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Abstract: In this paper, we define a family of values for directed communication situations that
are inspired by the position value. We use the concept of directed communication and related
connectedness in directed graphs, under which a coalition of players in a game can only cooperate
if these players form a directed path in a directed communication graph. By defining an arc game,
which assesses the worth of coalitions of (directed) arcs in generating worth, we allocate the Shapley
value payoff of each arc over the nodes incident with this arc, where we allow the head and tail to
obtain a different share in this arc payoff. However, the way that the arc payoff is shared over its
head and tail is uniform over all arcs. We characterize these values by connection efficiency and
a modification of the classical balanced link contributions property for undirected communication
situations, discriminating between the roles of the nodes as head and tail.

Keywords: cooperative TU game; directed graph; directed communication; position value;
axiomatizations

MSC: 05C20; 91A12; 91A43

1. Introduction

A situation in which a finite set of players or agents can generate certain payoffs by
cooperation can be described by a cooperative game with transferable utility (or simply a
TU game). The characteristic function of a TU game assigns to every subset of the player
set (coalition) a real worth, which is the transferable utility that the players in the coalition
can earn when they agree to cooperate. In a TU game, there are no restrictions on the
cooperation possibilities of the players, i.e., every coalition is feasible and can generate a
worth. However, in many real-life situations, there are restrictions on coalition formation
and not every coalition is feasible.

One of the most famous restrictions in coalition formation is communication restric-
tions. If players are not able to communicate directly with every other player, then some
coalitions might not be feasible. This is modeled by the communication situations of [1] where
the players in a game are also members of a communication network that is represented by
an undirected (communication) graph. The idea, then, is that players can only cooperate
and form a feasible coalition if its members are connected in the communication graph. As
an allocation rule, Ref. [1] proposed to apply the Shapley value [2] to a modified game in
which every feasible coalition can earn its worth, and every other coalition’s worth equals
the sum of the worths of its connected components in the original game. This allocation rule
is nowadays known as the Myerson value. He also gave an axiomatization of this allocation
rule in terms of component efficiency (meaning that the sum of the payoffs of all players in
a component equals the worth of that component) and fairness (meaning that breaking a
link between two players has the same effect on the payoffs of these two players). Later,
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Ref. [3] provided another axiomatization, replacing fairness by balanced contributions
(meaning that the effect of isolating a player on the payoff of another player is the same as
the effect the other way around).

An alternative allocation rule for communication situations was introduced by [4,5],
who first defined a link game, where the links are the players, and the worth of every coali-
tion of links equals the worth of the grand coalition of all players in the Myerson-restricted
game associated with the communication situation where only this coalition of links forms
the communication graph. As an allocation rule, they proposed to (i) apply the Shapley
value to this link game, and (ii) divide the Shapley value payoff of every link equally
over the two players incident with this link. Later, Ref. [6] axiomatically characterized
this allocation rule, called the position value, by component efficiency and balanced link
contributions (meaning that the sum of the effects of breaking each individual link of a
player on the payoff of another player is the same as the effect the other way around).

Instead of undirected communication graphs, where the communication links are
symmetric, Ref. [7] consider directed communication situations where the players in a
game belong to a directed network that is represented by a directed graph. Similar to [1],
they introduce a restricted game that takes account of the communication restrictions, but
in their case, these communication restrictions are determined by a notion of connectedness
in directed graphs. Communication in undirected graphs is usually associated with con-
nectedness in the graph, a coalition being connected if there is a path between any pair of
players in this coalition using only players that belong to this coalition. However, there are
several notions of connectedness in directed graphs, and different ways in which directed
communication restricts the cooperation possibilities of players in a game where players
can only communicate by one-direction communication. Ref. [7] assume that a coalition
of players in a game can only cooperate if these players form a directed path in a directed
communication graph. Based on this idea, they modify the restricted game of [1] in this
setting, and apply the Shapley value to this restricted game. They characterize this value by
connection efficiency, which is based on the new connectedness concept, and either fairness
or balanced contributions.

In this paper, we use this concept of connectedness and, following [4,5], define an arc
game and a family of position values for directed communication situations. In this arc
game, the worth of coalitions of (directed) arcs in generating worth is assessed, and then we
allocate the Shapley value payoff of each arc over the nodes incident with this arc, where
we allow the head and tail to obtain a different share in this arc payoff. However, the way
that the arc payoff is shared over its head and tail is uniform over all arcs. We characterize
these values by the above-mentioned connection efficiency and a modification of balanced
link contributions, discriminating between the roles of the nodes as head and tail.

Our motivation to combine our notion of connection efficiency with the balanced
link contributions type of axioms is as follows. First, as described in [7], a connectedness
concept based on directed (connection) paths is useful in applications such as supply chain
management, attribution models and vaccination policy. In supply chains, value can be
created when products produced by a manufacturer (source) are transported to a retailer
(sink) by a sequence of intermediaries (wholesalers, shipping companies, etc.) In the
other direction, to dampen the bullwhip effect (meaning that information about demand
becomes less precise when moving up the supply chain from retailer to manufacturer),
efficiency gains can be reached when the agents on a supply chain cooperate and share
information. Thus, efficiency gains are realized by directed paths of players. Regarding
our second example, advertisers are interested in measuring the success of their online
advertising. Before conversion, customers may visit a path of advertisements containing
multiple ads from the same advertiser. Attribution models assess the ‘value’ or ‘credit’ of
each ad on the path leading to conversion. With respect to the third example, to ‘beat’ the
COVID-19 pandemic, vaccination is an important strategy. However, in many countries,
the vaccination rate stayed too low for too long. One reason for nonvaccination was that
information from the government did not reach certain people. Intermediary social clubs,
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doctors, etc., helped in passing the information from the government to the people. Value
is created by any directed path from the government to a (nonvaccinated) citizen.

Whereas [7] show the compatibility of connection efficiency with [1,3], type of fairness
and balanced contributions axioms, in this paper, we investigate its compatibility with [6]’s
balanced link contributions type of axiom. Whereas [6] considered undirected graphs and
balanced link contributions considers an ‘equal’ mutual effect on the payoffs of pairs of
players, by considering directed communication situations, we allow for different mutual
effects on the payoffs of players, depending on whether we delete arcs where the player
is a head or a tail. This makes sense for the applications mentioned above, since the role
of heads and tails is different in different applications. To dampen the bullwhip effect
in a supply chain, for example, it is crucial that the agents downstream (i.e., close to the
retailer/sink) of the supply chain share information with agents more upstream (closer to
the manufacturer/source). Therefore, one might give higher weight to the heads of the
arcs. However, in marketing attribution, it is less clear how the weight between heads
and tails must be allocated. On one hand, the channel starts at the first advertisement
that a customer sees, stressing the role of the tails (who send the customer to the next
advertisement). However, on the other hand, the last advertisements convince the customer
to buy the project and realize a conversion, stressing the importance of the heads. Therefore,
the weights between heads and tails are not beforehand known, but our axioms require
that these weights are uniform across the network.

