7(s), t(s),n(s),n'(s)) =

_ det(v(s),7(s), 7" (s), 7" (5))
K2(s) '

Since x%(s) = |y(s) x ¥'(s) x 7" (s)|? = |7"(s) + v(s)|> = |7 (s)|? — 1, we have that
|7"(s)| # 1if and only if the curvature x(s) does not vanish, that is 7 is non-degenerate.

If y(t) x ¥(t) x ¥(t) # 0 for all t € I, then the tangent vector, the principal normal
geodesic vector, and the bi-normal geodesic vector are given by:

RN () x ) < ()

AN TOT S A M N O RF IOET IOl

Then, {7(t),t(t),n(t),b(t)} is a moving frame of -y, and we have the Frenet—Serret

formula:

7(t) 0 |7 (#)] 0 0 7(t)

o | _[-nol o ke o | [ o

n(t) 0 —|7()x(t) 0 [r(®)]z(t) | | n(t) |

b(t) 0 0 —[ ()] (t) 0 b(t)
where

K(t) = [y (8) x () x ¥(#)] () = det(y(t), 7(t), ¥(t), ¥ (t))
v () < 3 (t) x 7(8)[>
Note that in order to define #(t),n(t),b(t),x(t) and T(t), we assumed that v is

non-degenerate.
As a well-known result, we recall the fundamental theorem of regular curves (cf. [18]).

Theorem 1. Let x, T : I — R be smooth functions and x(s) > 0 for all s € 1. Then, there exists
a regular spherical curve «y : I — S3 whose associated curvature and torsion are x(s) and T(s).
Moreover, s is the arc-length parameter of -y.

2.1. Bertrand Curves of Regular Spherical Curves
Letyand7: I — S®be non-degenerate curves with 7y # +7.

Definition 2. We say that v and 7y are Bertrand mates if the principal normal geodesics of y and
v are parallel at the corresponding points. We also say that <y is a Bertrand curve if there exists a
non-degenerate curve %y such that vy and 7y are Bertrand mates.

Assume that 7y and 7 are Bertrand mates, then there exists a smooth function ¢ : I — R
such that 7(t) = cos ¢(t)y(t) — sin ¢(t)n(t) and 7(t) = sin ¢(t)y(t) + cos ¢(t)n(t) for all
tel

Remark 1. If ¥ = —vy, we have that the principal normal geodesics of v and 7y are parallel at
corresponding points, then <y and % are always Bertrand mates. This is why we assumed 7y # —.

We take the arc-length parameter s of -y.

Lemma 1. Let 7 : [ — S® be a non-degenerate curve parameterized by the arc-length. If v and 7
are Bertrand mates with (s) = cos ¢(s)y(s) — sin ¢(s)n(s), then ¢ is a constant with sin ¢ # 0.
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Proof. By differentiating 7 (s) = cos ¢(s)y(s) — sin ¢(s)n(s), we have
[Y(s)[E(s) = — ¢'(s) sin @(s)y(s) + (cos @(s) + x(s) sin (s)) £(s) +
— ¢'(s) cos p(s)n(s) — t(s) sin p(s)b(s).

Since 7i(s) = sin¢(s)y(s) + cos ¢(s)n(s), we have ¢'(s) = 0 for all s € I. Therefore, ¢
is a constant. If sing = 0, then y(s) = £(s) for all s € I. Hence, ¢ is a constant with
sing #0. O

By 7(s) = cos ¢(s)y(s) — sin¢(s)n(s) and 7(s) = sin ¢(s)y(s) + cos ¢(s)n(s), there
exists a smooth function 6 : I — R such that:

t(s) \ _ [ cosB(s) —sinf(s) t(s)
b(s) ) \ sinf(s) cosf(s) b(s) )
Lemma 2. Lety : [ — S be a non-degenerate curve parameterized by the arc-length. Suppose that

@ is a constant with sin ¢ # 0. If v and 7 are Bertrand mates with 7y (s) = cos ¢7y(s) — sin pn(s)
and t(s) = cos0(s)t(s) — sinB(s)b(s), then 0 is a constant.

Proof. By differentiating 7 (s) = cos ¢y(s) — sin ¢n(s), we have

[7(s)[£(s) = (cos ¢ + «(s) sin @)t(s) — T(s) sin @b(s).
Thus, by differentiating (s) - £(s), we have

%cos@(s) = %(t(s)~f(s))

= (=7(s) +x(s)n(s)) - ¥(s) + £(s) - (= [v(s) [¥(s) + [7(s) [k (s)7(s)) = O.

Hence, 0 is a constant. [

Theorem 2. Let vy : [ — S3 be a non-degenerate curve parameterized by the arc-length. Suppose
that T(s) # 0 for all s € I and ¢ is a constant with sin ¢ # 0. Then, «y and 7y are Bertrand mates
with 7(s) = cos ¢7y(s) — sin gn(s) if and only if there exists a constant 6 with sin @ # 0 such that

—x(s)sinf + 7(s) cos§ = cot ¢ sin 6 ©)]

and
sin @
sin 6

foralls € I.

T(s) > 0, (—sin ¢ + x(s) cos @) cos 8 + T(s) cos ¢ sinf > 0 4)

Proof. Suppose that v and 7 are Bertrand mates and (s) = cos¢vy(s) — sin¢n(s),
7i(s) = sin ¢y(s) + cos gn(s) for all s € I. Note that s is not the arc-length parameter
of 7. By differentiating 7(s) = cos ¢7(s) — sin gn(s), we have

[7(s)[£(s) = (cos ¢ + x(s) sin @)t(s) — T(s) sin @b(s).

Since £(s) = cosft(s) — sinOb(s), we have [y(s)|cos® = cos¢ + x(s)sin ¢ and
[7(s)|sin@ = 7(s) sin ¢. It follows that

(cosp +x(s)sing)sin® — 7(s) sinp cosd = 0.
As sin ¢ # 0, we have

—x(s)sin® + 7(s) cos § = cot ¢ sin 6.
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As [7(s)|sin0 = 7(s)sing and T(s) # O for all s € I, we have sinf # 0 and
sin ¢
sin 6
we have

7(s) > 0 for all s € I. Moreover, by differentiating #(s) = cos0t(s) — sin6b(s),

—[¥(s)P¥(s) + [y (s)[k(s)ii(s) = (—v(s) +x(s)n(s)) cos 0 + T(s) sin On(s)
= —cos0y(s)+ (x(s)cos® + T(s)sinb)n(s).

It follows that [7(s)|%(s) = (—sin ¢ +x(s) cos ¢) cos 6 + T(s) cos ¢ sin . Sincek(s) > 0
foralls € I, we have

(—sing + x(s) cos ¢) cos 0 + 7(s) cos ¢ sinf > 0

forall s € I.
Conversely, suppose that there exists a constant # with sin @ # 0 such that —«(s) sin6 +
ing

T(s)cos® = cotesiné, SIiWT(s) > 0, (—sing + x(s) cos ¢) cos + T(s) cos psin® > 0,

and y(s) = cos ¢y (s) — sin pn(s). By differentiating 7, we have

F(s) = (cos g+ k(s)sin@)t(s) — T(s) sin gb(s) = zi;‘gr(s)(coset(s)—sineb(s)),
Hs) = Ziiigg(—’r(s) c0s07(s) + T'(s) cos E(s)

+ 7(s)(x(s) cos 0 + T(s) sinB)n(s) — v'(s) sinOb(s)).

