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Abstract: Following the application of Deep Learning to graphic data, Graph Neural Networks
(GNNs) have become the dominant method for Node Classification on graphs in recent years. To
assign nodes with preset labels, most GNNs inherit the end-to-end way of Deep Learning in which
node features are input to models while labels of pre-classified nodes are used for supervised learning.
However, while these methods can make full use of node features and their associations, they treat
labels separately and ignore the structural information of those labels. To utilize information on
label structures, this paper proposes a method called 3ference that infers from references with
differences. Specifically, 3ference predicts what label a node has according to the features of that node
in concatenation with both features and labels of its relevant nodes. With the additional information
on labels of relevant nodes, 3ference captures the transition pattern of labels between nodes, as
subsequent analysis and visualization revealed. Experiments on a synthetic graph and seven real-
world graphs proved that this knowledge about label associations helps 3ference to predict accurately
with fewer parameters, fewer pre-classified nodes, and varying label patterns compared with GNNs.

Keywords: Graph Neural Networks; Label Propagation; Node Classification

MSC: 67T07

1. Introduction

In classification tasks where we assign labels to data points according to their features,
Neural Networks using Deep Learning [1] are optimized to fit the mapping from features
to labels. As an application of Deep Learning to relational data where data points are
illustrated as nodes and their relations are denoted as the edges between nodes, Graph
Neural Networks (GNNs) [2] utilize the structural information coming from relations
to predict a data point’s label according to its and its related data points’ features, such
as the Graph Convolutional Network (GCN) [3], Graph Attention Network (GAT) [4],
and Approximate Personalized Propagation of Neural Predictions (APPNP) [5]. Such a
utilization is limited. While GNNs make full use of node features and their associations,
they treat labels separately and ignore the structural information of labels.

The omitted information of label structures may be crucial to the tasks. For example,
most people have no idea when answering ‘What day is 2 September 1984’, while they
immediately know it is Sunday if informed that 8 September 1984 is Saturday. The human
logic behind this Weekday Prediction task is to infer the answer from a related known fact
as the reference with their difference, as:

• The reference: ‘8 September 1984 is Saturday’;
• The difference: ‘there are 6 days from 2 September 1984 to 8 September 1984’;
• The inference: ‘2 September 1984 is Sunday’.
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On the contrary, Neural Networks resolve this task by approximating the mapping
from dates to days of the week, which can be formulated with Zeller’s congruence [6]:

h = (q + b13(m + 1)
5

c+ K + bK
4
c+ b J

4
c − 2J − 2) mod 7

where h is the day of the week (0 for Monday, 1 for Tuesday, etc.), q is the day of the month
(1 for 1st, 2 for 2nd, etc.), m is the month (1 for January, 2 for February, etc.), K is the year
of the century, J is the zero-based century, and b·c is the integer part of a number. Due to
the b·c function and the mod operation, this mapping is a piecewise continuous function
with many nonlinearities (Figure 1). Neural Networks and Graph Neural Networks have
to own excessive numbers of activators and parameters to fit all continuous sections of this
mapping [7].

Figure 1. Weekday Prediction is an easy task for humans. However, due to the complexity of the
mapping from dates to days of the week, Neural Networks have to have excessive numbers of
activators and parameters to solve this problem.

Therefore, in addition to associations between features, some recent works have also
considered associations between labels. Most of them inherit a heuristic method called
the Label Propagation Algorithm (LPA) [8], which propagates labels from labeled nodes
to unlabeled ones, assuming that related data points share similar labels. For example,
GCN-LPA [9] transfers the optimized relation weights from LPA into a GCN model to
strengthen the connection between same-labeled data points and tell ambiguous data
points apart. Correct and Smooth (C&S) [10] boosts its base predictor by propagating the
differences between the ground-truth labels and the predicted labels. The ResLPA [11]
fits the differences (or residuals) between connected data points’ labels and then labels
unlabeled data points according to their labeled neighbors.