The remainder of this paper is organized as follows. After discussing some preliminar-
ies on games, graphs, directed graphs and directed communication situations in Section 2,
in Section 3, we introduce the arc game. In Section 4, we define our family of position
values for directed communication situations, which are axiomatized in Section 5. Section 6
contains some concluding remarks.

2. Preliminaries
2.1. Cooperative TU Games

A cooperative n-person game with transferable utility (TU game) is a pair (N, v)
where N = {1, . . . , n} is the set of players and, denoting 2N = {S | S ⊆ N} as the set of all
possible coalitions, v : 2N → Rn, verifying v(∅) = 0, is the characteristic function. For each
S ∈ 2N , v(S) is the worth obtained by players in S if they cooperate.

We will denote by GN the vector space of all TU games with N fixed. In GN , the family
{(N, uS)}∅ 6=S⊆N with

uS(T) =
{

1, if S ⊆ T
0, otherwise.

is the unanimity games basis. Each v can be written uniquely as:

v = ∑
∅ 6=S⊆N

∆v(S)uS,

where the coefficients {∆v(S)}∅ 6=S⊆N are the Harsanyi dividends [8].
A TU game (N, v) is zero-normalized if v({i}) = 0 for all i ∈ N. We will denote with

GN
0 the subspace of GN consisting of all zero-normalized games with player set N. A basis

for GN
0 is given by the games (N, uS) with S ⊆ N and s ≥ 2. In the following, for each

S ⊆ N, s represents the cardinality of S.
An allocation rule in GN is a map ψ : GN → Rn. For each (N, v) ∈ GN , ψi(N, v)

represents the outcome or payoff for player i ∈ N in the game (N, v).
One of the more prominent allocation rules for TU games was proposed by [2], later

called the Shapley value. It assigns to each player the following weighted mean of his
marginal contributions to different coalitions:

Shi(N, v) = ∑
S⊆N\{i}

(n− s− 1)!s!
n!

[v(S ∪ {i})− v(S)], i ∈ N.
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2.2. Graphs

A graph or a network is a pair (N, γ) in which N = {1, 2, . . . , n} is the set of nodes
and γ⊆γN = {{i, j} | i, j ∈ N, i 6= j}, which is the complete graph. ΓN denotes the set
of all graphs with node set N. A subgraph of (N, γ) is a graph (N, γ′) with γ′ ⊆ γ. The
restriction of the graph (N, γ) ∈ ΓN to ∅ 6= S ⊆ N is the graph (S, γ|S) with γ|S = {{i, j} ∈
γ | i, j ∈ S}.

We will say that two nodes i and j are directly connected in (N, γ), if {i, j} ∈ γ. If
i and j are not directly connected, they might be connected using a sequence of nodes
(intermediaries) i1, i2, . . . ik with i1 = i, ik = j, and such that {il , il+1} ∈ γ, for l = 1, . . . , k− 1.

A connected component, C, in the graph (N, γ) is a maximal connected subset. We will
denote by N/γ the partition of N in connected components in (N, γ), and by S/γ the set of
the connected components of S in (S, γ|S). The graph (N, γ) is connected if the cardinality
of N/γ is 1. Similarly, a set ∅ 6= S ⊆ N is connected in γ if |S/γ| = 1. We will consider
S ⊆ N to be connected whenever s = 1.

2.3. Communication Situations and Allocation Rules

Ref. [1] introduced the possibility that players in a TU game have restrictions in their
communication given by a graph. This model is known as a communication situation
and it is mathematically formalized by means of a triple (N, v, γ), (N, v) being a TU game
and (N, γ) being a graph. CSN will denote the set of all communication situations with
player–node set N, and CSN

0 will denote the subset of those elements in CSN in which the
game is zero-normalized.

An allocation rule ψ on CSN is a map ψ : CSN → Rn, ψi(N, v, γ) representing the
outcome for player i in (N, v, γ).

Ref. [1] also defined the graph-restricted game for a communication situation (N, v, γ)
as the TU game (N, vγ) with the characteristic function given by:

vγ(S) = ∑
C∈S/γ

v(C), for all S ⊆ N.

In this restricted game, the worth of a coalition is the sum of the worths of its maximally
connected subcoalitions. As an allocation rule for communication situations, he introduced
the Myerson value, obtained by applying the Shapley value to the graph-restricted game.

In [1]’s framework, for communication situations in CSN
0 , Refs. [4,5] introduced a

link game where the undirected edges (or links) are the players, and the worth of every
coalition (of links) is determined by what the grand coalition of all players N can earn if
exactly the links in that coalition are present. Formally, given a communication situation
(N, v, γ) ∈ CSN

0 , the associated link game is the game (γ, rv
γ) with the characteristic function

given by:
rv

γ(η) = vη(N) = ∑
C∈N/η

v(C), for all η ⊆ γ.

They proposed another allocation rule, the position value π, that assigns to a player i
in a communication situation half of the sum of the Shapley values of the links (in the link
game) incident with it. Thus, this allocation rule is given by:

πi(N, v, γ) =
1
2 ∑

l∈γi

Shl(γ, rv
γ), for all i ∈ N,

where, for i ∈ N and (N, γ) ∈ ΓN , γi = {l ∈ γ | i ∈ l} is the set of links incident with i.
Ref. [6] characterized the position value in terms of the following two properties.
An allocation rule ψ on CSN satisfies component efficiency [1] if, for all (N, v, γ) ∈ CSN

and all C ∈ N/γ, ∑i∈C ψi(N, v, γ) = v(C).
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An allocation rule ψ on CSN satisfies balanced link contributions [6] if, for all (N, v, γ) ∈
CSN and all i, j ∈ N,

∑
l∈γi

[
ψj(N, v, γ)− ψj(N, v, γ \ {l})

]
= ∑

l∈γj

[ψi(N, v, γ)− ψi(N, v, γ \ {l})],

where (N, γ \ {l}) is the subgraph of (N, γ) obtained when the relation l is broken.

2.4. Directed Graphs or Digraphs

A digraph (directed graph) is a pair (N, D) (occasionally D when there is no ambiguity
with respect to N), where N = {1, 2, . . . , n} is a (finite) set of nodes and D ⊆ N × N is a
binary relation on N. Each (i, j) ∈ D is an directed edge or arc, and i and j are called endpoints,
the tail and the head, respectively. It is said that i is a predecessor of j and j a successor of i.