By a direct calculation, we have

¥(s) x ¥(s) x ¥(s)
sin?
= (grz(s)((— sin ¢ + x(s) cos ¢) cos 6 + T(s) cos ¢ sin 0) (sin Ot(s) + cos Ob(s)).

As assumption, we have

)] = S0 () > 0, 7(5) x (s) x(s) #0

foralls € I.
Thus, 7 is regular and non-degenerate. Moreover, we have

_ () _ , Tiey = ) x () xA(s) _ .
(s) = =——= = cosOt(s) —sin@b(s), b(s) = TG XSG X6 sin0t(s) + cos 0b(s).

fi(s) = —b(s) x y(s) x t(s) = sin ¢py(s) + cos pn(s).
Therefore, v and % are Bertrand mates. O

Remark 2. With the same assumption as in Theorem 2, suppose that -y and 7y are Bertrand mates
with 7 (s) = cos ¢y (s) — sin gn(s). Then, the following results hold:

(1)  Both the curvature x and torsion T of the Bertrand curve can be constants (Example 1).

(2) Ifcosg =0, thenx(s) = % cos 6, T(S()J sin ¢ > 0and sin ¢ cos 6 < 0 by Equations (3)

and (4). It follows that x(s) < 0. Hence, cos ¢ # 0.
(3) Ifcos® =0, thenx(s) = — cotg, ;Sé sin ¢ > 0and 7(s) cos @ sinf > 0 by Equations (3)
and (4). It follows that x(s) < 0. Hence, cos 6 # 0.
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sin ¢
sin 6

"2 (—27(5) cos0(s) + (—7() + 7

Proposition 1. With the same assumption as in Theorem 2, suppose that vy and 7y are Bertrand
mates with 7 (s) = cos ¢y(s) —singn(s). Then, the curvature ¥ and the torsion T of 7y are

given by
7(s) = —0_((—sin g+ x(s) cos p) cos + 7(s) cos psin6) ©)
%(s) = ()sing sin ¢ 4 x(s) cos ¢) cos 0 + T(s) cos psinf),
sin? 6
T = —-— 6
) 7(s) sin @ ©)

Proof. Since 7(s) = cos ¢y (s) — sin gn(s), we have

F(s) = (cos ¢+ k(s) sin @)£(s) — (s) sin pb(s) = Si,n(g‘r(s)(coset(s)—sin@b(s)).

sin

Therefore,

(—7(s) cosOy(s) + T'(s) cos 0t (s)

+7(s)(x(s) cos 0 + 7(s) sinf)n(s) — 7'(s) sin b (s)),

T"(5)) cos 0 — x(s)T(s)(x(s) cos 0 + T(s) sinB))#(s)
+ (2t (s)(K( )cos 8 + T(s)sin6) + T(s) (x'(s) cos 6 + T/ (s) sin 0) ) n(s)

+ (—=1"(s) sin 8 + 72(s) (x(s) cos 8 + T(s) sin 0)) b(s)).

Since
. __ sing
)l = Sles)
)
. sin . .
7(s) x 7(s) x ¥(s)| = Sinz(gTZ(s)((—sm(p+K(s)cos @) cosf + T(s) cos ¢sinb),
“en 1 2
det(7(s), 7(s),7(s), 5 (s)) = Ssliiz(g‘c3(s)((—sin(p+x(s) 0 ) cos O + T(s) cos @ sin 6)?,
we have

2(s) = 1) X7() x7(6)]
- P
B T(sS;r;ien(p((_Sinq’"“”K(S)COS(P)C089+T(S)cosqosin9),
eo) = 4T 7)), 7(6)
[7(s) x¥(s) x ¥(s)|?

sin2 6

7(s)sin? ¢
O

Remark 3. Suppose that «y and 7y are Bertrand mates with (s) = cos ¢y (s) — sin gn(s). By
Equation (6), we have T(s) # 0 forall s € I.

Proposition 2. With the same assumption as in Theorem 2, suppose that vy and 7y are Bertrand
mates with y(s) = cos ¢y(s) — sin ¢n(s). Then, there exists a constant 6 with sin€ # 0 such
that the following formulas hold:

(1) 7(s)sing = [7(s)|sin6, [7(s)[T(s) sin ¢ = sin6.

2)  |7(s)[T(s) cos ¢ = —x(s) sinf + (s) cos B, T(s) cos ¢ = [7(s)|(%(s) sin O + T(s) cos ).
(3) cos+x(s)sing = [7(s)]| cos, [7(s)|(cos ¢ —k(s)sin @) = cosb.
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(4)  |7(s)|(sin ¢ + %(s) cos @) = x(s) cos® + T(s)sinb, sinp — x(s) cos ¢ = [¥(s)|(—%(s)
cos 0 + T(s) sin0).

Proof. By Definition 2 and the proof of Theorem 2, we have

Y(s) = cos @y(s) —sin gn(s),
f(s) = sing@7y(s)+ cos¢n(s),
t(s) = cos6t(s) —sin0b(s),
b(s) = sin0t(s) + cos0b(s).

We write the moving frame of 7 in terms of the moving frame of 7:

¥(s) = cos ¢7(s) + sin ¢n(s),
n(s) = —singy(s) + cos ¢n(s),
t(s) = cos0t(s) +sinfb(s),
b(s) = —sin0t(s) + cosOb(s).

By differentiating 7(s),7(s),#(s),b(s) and (s),n(s),t(s),b(s), we obtain
the formulas. O

Proposition 2 leads to the following result.

Corollary 1. With the same assumption as in Theorem 2, suppose that v and 7y are Bertrand mates

with (s) = cos @7y(s) — sin ¢n(s). Then, the following relations hold:

(1)  7(s)T(s)sin? ¢ = sin? 6.

(2)  7(s)T(s) cos? ¢ = (—x(s)sin® + 7(s) cos 0) (% (s) sin O + T(s) cosb).

(3)  (cos ¢ + «x(s) sin @) (cos ¢ — k(s) sin @) = cos? .

(4)  (sing — «x(s)cos @) (sin@ + K(s) cos ¢) = (x(s) cost + T(s)sinB)(—x(s) cos + T(s)
sinf).

A twisted curve v in S3 (i.e., a curve with torsion T # 0) is said to be a helix if its
curvature and torsion are non-zero constants. More generally, a twisted curve -y in S° is a
general helix if and only if there exists a constant a such that 7(s) = ax(s) & 1 (for details,
see [19]). Then, we clarify the relations between Bertrand curves and general helices in S3.

Proposition 3. With the same assumption as in Theorem 2, suppose that vy and 7y are Bertrand
mates with 7 (s) = cos ¢py(s) — singn(s). If ¢ = 0, then -y and 7 are general helices.