However, LPA’s assumption that adjacent nodes label alike does not always hold. Take
the Weekday Prediction as an example. Days of the week vary between adjacent dates, so
LPA and LPA-based methods such as GCN-LPA, C&S, and The ResLPA cannot obtain the
correct day of the week by propagating days of the week from nearby dates. Subsequent
works such as UniMP [12] and the Label Input trick [13] avoid this assumption of LPA
by inputting both labels and features into GNNs. Benefiting from the ability of Neural
Networks inside GNNs, these methods capture the hidden pattern of labels and extend
GNNs to suit graphs with varying label patterns. Meanwhile, another issue is raised. Input
labels may cause information leakage and prevent GNNs from learning. UniMP and the
Label Input trick resolve the issue by dividing known labels into inputting labels and
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supervising labels. This trade-off shrinks the scale of the training set and leaves training
data without full utilization.

Inspired by the way people figure out weekdays, we propose a method named 3fer-
ence as inferring from references with differences to incorporate information from graph
structures, node features, and node labels. In contrast to the aforementioned methods
shown in Table 1, 3ference fully leverages labels that may be in complex patterns. To
infer the label of a target data point (or node), 3ference employs its labeled related data
points (or labeled adjacent nodes) as references and then combines the features of the
target, the features of the references, and the labels of the references to compute the label
distribution of the target. This difference between conventional end-to-end methods and
3ference is shown in Figure 2. By utilizing labels from references, 3ference can capture
the pattern of labels in data points, reducing the burden of predicting labels entirely with
features [14].

Table 1. Comparison among graph learning models on how many labels are input and whether a
model is suitable for various label patterns. C&S assumes that adjacent nodes have similar residuals
between the ground-truth labels and the outputs of the base predictor.

Input Label Label Pattern
Methods No Partial All Any

LPA X ×
GCN X X
GAT X X
APPNP X X
GCN-LPA X ×
C&S X ×
ResLPA X ×
UniMP X X
Label Input X X
3ference X X

In this article, we first introduce the task of Node Classification on graphs of data
points and categorize mainstream approaches to solve this task into LPA, GNNs, their
integrations, and label tricks in Section 3. We then formulate the 3ference method and its
efficient variant in Section 4. After that, we experiment with 3ference in Weekday Prediction
and Node Classification in Section 5, proving that 3ference can overcome the complexity
of tasks with the help of references and remain effective when the parameters are few or
when the label pattern changes. After that, we visualize the label transition matrices and
a trained 3ference’s weight matrices, suggesting that 3ference successfully recovers the
associations between labels and predicts based on them with approximated differences.
Finally, we conclude with some inspirations and future directions in Section 6.
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Figure 2. The difference among conventional end-to-end models including GNNs, LPA-based GNNs,
Masked Label Input methods, and 3ference. (a) Graph Neural Networks learn to combine node
features (denoted as circles) and their structures (denoted as unidirectional edges between circles)
under the supervision of known labels (denoted as solid directional arrows and rectangles). Then,
they assign labels (such as y2) to a node according to its features and the features of its adjacencies
(x1, x2, x3 in the illustrated example if the GNN is a one-layered GCN). The inference phase is
represented with dashed directional arrows. (b) LPA-based GNNs also consider the structural
information of labels. However, the pattern of labels is assumed. (c) Masked Label Input methods
divide known labels into inputting labels (y1) and supervising labels (y3 and y4). Supervising labels
are masked to avoid the label leakage issue. In this illustrated example, y2 is estimated using x1, x2, x3,
and y1 if the GNN is a one-layered GCN. (d) Our method, 3ference, infers by transforming related
labels and approximating the differences. It estimates y2 using x1, x2, x3 and y1, y3.

2. Preliminaries

A graph G is defined as the combination of a node set V = {v1, v2, · · · vn} and an
edge set E = {(i, j)|vi and vj are connected}. In numerous real-world fields, this kind of
data is capable of describing entities and their relations. For example, citation networks
can be represented as graphs where the node set contains all the documents and the
edge set contains all connections between document pairs if one cites another. Likewise,
social networks of people with their friendship, biological networks of proteins with their
associations, and recommender systems of goods with their co-purchase events can all be
represented in graphs. In general, a node vi in a graph is attached with a d-dimensional
vector xi of features (bag-of-words encodes of documents, etc.) that V is represented
by a feature matrix X ∈ Rn×d. The edge set E is represented by an adjacency matrix
A ∈ {0, 1}n×n. The entry aij ∈ {0, 1} in the i-th row and j-th column in A represents a
connection from node vi to vj.

