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Abstract: In the face of global competition, competitive enterprises should pursue sustainable
development, and strengthen their supply chain resilience to cope with risks at any time. In addition,
big data analysis has been successfully applied in a variety of fields. However, the method has not
been applied to improve supply chain resilience in order to reduce sustainable supply chain risks.
An approach for enhancing the capabilities of big data analytics must be developed to enhance supply
chain resilience, and mitigate sustainable supply chain risks. In this study, a decision framework
that integrates two-stage House of Quality and multicriteria decision-making was constructed.
By applying this framework, enterprise decision-makers can identify big data analytics that improve
supply chain resilience, and resilience indicators that reduce sustainable supply chain risks. A case
study of one of China’s largest relay manufacturers is presented to demonstrate the practicability of
the framework. The results showed that the key sustainable supply chain risks are risks regarding
the IT infrastructure and information system efficiency, customer supply disruptions, transport
disruptions, natural disasters, and government instability. To reduce risk in sustainable supply chains,
enterprises must improve the key resilience indicators ‘financial capability’, ‘flexibility’, ‘corporate
culture’, ‘information sharing’, and ‘robustness’. Moreover, to increase supply chain resilience,
the following most important big data analysis enablers should be considered: ‘capital investment’,
‘building big data sharing mechanism and visualisation’, and ‘strengthening big data infrastructures
to support platforms and systems’. This decision framework helps companies prioritise big data
analysis enablers to mitigate sustainable supply chain risks in manufacturing organisations by
strengthening supply chain resilience. The identified priorities will benefit companies that are using
big data strategies and pursuing supply chain resilience initiatives. In addition, the results of this
study show the direction of creating a fruitful combination of big data technologies and supply
chain resilience to effectively mitigate sustainable risks. Despite the limited enterprise resources,
management decision-makers can determine where big data analysis enablers can be most cost-
effectively improved to promote risk resilience of sustainable supply chains; this ensures the efficient
implementation of effective big data strategies.

Keywords: big data analysis; sustainable supply chain risk; supply chain resilience; house of quality;
multicriteria decision making

MSC: 03c30; 03c97

1. Introduction

Over the past decade, owing to the aggravation of environmental, climate, social,
and other problems, the concept of sustainable supply chains (SSCs) has received more
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and more attention [1]; sustainable supply chain management (SSCM) is becoming a key
strategy for companies [2]. The sustainable supply chain of manufacturing enterprises
is an important factor in promoting sustainable development [3]. Today, supply chain
management (SCM) has developed at both theoretical and industrial application levels;
it can be said that supply chain (SC) is the fundamental system for all organisations [4].
The most classical form of manufacturing supply chain is the one that considers the
supply chain as a combination of processes to meet customer requirements, including all
possible network entities, such as suppliers, manufacturers, transport vehicles, warehouses,
retailers, and customers, whose main purpose is to achieve customer satisfaction at the
lowest possible cost [5]. The new era exhibits newly emerging problems, such as increased
competition, the impact of globalisation, diversity of technological solutions, and unlimited
customer expectations, which all lead to increased supply chain uncertainty and risk.
Therefore, enterprise managers have shifted their focus to SSC risk management. Supply
chain risks (SCRs) can be caused by natural disasters or man-made problems, which
may eventually lead to supply chain interruptions, capital chain rupture, and different
business complications; these events have a severe impact on supply chains and related
industries [6,7]. Supply chain management (SCM) plays an important role in enabling
manufacturing enterprises to achieve competitive advantages. However, there is little
research on manufacturing [8]. Therefore, it is particularly important to propose effective
strategies that can mitigate risks [9].

Sustainable supply chain risks (SSCRs) can cause crisis events at any time. Therefore,
an enterprise must be able to mitigate risks; this ability is called ‘resilience’ [10]. According
to Sheffi et al., risk represents a potential loss, whereas resilience is the ability of enterprises
to recover the normal production or service level after a supply chain interruption [11].
Since 2010, the number of studies and applications of SCRE has considerably increased [12].
Moreover, most of the literature is conceptual, theoretical, and normative, and only few
studies will select and implement an appropriate set of strategies to improve SCRE [13].
According to research papers, SCRE can influence the sustainability advantage of man-
ufacturing enterprises [14]. Resilience is not only a necessary condition for achieving
sustainable development goals [15]; it will also be a buzzword of the next decade, worthy
of further study across multiple sectors [12].

Over the past few years, big data analysis (BDA) has become one of the most investi-
gated research topics [16]. Researchers have discovered that big data analysis can reduce
the complexity of manufacturing enterprises’ SSC practices [17], and effectively improve the
effectiveness of the SCRE and risk management infrastructure of enterprises [10]. In addi-
tion, big data analysis helps enterprises to perform regular operations, reduce management
and production cycles, and facilitate centralised manufacturing and mass production [18].
In general, big data analytics can improve the supply chain management performance and
implementation of SSCM [19]. Enterprises can gain competitive advantages through big
data-driven supply chains [20], and effectively deal with market turbulences [21]. Pettit
believes that big data analytics can improve the visibility of an enterprise’s supply chain,
help identify potential threats and disruptions, and improve SCRE. However, despite
the popularity of BDA, and its application in many fields, the relationship between BDA
and SCRE has not been determined, in particular, because there are no empirical data in
the literature [22]. Moreover, although companies benefit from the ability to adopt BDA,
academic research on topics related to BDA adoption and effectiveness is still in its infancy.
One major area that has not been explored in detail is the relationship between big data
analytics and its impact on risk resilience [23]. Therefore, we introduce examples to explore
the impact of BDA enablers on SCRE.

Because of the complex relationship among SSCR, SCRE, and BDA, QFD is used in
this study to analyse the performance in terms of sustainability of one of China’s top 100
electronic manufacturing enterprises. The QFD concept emerged in Japan in 1972. It is
used to evaluate the design of new products based on customer input; it was first applied
to improve the design of new tankers [24,25]. QFD is a flexible strategy that translates
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customer requirements into design requirements, and uses a house of quality (HoQ) matrix
to identify the relevance of each stage, including the product design, manufacturing,
and distribution stages [26]. QFD has become increasingly popular, and its application
field has been expanded to supply chains [27].

In recent years, QFD has been successfully applied to solve multicriteria decision-
making (MCDM) problems in many fields, such as for selection of knowledge system [28],
evaluation of green buildings [29], evaluation of bike-share project [30], priority of technol-
ogy attribute [31], and reduction of fashion risks [32]. However, not much of the literature
combines multi-attribute decision-making with HoQ. Therefore, this study aims to de-
velop an integrated architecture to screen out the enablers of resilience indicators and big
data analysis in the manufacturing supply chain to reduce the supply chain risk covered
by the enterprise, and investigate the relationship between these three sets of variables
(sustainable supply chain risk, supply chain resilience, and big data analysis). One of the
highlights of this study is the identification of key big data enablers to strengthen supply
chain resilience by the integration of two-stage House of Quality and MCDM methods to
reduce or mitigate sustainable supply chain risks.