Proof. Since 7 and 7 are Bertrand mates, we have —«(s) sinf + 7(s) cos = cot ¢ sin 6 by
Theorem 2. If ¢ = 6, we have x(s) sin® = (7(s) — 1) cosf. As cos6 # 0 (cf. Remark 2 (3)),
L2
1
we have 7(s) = «x(s)tan6 + 1. By Proposition 1, we have T(s) = sm. 92 = .
T(s)sin” ¢ 7(s)

Moreover,
(t(s) —1)cos® 8 .
7(s) = x(s)cos? 6 + (t(s) — 1) cosfsinf sin @ +(7(s) = 1) cosBsind
- T(s) B (s)
1 " cos® 6 + cos 0 sin? 6 _
— (1 - T(S)) e = (1—"7(s)) coté.

—«(s) tan6 + 1. If ¢ = —6, by a calculation similar to the case of

It follows that T(s) =
) = k(s)tanf — 1 and T(s) = —«(s) tan® — 1. Thus, iy and 7 are general

¢ =6, wehave (s
helices. O
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Proposition 4. Let v : [ — S3 be a general helix with T(s) = ax(s) =1 and a # 0. Suppose
that x(s) is not a constant and t(s) # 0 forall s € I. If T(s) = ax(s)+1 > 0 foralls € I or
T(s) = ax(s) —1 < Oforall s € I, then vy is a Bertrand curve.

Proof. If 7(s) = ax(s)+1 > O forall s € I, we take ¢ = 0, sinf = a/v1+ a? and
cos =1/vV1+a? Ift(s) = ax(s) —1 < Oforalls € I, we take p = —6,sin0 = a/V/1 + a2
and cos = 1/v/1 + a2. Then, x and 7 satisfy Equations (3) and (4) in Theorem 2. Hence, 7y
is a Bertrand curve. [

Remark 4. With the same assumption as in Proposition 4, if T(s) = ax(s) +1 < O forall s € 1
or T(s) = ax(s) —1 > 0 forall s € I, we conclude there are not any constants angles ¢ and 6,
such that x and T satisfy Equations (3) and (4) in Theorem 2. Hence, vy is not a Bertrand curve.

Example 1. Lety: I — S3 be a helix with the curvature x = a and torsion T = b, where a, b are
constants and a > 0, b # 0. We consider the following four cases:

()b >0,b#1, (i))b=1, (ii) b < 0,b £ —1, (iv) b= —1.

In the case (i), we take ¢ = 6,sin0 = (b—1)/+\/a? + (b —1)?and cos 0 = a/+/a?> + (b —1)%2.In
the case (i), we take ¢ = 71/4,sinf = 1/+/1+ (a+1)2and cos0 = (a+1)//1+ (a+1)2 In
the case (iii), wetake g = —6,sin0 = (b+1)/+/a%> + (b+ 1)?andcos® = a/+/a? + (b+1)%. In
the case (iv), we take ¢ = 71/4,sin0 = —1//1+ (a+1)2andcos0 = (a+1)//1+ (a +1)%

Then, « and T satisfy Equations (3) and (4) in Theorem 2. Hence, <y is a Bertrand curve.

2.2. Mannheim Curves of Regular Spherical Curves
Letyand 7 : I — S3 be non-degenerate curves with 7 # 7.

Definition 3. We say that v and 7y are Mannheim mates if the principal normal geodesic of <y
and the bi-normal geodesic of 7y are parallel at the corresponding points. We also say that <y is a
Mannheim curve if there exists a non-degenerate curve 7 such that <y and 7 are Mannheim mates.

Assume that y and 7y are Mannheim mates, then there exists a smooth function ¢ :
I — R such that y(t) = cos ¢(t)y(t) — sin @(t)n(t) and b(t) = sin ¢(t)y(t) + cos p(t)n(t)
forall t € I.

Remark 5. If 7 = —«, then -y and 7y are not Mannheim mates.
We take the arc-length parameter s of .

Lemma 3. Let 7y : [ — S? be a non-degenerate curve parameterized by the arc-length. If v and
7 are Mannheim mates with y(s) = cos ¢(s)y(s) — sin@(s)n(s), then ¢ is a constant with

sing # 0.
Proof. By differentiating 7(s) = cos ¢(s)y(s) — sin ¢(s)n(s), we have
Y(s)[E(s) = — ¢'(s) sin@(s)y(s) + (cos ¢(s) + x(s) sin (s) ) £(s)
— ¢/(s) cos p(s)n(s) — T(s) sin ¢(s)b(s).

Since b(s) = sin @(s)y(s) + cos ¢(s)n(s), we have ¢'(s) = 0 for all s € I. Therefore, ¢
is a constant. If singp = 0, then 7(s) = £7(s) for all s € I. Hence, ¢ is a constant with
sing #0. O

Theorem 3. Let 7y : [ — S3 be a non-degenerate curve parameterized by the arc-length. Suppose
that ¢ is a constant with sin ¢ # 0. Then, -y and 7y are Mannheim mates with 7 (s) = cos ¢7y(s) —
sin gn(s) if and only if
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(1%(s) + 72(s) — 1) sin @ cos ¢ = «(s)(sin® ¢ — cos® @) (7)
and
7' (s) sin @ cos ¢ — (x'(5)7(s) — k(s)7'(s)) sin® ¢ > 0 (8)
foralls € I.

Proof. Suppose that v and 7 are Mannheim mates and (s) = cos ¢7y(s) — sin ¢n(s),
b(s) = singy(s) + cosn(s) for all s € I. Note that s is not the arc-length parame-
ter of 7. By differentiating 7(s) = cos ¢-y(s) — sin ¢n(s), we have [7(s)[t(s) = (cos ¢ +
k(s)sin@)t(s) — T(s)sin@b(s). Since 7 is regular, we have [y(s)] =
\/(cos ¢ +x(s) sin @)2 + (7(s) sin ¢)2 # 0 for all s € I. Since b(s) = sin ¢7y(s) + cos ¢n(s),
there exists a smooth function 6 : I — R such that

(2 )= (oo e ) (59))

Then, —|7(s)| sin6(s) = cos ¢ +«(s) sin ¢ and |7 (s)| cos 0(s) = —1(s) sin ¢. It follows

that
(cos ¢ +x(s)sing) cosO(s) — T(s) sin¢sinb(s) = 0. 9)
By differentiating #(s) = cos0(s)b(s) — sin6(s)t(s), we have

—[r(s)[7(s) + [¥(s) [k (s)7(s) =sinb(s)7(s) — O'(s) cos B(s)¢(s)
+ (—x(s)sinB(s) — 7(s) cos O(s))n(s) — 0'(s) sinO(s)b(s).