Because of this flexibility of representation, graphic data are widely used. Mining
information from graphic data has drawn much attention in recent years. In this work, we
concentrate on the Node Classification task of this area. Given a graph G = (V, E) = (A, X),
c labels, and a training set L ⊂ V with m nodes that are already assigned with labels
YL ∈ {0, 1}m×c, YL is a label matrix where each row of it is a one-hot vector indicating
to which label the corresponding node is assigned. The goal of Node Classification is to
classify the rest of the unlabeled nodes by assigning labels to them. This task is versatile.
For example, in citation networks, we can classify documents by fields of study. In social
networks, we may classify people by their interests. In biological networks, we can classify
proteins by species. In these scenarios, labels can be study fields, communities, and species.
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3. Related Works

Many approaches have been proposed to solve Node Classification in the graph
domain. The main two parallel families of approaches are the Label Propagation Algorithm
(LPA) [8] and Graph Neural Networks (GNNs) [2].

LPA assumes that adjacent nodes in the graph share similar labels. It propagates label
information from nodes in the training set where nodes are labeled to their adjacent neigh-
bors iteratively. After several propagating steps, unlabeled nodes can gather enough label
information from their neighborhood. Their labels can then be determined by aggregated
information. We form the label matrix Y ∈ {0, 1}n×c. If vi ∈ L, then the i-th row Yi of Y is a
one-hot vector indicating vi’s label. Otherwise, the c elements of Yi are all 0. LPA can then
be described by the following formulas:

Y = (1− α) ·Y + α · D−1 A Y

Yi = YL
i , ∀vi ∈ L

where α ∈ (0, 1) is a hyperparameter and D is a diagonal matrix with diagonal entries

{di =
n
∑

j=1
aij|i = 1, 2, · · · , n}. While LPA is efficient and easy to implement, it relies on the

assumption that adjacent nodes share similar labels. Moreover, it cannot take full advantage
of feature information X.

Graph Neural Networks (GNNs) overcome these drawbacks and bring deep learning
techniques into graphs. They learn the representations of nodes from transformed features
in a message-passing scheme and update model parameters by propagating back the
loss of predicted labels on the training data. GNNs have many varieties, among which a
one-layered Graph Convolutional Network (GCN) [3] can be formulated as:

Y = σ(D−1 AXW)

where σ is the sigmoid function. Subsequent works include the Graph Attention Network
(GAT) [4], which computes edge weights to adaptively filter propagating representations,
the Approximate Personalized Propagation of Neural Predictions (APPNP) [5], which
decouples the transformation procedure and the propagation procedure [15] of GCN,
and so on. Because of the good performance and many other advantages, GNNs are now
dominant methods for solving Node Classification. However, most GNNs concentrate
mainly on the association of node features, while ignoring the associations of node labels.