The following research questions are discussed:

(a) What are the key SSCRs, SCRE, and BDAEs in the manufacturing supply chain?
(b) How should quality function deployment, multicriteria decision making, and the

three variables be connected to provide decision-making support for the supply chains
of manufacturing enterprises?

(c) How can manufacturers effectively improve supply chain resilience with the proposed
framework and big data analysis enablers to address sustainability issues?

The remainder of this paper is organised as follows: The Section 2 presents a litera-
ture review, which lists the factors affecting sustainable supply chain risk, supply chain
resilience indexes, and big data analysis enablers. The Section 3 introduces the method.
The implementation and analysis results of the case study are presented in the Section 4.
Finally, Section 5 presents the conclusion and contribution of this study.

2. Literature Review
2.1. Sustainable Supply Chain Risks (SSCRs)

Sustainable supply chains is a large and interesting research field. Because researchers
have defined sustainability in different ways [33], their research directions are different.
Traditional sustainable development includes social, environmental, and economic di-
mensions [34]. However, these three dimensions cannot describe the whole system of an
organisation. Therefore, Iddrisu proposed a five-dimensional sustainable-development
model that considers social, environmental, economic, technological, and institutional
dimensions [35]. Valinejad and Rahmani used a five-dimensional approach to assess risks
in the telecommunication sector [36]. Moreover, Moktadir et al. used a five-dimensional
approach to identify 30 potential risk factors in the leather industry in Bangladesh [37].
Hsu et al. determined 130 risks related to sustainable development in the elevator manu-
facturing industry based on five dimensions, and 22 sustainable supply chain risks in the
fashion industry with the five-dimension method [32,38].

The function of a supply chain is measured in terms of business and its impact on
environmental and social systems [39]. Thus, if a supply chain is fully sustainable, it does
not damage the ecosystem or social system, and generates profit in the long term [40]. In the
era of globalisation, supply chains involve a wider and more complex range of risks [41].
To make the concept of risk easier to understand and manage, researchers have developed
different classification methods based on their different perspectives.

For instance, Alora and Barua classified supply chain risks into seven categories ac-
cording to the different sources of risks in the supply chain: environmental, supplier-side,
manufacturer-side, wholesaler-side, distributor-side, retailer-side, and customer risks [42].
Wagner and Bode classified environmental risks into risks regarding natural accidents,
normal accidents, abnormal accidents, changes in regulatory policies, political uncertainties,



Mathematics 2022, 10, 1233 4 of 35

terrorist attacks, international terrorist attacks, civil disturbances, wars or other social and
political crises, and diseases or epidemics [43]. Junipero and Ali Al-Tantawi classified
supplier-side risks into risks regarding poor raw material quality, supplier bankruptcy,
and financial instability of suppliers [44]. Klibi and Martel classified manufacturer-side
risks into risks regarding technical failures in factories, technical outage, industrial acci-
dents, and transportation and communication failures [45]. Ritchie and Brindley classified
wholesaler- and distributor-side risks into risks regarding delays, the bullwhip effect, trans-
port failure, and communication failure [46]. Wilson classified retailer-side risks into risks
regarding technical failures and transportation interruption [47]. Moreover, Bode et al.
classified customer risks into risks regarding uncertain or flexible requirements, delivery
delays, and inaccurate information [48].

Norman and Lindros and Vanany et al. classified risk into three categories: risks
regarding operational accidents, operational disasters, and strategic uncertainty [49,50].
Banwet and Shankar divided risk into breakdown risks, forecast risks, intellectual property
rights risks, and IT/IS outsourcing risks. Breakdown risks are critical, and include loss
of sales, cost of emergency services, cost of data recovery, and long-term loss of customer
goodwill [51]. In addition, Olson and Wu classified risk into external and internal risks [52].
The former type includes natural, political-system, competitor, and market risks; the latter
type includes available-capacity, internal-operation, and information system risks. Sawik
classified risk into destructive and operational risks [53]. Disruptive risks include risks
regarding unplanned outages, unexpected events, and the sudden collapse of material
supplies; operational risks are potential uncertainties in internal operations. Diabat et al.
classified risks into six categories: product, information, management, macro, demand,
and supply risks [54]. Moreover, Cagliano et al. classified risk into two categories: internal
risks (strategic, tactical, and operational risks) and external risks (catastrophic, economic,
social, political, legal, cultural, industrial, and partner risks) [55]. Avinash et al. classi-
fied risks into four categories: supply, demand, operational, and environmental risks [56].
Lavastre et al. divided the risks into quality risk, compliance risk, risk of supply disrup-
tions, production interruption risk, price risk, cost risk, technology risk, prediction risk,
reliability risk, uncontrollable external risk, inventory risk, management risk, contract risk,
customs risk, information system risk, and business risk [57]. Venkatesh et al. classified
risk into globalisation risk, product quality and raw material standard risks, resource
shortage risk, supplier uncertainty risk, employee behaviour risk, infrastructure risk, de-
lay risk, demand risk, customer dissatisfaction risk, financial risk, and security risk [58].
Furthermore, Rogers et al. classified risk into cultural, operational, infrastructure, eco-
nomic, forecast, and vendor-related risks [59]. Kirrubi and Hays classified risks into supply,
demand, and internal and external environmental risks [60]. Song et al. classified risk
into demand and supply uncertainty risk, supplier risk, responsiveness risk, performance
risk, supply risk, inflexibility risk, quality risk, coordination risk, information sharing risk,
sustainable technology risk, price and cost risk, exchange rate risk, market risk, natural
disaster risk, environment risk, human rights risk, social commitment risk, and business
moral hazard risk [61]. Jiang et al. classified risks into the planning process, port service
process, distribution process, relational process, nuclear enterprise financial, and external
environment-related risks [62]. Prakash et al. classified risk into four categories: supply,
process, financial, and demand risks [63]. Xu et al. classified risk into five categories:
technical, market, environmental, social, and operational risks [64]. Brzęczek believes that
new products will increase operational and technological risks, and increase sales risk [65].
Hsu suggested that supply chain risks can be classified into: (1) external risks: including
potential human disasters, operational risks, legal and political risks, supplier and customer
risks, environmental and natural disasters, and market trend risks (i.e., 6 dimensions and
62 risks); (2) internal risks: including potential physical accidents, operation risks, personnel
risks, strategic management risks, and information management risks (i.e., 5 dimensions
and 68 risks) [38]. Saltykov et al. classified risks into natural, economic, financial, market,
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production, technological, social, environmental, and legal risks [66]. We have created the
following Table 1 to show gaps in relevant research.

Table 1. Sustainable supply chain risk summary form.