Since b(s) = sin ¢7y(s) + cos ¢n(s), we have

(sin g — x(s) cos ¢) sin@(s) — T(s) cos ¢ cosB(s) = 0. (10)

)

By Equations (9) and (10), we have

( —1(s)sin @ cos ¢ + x(s) sin ¢ )< sin6(s) ) _ (

sin ¢ — x(s) cos ¢ —1(s) cos ¢ cosB(s)
Thus,
—7(s)sin ¢ cos ¢ + «k(s) sin ¢
et| . =0.
sin ¢ — x(s) cos ¢ —7(s) cos ¢
It follows that

(k%(s) + T2(s) — 1) sin @ cos ¢ = x(s)(sin? ¢ — cos? ¢). (11)

By differentiating 71(s) = sin6(s)b(s) + cos 6(s)#(s), we have

Y(s)[T(s) sin @y (s) + [7(s) [ (s) sin O(s)#(s) + [7(s)[T(s) cos pn(s) — [7(s)[x(s) cos 6(s)b(s)
= —cos8(s)y(s) — 0'(s) sinO(s)t(s) + (x(s) cos O(s) — T(s) sinO(s))n(s) + 6'(s) cos (s)b(s).

Thus, |[7(s)|%(s) = —6'(s). Since k(s) > 0 forall s € I, we have 0'(s) < 0 foralls € I.
By differentiating (9), we have

(x'(s) — 0" (s)7(s)) sin p cos O(s) — (6'(s)(cos ¢ + x(s) sin @) + T’ (s) sin @) sinO(s) = 0. (12)

By Equations (9) and (12), we have
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< T(s) sin ¢ cos ¢ + k(s) sin ¢ )( sinf(s) ) _ <
0’ (s)(cos ¢ + x(s) sing) + T'(s)sing (x'(s) — 6’ (s)7(s)) sin ¢ cos6(s)

Thus,

0 )

—('(s) sinpcos ¢ — (x'(s)7(s) — x(s)T'(s)) sin® p) .

0'(s) =
12(s) sin? @ + (cos ¢ + x(s) sin @)?2

It follows that 7/(s) sin @ cos ¢ — (k' (s)7(s) — x(s)T/(s)) sin® ¢ > O forall s € I.
Conversely, suppose that (x 2( )+ 12(s) — 1)sinpcosp = x(s)(sin? ¢ — cos? @),
Tl’l( )sull(pcosq) (k' (s)T(s) — x(s)T'(s)) sin? ¢ > 0 and ¥(s) = cos ¢ (s) — sin gn(s) for
alls € .
By differentiating 7(s) = cos ¢(s) — sin gn(s), we have
V(s) = (cos @ +x(s)sing)t(s) — 7(s) sin ¢b(s),
7(s) = —(cos @ +x(s)sin@)y(s) +«'(s) sin pt(s)
+ (x(s) cos ¢ + (k2(s) 4 2(s)) sin @)n(s) — T/ (s) sin @b (s).

By a direct calculation, we have

¥(s) x ¥(s) x ¥(s) =('(s) sin g cos ¢ — (k' (s)7(s) — x(s)7'(s)) sin® @) (sin ¢ (s) + cos pn(s)).

As the assumption,

7'(s) sin g cos ¢ — (k' (s)T(s) — x(s)T'(s)) sin®
= sin ¢ (7'(s)(cos ¢ + «(s) sin @) — x’(s)7T(s) sinp) > 0

for all s € I, we have

()] =/ (cos @+ x(s) sin @)2 + (z(s) sin )2 £ 0, 7(s) x F(s) x F(s) # 0
forall s € I. Thus, 7(s) is regular and non-degenerate. Moreover, we have

ey = T X F(s) X (o)
F7(s) X 7(5) X 7(6)

| = sin ¢y(s) + cos ¢n(s).
Therefore, v and % are Mannheim mates. [

Remark 6. With the same assumption as in Theorem 3, suppose that -y and 7y are Mannheim mates
with % (s) = cos @7y(s) — sin ¢n(s). Then, the following results hold:

(1)  Both the curvature x and torsion T of 7y can not be constants.

(2)  If 0 is a constant, then |y(s)|x(s) = 0. Hence, 0 is not a constant.

(3) Ifcos¢ =0, then x(s) = 0 by Equation (7). Hence, cos ¢ # 0.

Proposition 5. With the same assumption as in Theorem 3, suppose that vy and 7y are Mannheim
mates with 7(s) = cos ¢y(s) — singn(s). Then, the curvature X and the torsion T of 7y are

given by
o) _ T)snpcosg— (KO ~x(o)7(s)sin’
((cos ¢ + x(s) sin ¢)2 + T2(s) sin? @) 2
T(s) = — K (s)

2(7'(s) sin g cos ¢ — (k' (5)T(s) — (s)T'(s)) sin? )
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Proof. Since 7(s) = cos ¢ (s) — sin gn(s), we have

7(s) = (cos @+ x(s) sin @)t(s) — T(s) sin pb(s).

Therefore,
Y(s) = — (cos@+x(s)sing)y(s) +«'(s) sin pt(s)
+ (k(s) cos @ + (k*(s) + T°(s)) sin @)n(s) — T'(s) sin pb(s),
Y(s) = —2«/(s)singy(s) + (k" (s) sing — x(s) (x(s) cos ¢ + (x*(s) + T2(s)) sin @)

—cos ¢ — k(s) sin @) t(s) + (x'(s) cos ¢ + 3(x(s)k'(s) + T(s)7'(s)) sin @) n(s)
+ (7(s)(x(s) cos @ + (k%(s) + T2(s)) sin @) — T (s) sin @) b(s).

By differentiating
(k2(s) + T2(s) — 1) sin ¢ cos ¢ = k(s)(sin® ¢ — cos? ),

we have
2(x(s)K'(s) + T(s)7(s)) sin @ cos ¢ = ' (s) (sin? ¢ — cos? ).
It follows that

det(7(s),7(s),7(s), ¥ (s)) = *%K’(S) (7'(s) sin p cos @ — (x/(s)T(s) — (s)T'(s)) sin® ).

Since
¥(s)| = ((cos @+ x(s)sin @)+ 72(s) sin® (p)%
7s) % 7(s) % <s>| = 7/(s)singos g — (K'(5)T(s) — k()T (s)) sin g,

we have
wo) — 1) x73(5) ()
7(s)I°
_ T(s)singcos g — (k'(s)T(s) — k()T (S))§
((cos @ + x(s) sin ¢)2 + T2(s) sin® @) 2
o) T, 76), F(2)
7(s) x () x 7(s)[?
_ K'(s)
2(7'(s) sin g cos ¢ — (1’ (s)T(s) — x(s)7/(s)) sin® ¢)
O

Proposition 6. With the same assumption as in Theorem 3, suppose that v and 7y are Mannheim
mates with 7 (s) = cos ¢7y(s) — sin gn(s). Then, there exists a smooth function 6 : I — R such
that the following formulas hold:

(1) [7(s)| cos @ = —sinb(s), x(s) sin ¢ + cos ¢ = —|7(s)|sin 6(s).

(2)  |[7(s)|T(s) sing = —cosb(s), T(s) sinp = —[7(s)[ cos O(s).

(3)  |7(s)|sing = —x(s)sin0(s) — T(s) cos O(s), T(s) cos ¢ = —[7(s)[T(s) sinb(s).

4) |’y(56)(|T>(s)cosgo = «x(s)cosf(s) — t(s)sinb(s), —sing + x(s)cosp = |7(s)|T(s)
cosf(s).
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Proof. By Definition 3 and the proof of Theorem 3, we have

Y(s) = cosy(s) —singn(s),
b(s) = sin@y(s) + cos gn(s),
t(s) = cosO(s)b(s) —sinb(s)t(s),
f(s) = sin6(s)b(s) + cosb(s)t(s).