To exploit label information more, recent studies such as GCN-LPA [9], Correct and
Smooth (C&S) [10], and the ResLPA [11] integrates both the LPA and GNNs, revealing the
ties between them in theory and matching or exceeding many state-of-the-art GNNs on a
wide variety of benchmarks in practice. The GCN-LPA considersthe LPA and GCN in terms
of influence [16] and proves the quantitative relationship between them. As an application
of its theory, it regularizes the GCN with the learned edge weights that optimize the LPA.
It assists the GCN in separating nodes with different labels, resulting in benefits to Node
Classification. C&S first employs a simple base predictor such as Multi-Layer Perceptron
(MLP) [17] or the GCN to predict labels. Assuming the predicting errors are close on
adjacent nodes, it then corrects these predictions by minus prediction errors propagated
from the training set (labeled nodes) to the testing set (unlabeled nodes). After that, it
casts another LPA as its smooth procedure to propagate the corrected predictions. This
combination of a base predictor and two LPAs results significant performance on various
Open Graph Benchmark (OGB) datasets [18]. The ResLPA propagates label distributions as
the LPA does. In addition, it adds label residuals approximated from node features with a
simple network. However, because the LPA is nonparametric, these simple combinations of
the LPA and GNNs may lead to suboptimal results or heavy tuning on α. Moreover, these
methods are restricted by the assumption of the LPA. When adjacent nodes tend to have
different labels, such as Weekday Prediction, these methods may be rendered ineffective.
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To rectify this issue, researchers apply the Label Input trick [13] to incorporate both
features and labels without assuming the pattern of labels. The Label Input trick divides
the training set into multiple parts. It concatenates node features with some parts of the
training set and feeds them into a foundational GNN to recover the rest of the divided
training set. Subsequent theoretical analysis [19] proved that the Label Input trick serves
as a regularization of the training objective conditioned on graph size and connectivity.
Label Reuse [13] is another trick for labels that researchers commonly adopt based on the
Label Input trick. It iterates the foundational GNN model several times. In every iteration,
the predicted results are reused as inputs like the Label Input trick to produce new results in
the next iteration. The Label Reuse trick relieves the inherent asymmetry of the Label Input
trick between input one-hot labels for labeled nodes and all-zero placeholders for unlabeled
nodes. The Label Input trick and the Label Reuse trick can be applied to any foundational
GNN models to exploit label information without modifications to the GNNs. For example,
many top-ranking submissions on the OGB leaderboard use these two tricks, among which
UniMP [12] applies the Label Input trick on a multi-layered Graph Transformer [20]. For
supervising purposes, a considerable part of the labels from the training set is masked and
cannot be input into the foundational GNN. The structural information of these labels is
thus missing.

4. Proposed Approach

In this section, we propose the method of 3ference and the way to train it in mini-batches.

4.1. 3ference

We borrow the ResLPA’s theory that a node’s label can be inferred from the labels of its
neighbors and their features. Given a central node vi and its neighborhood Ni = {vj|aij =
1}, we predict the label distribution yi of vi by aggregating the information including labels
from its adjacent nodes:

zi =
1
|Ni|
· ∑

vj∈Ni

fθ(xi, xj, yj)

ŷi = Softmax(zi)

where fθ is the 3ference network, |Ni| is the cardinality of the set Ni, and Softmax(·) is a
function that rescales the input c-dimensional array h so that every rescaled element lies in
the range [0, 1], while all of them sum to 1:

Softmax(h) =
(eh1 , eh2 , · · · , ehc)

c
∑

i=1
ehi

The architecture of the 3ference network is illustrated in Figure 3. For every node vj
that is adjacent to node vi, node features xj and xi are encoded by the Feature Encoder and
sent to the Inference Network in concatenation with the adjacent node vj’s label distribution
yj. We implemented both Feature Encoders and the Inference Network as Multi-Layer
Perceptrons (MLPs). If vj is not in the training set and the label of vj is not given, ŷj from
the last iteration or the initial vector 0 is reused, as the Label Reuse trick does. We average
the results for all vj to produce the aggregated logits zi and normalize it to obtain the
estimated label distribution ŷi of node vi with the Softmax function. The loss of predicted
label distributions is then computed via Cross-Entropy and optimized with Gradient
Descendent:

l = CrossEntropy(yL
i , ŷi) = −

c

∑
j=1

yL
ij log ŷij
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Figure 3. The method of 3ference. Nodes features xj and xi are encoded as hidden representations by
the Feature Encoder. The hidden representations are concatenated with the label distribution yj and
sent to the Inference Network to obtain the predicted label distribution ŷi of node vi, supervised by
the ground-truth label distribution yi.