Reference Research Emphasis
or Significance

Research
Methodologies Research Results

Olson and Wu (2010)

Review supply chain risk
management methods, including
identification and classification of
risk types, cases, and models.

Literature analysis A general framework of supply
chain risk is proposed.

Sawik (2011)
Find the optimal choice of supply
mix in an environment with supply
chain disruption risk.

Mixed integer programs

It is verified that the probability of
supply interruption is the key
determinant of demand allocation
among suppliers.

Govindan et al. (2012) Create models and discuss risk
mitigation strategies. ISM

Risks in the food supply chain of
the companies studied are
identified, and strategies to mitigate
them are proposed.

Samvedi et al. (2013)

Quantify the risks in the supply
chain, and then integrate their
values into a comprehensive
risk index.

AHP and TOPSIS A general risk index is proposed
and calculated.

Lavastre et al. (2014) A framework of supply chain risk
management is proposed. Literature analysis

Some influencing factors that can
reduce supply chain risk
are identified.

Venkatesh et al. (2015) A new risk priority series (RPN)
calculation model is proposed.

ISM and fuzzy
MICMAC methods

The feasibility of the model
is verified.

Kilubi and Haasis(2016)
The topic of supply chain risk
management (SCRM) is analysed
and recognised in depth.

Literature analysis
It is proved that SCRM and
enterprise performance are not
necessarily related.

Song (2017) A rough weighting decision
is proposed. DEMATEL

Failure to choose the right supplier
is the most prominent risk factor in
an SSCM.

Jiang et al.(2018)
Identify port enterprise supply
chain risk, and strengthen supply
chain risk control.

Improved AHP
Measures to strengthen supply
chain risk management of port
enterprises are put forward.

Xu et al. (2019) Identify and assess supply chain
sustainability risks. Literature analysis

A framework was established to
assess supply chain
sustainability risks.

Brzęczek (2020) Develop a set of decision models to
predict sales risks. Literature analysis

Product expansion generally leads
to an increase in expected sales and
nominal risk, but also to a lower
relative risk.

Xu et al. (2021)
Try to find measures to improve
supply chain resilience and
reduce risk.

Multicriteria decision
making

Concrete measures are proposed to
enhance the resilience of the
supply chain.

Saltykov et al. (2022)
Assessing reasonable risks and
obstacles to the implementation of
strategic actions.

Expert risk
assessment methods

Identify the key risks in fisheries
development projects.

By referring to the risk classification methods of different researchers, we classify risk
into external and internal supply chain risks. All selected supply chain risks involve the
five dimensions (e.g., social, environmental, economic, technological, and institutional
sustainability factors). External risks include man-made disaster, environmental disaster,
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natural disaster, and market trend risks. Internal risks include strategic management
risks, information system risks, supplier and customer risks, internal unforeseeable risks,
internal business risks, and employee risks. There are 10 types in total; the previously
presented 10 risk types are further classified into 69 sub-items based on the literature. These
sustainable risks will be assessed in detail in Section 4.

2.2. Supply Chain Resilience (SCRE)

The word ‘resilience’ appeared in engineering [67]. In materials science, it is the ability
of a material to return to its original shape after deformation without exceeding the limit
of resilience [68]. The concept of resilience is used in a wide range of sectors, including
manufacturing and services [69], businesses [70], food [71], and fashion [72].

SCRE refers to the ability of a company to respond quickly to vulnerabilities and
disruptions in the supply chain, and to return to normal operation afterwards [73,74].
The SCRE degree can be measured based on redundancy, real-time monitoring, visibility
systems, and recovery [75]. The SCRE concept for supply chains effectively reduces the pos-
sibility of supply chain disruptions and time required to return to normal performance [76].
SCRE is measured based on the ability to respond quickly to supply chain outages, over-
come supply chain outages, easily adapt to supply chain outages, and maintain high
situational awareness [77]. Resilience is considered one of the key factors for reducing
SCRs [78]. Researchers have put forward different classification methods for resilience.

Sheffi and Rice stated that resilience must provide an organisation with a competitive
advantage; in addition, they presented the resilience potential of five core elements of
a supply chain: supply chain and procurement, transition processes, poverty channels,
control systems, and corporate culture [79]. Pereira broke down resilience into different
functional attributes (i.e., flexibility, agility, visibility, information sharing, and risk aware-
ness) [80]. Pettit et al. classified resilience into three factors: market position, organisation,
and information sharing [81]. In addition, Ponis and Koronis classified resilience into ten
functional attributes: agility, flexibility, resilience, speed, visibility, availability, redundancy,
resource flow, collaboration, and knowledge of the supply chain structure [82]. Soni et al.
classified resilience into six functional attributes: trust, security, sustainability, information
sharing, risk, and income sharing among members [83]. Inman and Blumenfeld highlighted
two key elements of supply chain resilience: prevention and mitigation [84]. Regarding
the simulation of outages, Marie et al. compared different network modelling strategies,
and classified the measures of resilience into accessibility, robustness, flexibility, and re-
sponsiveness [85]. Moreover, Kamalhammadi and Parast argued that resilience involves
11 competencies: agility, flexibility, redundancy, speed, visibility, collaboration, information
sharing, financial strength, product management, risk awareness, and knowledge [86].
According to Jain et al., expanding the resilience capacity involves 13 aspects: adaptability,
collaboration among players, trust among participants, supply chain sustainability, risk and
revenue sharing, information sharing, supply chain structure, market sensitivity, supply
chain agility, supply chain visibility, risk management culture, and minimising uncertainty
among partners and technical ability [87]. Sáenz et al. provide a broader framework for
the design of supply chain resilience [88]. It includes two components (i.e., responsiveness
and initiative), and, further, considers internal and external vulnerabilities while focusing
on competitive priorities in the supply chain. Singh et al. classified resilience into flexibil-
ity, agility, redundancy, speed, visibility, adaptability, collaboration, information sharing,
market location, and security [89]. Furthermore, Xu et al. classified supply chain resilience
into 24 factors: risk awareness, security, information sharing, collaboration, adaptabil-
ity, speed, product flexibility, visibility, agility, storage capacity, redundancy, knowledge,
responsiveness, work efficiency, financial strength, market position, expectations, recover-
able capabilities, dispersion, management, enterprise, culture, and interrelationships [32].
Konstantinou et al. argued that preparedness, alertness, and agility are the three pillars
of supply chain resilience [90]. We have created the following Table 2 to show gaps in
relevant research.
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Table 2. Supply chain resilience summary table.

Reference Research Emphasis
or Significance Research Methodologies Research Results

Sheffi and Rice (2005)

The performance of the supply
chain at different stages is
analysed, and the decision
is made.

Decision theory
and theory building

By building redundancy and
flexibility into their supply chains,
organisations can improve their
ability to recover quickly
from disruptions.