We write the moving frame of -y in terms of the moving frame of 7:

Y(s) = cos ¢7(s) + sin b(s),

n(s) = —sin@y(s) + cos @b(s),
t(s) = cosf(s)t(s)+sinb(s)mu(s),
b(s) = —sinf(s)t(s) + cosb(s)(s).

By differentiating 7(s), 7(s), #(s), b(s) and y(s), n(s), t(s), b(s), we obtain the formulas. [J

Proposition 6 leads to the following result.

Corollary 2. With the same assumption as in Theorem 3, suppose that 7y and 7y are Mannheim
mates with 7y (s) = cos ¢7y(s) — sin gn(s). Then, the following relations hold:

(1) cos @(x(s)sin ¢ + cos @) = sin®O(s).

2)  1(s)T(s) sin® ¢ = cos? B(s).

(3)  T(s)singcos @ = T(s)sinb(s)(x(s)sinb(s) + 7(s) cosH(s)).

(4)  cos@(—sing@ + x(s) cos @) = cosO(s)(x(s) cosO(s) — T(s) sin6(s)).

We obtain the relation between Mannheim curves and general helices in S® in next
proposition.

Proposition 7. Let 7y : I — S be a non-degenerate twisted curve parameterized by arc-length. If
7 is a general helix, then <y is not a Mannheim curve.

Proof. Since v is a general helix, we have that the curvature x and torsion T of vy satisfy
T(s) = ax(s) £ 1, where a is a constant. If ¢ is a Mannheim curve, by Equation (7) in
Theorem 3, we have

((a* +1)x(s) £ 2a) sin g cos ¢ = sin® ¢ — cos? @,

then « is a constant by sin ¢ cos ¢ # 0 (cf. Remark 6 (3)). It follows that 7 is a constant. This
is a contradiction (cf. Remark 6 (1)). Hence, y is not a Mannheim curve. [

Example 2. We consider the smooth functions x,T : (—m/2,7/2) — Ras x(s) = coss and
7(s) = sins. By Theorem 1, there exists a spherical reqular curve y : (—m/2,7t/2) — S® whose
associated curvature and torsion are x, T and s is the arc-length parameter of y. If we take ¢ = 1t/4,
then x, T satisfy Equations (7) and (8) in Theorem 3. Hence, -y is a Mannheim curve.

3. Spherical Framed Curves

Definition 4. We say that (vy,vq,v2) : I = A is a spherical framed curve if y(t) - v1(t) = 0 and
Y(t) - vo(t) = Oforall t € I. We say that «y : [ — S® is a spherical framed base curve if there exists
(v1,v2) : I — Ay such that (vy,vq,vy) is a spherical framed curove.

We denote pu(t) = y(t) x v1(t) x vo(t). Then, {y(t),v1(t), v2(t), u(t)} is a moving
frame along the spherical framed base curve (t) in S?, and we have the Frenet-Serret-
type formula:
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(#) 0 0 0 at) 7(t)
u) | | o 0 ) m@) || @
va(t) | 0 —L(t) 0 n(t) va(t) |’
j(t) —a(t) —m(t) —n(t) 0 p(t)

where a(t) = j(t) - u(t), €(t) = v1(t) - va(t), m(t) = v1(t) - u(t) and n(t) = va(t) - u(t). We
call the mapping («, ¢, m, n) the curvature of the spherical framed curve (y, v1,v2). Note that ¢
is a singular point of -y if and only if a(tp) = 0.

Definition 5. Let (v, vq,v2) and (4,71,v2) : I — A be spherical framed curves. We say that
(v,v1,v2) and (7, V1, V) are congruent as spherical framed curves if there exists A € SO(4) such
that ¥(t) = A(y(1)), 1 (t) = A(vi(t)) and V5 (t) = A(vo(t)) forall t € 1.

We have the existence and uniqueness theorems for spherical framed curves in terms
of the curvatures. The proofs are similar to the cases of Legendre curves in the unit tangent
bundle ([16]) and framed curves in the Euclidean space ([17]), so we omit them.

Theorem 4 (Existence theorem for spherical framed curves). Let («,(,m,n) : [ — R* bea
smooth mapping. Then, there exists a spherical framed curve (vy,v1,v2) : I — A whose curvature
is given by («, £, m, n).

Theorem 5 (Uniqueness theorem for spherical framed curves). Let (7y, vy, v2) and (7,11, 77) :
I — A be spherical framed curves with curvatures («, £, m,n) and (%, 7, 1), respectively. Then,
(v,v1,v2) and (7,71, V) are congruent as spherical framed curves if and only if the curvatures
(a,¢,m,n) and (&, 7,1, 1) coincide.

Let (y,v1,1v2) : I — A be a spherical framed curve with curvature («, ¢,m, n). For the
normal plane spanned by v; (t) and v,(t), there are other frames by rotations (cf. [20]). We
define (v (t), 2(t)) € Ay by

1(t) \ _ [ cos@(t) —sinb(t) v1(t)

n(t) )\ sinf(t) cos6(t) v(t) )’
where 6(t) is a smooth function. Then, (v, 71,7,) : [ — A is also a spherical framed curve
and ji(t) = u(t). By a direct calculation, we have

v1(t) = (L(t) —0(t))sin@(t)vy (t) + (£(t) — O(t)) cos O(t)vp(t) + (m(t) cosO(t) — n(t)sinO(t))u(t),
Ua(t) = (L(t) —0(t)) cosO(t)vy(t) + (£(t) — O(t)) sinO(t)va(t) + (m(t) sin@(t) + n(t) cos O(t))u(t).

If we take a smooth function # : I — R that satisfies 6(t) = £(t), then we call the frame
{V1(t),72(t), u(t)} an adapted frame along <y (t). It follows that the Frenet-Serret-type
formula is given by

7(t) 0 0 0 a(t) (1)
e | 0 0 0 () vi (1)
() | 0 0 0 7t n(t) |’
a(t) —alt) —d(t) —i(t) 0 u(t)

where 1(t) and 71(t) are given by

(70 )= (ot ami ) ()
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3.1. Bertrand Curves of Spherical Framed Curves

Let (y,v1,12) and (7,71,V2) : I — A be spherical framed curves with curvatures

(a, ¢, m,n) and (w, ¢,71,7), respectively. Suppose that y # £7.

Definition 6. We say that (vy,vy,v2) and (7,71, 7V2) are Bertrand mates if there exists a smooth
function ¢ : I — R such that (t) = cos ¢(t)y(t) — sin@(t)v1(t) and 71 (t) = sin p(t)y(t) +
cos @(t)v1(t) forall t € 1. We also say that (y,v1,v2) : I — Ais a Bertrand curve if there exists a
spherical framed curve (7,V1,V) : I — A such that (vy,vq,v2) and (7,71, V2) are Bertrand mates.

Lemma 4. Under the notations of Definition 6, if (vy,v1,v2) and (7, V1, V) are Bertrand mates,
then ¢ is a constant with sin ¢ # 0.