We will assume the digraph to be (i) irreflexive, i.e., with no loops (edges with equal
endpoints), and (ii) simple, i.e., with no multiple edges (those having identical tails and
identical heads). DN denotes the set of all irreflexive, simple digraphs with node set N.

Given (N, D) ∈ DN and i ∈ N, DO
i = {(i, j) | (i, j) ∈ D} is the set of directed edges

in (N, D) in which i is the tail, and DI
i = {(j, i) | (j, i) ∈ D} is the set of directed edges

in (N, D) in which i is the head. Moreover, given (N, D) ∈ DN and i ∈ N, the out-degree,
dO

i (D) = |DO
i | (respectively, the in-degree, dI

i (D) = |DI
i |) is the number of edges with i as

the tail (respectively, i as the head). Further, di(D) = dO
i (D) + dI

i (D) is the degree of node i
in (N, D).

The total out-degree, respectively, the total in-degree, in the digraph (N, D), will be
denoted by dO(D) = ∑

i∈N
dO

i (D), respectively, dI(D) = ∑
i∈N

dI
i (D). It is easy to see that

dO(D) = dI(D) = |D|, as every edge has one tail and one head.
The relative out-degree of node i in (N, D), denoted rdO

i (D), is defined as

rdO
i (D) =

dO
i (D)

∑
j∈N

dO
j (D)

=
dO

i (D)

dO(D)
.

Similarly,

rdI
i (D) =

dI
i (D)

∑
j∈N

dI
j (D)

=
dI

i (D)

dI(D)

denotes the relative in-degree of node i ∈ N in the digraph (N, D).
A subdigraph of (N, D) ∈ DN is a digraph (N, D′) with D′ ⊆ D. The restriction of

(N, D) to ∅ 6= S ⊆ N is the directed graph (S, D|S) in which D|S = {(i, j) ∈ D | i, j ∈ S}.
For L ⊆ D, we will abuse notation {L} to indicate the nodes incident with the edges in L,
i.e., {L} = {i ∈ N | there is a j ∈ N with (i, j) ∈ L or (j, i) ∈ L}. Notice that the restriction
({L}, D|{L}

) coincides with ({L}, L).
Given a digraph (N, D), a (directed) path from i to j is a sequence of distinct nodes

P = (i1, . . . , it) with i1 = i, it = j and such that (ij, ij+1) ∈ D for j = 1, . . . , t− 1. We assume
that (i), i ∈ N, is a path. For convenience, we will sometimes abuse the notation {P} to
denote the set of nodes of a path P = (i1, i2, . . . , it−1, it), and thus {P} = {i1, . . . , it}.

A Hamiltonian path is a path that visits each node exactly once. Thus, if P = (i1, . . . , it)
is a Hamiltonian path, then t = n and {P} = N.

Given two paths P = (i1, . . . , it) and Q = (j1, . . . , jr) in (N, D), with t ≤ r, we say that
P is a subpath of Q, denoted by P⊆̃Q, if for each k = 1, . . . , t− 1 there exists l = 1, . . . , r− 1
such that jl = ik and jl+1 = ik+1. Notice that ⊆̃ is a partial order in the set of paths of
(N, D) ∈ DN . A path P in (N, D) is maximal if it is maximal for this defined order, meaning
that P is a path in (N, D) and there is no other path Q in (N, D) such that P⊆̃Q. We will
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denote by P(N, D) the set of all maximal paths of (N, D) for ⊆̃. Similarly, for ∅ 6= S ⊆ N,
we denote the family of the maximal paths in (S, D|S) by P(S, D|S).

Given a digraph (N, D) and ∅ 6= S ⊆ N, we say that a path P in (N, D) is a connection
path of S in (N, D) if S ⊆ {P}. We will say that a path P is a minimal connection path of S
in (N, D) if P is a connection path of S and there does not exist another connection path
P′ 6= P of S such that P′⊆̃P. ByMCP(S, N, D), we will denote the family (occasionally
empty) of all minimal connection paths of S in (N, D).

We illustrate these notions with an example.

Example 1 ([7]). Consider the digraph (N, D) ∈ DN with N = {1, 2, 3, 4}, and D = {a =
(1, 2), b = (2, 4), c = (1, 3), d = (3, 4)}; see Figure 1.

1

2 3

4

a

b

c

d

Figure 1. The digraph (N, D) of Example 1.

In this case, the set of maximal paths in (N, D) is

P(N, D) = {(1, 2, 4), (1, 3, 4)}

and in (S, D|S) for S = {1, 2, 3} is

P(S, D|S) = {(1, 2), (1, 3)}.

There is no Hamiltonian path in (N, D).
Moreover,

MCP({1, 4}, N, D) = {(1, 2, 4), (1, 3, 4)}
MCP({2, 3}, N, D) = ∅

MCP({1, 2}, N, D) = {(1, 2)}.

2.5. Directed Communication Situations

A situation where cooperation among players in a TU game is restricted because of re-
stricted directed communication possibilities can be modeled by a directed communication
situation.

A directed communication situation is a triple (N, v, D) in which (N, v) is a TU game
and (N, D) is a directed graph, the nodes in the digraph being the players in the game.

The set of all directed communication situations with player set N will be denoted by
DCSN . DCSN

0 will be the subset of those directed communication situations in which the
underlying game is zero-normalized.

As mentioned in [7], the model of a directed communication situation is mathemati-
cally identical to other models of a game with an order (or digraph) on the player set, but,
because of the interpretation of the directed graph as a directed communication network,
we refer to it as a directed communication situation. See [7] for a discussion.

In [7], given a directed communication situation, a digraph-restricted game is intro-
duced in which the worth of a coalition is obtained from the classical inclusion–exclusion
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principle applied to the values of the players connected by the maximal paths existing in
the coalition.

Given (N, v, D) ∈ DCSN , the digraph-restricted game is defined as the TU game
(N, vD) with the characteristic function given by:

vD(S) =
r(S)

∑
i=1

v({PS
i })−

r(S)−1

∑
i=1

r(S)

∑
j=i+1

v({PS
i } ∩ {P

S
j })

+
r(S)−2

∑
i=1

r(S)−1

∑
j=i+1

r(S)

∑
k=j+1

v({PS
i } ∩ {P

S
j } ∩ {P

S
k }) + · · ·+

+ (−1)r(S)−1v({PS
1 } ∩ . . . ∩ {PS

r(S)}),

where, for ∅ 6= S ⊆ N, P(S, D|S) = {P
S
1 , · · · , PS

r(S)} is the family of the maximal paths in

(S, D|S), and vD(∅) = 0.