Pereira (2009)
Analyse the key issues facing the
supply chain, and develop a new
strategy to improve resilience.

SDDES
IT should be implemented into the
supply chain to improve robustness
and resilience.

Pettit et al. (2010)
Creates a conceptual framework
for assessing and improving
supply chain resilience.

Hypothesis testing
It provides managers with several
theoretical solutions to
improve resilience.

Ponis and Koronis (2012)

Identify which supply chain
capabilities can support the
containment of disruptions, and
how they affect resilience.

Literature analysis
Supply chains that can adapt to
disruptions gain an edge over
the competition.

Soni et al. (2014) A model to improve supply
chain resilience is proposed. Graph theory method

This model can be used to quantify
resilience by a single
numerical index.

Mari et al. (2015)

The applicability of various
complex network models in the
design of resilient supply chain
networks is discussed.

Complex network theory
The design index of the resilient
supply chain network is
put forward.

Kamalahmadi and
Parast (2016)

Discuss the future direction of
supply chain resilience research. Literature analysis A framework of supply chain

resilience principles is developed.

Jain et al. (2017) Build a supply chain
resilience model. Hypothesis test

The model identifies 13 contributors
to resilience, and describes
their relationships.

Sáenz et al. (2018) Methods to improve resilience
were discussed.

Online survey method
and case study method

A framework for deploying supply
chain resilience dynamics
is proposed.

Singh et al. (2019) Develop a supply chain
resilience framework. Literature analysis

Seventeen resilience indicators were
identified to establish a
resilience framework.

Xu et al. (2021) Explore solutions to improve
supply chain resilience.

Multicriteria
decision-making

It provides an effective method to
improve the resilience of the
supply chain.

Dilek Ozdemir et al. (2022)
Explore the impact of supply
chain resilience on
business performance.

Hypothesis test
A conceptual framework is
proposed to improve supply
chain resilience.

Based on the presented references, supply chain resilience is classified into the follow-
ing 28 components in this study: agility, flexibility, redundancy, production capacity, speed,
efficiency, responsiveness, permissions, visibility, adaption to ability, ability to predict,
dispersion, coordination and cooperation, market position, information sharing, security,
financial capability, product management, risk awareness, knowledge, culture, human
resource management, technical ability, trust, sustainability, results, good customer service,
and robustness. These resilience indexes will be assessed in detail in Section 4.

2.3. Big Data Analysis (BDA)

BDA is one of the recent technological achievements that has strong applicability in
every industrial field, including manufacture [91–93]. Applying BDA in supply chains can
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improve supply chain transparency [94], increase the return on investment by 15–20% [95],
improve competitiveness [96], reduce risk [97], and fundamentally improve the perfor-
mance of supply chains [98].

Singh et al. believe that BDA plays an important role in mitigating the negative impact
of supply chain interruptions; it can actively promote the development of supply chain risk
resilience within the organisation [97]. Owing to the wide scope of big data analysis, many
researchers have presented big data analysis enablers based on different research perspectives.

Wicher et al. classified BDAEs into big data infrastructure construction, informa-
tion technology and organisational management, high-level support, BDA management
ability, and maintaining market competition [99]. Chroneos, Soldic, and Jasna classified
BDAEs into establishing a good database collection system, improving the speed of data
management and retrieval, improving the efficiency of big data analysis and processing,
improving information technology and institutions, and developing intelligent technology
and digitalisation processes [100]. Duman classified BDAEs into strengthening database
security protection, establishing data acquisition systems, establishing big data centres,
improving the data retrieval speed, enhancing big data infrastructure construction, and gov-
ernment support [101]. Reiz et al. classified BDAEs into improving system construction,
establishing big data-sharing mechanisms, optimising data structures, improving infor-
mation technology, enhancing the utilisation value of big data, increasing investments,
constructing strategic alliances for supply chains, and developing the guiding roles of
governmental departments [102]. Reinmoeller and Van divided BDAEs into realising big
data storage and maintenance, optimising data structures, increasing the capital investment,
creating professional teams, and expanding the organisational scale [103]. Furthermore,
Raut et al. divided BDAEs into improving big data support platforms and systems, improv-
ing information technology, increasing capital investment, and cultivating comprehensive
talents [98]. Lutfi et al. argued that relative interest, complexity, security, support from top
managers, organisational preparation, and government regulations are key enablers of big
data analysis [104]. We have created the following Table 3 to show gaps in relevant research.

Table 3. Summary table of big data supply chain research.

Reference Research Emphasis or Significance Research
Methodologies Research Results

Biljana et al. (2016)

A comprehensive overview of the
concept of ‘big data’ development
characteristics and their
application possibilities.

Literature analysis
The use of big data technology can
effectively improve supply chain
sales and trade.

Duman and Murat(2017)
A comparative study on the role of
big data in fields related to the
literature gaps.

Literature analysis

Big data-driven supply chain
management is expected to be more
efficient in terms of operational
performance, supply chain risk
management, and supply
chain collaboration.

Reiz et al. (2019) Big data research and
machine learning. Case analysis Creates the possibility for ICUs to

store many of machines.

Raut et al. (2021)

Provide a framework that can assist
the regulatory body in developing
effective policies for BDA in
manufacturing companies.

SEM The applicability of the framework
is verified.

Lutfi et al. (2022)
Identify the drivers of big data
analytics in the context of Jordan’s
developing economy.

PLS-SEM
Solve the problem of BD driving
factors in small- and
medium-sized enterprises.

This study refers to 62 references from 2000 to 2022; we identified 51 big data analysis
enablers, which will be assessed in detail in Section 4.
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2.4. Sustainable Supply Chain Risk, Supply Chain Resilience, and Big Data Analysis

Ponomarov and Holcomb pointed out that SCM decisions can be made based on
SCRE, and that investment in resilience has a positive impact on risk management [105].
Jüttner and Maklan pointed out that there is an established relationship between supply
chain resilience, vulnerability, and supply chain resilience strategies; they stated that these
three concepts are complementary to well-designed supply chains [106]. In addition,
Heckman, Comane, and Nickel created a framework for SCRM to express SCRs as the main
concept; the framework also considers vulnerability and resilience regarding the impact
of risk on supply chains. This shows that supply chain risk and resilience are inextricably
linked [107]. Kochak and Sharma used artificial neural networks to model the supply
chain and make demand prediction. They believed that predicting future demand through
artificial neural networks can help enterprises to make correct decisions in manufacturing
and inventory management [108]. Furthermore, Fahimnia and Jabalzadeh examined the
relationship between resilience and sustainability from the perspective of supply chain
designs [109]. They presented a multi-objective optimal model for the successful design
of sustainable and resilient supply chains. Zahiri et al. developed a linear multi-objective
mixed-integer-integrated resilient and sustainable programming model to design supply
chains under uncertain conditions [110]. Xue et al. used support vector regression (SVR) in
machine learning to solve the dynamic prediction problem of commodity supply in case of
disaster [111]. Moreover, Ivanov studied the interaction between resilience and sustainable
supply chains [112]. He designed a resilient supply chain structure to mitigate chain
reactions and sustainable development. Ivano analysed management and sustainability
in supply chains; their relationship shows that sustainable development and resilience
are closely related to the following aspects: the supply chain design; choice of suppliers;
economic and social impact; lean, green, and agile management; climate change and
environmental management; logistics; agricultural food supply chains; and management
of supply chain performance [113].