Proof. By differentiating 7(t) = cos ¢(t)y(t) — sin ¢(t)v1(t), we have
w(t)(t) = — ¢(t) sin@(t)y(£) — ¢(t) cos (v (t) — £(t) sin p(t)va(t)
+ (a(t) cos @(t) — m(t) sin @(t))u(t).

Since 71 (t) = sin¢(t)y(t) + cos ¢(t)v1(t), we have ¢(t) = 0 for all t € I. Therefore, ¢
is a constant. If sin g = 0, then 7(t) = +(t) forall t € I. Hence, ¢ is a constant with
sing #0. O

Theorem 6. Let (y,v1,v2) : [ — A be a spherical framed curve with curvature («, £, m,n). Then,
(7v,v1,v2) is a Bertrand curve if and only if there exist a constant ¢ with sin ¢ # 0 and a smooth
function 0 : I — R such that

£(t) sin @ cos O(t) + (a(t) cos ¢ — m(t) sin @) sinf(t) =0 (13)
forallt € 1.

Proof. Suppose that (,v1,17) is a Bertrand curve. By Lemma 4, there exist a spherical
framed curve (7,71,7,) and a constant ¢ with sin¢ # 0 such that y(t) = cos ¢y(t) —
sinpvy(t) and V1 (t) = sin@y(t) + cos pvy(t) for all t € I. By differentiating 7(t) =
cos ¢y (t) — sin gvy (t), we have a(t)7i(t) = —£(t) sin pva(t) + (a(t) cos ¢ — m(t) sin @) u(t).
Since 71 (t) = sin @7y (t) + cos vy (t), there exists a smooth function 6 : I — R such that

( ];42((:)) ) N ( E?r?g((:)) Z?JL?S) )( 1;42((:)) ) (14)

w(t)sinf(t) = —L(t)sing, w(t) cosO(t) = a(t) cos ¢ — m(t) sin @.

Then, we have

It follows that £(#) sin ¢ cos 0(t) + («(t) cos ¢ — m(t)sin¢)sin6(t) =0 forall t € I.

Conversely, suppose that there exists a smooth function 6 : I — R such that /(¢) sin ¢
cos0(t) + (a(t) cos ¢ —m(t) sin ) sinO(t) = Oforallt € I. We define a mapping (v, vy, v2) :
I — Aby 7(t) = cosey(t) —singvy(t), V1(t) = singy(t) + cosgvy(t) and V,(t) =
cos 0(t)va(t) —sin@(t)u(t). Then, (7, 71,72 ) is a spherical framed curve. Therefore, (7, v1,12)
and (7, 71,7,) are Bertrand mates. O

Proposition 8. Suppose that (y,v1,v,) and (7,V1,V2) : I — A are Bertrand mates, where
Y (t) = cos ¢y (t) — sin guy(t) and £(t) sin ¢ cos O(t) + (a(t) cos ¢ — m(t)sin @) sinf(t) = 0
forall t € 1. Then, the curvature (&, £, 1, 7) of (7, V1, Vz) is given by
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w(t) = —L(t)singsinf(t) + (a(t) cos ¢ — m(t) sin @) cosO(t),

0(t) = £(t) cos pcosO(t) — (a(t)sin @ + m(t) cos @) sinO(t),

m(t) = £(t)cos@sin@(t) + (a(t)sin ¢ + m(t) cos ¢) cos(t),

a(t) = n(t) —6(t).
Proof. By Equation (14), we have 7,(t) = cos0(t)va(t) — sin6(t)u(t). By differentiating,
we have

— (8o () +7(t)(t) =a(t) sin6(t)y(t) + (—£(t) cos6() +m(t) sin6(t) )1 (t)
+ (n(t) — 0(t)) sin O(t)va(t) + (n(t) — 6(t)) cos O(£)p(t).

Since 71 (t) = sin @y (t) + cos vy (t) and 7i(t) = sin0(t)va(t) + cos 6(t)u(t), we have
0(t)sing = —a(t)sinf(t), €(t)cos g = £(t) cosO(t) —m(t)sinb(t), n(t) = n(t) — O(¢t).
It follows that
£(t) = £(t) cos ¢ cos O(t) — (a(t) sin ¢ + m(t) cos ¢) sin O(t).
Moreover, by differentiating 7(t) = sin 0(¢)v2(t) + cos (t)u(t), we have
—a(t)y(t) —m(t)n(t) — 7)) = —alt) cos O(t)y(f) — (£(t) sinO(¢) + m(t) cos B(t))v ()
+ (8(t) —n(t)) cosO(t)va(t) + (n(t) — 6(t)) sinO(t)u(t).

Since ¥(t) = cos @y(t) — singuy(t), V1(t) = sin@y(t) + cos gv1(t) and V,(t) =
cos O(t)va(t) —sinb(t)u(t), we have

w(t)cos @ +m(t)sing = a(t)cosb(t),
w(t)sing —m(t)cosp = —L(t)sinf(t) — m(t)cosb(t).
It follows that
w(t) = —L(t)sin@sinb(t) + (a(t) cos ¢ — m(t)sin ¢) cos O(t)
and
m(t) = £(t) cos @sinO(t) + («(t) sin ¢ + m(t) cos ¢) cos O(t).
O

Corollary 3. Let (y,v1,1v2) : I — A be a spherical framed curve with curvature («, ¢, m,n). If
L(t) =0forall t € I, then (vy,v1,Vv7) is a Bertrand curve.

Proof. If we take 6(t) = 0, then Equation (13) is satisfied. [

Let (7y,v1,12) : I — A be a spherical framed curve with curvature (a, ¢, m,n). If we
take an adapted frame {v;(t),72(t), uu(t) }, then the curvature is given by («,0,m, ). By
Corollary 3, we have the following.

Corollary 4. For an adapted frame, (vy, V1, Vo) is always a Bertrand curve.

Proposition 9. Suppose that (7y,v1,v2) and (7,v1,v2) : [ — A are Bertrand mates with curva-
tures (w, ¢, m,n) and (w, ¢, 7,7), respectively. Then, there exist a constant ¢ with sin ¢ # 0and a
smooth function 6 : I — R such that the following formulas hold:

(1) £(t)sing = —a(t)sinB(t), £(t)sinp = —a(t)sin ().

(2)  a(t)cos @ —m(t)sing = w(t)cosO(t), a(t) cos ¢ + m(t)sin ¢ = a(t) cosO(t).
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(3)  £(t)cos @ = £(t)cosB(t) +m(t)sind(t), £(t) cos @ = £(t) cosO(t) — m(t)sinB(t).
(4)  a(t)sing +m(t)cosp = —{(t)sinb(t ) m(t) cosO(t),
—a(t)sing +m(t) cos @ = £(t)sin6(t) + m(t) cosO(t).