3. An Arc Game for Directed Communication Situations

As mentioned in the preliminaries, Refs. [4,5] introduced a link game for communica-
tion situations, in which the links are the players and the worth of each coalition of links
is determined by the worth of the coalition of all players in the digraph-restricted game
corresponding to this set of links. Following their ideas, we define an arc game for directed
communication situations based on the restricted game vD defined in Section 2.5.

Definition 1. Given (N, v, D) in DCS0, the arc game is defined as the TU game (D, rv
D) with

characteristic function given by:

rv
D(L) = vL(N) = vL({L}) =

r({L})

∑
i=1

v({P{L}
i })−

r({L})−1

∑
i=1

r({L})

∑
j=i

v({P{L}
i } ∩ {P{L}

j })

+
r({L})−2

∑
i=1

r({L})−1

∑
j=i

r({L})

∑
k=j+1

v({P{L}
i } ∩ {P{L}

j } ∩ {P{L}
k })

+ · · ·+ (−1)r({L})−1v({P{L}
1 } ∩ {P{L}

2 } ∩ · · · ∩ {P{L}
r({L})}) , for all L ⊆ D,

with P({L}, L) = {P{L}
1 · · · P{L}

r({L})} being the set of all maximal paths in the digraph
({L}, L).

To clarify the previous definition, let us consider the next example.

Example 2. Consider (N, v, D) ∈ DCS0 with N = {1, 2, 3, 4}, D = {a = (1, 2), b = (2, 4),
c = (1, 3), d = (3, 4)} as in Example 1, and (N, v) a zero-normalized game.

The characteristic function rv
D is given by:

rv
D(L) =



v({1, 2}) + v({1, 3})− v({1}), if L = {a, c},
v({1, 2}) + v({3, 4}), if L = {a, d},
v({2, 4}) + v({1, 3}), if L = {b, c},

v({2, 4}) + v({3, 4})− v({4}), if L = {b, d},
v({1, 2, 4}) + v({1, 3})− v({1}), if L = {a, b, c},
v({1, 2, 4}) + v({3, 4})− v({4}), if L = {a, b, d},
v({1, 2}) + v({1, 3, 4})− v({1}), if L = {a, c, d},
v({2, 4}) + v({1, 3, 4})− v({4}), if L = {b, c, d},

v({1, 2, 4}) + v({1, 3, 4})− v({1})− v({4}), if L = {a, b, c, d},
v({L}), otherwise .
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In the following proposition, we give an expression for the arc game associated with a
zero-normalized unanimity game.

Proposition 1. Given (N, uS, D) ∈ DCSN
0 with S ⊆ N, s ≥ 2, the characteristic function ruS

D is
given by

ruS
D = 1−

t(S)

∏
i=1

(1− uQS
i
) ifMCP(S, N, D) = {QS

1 · · ·QS
t(S)} 6= ∅,

and ruS
D ≡ 0, the null game, otherwise.
We denote by (N, 1) ∈ GN the game with characteristic function given by 1(S) = 1 for all

∅ 6= S ⊆ N and 1(∅) = 0. Similarly, we denote by (N, 0) ∈ GN the game with characteristic
function given by 0(S) = 0 for all S ⊆ N.

Proof. The result for L = ∅ is trivial. Consider ∅ 6= L ⊆ D. Using Definition 1 of the
arc game,

ruS
D (L) = uL

S({L}) =
r({L})

∑
i=1

uS({P
{L}
i })−

r({L})−1

∑
i=1

r({L})

∑
j=i

uS({P
{L}
i } ∩ {P{L}

j })

+
r({L})−2

∑
i=1

r({L})−1

∑
j=i

r({L})

∑
k=j+1

uS({P
{L}
i } ∩ {P{L}

j } ∩ {P{L}
k })

+ · · ·+ (−1)r({L})−1uS({P
{L}
1 } ∩ {P{L}

2 } ∩ · · · ∩ {P{L}
r({L})}),

with P({L}, L) = {P{L}
1 · · · P{L}

r({L})} the set of all maximal paths in the digraph ({L}, L). Let
r′({L}) ≤ r({L}) be the cardinality of the subset of P({L}, L) with node set {L} containing
S. If r′({L}) = 0, then ruS

D (L) is clearly the null game,MCP(S, N, D) = ∅, and thus the
statement holds in this case.

If r′({L}) ≥ 1 , then we have

uL
S({L}) =

(
r′({L})

1

)
−
(

r′({L})
2

)
+ · · ·+ (−1)r′({L})−1

(
r′({L})
r′({L})

)

= −
(

r′({L})
0

)
+

(
r′({L})

1

)
−
(

r′({L}))
2

)
+ · · ·+ (−1)r′({L})−1

(
r′({L})
r′({L})

)
+

(
r′({L})

0

)
= −

[(
r′({L})

0

)
−
(

r′({L})
1

)
+

(
r′({L}))

2

)
+ · · ·+ (−1)r′({L})

(
r′({L})
r′({L})

)]
+

(
r′({L})

0

)
= −(1− 1)r′({L}) +

(
r′({L}))

0

)
= 1.

On the other hand, for ∅ 6= L ⊆ D,
t(S)

∏
i=1

(1 − uS
Qi
)(L) = 0, and thus [1 −

t(S)

∏
i=1

(1 −

uS
Qi
)](L) = 1 if there is at least one path contained in L whose node set contains S. Thus,

the result is proven.

4. A Family of Position Values for Directed Communication Situations

In this section, we introduce a family of allocation rules for directed communication
situations based on the idea of the position value.

Definition 2. An allocation rule on DCSN
0 is a function ψ : DCSN

0 → Rn that assigns to each
i ∈ N in a directed communication situation (N, v, D) ∈ DCSN

0 his reward ψi(N, v, D).
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Next, we define a class of allocation rules that is based on the idea behind the posi-
tion value, using the arc game associated with a directed communication situation; see
Definition 1. Whereas the position value for undirected communication situations shares
the Shapley value payoff of every link in the link game equally between the two players on
the link, in the case of directed communication, it is not obvious why the Shapley value
payoff of every arc should be shared equally between the two nodes on the arc. The head
and tail of an arc are clearly in an asymmetric position, and therefore discrimination in the
payoff allocation seems plausible. In the definition below, we allow any split of the payoff
of an edge between the head and the tail, but requires a uniform sharing across all arcs.
Recall from the preliminaries that DO

i = {(i, j) | (i, j) ∈ D} and DI
i = {(j, i) | (j, i) ∈ D}.