In summary, the concept of supply chain resilience cannot be neglected in the study of
sustainable supply chain risks. In addition, although many researchers have studied risk
and resilience, they have not thoroughly studied manufacturing supply chains. Therefore,
the relationship between the two aspects should be investigated. Based on the above
studies, it is not difficult to see that the research purpose and significance of most of them
are similar. That is, to improve supply chain resilience through some model or framework
to reduce supply chain risk. However, it is not difficult to see that many of the studies
focus on theoretical description, and are not practical. However, in other company-verified
studies, the research methods are generally unique, and the scientific nature and accuracy
of the research results are still questionable. There is not much literature in which the two
have been combined, and there are many areas that have not been studied.

Researchers have shown that BDA has a positive impact on the development of supply
chain risk resilience within an organisation [97]. Redman believes that BDA capabilities
enable enterprises to respond flexibly to supply chain disruption events; thus, they have
an important effect on improvement and recovery [114]. Regarding sustainable social de-
velopment and the construction of resilient disaster infrastructures, big data analytics can
help scientists, policymakers, and urban planners develop policies and strategies that inter-
nalise environmental and human health costs, which are currently being externalised [115].
Dubey et al. believe that enterprises should improve supply chain resilience from multiple
aspects [116]. They also believe that the existing information and knowledge of managers
can have an important effect on supply chain risk resilience, and that BDA capabilities can
add significant value to these enhancement measures.

Many researchers have studied how BDA capabilities can help mitigate disasters and
improve recovery, i.e., enhance resilience [114]. However, the presented studies have not ad-
equately addressed how BDA can be used to improve supply chain risk resilience [117,118].
In addition, most of the current research on big data is conducted at the macro level, and lit-
tle of it starts from the driving factors of big data, or discusses the relationship between the
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driving factors in detail. In addition, only few researchers have studied sustainable supply
chain risk, supply chain resilience, and big data analysis. To the best of our knowledge,
nobody has studied the relationship among the three variables. This paper addresses the
related research gap. Therefore, we identified the key big data analysis enablers that can
improve supply chain resilience and mitigate sustainable supply chain risks.

3. Methodology
3.1. Quality Function Deployment

In this study, two HoQs were used as the framework of the system to connect SSCRs
with SCRE, and SCRE with BDA. The first HoQ links sustainable supply chain risk to supply
chain resilience to identify which resilience indexes are more effective in reducing supply
chain risk. The second HoQ connects supply chain resilience with big data analysis to identify
which big data analysis enablers significantly improve supply chain resilience. In addition,
the resilience weight calculated in the first HoQ is the starting point for the construction of the
second HoQ; it can be directly used as the importance weight of the second HoQ.

Affinity diagrams, the fuzzy comprehensive evaluation method, entropy weight
method, Fuzzy Delphi method, and VIKOR were used to screen the risk factors and
resilience indexes of the supply chain; the results present different factors and indexes that
are suitable for the enterprise. The reasons for using this combined method are as follows.
1. The data in this study are entirely from questionnaires, and the Fuzzy Delphi method is
one of the mainstream methods for analysing questionnaire data at present. 2. Considering
the unique subjectivity of the questionnaire, this paper hopes to use a more objective
evaluation method to offset the subjective influence brought by the data. Therefore, this
study uses the fuzzy comprehensive evaluation method and entropy weight method to
calculate the weight. Not only does this improve the objectivity of the data, but the results
produced by the former method can be used directly by the latter. The data are not over-
processed, which also ensures data consistency. 3. The most innovative research method in
this study is the use of the VIKOR method. This method is relatively novel, and rarely cited
by scholars. In addition, some scholars have proven that this method is a better calculation
method. In accordance with the screening results, a correlation questionnaire was prepared
to identify mutual relationships among factors and indexes, and the correlation matrix was
determined. Finally, big data analysis is added to draw conclusions about the key big data
analysis enablers. The research process of this study is shown in the figure below. These
steps in this study are shown in Figures 1 and 2. The symbols numbered from (1) to (12) in
the text correspond to the relevant steps in Figures 1 and 2 for easy recognition.

Figure 1. Two-stage HoQs. (a) The first HoQ; (b) The second HoQ.
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Figure 2. Research flow chart.
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3.2. Affinity Diagram (K-J Method)

An affinity diagram, which is known as the K-J method, was used to classify and
analyse, comprehensively, the collected data and information according to their proximity;
this approach is also known as the ‘card method’. The tool used in the K-J method is
the A-diagram to categorise and synthesise a large number of facts, opinions, or ideas
collected on a particular topic according to their relationships. Collecting different opinions,
ideas, and experiences of persons without making any choice, and identifying the rela-
tionship among these data enables thinking creatively, breaking the status quo, and taking
coordinated actions to solve problems.

3.3. Fuzzy Comprehensive Evaluation Method

Fuzzy comprehensive evaluation is based on fuzzy mathematics. It can deal with
imperfect information, and uncertain and qualitative problems. Therefore, the fuzzy
comprehensive evaluation method was used in this study to evaluate sustainable supply
chain risk and supply chain resilience indexes. The specific steps are as follows:

1. The supply chain resilience index and sustainable supply chain risk factor set U and
evaluation set V are determined. Simultaneously, the weight of each influencing factor
W is determined;

2. The score membership function and comprehensive evaluation matrix R of each
factor are constructed, and the membership degree and R are calculated to obtain the
fuzzy set;

3. The fuzzy comprehensive evaluation set B is obtained based on the fuzzy comprehen-
sive evaluation matrix R and fuzzy operator ◦ = (·, +);

B = W ◦ R, (1)

4. The defuzzifying value (i.e., the comprehensive evaluation score E of the evaluation
object) is calculated with the fuzzy comprehensive evaluation set B and measurement
scale H;

E = B×H, (2)

Degrees of H = (very satisfied, satisfied, average, not satisfied, very dissatisfied) = (5,
4, 3, 2, 1).

3.4. Entropy Weight Method

The entropy value can be used to assess the dispersion degree of an index. The smaller
the information entropy value is, the greater the dispersion degree of the index is, and the
greater the influence of the index on the comprehensive evaluation (namely, the weight) is.
If all the values of an index are identical, the index has no effect on the comprehensive eval-
uation. Therefore, the weight of each index can be calculated with the information entropy
to provide a basis for the comprehensive evaluation of multiple indexes. The specific steps
of this method are as follows:

1. Standardisation of the original data matrix: let us assume that the original data matrix
obtained with m evaluation objects and n evaluation indexes is as follows:

X =


x11 x12 · · · x1n
x21 x22 · · · x2n

...
...