Proof. By Definition 6 and the proof of Theorem 6, we have

Y(t) = cos @y(t) — sin gvy(f),
71(t) = sin@y(t) + cos pvy(t),
Va(t) = cosO(f)vp(t) —sin®(t)u(t),
Hu(t) = sin@(t)vo(t) + cosO(t)u(t).
We write the moving frame of v in terms of the moving frame of %
y(t) = cos ¢ (t) + sin ¢v7 (1),
v1(t) = —sing7y(t) + cos g7 (t),
va(t) = cosO(t)va(t) +sinb(t)7(t),
u(t) = —sinb(t)va(t) + cos0(t)u(t).

By differentiating 7(t),v1(t), va(t), 7 (t) and ~y(t), v1(t),v2(t), u(t), we obtain the
formulas. O

By Proposition 9, we have the following relations.

Corollary 5. With the same assumption as in Proposition 9, suppose that (vy, vy, vo) and (7,71, 73)
are Bertrand mates, then the following relations hold:

(1) £(t)6(t)sin® ¢ = a(t)a(t) sin® O(¢).
2) (a(t) cos ¢ — m(t)sin ¢)(a(t) cos ¢ + 7 (t) sinq)) = a(t)x(t) cos? O(t).
(3)  £(t)E(t)cos® @ = (£(t) cosO(t) —m(t)sinB(t))(£(t) cosO(t) + m(t)sinB(t)).
(4 («(t)sin g + m(t) cos @) (@(t) sin ¢ — 7(t) cos @)
= (L(t)sin@(t) +m(t) cosO(t))(£(t)sinO(t) — 7 (t) cosO(t)).

3.2. Mannheim Curves of Spherical Framed Curves

Let (y,v1,12) and (7,71,V2) : I — A be spherical framed curves with curvatures
(,¢,m,n) and (@, l, 71, 7), respectively. Suppose that 7y # +1.

Definition 7. We say that (y,v1,v2) and (7, V1, V2) are Mannheim mates if there exists a smooth
function ¢ : I — R such that ¥(t) = cos ¢(t)y(t) — sin@(t)v1(t) and Vy(t) = sin p(t)y(t) +
cos ¢(t)v1(t) for all t € I. We also say that (vy,v1,v2) : I — A is a Mannheim curve if there
exists a spherical framed curve (7,V1,V2) : I — A such that (y,v1,vp) and (7,7V1,V7) are
Mannheim mates.

Lemma 5. Under the notations of Definition 7, if (vy, vy, v2) and (7y,7V1,V,) are Mannheim mates,
then @ is a constant with sin ¢ # 0.

Proof. By differentiating 7(t) = cos ¢(t)y(t) — sin ¢(t)v1(t), we have
(DF(t) = = ¢(t) sin@(t)y(t) — ¢(t) cos p(t)vi(t) — £(t) sin p(t)va(t)
+ (a(t) cos @(t) — m(t) sin @(t))u(t).

Since v, (t) = sin ¢(t)y(t) + cos ¢(t)v1(t), we have ¢(t) = 0 for all t € I. Therefore, ¢
is a constant. If sin g = 0, then () = +(t) forall t € I. Hence, ¢ is a constant with
sing #0. O

2|
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Theorem 7. Let (y,v1,v2) : [ — A be a spherical framed curve with curvature («, ¢, m,n). Then,
(7, v1,12) is a Mannheim curve if and only if there exist a constant ¢ with sin ¢ # 0 and a smooth
function ¢ : I — R such that

—L(t) sin @ sin¢p(t) + (a(t) cos ¢ — m(t) sin @) cos p(t) =0 (15)
forallt € 1.

Proof. Suppose that (y,v1,17) is a Mannheim curve. By Lemma 5, there exist a spherical
framed curve (7,71,7,) and a constant ¢ with sin¢ # 0 such that y(t) = cos ¢y(t) —
sin vy (t) and v, (t) = sin@y(t) + cos gvy(t) for all + € I. By differentiating 7 (t) =
cos ¢y (t) — sin vy (t), we have &(t)7i(t) = (a(t)cos ¢ —m(t)sin@)u(t) — £(t) sin pvy(t).
Since v, (t) = sin @7y(t) + cos vy (t), there exists a smooth function ¢ : I — R such that

( Vﬁl((tt)) ) N ( (s:?r?i((:)) ciisnﬁg) )( 1;2((;)) ) (16)
Then, we have

a(t)cosp(t) = —L(t)sing, —asing(t) = a(t)cos ¢ —m(t)sin¢.

It follows that — () sin ¢ sin¢(t) + (a(t) cos ¢ — m(t) sin @) cos p(t) =0 forall t € I.

Conversely, suppose that —¢(t) sin ¢ sin¢(t) + (a(t) cos ¢ — m(t)sin ) cos¢(t) = 0
for all t € I. We define a mapping (7,71,72) : I — Aby 7(t) = cos ¢y(t) — sin gy (t),
U1 (t) = sing(t)va(t) + cosp(#)u(t) and V() = sin @7y (t) + cos g1 (t). Then, (7,71, 77) is
a spherical framed curve. Therefore, (v, v1,v2) and (7, 71, 72) are Mannheim mates. [J

Proposition 10. Suppose that (vy,v1,v2) and (7,71,72) : I — A are Mannheim mates, where

Y (t) = cos ¢y(t) — sin gvy (t) and —L(t) sin @ sin ¢(t) + («(t) cos ¢ — m(t) sin @) cos P(t) =
0 forall t € I. Then, the curvature (%, ¢,7,7) of (7y,V1,7V2) is given by

w(t) = —L(t)singcosp(t) + (—a(t) cos ¢ + m(t) sin @) sinp(t),
0(t) = £(t) cos psing(t) — (a(t)sin @ + m(t) cos @) cos ¢(t),
m(t) = ¢(t) —n(t),

n(t) = —L(t)cos@cosp(t) — (a(t)sing + m(t)cos¢)sing(t).

Proof. By Equation (16), we have Ji(t) = cos ¢(t)vp(t) —sin¢(t)u(t). By differentiating,
we have

—a()y(t) =m(t)v1(t) —(t)va(t) = a(t)sing(t)y + (—£(t) cos p(t) + m(t) sinp(t))va (£)
+ (n(t) — ¢(1)) sinp(H)va(t) + (n(t) — p(t)) cos p(£)u(t).

Since ¥(t) = cos@y(t) —singvi(t), 71(t) = sing(t)va(t) + cosp(t)u(t) and
Va(t) = sin ¢y (t) + cos ¢vy (t), we have

m(t) =¢(t) —n(t),
w(t)cos @ +n(t)sing = —a(t)sing(t),
w(t)sing —7(t) cos ¢ = — £(t)cosp(t) + m(t)sing(t).

It follows that
w(t) = —L(t)singcos P(t) + (—a(t)cos ¢ + m(t)sin @) sin P(t)

and

7(t) = £(t) cos g cos p(t) — (a(t) sin @ + m(t) cos @) sin¢p(t).
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Moreover, by differentiating 74 (t) = sin ¢ (t)va(t) + cos ¢(t)u(t), we have

E(B)va(t) +m(E)(t) = — a(t) cosdp(t)y (1) — (£(t) sin(t) + m(t) cos p(t) v (t)
+(@(t) = n(t)) cos p(t)va(t) + (n(t) — p(t)) sin p(£)p(t).