Definition 3. Let α ∈ [0, 1]. The value πα is defined, for every (N, v, D) ∈ DCSN
0 , as:

πα
i (N, v, D) = α ∑

a∈DI
i

Sha(D, rv
D) + (1− α) ∑

a∈DO
i

Sha(D, rv
D) for i = 1, . . . , n.

The family of values {πα | α ∈ [0, 1]} is called the family of position values.

Notice that, in the definition above, we can give the arc payoff fully to the head (if
α = 1), fully to the tail (if α = 0) or allow an equal sharing between head and tail (if α = 1

2 ).
However, we use the same means of splitting on every arc. We illustrate this allocation rule
with an example.

Example 3. Consider (N, v, D) ∈ DCSN
0 with N = {1, 2, 3, 4} and D = {a = (1, 2), b =

(2, 4), c = (1, 3), d = (3, 4)}; see Figure 1.
(a) Let v be the messages game of [9] given by

v(S) =

{
s(s−1)

2 , if s ≥ 2
0, otherwise

This game reflects the importance of bilateral connection, since the worth of a coalition equals
the number of unordered pairs in the coalition.

As
v = u{1,2} + u{1,3} + u{1,4} + u{2,3} + u{2,4} + u{3,4},

we have, using Proposition 1, that

rv
D = (u{a}) + (u{c}) + (u{a,b} + u{c,d} − u{a,b,c,d}) + (u{b}) + (u{d})

= u{a} + u{b} + u{c} + u{d} + u{a,b} + u{c,d} − u{a,b,c,d}.

Notice that r
u{2,3}
D ≡ 0 as there is no path connecting 2 and 3.

Thus, Sh(D, rv
D) = ( 5

4 , 5
4 , 5

4 , 5
4 ) and

πα
1 (N, v, D) = (1− α)(

5
4
+

5
4
) =

5(1− α)

2

πα
2 (N, v, D) = α

5
4
+ (1− α)

5
4
=

5
4

πα
3 (N, v, D) = α

5
4
+ (1− α)

5
4
=

5
4

πα
4 (N, v, D) = α(

5
4
+

5
4
) =

5α

2
.

We emphasize the following intuitive behavior of these allocation rules in this example:

(i) Given that all players are symmetrical in the game, and that players 2 and 3 are also symmet-
rical in the digraph, it is not surprising that the payoff is equal for both of them and it does
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not depend on α because the payoff lost (increased) being the tail is compensated by the payoff
increased (lost) being the head.

(ii) The payoff for 1 is greater than the payoff for 4 when α < 1
2 , illustrating that, in this case, the

tail is better paid. Reciprocally, for α > 1
2 .

(iii) The sum of the payoffs is 5 as only 5 of the 6 bilateral connections are feasible given the digraph.
Notice that connection of 2 and 3 is not possible.

(b) Consider the conference game (N, w), with characteristic function given by

w(S) =

{
(s

2) + (s
3) + · · ·+ (s

s) = 2s − s− 1, if s ≥ 2
0, otherwise,

or equivalently
w = ∑

S⊆N,s≥2
uS.

We have, using Proposition 1, that

rw
D = (u{a}) + (u{c}) + (u{a,b} + u{c,d} − u{a,b,c,d}) + (u{b}) + (u{d}) + (u{a,b}) + (u{c,d})

= u{a} + u{b} + u{c} + u{d} + 2u{a,b} + 2u{c,d} − u{a,b,c,d},

and Sh(D, rw
D) = ( 7

4 , 7
4 , 7

4 , 7
4 ). In this case,

πα
1 (N, w, D) = (1− α)

(
7
4
+

7
4

)
=

7(1− α)

2

πα
2 (N, w, D) = α

7
4
+ (1− α)

7
4
=

7
4

πα
3 (N, w, D) = α

7
4
+ (1− α)

7
4
=

7
4

πα
4 (N, w, D) = α

(
7
4
+

7
4

)
=

7α

2
.

In the following, we obtain some useful results relating the particular (extreme) values
π0 and π1 to the relative out-degree and the relative in-degree, respectively.

Proposition 2. Let (N, v, D) ∈ DCSN
0 . Then, for i ∈ N,

π0
i (N, v, D) = ∑

A⊆D
∆rv

D
(A)rdO

i (A)

where, for each A ⊆ D, ∆rv
D
(A) is the Harsanyi dividend of the coalition (of directed edges) A in

the arc game rv
D, and rdO

i (A) is the relative out-degree of node i in the directed graph (N, A).

Proof. The game (N, rv
D) admits the following expression in terms of the Harsanyi divi-

dends:
rv

D = ∑
∅ 6=A⊆D

∆rv
D
(A)uA.

Then, using the definition of π0
i (N, v, D) (see Definition 3), for (N, v, D) ∈ DCSN

0 and
i ∈ N, we have

π0
i (N, v, D) = ∑

a∈DO
i

Sha(D, rv
D) = ∑

a∈DO
i

Sha

[
D, ∑

A⊆D
∆rv

D
(A)uA

]
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= ∑
a∈DO

i

∑
A⊆D

∆rv
D
(A)Sha(D, uA), (1)

the last equality holding because of linearity of the Shapley value.
Rearranging the terms in (1), we obtain

∑
a∈DO

i

∑
A⊆D

∆rv
D
(A)Sha(D, uA) = ∑

A⊆D
∆rv

D
(A) ∑

a∈DO
i

Sha(D, uA)

= ∑
A⊆D

∆rv
D
(A) ∑

a∈DO
i ∩A

Sha(D, uA) = ∑
A⊆D

∆rv
D
(A)
|DO

i ∩ A|
|A|

= ∑
A⊆D

∆rv
D
(A)

dO
i (A)

|A| = ∑
A⊆D

∆rv
D
(A)

dO
i (A)

dO(A)
= ∑

A⊆D
∆rv

D
(A)rdO

i (A),

where the second equality follows since a ∈ D \ A implies that Sha(D, uA) = 0, the fifth
equality holding as the out-degree in (N, A) equals the number of edges in A (each edge

has one tail and one head), and the last equality holding as dO
i (A)

dO(A)
, by definition, is the

relative out-degree of node i in the digraph (N, A), rdO
i (A). The result is proven.

The proof of the following proposition follows similar lines as the previous one and is
therefore omitted.

Proposition 3. Let (N, v, D) ∈ DCSN
0 and i ∈ N. Then,

π1
i (N, v, D) = ∑

A⊆D
∆rv

D
(A)rdI

i (A)

where, for each A ⊆ D, ∆rv
D
(A) is the Harsanyi dividend of A ⊆ D, and rdI

i (A) is the relative
in-degree of i in (N, A).