...
...

xm1 xm2 · · · xmn

, (3)

The matrix is normalised as follows:

R =
(
rij
)
m× n, (4)
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where rij is the standard value of the ith evaluation object of the JTH evaluation index,
rij ∈ [0, 1]. The indexes that are superior to the larger ones are as follows:

x =
xij −minj

{
xij
}

maxj
{

xij
}
−minj

{
xij
} , (5)

The indexes that are superior to the smaller ones are as follows:

x =
maxj

{
xij
}
− xij

maxj
{

xij
}
−minj

{
xij
} , (6)

Negative values and zeros must be eliminated to process the data meaningfully.
Therefore, the dimensionless data should be translated as a whole, i.e., xij = xij + a.
However, the original data should be retained to the maximum extent to avoid destroying
the inherent regular of the existence of original data. The value of a should be as small as
possible, i.e., it should be closest to the minimum value of xij. Therefore, a = 0.0001 was
considered in this study.

2. Definition of entropy: In an evaluation problem with n indexes and m evaluated
objects, the entropy of the JTH index is defined as follows:

Hj = −k
m
∑

i=1
fij ln fij, i = 1, 2, · · · , m,

PS : fij = rij/∑m
i=1 rij, k = 1/ ln m, ( fij = 0, fij ln fij = 0),

(7)

3. Definition of entropy weight: In the next step, the entropy weight of the JTH index
can be defined:

wj =
1−Hj

∑n
j=1 Hj

,

PS : 0 ≤ wj ≤ 1, ∑n
i=1 wj = 1,

(8)

4. Determination of index attribute matrix A: The index attribute matrix A is obtained
by multiplying the index weight wj and translated standard matrix R; the result is
ranked. The equation of the comprehensive score is as follows:

A =

 a11 · · · a1n
...

. . .
...

am1 · · · amn

 =

 k1b11 · · · knb1n
...

. . .
...

k1bm1 · · · knbmn

, (9)

5. Calculation of ideal point p∗ and proximity degree Ti: The ideal point p∗ is as follows:

p∗ = (p1∗, p2∗, . . . , pn∗), (10)

The type of Pj∗ is the optimal value of each column in A, which is the maximum value,
i.e., pj∗ = Max

{
aij, I = 1, 2, · · · , M} where j = 1, 2, . . . , n.

The relationship between the evaluated object and ideal point p∗ is as follows:

Ti = 1−
∑n

j=1 aij ∗ pj∗

∑n
j=1

(
pj∗
)2 , i = 1, 2, . . . , m, (11)

3.5. Fuzzy Delphi Method

The Fuzzy Delphi method is an empirical judgment method in which expert opinions
on potential events are anonymously consulted through several correspondence rounds;
the organisers collect the opinions in a centralised manner to obtain relatively consistent
expert predictions. The Fuzzy Delphi method involves statistical analysis and fuzzy
calculation to transform subjective expert opinions into objective data. Applying the
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Fuzzy Delphi method to factor screening comprehensively considers the uncertainty and
fuzziness of subjective expert opinions. To identify the key factors in line with the case
study, the Fuzzy Delphi method was first used to screen the big data analysis enablers;
the application steps are as follows:

1. All big data analysis enablers are identified. Subsequently, the Fuzzy Delphi expert
questionnaire is designed, and each expert is asked to evaluate the importance of each
factor for interval scoring. The maximum interval value represents the ‘most opti-
mistic value’ of the expert’s score for this factor. By contrast, the minimum represents
the ‘most conservative value’ of the expert’s quantification score for this factor.

2. The expert questionnaires are collected, and the data are integrated. In the next step,
the most conservative and most optimistic values of all experts are counted, and ex-
treme values beyond the double standard deviation are eliminated. Fuzzy theory is
used to calculate the minima Ci

L, maxima Ci
U , geometric means Ci

M, minimum value
Oi

L and maximum value Oi
U in “Most Optimistic Value”

3. Finally, the consensus degree of the expert opinions is calculated to determine Gi,
whether the opinions of all experts have reached consensus or not. The lower the
value is, the lower the consensus among experts on this factor is. Mi represents the
range of optimistic and conservative cognition, and Zi represents the grey area of
fuzzy relationships. When Mi > Zi, the expert opinions tend to converge. Otherwise,
the differences among the expert opinions do not converge; in this case, steps 1–3
must be repeated until all factors converge. The final value Gi is calculated as follows:

Gi =

[
(Ci

U ×Oi
M)− (Oi

L × Ci
M)

(Ci
U − Ci

M) + (Oi
M −Oi

L)

]
, (12)

4. A reasonable threshold value Gi must be chosen to identify key big data analysis enablers.

3.6. VIKOR

The VIKOR method is based on the measurement of the Hemming and Chebyshev
distances; it considers a project optimal when it integrates the ideal solution of the Hemming
and Chebyshev distances; this method can measure the design coefficient of the two
distances according to the preference of decision-makers. This compromise–multicriteria
decision-making method was proposed by Zeng and Opricovic et al. The basic steps of this
method are as follows:

1. First, the positive and negative ideal solutions are defined. They refer to the best and
worst alternatives in the evaluation criterion, respectively.

2. The evaluation values of alternative schemes are compared, and the priorities of
each scheme are arranged according to the distance between them and the ideal
scheme [119]. The VIKOR method determines the feasible compromise solution closest
to the ideal solution. Compromise means mutual concessions between attributes,
which originates from the LP-metric of the compromise planning method (Yu, 1973;
Zeleny, 1982); it provides maximum group benefit and minimum individual regret of
the opposition. Therefore, the compromise solution can be an acceptable approach for
decision-makers [120]. The steps are as follows:

• Primitive matrix normalisation:

rij =
uij

∑m
i=1 uij

, 1 ≤ i ≤ m, 1 ≤ j ≤ n, uij ∈ B, (13)

After the standardisation rij of the original matrix data Uij, B is the decision set.
The positive and negative ideal solutions are calculated as follows:

fi∗ =
[
(maxj fij|i ∈ I1 ), (minj fij|i ∈ I2 )

]
, ∀i (14)
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f−i =
[
(minj fij|i ∈ I1 ), (maxj fij|i ∈ I2 )

]
, ∀i (15)

where fi∗ is the positive ideal solution, f−i the negative ideal solution, j all alternative
solutions, i all evaluation decisions, fij the performance evaluation value of the alternative
solutions (the specific value of fij can be found in the questionnaire), I1 the set of benefit
evaluation decisions, and I2 the set of cost evaluation decisions.