We describe the method of 3ference with Algorithm 1. From Line 1 to Line 3 in the
algorithm, we initialize the label distributions Ŷ of all nodes. If a node vi is in the training
set, we populate the i-th row Ŷi with the one-hot label indicator from YL. Otherwise,
the elements of that row are all 0. From Line 5 to Line 10, we optimize the 3ference network
fθ to infer from adjacent references with their labels as inputs and the central node’s label
as supervision. This procedure is similar to the Label Input trick. However, different from
that, 3ference makes full use of labels in the training set since it only masks the target node’s
label for supervising purposes. From Line 11 to Line 14, we predict the label distributions
outside of the training set. Similar to the Label Reuse trick, the predictions are reused as
references in the following training cycle.

Algorithm 1 The 3ference algorithm.

Input: adjacency matrix A, node features X, and training labels YL. Parameter: 3ference
network fθ .
Output: predicted label distributions Ŷ.

1: for ∀vi ∈ L do

2: Ŷi =

{
YL

i , vi ∈ L
0, otherwise

3: end for
4: for t = 1, · · · , T do
5: for ∀vi ∈ L do
6: zi =

1
|Ni |
· ∑

vj∈Ni

fθ(xi, xj, Ŷj)

7: Ŷi = Softmax(zi)
8: l = CrossEntropy(YL

i , Ŷi)
9: θ = θ − β · ∂l

∂θ .
10: end for

// propagate predicted label distributions
11: for ∀vi ∈ V − L do
12: zi =

1
|Ni |
· ∑

vj∈Ni

fθ(xi, xj, Ŷj)

13: Ŷi = Softmax(zi)
14: end for
15: end for
16: return Ŷ.
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4.2. Mini-Batch 3ference

The vanilla 3ference cannot utilize the power of the GPU directly because different
nodes in a graph may have a varying amount of adjacent neighbors. To resolve this issue,
we constructed a Truncated Adjacency Matrix Ã and a corresponding Mask Matrix M to
assist the batched training of 3ference. In Ã, the i-th row Ãi indicates a set of nodes Ñi that
contains at most k adjacent nodes of vi. If the size of Ni is less than k, Ñi is populated with
random nodes until it has k elements. The Mask Matrix M has the same shape as Ã. Each
element Mij indicates whether Ãij is a padding element.

Figure 4 illustrates an instance of constructing the truncated adjacency matrix and the
Mask Matrix for a given graph. By default, we set k to be approximately equal to the ratio
of the number of edges and the number of nodes.

The predicted logit zi is then formulated as:

zi =
1

(Ãi, 1−Mi)
· ∑

vj∈Ñi

(1−Mij) · fθ(xi, xj, yj)

where (Ãi, 1−Mi) is the inner product of the i-th rows of Ã and 1−M.

Figure 4. An example of constructing the Truncated Adjacency Matrix and the Mask Matrix. (a) In
this graph, connections are represented with linked lists. v4 is connecting to v1 and v2. (b) Therefore,
there is a padding element v∗ representing a node at the end of the 4th row in the truncated adjacency
matrix. (c) To omit this padding element in batched computing, we set the (4, 3) element in the Mask
Matrix to 1.

5. Experiments

In this section, We compare 3ference against seven baselines on one synthetic dataset
and seven real-world datasets (code for experiments: https://github.com/cf020031308/3
ference, accessed on 9 April 2022). To carefully compare the various methods, we conducted
the Node Classification experiment with different numbers of parameters and datasets split.

https://github.com/cf020031308/3ference
https://github.com/cf020031308/3ference
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5.1. Datasets

We conducted Node Classification experiments on a synthetic network, three citation
networks, two co-authorship networks, and two co-purchase networks to fully evaluate
our methods.

Weekday. We generated 14,610 dates ranging from January 1st in 1980 to November
31th in 2019 as 8-dimensional vectors. Each date is labeled as a scalar from 0 to 6 to represent
its corresponding day of the week. For example, the date September 2nd in 1984 has a
feature vector (1, 9, 8, 4, 0, 9, 0, 2) an assigned label 0 (Sunday). Each date is represented as
a node connecting to the other four nearest nodes under the Euclidean distance of features
to convert Weekday Prediction to Node Classification.