Since, by definition, for all α ∈ [0, 1]

πα
i (N, v, D) = α π1

i (N, v, D) + (1− α) π0
i (N, v, D),

(i.e., πα is a convex combination of π0 and π1) the following corollary is a direct conse-
quence of the previous propositions.

Corollary 1. For each α ∈ (0, 1), (N, v, D) ∈ DCSN
0 and i ∈ N,

πα
i (N, v, D) = ∑

A⊆D
∆rv

D
(A)[α rdI

i (A) + (1− α) rdO
i (A)].

We illustrate this result with an example.

Example 4. Consider πα
1 (N, v, D) in Example 3.

(a) If v is the messages game, then, by Corollary 1, we have:

πα
1 (N, v, D) = ∆rv

D
({a})

[
α rdI

1({a}) + (1− α) rdO
1 ({a})

]
+∆rv

D
({b})

[
α rdI

1({b}) + (1− α) rdO
1 ({b})

]
+∆rv

D
({c})

[
α rdI

1({c}) + (1− α) rdO
1 ({c})

]
+∆rv

D
({d})

[
α rdI

1({d}) + (1− α) rdO
1 ({d})

]
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+∆rv
D
({a, b})

[
α rdI

1({a, b}) + (1− α) rdO
1 ({a, b})

]
+∆rv

D
({c, d})

[
α rdI

1({c, d}) + (1− α) rdO
1 ({c, d})

]
+∆rv

D
({a, b, c, d})

[
α rdI

1({a, b, c, d}) + (1− α) rdO
1 ({a, b, c, d})

]
= (1− α) + 0 + (1− α) + 0 +

(1− α)

2
+

(1− α)

2
− 2(1− α)

4
=

5(1− α)

2
.

Similarly,

πα
2 (N, v, D) = α + (1− α) +

(
α

2
+

(1− α)

2

)
−
(

α

4
+

(1− α)

4

)
=

5
4

πα
3 (N, v, D) = α + (1− α) +

(
α

2
+

(1− α)

2

)
−
(

α

4
+

(1− α)

4

)
=

5
4

πα
4 (N, v, D) = 0 + α + 0 + α +

α

2
+

α

2
− 2α

4
=

5α

2
.

Notice that these outcomes coincide with those in Example 3 (a).
(b) If w is the conference game, then, by Corollary 1, we have:

πα
1 (N, w, D) = (1− α) + 0 + (1− α) + 0 +

2(1− α)

2
+

2(1− α)

2
− 2(1− α)

4
=

7(1− α)

2

πα
2 (N, w, D) = α + (1− α) + 0 + 0 +

2(α + (1− α))

2
+ 0− α + (1− α)

4
=

7
4

πα
3 (N, w, D) = 0 + 0 + α + (1− α) + 0 +

2(α + (1− α))

2
− α + (1− α)

4
=

7
4

πα
4 (N, w, D) = 0 + α + 0 + α +

2α

2
+

2α

2
− 2α

4
=

7α

2
Notice that these outcomes coincide with those in Example 3 (b).

5. Characterization of the Position Values

In this section, we characterize the family of values defined in Definition 3 in terms of
two properties, connection efficiency and α-balanced arc contributions, which are defined
as follows.

Given a digraph (N, D) ∈ DN , its underlying (undirected) graph (N, γD) ∈ ΓN

is obtained by replacing all directed edges with corresponding undirected links, i.e.,
γD = {{i, j} | (i, j) ∈ D}.

Definition 4 ([7]). An allocation rule ψ : DCSN
0 → Rn satisfies connection efficiency if, for all

(N, v, D) ∈ DCSN
0 and all C ∈ N/γD,

∑
i∈C

ψi(N, v, D) = vD(C).

As mentioned in the Introduction, Ref. [7] motivated the use of connection efficiency
in situations where worth is generated by (maximal) paths. This is a very useful concept of
efficiency in, for example, marketing attribution or supply chains. In these applications,
worth is generated when, through a sequence of advertisements—respectively, a sequence
of intermediary retailers and other agents (such as transportation companies) on the supply
chain—a conversion takes place when a consumer (sink of the path) buys a product that
is produced by a producer (source of the path). Another situation where this occurs is in
communications (e.g., sending messages), when the only aspect that matters is whether a
message from a sender reaches the intended receiver, possibly through a chain of interme-
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diaries. In recent years, this occurred, for example, in COVID-19 vaccination policy, where
governments tried to reach to people who lived somewhat isolated through intermediaries
such as doctors and social workers. Specifically, Ref. [7] use this notion of connection
efficiency to define game theoretical measures of centrality, efficiency and vulnerability for
directed networks.

Proposition 4. Let α ∈ [0, 1]. The allocation rule πα : DCSN
0 → Rn satisfies connection

efficiency.

Proof. Let (N, v, D) ∈ DCSN
0 and C ∈ N/γD. Then, using Corollary 1,

∑
i∈C

πα
i (N, v, D) = ∑

i∈C
∑

A⊆D
∆rv

D
(A)

[
α rdI

i (A) + (1− α) rdO
i (A)

]

= ∑
i∈C

∑
A⊆D|C

∆rv
D
(A)

[
α rdI

i (A) + (1− α) rdO
i (A)

]
= ∑

A⊆D|C
∆rv

D
(A) ∑

i∈C

[
α rdI

i (A) + (1− α) rdO
i (A)

]

= ∑
A⊆D|C

∆rv
D
(A)

[
α ∑

i∈C
rdI

i (A) + (1− α) ∑
i∈C

rdO
i (A)

]

= ∑
A⊆D|C

∆rv
D
(A)[α + (1− α)] = ∑

A⊆D|C
∆rv

D
(A) = rv

D(D|C)

where D|C = {(k, l) ∈ D | k, l ∈ C}, the second equality holding because the dividend of a
coalition in the game (D, rv

D) is zero if the coalition contains arcs from different components,
and the fifth equality holding because the sum of the relative (in- and out-) degrees in a set
of arcs that all belong to the same component is equal to one.

Finally, rv
D(D|C) = vD(C) by the definition of rv

D, and, thus, the result is proven.

Before defining an extension of the balanced link contribution property for directed
communication situations, we first define two special cases focussing on the nodes’ out-arcs,
respectively, the in-arcs. First, balanced out-arc contributions require that the sum of the
effects of breaking each outgoing arc of a player on the payoff of another player is the same
as the effect the other way around.

Definition 5. An allocation rule ψ : DCSN
0 → Rn satisfies balanced out-arc contributions if, for

all (N, v, D) ∈ DCSN
0 and all i, j ∈ N,

∑
a∈DO

j

[ψi(N, v, D)− ψi(N, v, D\{a})] = ∑
a∈DO

i

[ψj(N, v, D)− ψj(N, v, D\{a})].