• The group utility Sj and individual regret Rj are calculated as follows:

Sj = ∑n
i=1 w

( f ∗i − fij)

( f ∗i − f−i )
(16)

Rj = maxi

[
wi

( f ∗i − fij)

( f ∗i − f−i )

]
(17)

where wi is the relative weight of the evaluation decisions. It should be noted that
the risk weight determined based on the recovered data of the fuzzy comprehensive
evaluation questionnaire was used as the weight of the HoQ of the first stage in this
study; the calculated results of the HoQ of the first stage were used as the weight of
the second stage.

• The sorting value Q is computed as follows:

Qj = v
(Sj − S∗)
(S− − S∗)

+ (1v)
(Rj − R∗)
(R− − R∗)

(18)

S∗ = min
{

Sj
}

, S− = max
{

Sj
}

(19)

R∗ = min
{

Rj
}

, R− = max
{

Rj
}

(20)

The following aspects should be noted:

1. v is the coefficient of the decision-making mechanism. When it is greater than 0.5,
decisions are made according to a discussion between the majority of people (biased to
the utility level). When it is close to 0.5, decisions are made according to an approval
situation. When it is less than 0.5, decisions are made according to a situation of
rejection (biased to the regret level).

2. The min
{

Sj
}

is the maximum group utility, and min
{

Rj
}

is the minimum individual
regret; Qj represents the efficiency ratio that can be produced with j’s decision-making
scheme, which is used as the ranking standard.

(1) The schemes are sorted according to the relationship among Qj, Sj, and Rj.
When the following two conditions are true, the scheme can be sorted accord-
ing to the size of Qj(the smaller Qj is, the better the scheme is):
1© The initial condition is as follows:

Q′′ −Q′ ≥ 1
J − 1

, (21)

where Q′ is the first-rank Q value after sorting according to the Q value;
Q′′ is the Q value of the second scheme sorted according to the Q value;
J is the number of all evaluated schemes. This equation indicates that only
when the difference of the benefit ratio between two adjacent schemes is
greater than or equal to the threshold value 1/(J − 1), the first-rank scheme
is significantly better than the second-rank scheme. If there are multiple
methods at the same time, the first and second schemes and the third and
fourth schemes are compared to determine whether they meet the previously
presented conditions 1©.

2© Decision reliability After the schemes have been sorted according to Q,
the S-value of sorting the first option (the greater, the better) must also be
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better than that of sorting the second option. Alternatively, the R-value of the
first-ranked solution (the smaller, the better) must also be better than that of
the second-ranked solution. If there are multiple methods at the same time,
the first and second schemes and the third and fourth schemes are compared
to determine whether they meet the previously presented conditions 2©.

(2) Judgment rules

If the first- and second-ranked schemes satisfy conditions 1© and 2©, the optimal
scheme is the first scheme. If the relationship between the first- and second-ranked schemes
only satisfies condition 2©, both schemes are accepted as the optimal schemes. If the
relationship between the first-ranked scheme and other schemes only satisfies condition 2©,
the schemes that do not satisfy condition 1© are accepted as the optimal scheme.

4. Case Analysis

One of China’s top 100 electronics manufacturing companies is taken as a case study to
verify the proposed framework. The case company is a leader in the global relay industry,
and has become a world-class relay R&D and production base. It has more than 30 sub-
sidiaries in the import business that produce a large number of mechanical equipment,
spare parts, and raw and auxiliary materials needed by the market every year. However,
owing to the large and complex supply chain system of the enterprise, it is difficult for the
company manager to analyse risks in the supply chain. Accordingly, it is difficult to identify
indexes and big data analysis enablers to improve supply chain resilience. The goal of this
study is to help managers establish a new perspective, and analyse possible problems in
the supply chain. Therefore, we conducted in-depth structured interviews with experts
from different departments.

The methods proposed in this study involve two HoQs (i.e., sustainable supply chain
risk and supply chain resilience; supply chain resilience and big data analysis enablers).
The expertise from seven supply chain experts from different departments was used to make
an overall judgment. Finally, the obtained data were transformed into a QFD framework.

4.1. Stage 1: House of Quality
4.1.1. K-J Method

In the first stage, the K-J method was used to design the sustainable supply chain risk
questionnaire, and preliminarily screen the risk factors. According to the votes of experts,
69 risk factors regarding sustainable supply chains were identified; the resulting 19 risk
factors were classified into 10 internal and 9 external risks (e.g., interruption in customer
supply, transportation interruptions, technical risks, and equipment failure).

4.1.2. Fuzzy Comprehensive Evaluation Analysis (FCEA)

The fuzzy comprehensive evaluation method was used to design questionnaires for
resilience indexes and risk factors of sustainable supply chains. The analysis steps are
as follows:

• Risk factors of sustainable supply chains

1. Determination of factor weight
2. The evaluation set is as follows: V = (v1, v2, v3, v4, v5) = (very important, im-

portant, average, unimportant, very unimportant). The risk factor evaluation
index set U contains 19 factors including the previously mentioned ‘interrupted
customer supply’, ‘transportation interruptions’, ‘technical risks’, and ‘equip-
ment failure’: U = (U1, U2, . . . , U19). The fuzzy comprehensive evaluation
model is used to calculate the evaluation matrix of each factor. Construction of
membership matrix R: The tourist evaluations of the interpretation validity of
secondary indexes is obtained after data sorting according to the scoring status
of the questionnaire. The membership matrices R1 and R2 corresponding to the
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internal risk U1 and external risk U2 of the secondary evaluation index set are
constructed accordingly:

R1 =



0.167 0.500 0.333 0.000 0.000
0.333 0.667 0.000 0.000 0.000
0.333 0.333 0.333 0.000 0.000
0.167 0.500 0.333 0.000 0.000
0.333 0.000 0.500 0.167 0.000
0.000 0.333 0.500 0.167 0.000
0.833 0.167 0.000 0.000 0.000
0.333 0.167 0.500 0.000 0.000
0.500 0.000 0.000 0.500 0.000
0.000 0.167 0.667 0.167 0.000



R2 =



0.000 0.333 0.167 0.500 0.000
0.167 0.333 0.167 0.500 0.000
0.333 0.167 0.333 0.167 0.000
0.500 0.333 0.167 0.000 0.000
0.167 0.333 0.333 0.167 0.000
0.333 0.667 0.000 0.000 0.000
0.333 0.167 0.500 0.000 0.000
0.167 0.833 0.000 0.000 0.000
0.500 0.333 0.167 0.000 0.000


3. The FCEA vector of the indexes at all levels is determined: the FCEA set B

is calculated with the fuzzy operator ◦ = (•,⊕), and the weight value of the
indexes according to Equation (1):

B1 = W1 ◦ R1 =(0.300, 0.283, 0.317, 0.100, 0.000)

B2 = W2 ◦ R2 =(0.278, 0.389, 0.204, 0.130, 0.000)

where Wi is the weight of each index, and ◦ is the fuzzy operator. As one of the
common synthesis operators in fuzzy mathematics, the product-sum operator
M(•,⊕) highlights the weight, and considers all kinds of indexes with strong
comprehensive efficiency and small information loss. Therefore, this operator
was selected for the synthesis operation of the fuzzy matrix.