Citation networks. We experimented with our methods on three citation networks
named Cora, Citeseer, and Pubmed [21]. In these graphs, nodes represent academic papers.
Words of papers are extracted and encoded into vectors of features. Each node is assigned
a label that indicates the paper’s research field. If one paper cites another, their nodes
are connected.

Co-purchase networks. Nodes in the two co-purchase networks Amazon Photo
and Amazon Computer [22] represent goods for sale on e-commerce websites. Node
features encode words of goods’ descriptions. Node labels are assigned according to the
categories of the goods. Connections indicate that the two connected goods are frequently
bought together.

Co-authorship networks are graphs of researchers and their co-authorship. The
encodings of words in a researcher’s papers construct the node’s features. The researcher’s
study field constructs the node’s label. If two researchers have co-authored any paper,
their nodes will be connected. The two co-authorship networks we used in this work are
Coauthor CS and Coauthor Physics [23,24].

We summarize some features of these datasets in Table 2. As we can see, these datasets
are different in many respects. Cora and Citeseer are small-scale graphs. Citeseer and
the two co-purchase networks are partitioned into many parts. This poor connectivity
may make information propagating or message passing difficult. Co-authorship networks
are rich in features where the utilization of features may be more important than that of
structural information.

Table 2. A summary of the eight graphs. These graphs are different in many respects, such as the
dataset scale, the edge density, the graph connectivity, and the label relevance.

Maximal
Average Connected Intra-Class

#Nodes #Features #Classes #Edges Degrees Subgraphs Edge Rate

Weekday 14,610 8 7 58,440 4.00 2 1.44%
Cora 2708 1433 7 5278 3.90 78 81.00%
Citeseer 3327 3703 6 4552 2.77 438 73.91%
Pubmed 19,717 500 3 44,324 4.50 1 80.24%
Amazon Photo 7650 745 8 119,081 31.13 136 82.72%
Amazon Computer 13,752 767 10 245,861 35.76 314 77.72%
Coauthor CS 18,333 6805 15 81,894 8.93 1 80.81%
Coauthor Physics 34,493 8415 5 247,962 14.38 1 93.14%

Specifically, we compute the Intra-Class Edge Rate [9] as the percentage of connections
in which two nodes share the same label. It measures how well a dataset satisfies the LPA’s
assumption that adjacent nodes share similar labels. As we can see, the intra-class edge rate
of Weekday is far less than that of other datasets because adjacent dates have different days
of the week. Therefore, LPA-based approaches may not work well in Weekday Prediction.
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5.2. Baselines

We compared 3ference against the MLP [17], GCN [3], GCN + Label Input, GCN +
Label Reuse [13], LPA [8], C&S [10], and Fast ResLPA [11]. For simplicity and impartial
tuning, we implemented all these methods without using any regularization techniques
such as Dropout [25] or Batch Normalization [26] while maintaining their amounts of
parameters roughly the same. All activators between layers are LeakyReLU [27] functions.

Both implementations of the MLP and GCN have two layers. The first layer encodes
the input features into h-dimensional hidden representations. The second layer maps them
to c-dimensional logits of labels. In GCN + Label Input, we divide the training set into
two halves, one as inputs and one for supervising. In GCN + Label Reuse, we reuse the
predicted label distributions for one iteration. C&S reuses the MLP as its base predictor.
The Fast ResLPA implementation is the same as the original paper [11]. In the 3ference,
the feature encoder is a one-layered linear transformation that encodes the input features
into h-dimensional hidden representations. The inference network is also a one-layered
linear transformation to obtain c-dimensional label logits. In the LPA-based models, every
propagation loop contains 50 iterations. We searched the set {0.1, 0.2, · · · , 0.9} for the best
α on Cora when h = 64 and obtained 0.4 for the LPA, 0.9 for the Fast ResLPA, and 0.1 for
the C&S.

5.3. Settings

The GCN and the Fast ResLPA were trained in full batches. The MLP, C&S, and
3ference were trained in mini-batches with the batch size = 1024. Except for the LPA, we
optimized the cross-entropy of predictions and the ground-truth for 200 epochs using
Adam [28] with the learning rate set to 0.01.