Since 7, (t) = sin ¢y (t) + cos ¢v1(t), we have

(t)sing = —a(t)cosp(t),
0(t)cos @ = — (L(t)sing(t) + m(t) cosp(t)).
It follows that
0(t) = —L(t) cos psin(t) — (a(t) sin ¢ + m(t) cos @) cos P(t).
O

Corollary 6. Let (y,v1,1v2) : I — A be a spherical framed curve with curvature («, (¢, m,n). If
L(t) =O0forall t € 1, then (vy,v1,Vv2) is a Mannheim curve.

Proof. If we take ¢(t) = 7r/2, then Equation (15) is satisfied. [

Let (7y,v1,12) : I — A be a spherical framed curve with curvature (a,¢,m,n). If
we take an adapted frame {v;(f),72(t), () }, then the curvature of (v, 7,77) is given by
(a,0,m1,1). By Corollary 6, we have the following.

Corollary 7. For an adapted frame, (vy, V1, v2) is always a Mannheim curve.

Proposition 11. Suppose that (y,v1,v2) and (7,V1,V2) : I — A are Mannheim mates with
curvatures (a, £, m,n) and (&, ¢, m,n), respectively. Then, there exist a constant ¢ with sin ¢ # 0
and a smooth function ¢ : I — R such that the following formulas hold:

(1)  wa(t)cos ¢ —m(t)sing = —a(t)sing(t), a(t) cos ¢ + 7(t)sing = —a(t)sin¢(t).
(2)  £(t)sing = —a(t)cosp(t), £(t)sin p = —a(t)cosP(t).
(3) £(t)cosp = —L(t)sing(t) +7(t) cosp(t), £(t) cos ¢ = —L(t)singp(t) —
(4)  a(t)sin g+ m(t)cosp = —L(t) cos ¢(t) —7(t) sinp(t),

w(t)sin @ —7(t) cos ¢ = —L(t) cos p(t) + m(t)sinp(t).

m(t) cos ¢(t).

Proof. By Definition 7 and the proof of Theorem 7, we have

Y(t) = cosgy(t) —singui(t),
U(t) = sing@y(t) + cos pvy(t),
H(t) = cos(t)va(t) —sing(t)u(t),
vi(t) = sing(t)va(t) + cosPp(t)u(t).

We write the moving frame of 7 in terms of the moving frame of 7:

v(t) = cos@(t) +singva(t),

vi(t) = —singy(t) + cos gv(t),
va(t) = cos@(£)f(t) +sing(t)va(t),
p(t) = —sing(£)u(t) + cos@(£)va(t).

By differentiating 7(t),v1(t), va(t), 7 (t) and ~y(t), v (), v2(t), u(t), we obtain the
formulas. O
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By Proposition 11, we have the following relations.

Corollary 8. With the same assumption as in Proposition 11, suppose that (vy, vy, v2) and (7, V1, V2)
are Mannheim mates, then the following relations hold:

(1) (a(t)cos @ — m(t) sin @) (&(t) cos ¢ + 7(t) sin @) = a(t)&(t) sin? p(t).

(2)  L(t)0(t)sin® ¢ = a(t)a(t) cos? p(t).

(3)  £(t)E(t)cos® @ = (£(t)sing(t) +m(t) cosd(t))(£(t)sing(t) —7i(t) cos P(t)).

(4)  (a(t)sing + m(t)cos ¢)(a(t)sin ¢ —7(t) cos @)

= (L(t)cosp(t) —m(t)sing(t))(L(t) cos p(t) +7(t) sinp(t)).

Theorem 8. Let (y,v1,v2) : [ — A be a spherical framed curve with curvature («, £, m,n). Then,
(7v,v1,v2) is a Bertrand curve if and only if (y,v1,v2) is a Mannheim curve.

Proof. Suppose that (v, v1,1;) is a Bertrand curve. By Theorem 6, there exist a constant ¢
with sin ¢ # 0 and a smooth function 6 : I — R such that ¢(t) sin ¢ cos 0(t) + (a(t) cos ¢ —
m(t)sing)sinf(t) = 0forall t € I. If ¢(t) = 6(t) — 71/2, then we have

—L(t) sin @sin¢p(t) + (a(t) cos ¢ — m(t) sin @) cos p(t) = 0

forall t € I. By Theorem 7, (v, v1, V) is a Mannheim curve.

Conversely, suppose that (7, v1,v2) is a Mannheim curve. By Theorem 7, there exist a
constant ¢ with sin ¢ # 0 and a smooth function ¢ : I — R such that —¢(t) sin ¢ sin¢(t) +
(a(t) cos ¢ —m(t)sing)cos¢p(t) =0forall t € I. If 6(t) = ¢(t) + 71/2, then we have

£(t) sin @ cos O(t) + (a(t) cos ¢ — m(t) sin @) sinf(t) =0
for all t € I. By Theorem 6, (v, vy, v7) is a Bertrand curve. [

Example 3. Let (y,v1,12) : R — A,

1 1 1
y(t) = T (tsint+cos t,—tcost+sint,tsin2t + EcosZt,—tcosZt—l— EsinZt),
2t2 —
V + 4
vi(t) = L(fsinzf cost,sin 2t, — cos 2t)
1 \/E 7 7 7 7
1 3 3 3
n(t) = 79(74tcost+ Esint, —4tsint — Ecost,ZtcosthL EsinZt,
\/2082 + =
2
. 3
2t sin 2t — EcosZt).
Then,
. _ t » 3 . 3\ L.
¥(t) = ——— ((Zt - ZL) cost — 2tsint, (Zt - Z) sint + 2f cost,

513
2, %
(2t +4)
5 3 . > 3\ .
Z(Zt +1) costhZtstt,Z(Zt +1> sin 2t + 2t cos 2t |,

we have that t = 0 is a singular point of vy. By a direct calculation, (7v,v1,v2) is a spherical framed
curve. Then,
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u(t) = () x vi(t) x va(t)
= ! (2t2—§) cost — 2tsint (21‘2—%) sint + 2t cost
5 7 4 4

4 4
2084 + 1712 + =
¢ r172 42

3 3
2,92 . . 2 9\
2<2t —|—4)c052t 2tsm2t,2(2t +4> s1n2t+2tc052t>

and the curvature is given by

by J208 11762 4 2
a(t) = 16 gy — 5L
,, 5\ V402 +9°
(22 +3)
4
2 2
m(t) = 2412 +15 _ n(t) = 195(8t +5) _
4\/40t4+34t2+ - 8\/20t2+ \/20t4+17t2+ —
8 2 16
It is easy to see that m(t) # O for all t € R. Therefore, if we take ¢ = 7/2,
sinf(t) = S ION and cosO(t) = ﬁ, then Equation (13) is satisfied.
02(t) + m>(t) 02(t) + m?(t)
By Theorem 6, (y,v1,v2) is a Bertrand curve. In fact, (7y,V1,72) : R — A,

(erlle) = <_Vlr Y m(t) vy — g(t) V)
V(L) + m?(t) V(L) + m2(t)

is a spherical framed curve. Hence, (7y, v1,v2) and (7, V1, V2) are Bertrand mates.
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