The extreme position value where α = 0 satisfies balanced out-arc contributions.

Proposition 5. The allocation rule π0 : DCSN
0 → Rn satisfies balanced out-arc contributions.

Proof. Let (N, v, D) ∈ DCSN
0 and i, j,∈ N. Using Proposition 2, we have that

π0
i (N, v, D) = ∑

A⊆D
∆rv

D
(A)rdO

i (A) and similarly for j. Then,

∑
a∈DO

j

[
π0

i (N, v, D)− π0
i (N, v, D\{a})

]
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= ∑
a∈DO

j

 ∑
A⊆D

∆rv
D
(A)rdO

i (A)− ∑
A⊆D\{a}

∆rv
D
(A)rdO

i (A)


= ∑

a∈DO
j

∑
A⊆D,a∈A

∆rv
D
(A)rdO

i (A) = ∑
A⊆D,a∈A

∆rv
D
(A)dO

j (A)rdO
i (A)

= ∑
A⊆D,a∈A

∆rv
D
(A)

dO
j (A)dO

i (A)

dO(A)
.

As this last expression is symmetric in i and j, it coincides with

∑
a∈DO

i

[
π0

j (N, v, D)− π0
j (N, v, D\{a}

]
and, thus, the result is proven.

Similarly, we can define balanced in-arc contributions, and have the next proposition
for α = 1. The proof mimics the previous one and, therefore, it is omitted.

Definition 6. An allocation rule ψ : DCSN
0 → Rn satisfies balanced in-arc contributions if, for

all (N, v, D) ∈ DCSN
0 and all i, j ∈ N,

∑
a∈DI

j

[ψi(N, v, D)− ψi(N, v, D\{a})] = ∑
a∈DI

i

[ψj(N, v, D)− ψj(N, v, D\{a})].

Proposition 6. The allocation rule π1 : DCSN
0 → Rn satisfies balanced in-arc contributions.

As mentioned in the Introduction, which type of balanced arc contributions is ap-
propriate depends on the application that one considers. In some cases, such as sharing
information to dampen the bullwhip effect in a supply chain, it seems that the heads (which
are closer to the retailer) should receive higher weight. However, in other cases, such as
channels in marketing attribution, it is less clear how the weight between heads and tails
must be allocated since the tails are closer to the origin of the marketing channel, but the
heads are closer to the point of conversion. To allow a compromise between the effect on
heads and tails, next, we state a balanced arc contribution property for any α ∈ [0, 1] with a
balanced out-arc, and balanced in-arc contributions as two extreme cases.

Definition 7. Let α ∈ [0, 1]. An allocation rule ψ : DCSN
0 → Rn satisfies the α-balanced arc

contributions property if, for all (N, v, D) ∈ DCSN
0 and all i, j ∈ N,

α ∑
a∈DI

j

[ψi(N, v, D)− ψi(N, v, D\{a})]

+(1− α) ∑
a∈DO

j

[ψi(N, v, D)− ψi(N, v, D\{a})]

= α ∑
a∈DI

i

[ψj(N, v, D)− ψj(N, v, D\{a})]

+(1− α) ∑
a∈DO

i

[ψj(N, v, D)− ψj(N, v, D\{a})].

Before exploring the implications of these properties, in the following lemma, we first
state a property relating the rules π0 and π1. This property is a kind of cross-balanced arc
contribution, in the sense that the sum of the differences in π0 that a player experiences
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when another player breaks the edges in which he is head is equal to the differences
experienced in π1 for the second player when the other breaks the edges in which he is tail.

Lemma 1. Let (N, v, D) ∈ DCSN
0 and i, j ∈ N. Then,

∑
a∈DI

j

[
π0

i (N, v, D)− π0
i (N, v, D\{a})

]
= ∑

a∈DO
i

[
π1

j (N, v, D)− π1
j (N, v, D\{a})

]
.

Proof. For (N, v, D) ∈ DCSN
0 and i, j ∈ N,

∑
a∈DI

j

[
π0

i (N, v, D)− π0
i (N, v, D\{a}

]

= ∑
a∈DI

j

 ∑
A⊆D

∆rv
D
(A)rdO

i (A)− ∑
A⊆D\{a}

∆rv
D
(A)rdO

i (A)


= ∑

a∈DI
j

∑
A⊆D,a∈A

∆rv
D
(A)rdO

i (A) = ∑
A⊆D

∆rv
D
(A)dI

j (A)rdO
i (A)

= ∑
A⊆D

∆rv
D
(A)

dI
j (A)dO

i (A)

dO(A)

where the first equality follows from Proposition 2.
Similarly, we can obtain, for (N, v, D) ∈ DCSN

0 and i, j ∈ N, that

∑
a∈DO

i

[
π I

j (N, v, D)− π I
j (N, v, D\{a}

]

= ∑
a∈DO

i

 ∑
A⊆D

∆rv
D
(A)rdI

j (A)− ∑
A⊆D\{a}

∆rv
D
(A)rdI

j (A)


= ∑

a∈DO
i

∑
A⊆D,a∈A

∆rv
D
(A)rdI

j (A) = ∑
A⊆D

∆rv
D
(A)dO

i (A)rdI
j (A)

= ∑
A⊆D

∆rv
D
(A)

dO
i (A)dI

j (A)

dI(A)
,

showing the result since dO(A) = dI(A).

Using this lemma and Propositions 5 and 6, we have the following proposition.

Proposition 7. Let α ∈ [0, 1]. The allocation rule πα : DCSN
0 → Rn, satisfies the α-balanced arc

contributions property.

Proof. Given (N, v, D) ∈ DCSN
0 and i, j ∈ N,

α ∑
a∈DI

j

[πα
i (N, v, D)− πα

i (N, v, D\{a})]

+(1− α) ∑
a∈DO

j

[πα
i (N, v, D)− πα

i (N, v, D\{a})]

= α ∑
a∈DI

j

[απ1
i (N, v, D) + (1− α)π0

i (N, v, D)
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−απ1
i (N, v, D\{a})− (1− α)π0

i (N, v, D\{a})]

+(1− α) ∑
a∈DO

j

[απ1
i (N, v, D) + (1− α)π0

i (N, v, D)

−απ1
i (N, v, D\{a})− (1− α)π0

i (N, v, D\{a})]

= α2 ∑
a∈DI

j

[
π1

i (N, v, D)− π1
i (N, v, D\{a})

]

+(1− α)2 ∑
a∈DO

j

[
π0

i (N, v, D)− π0
i (N, v, D\{a})

]

+α(1− α) ∑
a∈DI

j

[
π0

i (N, v, D)− π0
i (N, v, D\{a})

]

+(1− α)α ∑
a∈DO

j

[
π1

i (N, v, D)− π1
i (N, v, D\{a})

]
,

where the first equality follows from the definition of πα. Taking into account that π0 and
π1 satisfy balanced out-arc contributions and balanced in-arc contributions, respectively,
and using Lemma 1, the last expression coincides with

α2 ∑
a∈DO

i

[
π1

j (N, v, D)− π1
j (N, v, D\{a})

]

+(1− α)2 ∑
a∈DI

i

[
π0

j (N, v, D)− π0
j (N, v, D\{a})

]
+α(1− α) ∑

a∈DI
j

[
π1

i (N, v, D)− π1
i (N, v, D\{a})

]

+(1− α)α ∑
a∈DO

j

[
π0

i (N, v, D)− π0
i (N, v, D\{a})

]
.