Each dataset was split into three sets. A training set contains s percent of all nodes.
Rest nodes were equally divided into a validation set and a testing set. After every epoch
of training or every propagation step, we evaluated the classifiers on the validation set and
the testing set, producing a pair of accuracy scores. After running, the accuracy score of
the testing set paired with the highest accuracy score of the validation set was noted as the
score of the evaluated method. We ran each method on every dataset ten times to obtain
the average score as the final result.

5.4. Results
5.4.1. Prediction Accuracy

We report the accuracy scores of the seven baselines and 3ference for Node Classifica-
tion on the eight datasets in Table 3. As this table shows, 3ference can consistently match or
exceed other methods on most real-world datasets and produce a dominant performance
in Weekday Prediction.

Table 3. Accuracy scores (%) for Node Classification when s = 60 percent of nodes are used for
training and the size h of hidden representations is 64. We bold the top score on every dataset.
The score of Fast ResLPA on Coauthor Physics is ‘-’ because it runs out of our GPU’s 11GB of memory.

Amazon Amazon Coauthor Coauthor
Weekday Cora Citeseer Pubmed Photo Computer CS Physics

MLP 13.54 74.90 72.63 87.55 91.96 84.63 95.63 96.55
GCN 14.02 88.00 76.05 87.31 93.91 90.49 93.32 96.37
GCN + Label Input 33.20 87.49 74.48 86.41 93.68 90.57 92.69 96.03
GCN + Label Reuse 14.58 87.54 74.42 84.69 93.79 90.44 92.69 95.99
LPA 1.45 84.75 67.20 82.27 90.79 87.92 91.18 95.45
C&S 10.16 87.50 74.77 84.67 89.10 82.95 91.72 95.27
Fast ResLPA 10.74 88.10 75.73 86.73 87.84 80.67 96.03 -
3ference 51.61 87.78 76.33 88.90 95.05 90.74 95.99 97.22
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Since a random guess in Weekday Prediction can achieve about 1/7 ≈ 14.29% accuracy,
baselines except for GCN + Label Input all fail to predict weekdays, especially those LPA-
based methods such as the LPA, C&S, and Fast ResLPA. Weekday Prediction is difficult,
not only because the mapping from dates to days of the week is complex, but also because
the pattern of labels differs from what the LPA and most GNNs assume. In conclusion,
graph learning methods have to capture the pattern of labels instead of assuming it to gain
the flexibility of applying to more situations.

Another drawback of the LPA-based methods is that we have to tune the hyperparam-
eter α on every dataset to achieve the best accuracy score. The existence of hyperparameters
increases the workload of deploying models on different datasets. Furthermore, this ad-
ditional work of tuning makes it unfair when comparing against other adaptive models
with less or no hyperparameters such as the GCN. As is seen in the table, C&S and the Fast
ResLPA can obtain high scores on Cora, where their αs are fine-tuned. However, these αs
may be suboptimal on other datasets, making them less competitive with 3ference.

5.4.2. Number of Parameters

With different hidden representation sizes h, our implementations except the LPA have
different amounts of learnable parameters. To study 3ference’s capability with different
numbers of parameters, we experimented with different h and illustrate the results in
Figure 5. Despite the result in Weekday Prediction, C&S, the Fast ResLPA, and 3ference
outperformed the MLP and the GCN when the parameters were insufficient. This is because
the former models inherit the ability of the LPA to utilize label information. This utilization
simplifies the classification task dramatically, and it is free of learnable parameters. GCN +
Label Input and GCN + Label Reuse also leverage label information. However, they need
more parameters to capture the pattern of labels than 3ference because of the complexity
of their networks. Therefore, they show no superiority to the MLP and the GCN on the
number of parameters. This result suggests that structural information of labels can be
beneficial to simplify tasks and is worthy of being taken into consideration when designing
new Deep Learning methods.

Figure 5. Cont.
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Figure 5. Accuracy scores (%) for Node Classification when the size h of hidden representations
changes. We implemented all methods while maintaining their amounts of parameters roughly the
same when their hs are equal.

5.4.3. Label Usage

The proportion of labeled nodes in all nodes on a given graph may be crucial for
LPA-based methods and 3ference. We experimented with different training sets that cover s
percent of all nodes. The results are depicted in Figure 6. On almost all datasets, especially
on Pubmed and Weekday Prediction, the curve of 3ference increases about twice as fast
as that of GCN + Label Input. The reason behind this is that the Label Input trick has to
divide the training set into two parts, causing a waste of resources. Compared against it,
3ference can capture more knowledge from the labels. This ability renders it able to achieve
competitive performance with fewer known labels than other methods.

Figure 6. Cont.



Mathematics 2022, 10, 1262 13 of 16

Figure 6. Accuracy scores (%) for Node Classification when using different percentages s of nodes
for training.

5.5. Analysis on the Label Transitions

In 3ference, we transform the referenced label yj by feeding it into the inference
network instead of adding it to the approximated difference like the ResLPA. This is done
for three purposes.

First, the input label distribution yj is a one-hot vector indicating which label the node
vj is most likely to have. However, it cannot illustrate the associations among labels. For
example, a horse is more similar to a donkey than a door. Therefore, in the label distribution
of a horse, the value indicating the probability of the donkey label should be greater than
that of the door label. A network with learnable weights can soften the hard distributions
and learn such kinds of associations among labels.

Second, LPA-based methods rely on the assumption that adjacent nodes share similar
or relevant labels. With the help of learnable weights, 3ference can still work when this
assumption does not hold. If the labels of adjacent nodes are unrelated, 3ference can
degenerate the transformation of yj into near-constant and focuses only on the central
nodes’ feature information. If the labels of adjacent nodes are relevant, but not similar,
the network can learn the transition pattern of labels between the referenced nodes and the
central nodes.

Third, feeding yj into the network decouples the shape of the referenced labels yj
and the predicting labels ŷi. Therefore, 3ference also has the potential to be applied to
heterogeneous graphs with different types of nodes.

To examine the first two properties, we visualize the ground-truth label transition
matrices (Figure 7) and the label transitions in a trained 3ference model (Figure 8). On
Weekday Prediction, two matrices match well, suggesting that 3ference successfully gains
the transition pattern of labels when labels of adjacent nodes are relevant, but not similar.
On other real-world graphs, 3ference enlarges the elements along the diagonal lines in the
learned label transition matrices because the adjacent nodes share similar labels. Specifically,
while it can still achieve high accuracy scores, 3ference gains less label transition knowledge
on the two co-authorship graphs than on other graphs. This is because, on such datasets
where the feature information of the central nodes is sufficient, 3ference learns to focus
more on features than on labels.
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Figure 7. The ground-truth label transition matrices describe the probability of a node with one label
connecting to its adjacent node with another label.

Figure 8. The label transition matrices learned by 3ference. We feed c different one-hot label
distributions padding with 0 into the inference network of trained 3ference to obtain the knowledge
of label transitions. The outputs are normalized with Softmax.

6. Conclusions

This work proposed to fully consider the structural information of both labels and
features when learning on graphic data. Motivated by this idea, a method named 3ference
was implemented to infer from references with differences. It inherits the ability of the
LPA to predict accurately with much fewer parameters than GNN,s while overcoming the
restriction of label patterns that the LPA and most GNNs suffer. The success of 3ference
proves that the knowledge of label structures can help conventional Deep Learning methods
simplify tasks, reduce the need for tagged labels, and apply to datasets with varying
label patterns.

In the process of evaluating that method, this work proposes the Weekday Prediction
task, which is easy for humans, but complicated for many Deep Learning methods. Such
tasks are worthy of subsequent works to examine themselves. However, associating dates
according to their Euclidean distances is not optimal to organize relevant dates. We think it
is prominent to explore the methodology of finding relevant references for inferencing on
both tabular data and graphic data in the future.
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To keep this article refined and the networks in 3ference simple, we covered no topics
about orthogonal techniques such as enhanced node features [29] and edge weights [4].
These techniques can be combined with 3ference to derive methods with more helpful
characteristics in practice.
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