A similar calculation as above shows that the last expression is equal to

α ∑
a∈DO

i

[
πα

j (N, v, D)− πα
j (N, v, D\{a})

]

+(1− α) ∑
a∈DI

i

[
πα

j (N, v, D)− πα
j (N, v, D\{a})

]
and thus πα satisfies α-balanced arc contributions, for α ∈ [0, 1].

Finally, we can characterize the allocation rules πα, α ∈ [0, 1], by connection efficiency
and the corresponding α-balanced arc contributions property.

Theorem 1. Let α ∈ [0, 1]. The allocation rule πα : DCSN
0 → Rn is the unique allocation rule

satisfying connection efficiency and α-balanced arc contributions.

Proof. It is already proven that πα satisfies connection efficiency and α-balanced arc con-
tributions; see Propositions 4 and 7. Therefore, it is sufficient to show the uniqueness of
an allocation rule satisfying the two properties. Let ψ : DCSN

0 → Rn be an allocation rule
satisfying these two properties. We will prove that ψ(N, v, D) is uniquely determined for
all (N, v, D) ∈ DCSN

0 by induction on |D|, the cardinality of D. The proof follows similar
steps as in [6].
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If |D| = 0, uniqueness is trivial by connection efficiency. Proceeding by induction,
suppose that uniqueness holds for (N, v, D) with |D| ≤ k and consider (N, v, D) such that
|D| = k + 1. Let C ∈ N/γD and suppose, without loss of generality, that C = {1, 2, . . . , c}.
If c = |C| = 1, uniqueness holds using connection efficiency. Thus, let us consider the case
in which c = |C| > 1. Take any j ∈ C \ {1}. Applying the α-balanced arc contributions
property to players–nodes 1 and j, we have

α ∑
a∈DI

j

[ψ1(N, v, D)− ψ1(N, v, D\{a})]

+(1− α) ∑
a∈DO

j

[ψ1(N, v, D)− ψ1(N, v, D\{a})]

= α ∑
a∈DI

1

[
ψj(N, v, D)− ψj(N, v, D\{a})

]
+(1− α) ∑

a∈DO
1

[
ψj(N, v, D)− ψj(N, v, D\{a})

]
or, alternatively, by rearranging the terms,

α ∑
a∈DI

j

ψ1(N, v, D) + (1− α) ∑
a∈DO

j

ψ1(N, v, D)− α ∑
a∈DI

1

ψj(N, v, D)

−(1− α) ∑
a∈DO

1

ψj(N, v, D)

= α ∑
a∈DI

j

ψ1(N, v, D\{a})

+(1− α) ∑
a∈DO

j

ψ1(N, v, D\{a})− α ∑
a∈DI

1

ψj(N, v, D\{a})

−(1− α) ∑
a∈DO

1

ψj(N, v, D\{a}).

Notice that the left-hand side can be written as

αdI
j (D)ψ1(N, v, D) + (1− α)dO

j (D)ψ1(N, v, D)

−αdI
1(D)ψj(N, v, D)− (1− α)dO

1 (D)ψj(N, v, D),

and the right-hand side is determined by the induction hypothesis.
Since this holds for every j ∈ C \ {1}, we have c− 1 linear independent equations

in the c unknown payoffs ψi(N, v, D), i ∈ C. Moreover, connection efficiency gives the
equation

c

∑
i=1

ψi(N, v, D) = vD(C).

Thus, we have c linear independent equations in the c unkown payoffs ψi(N, v, D),
i ∈ C, which thus are uniquely determined.

(It is straightforward to prove that the determinant of the coefficient ma-

trix is equal to
c

∑
i=1

(
αdI

i (D) + (1− α)dO
i (D)

) [
−αdI

1(D)− (1− α)dO
1 (D)

]c−2
=

−
c

∑
i=1

dO
i (D)

[
αdI

1(D) + (1− α)dO
1 (D)

]c−2
= −|D|C |

[
αdI

1(D) + (1− α)dO
1 (D)

]c−2 6= 0, for

all α ∈ (0, 1).
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If α = 0, −|D|C |d
O
1 (D)c−2 is also different from zero when node 1 is such that

dO
1 (D) > 0. If dO

1 (D) = 0. This can be shown by taking another node with positive
out-degree in C.

If α = 1,−|D|C |d
I
1(D)c−2 is also different from zero when node 1 is such that dI

1(D) > 0.
If dI

1(D) = 0. This can be shown by taking another node with positive in-degree in C.)
Since πα satisfies the two properties, it must be that ψ(N, v, D) = πα(N, v, D).

6. Concluding Remarks

In this paper, we introduce a family of position values for directed communication
situations, based on the idea of the position value for (undirected) communication situations
introduced in [4,5] and axiomatically characterized in [6]. Specifically, we characterize each
position value in our family by the connection efficiency of [7] and a corresponding version
of balanced arc contributions weighing out- and in-arcs in a different way, but uniform
across arcs.

An idea for future research is to evaluate whether, in the expression of our family
of position values in Corollary 1, the (relative) out- or in-degree can be replaced by other
power or centrality measures for directed graphs, similarly to [10] for (undirected) commu-
nication situations. Instead of power or centrality measures, also other weights determined
exogenously by, for example, bargaining, political, military, etc., power can be taken into
consideration, as done in [11], who defines a family of weighted position values for undi-
rected communication situations. Moreover, other types of axioms can be considered, such
as monotonicity axioms related to adding/deleting arcs, as in [1] for undirected graph
games, or related to changes in contributions in the game, as in [12] for TU games.

Another open issue concerns the computational efficiency of the proposed approach.
Is is known from, for example, [13], that computing the Shapley value for arbitrary games
is an NP-complete problem. As our value is in fact a linear combination of Shapley values,
the problem of computing our values is NP-complete. Using sampling methods, such as
the ones in [14], our values might be approximated in polynomial time.
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