4. Determination of evaluation value: According to Equation (2), the evaluation
value obtained via the defuzzification of the first-level index set is as follows.
The evaluation value E obtained via the defuzzification of each evaluation set is
shown in Table 2:

Result analysis: The 10 risk factors with the highest evaluation values are the IT
infrastructure risks (A1), the risk of interruptions in the customer supply (A2), transport
interruptions risks (A3), risks caused by suppliers (e.g., unqualified supply) (A4), natural
disaster risks (A5), the risk of government instability (A6), equipment failure risks (A7),
technical risks (A8), inventory risks (A9), and information asymmetry risks (A10).

• Resilience

The resilience calculation procedure is identical to that of the risk factors. Through
calculation, the weight of each resilience index and the score data of the questionnaire
survey can be summarised. Similarly, the weight of each index can be calculated according
to the steps in Section 3.3, and the E value of each index can be calculated with the
comprehensive fuzzy evaluation model.

According to the E value, the first ten indexes are agility (B1), sustainability (B2),
robustness (B3), flexibility (B4), corporate culture (B5), financial ability (B6), redundancy
(B7), information sharing (B8), dispersion (B9), and supply chain structure (B10).
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4.1.3. Entropy Weight Method

The relationship matrix was determined based on a statistical expert questionnaire on
the relationship among resilience and sustainable supply chain risk factors. Subsequently,
the entropy weight method was used to calculate the weights of the supply chain risk
factors and order of resilience indexes. The specific analysis results are as follows:

1. Standardisation of original data matrix: the normalised matrix R with translation of
0.0001 unit is obtained based on Equations (4)–(6).

R =



0.3078 0.9232 0.5386 0.6155 0.3078 0.3078 0.0001 0.6155 0.8463 0.1001
0.0001 0.3751 1.0001 0.8751 0.7501 0.5001 0.1251 0.7501 0.8751 0.8751
0.3334 0.5001 0.0001 0.4168 1.0001 0.5834 0.1668 0.1668 0.6668 0.8334
0.5001 0.3001 0.5001 0.5001 1.0001 0.0001 0.7001 0.4001 0.9001 0.9001
0.3334 0.3334 0.5557 0.0001 0.4445 0.6668 0.4445 0.7779 0.5557 1.0001
0.6668 0.3334 0.7501 0.4168 0.0001 0.1668 0.7501 0.9168 0.5834 1.0001
0.6251 0.7501 0.8751 0.6251 0.5001 0.2501 0.0001 0.6251 1.0001 0.8751
0.6668 0.7334 0.8001 0.4001 0.4668 0.4001 0.5334 0.0001 0.1112 0.5557
0.3334 1.0001 0.2223 0.1112 0.1112 0.2223 0.0001 0.0001 0.1112 0.5557
0.0001 0.7174 0.5456 0.8183 0.2728 0.2728 0.3637 0.7274 0.6365 0.7274


2. Definition of entropy: the entropy value Hj of each evaluation index can be calculated

according to Equation (7) and the normalised matrix R, as shown in Table 4.
3. Definition of entropy weight: the entropy weight Wj of each evaluation index can be

calculated according to Equation (8) and the entropy value Hj; for details, see Table 4.

Table 4. Weight of risk factors.

Level Factors (Ui) Weight of First-Level Factors (Wi) The Secondary Factors (Uij) Weight of Second-Level Factors (Wij)

Internal risk 0.524

Equipment failure risks 0.101
The risk of interruptions in

the customer supply 0.115

Technical risks 0.106

Inventory risks 0.101
The risk of lack of quality staff 0.093

Outsourcing risks 0.084

IT infrastructure risks 0.128

Information asymmetry risks 0.101

Single supplier risks 0.093

The risk of defective product 0.079

External risk 0.476

The risk of loss of cargo 0.083
Accident risks 0.097

The risk of cognitive error 0.107
The risk of

government instability 0.126

Demand risks 0.102
Transport interruptions risks 0.126

The risk of late delivery 0.112
Risks caused by suppliers
(e.g., unqualified supply) 0.121

Natural disaster risks 0.126

4. Determination of index attribute matrix A: the entropy weight Wj is added to the
evaluation index attribute matrix, and Equation (9) is used to obtain the weighted
index attribute matrix.
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5. Calculation of ideal point P∗ and closeness degree Ti: According to Equation (10),
the ideal point is

P∗ = (0.1693,−0.0107, 0.0233, 0.1221, 0.1516, 0.1880, 0.3233, 0.1659,−0.0120,−0.1700)

According to the calculation results, the evaluation objects are ranked from large to
small (i.e., the degree of the impact of each resilience index on sustainable supply chain
risk is ranked from large to small); their matching progress is shown in Table 5.

Table 5. Evaluation of risk factors.

The Factor of Risks E Value

Equipment failure risks 3.834
The risk of interruptions in the customer supply 4.333

Transport interruptions risks 4.333
Technical risks 3.996
Inventory risks 3.834

The risk of lack of quality staff 3.332
Outsourcing risks 2.999

IT infrastructure risks 4.833
Information asymmetry risks 3.833
The risk of defective product 3.333

Risks caused by suppliers (e.g., unqualified supply) 4.167
Natural disaster risks 4.333
Single supplier risks 3

The risk of defective product 2.833
The risk of loss of cargo 2.333

Accident risks 3.001
The risk of cognitive error 3.499

The risk of government instability 4.333
Demand risks 3.333

4.1.4. Construction of HoQ in the First Stage

Because sustainable supply chain risk and resilience have mutual influences, and the
risk factors of resilience and sustainable supply chains are also correlated, a correlation
analysis must be performed on the aspects ‘sustainable supply chain risk’ and ‘resilience’.
Therefore, ten sustainable supply chain risk factors and ten resilience indexes screened with
the fuzzy comprehensive evaluation method were analysed, and three questionnaires were
issued to seven experts of the enterprise. The calculated average values of the questionnaire
results are shown in Tables 6–8. These results were used as the data of the first stage of HoQ.

Table 6. The initial matrix.

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

B1 2.167 3.500 2.667 2.833 2.167 2.167 1.500 2.833 3.333 3.667
B2 2.500 3.000 3.833 3.667 3.500 3.167 2.667 3.500 3.667 3.667
B3 2.500 2.833 1.833 2.667 3.833 3.000 2.167 2.167 3.167 3.500
B4 2.667 2.333 2.667 2.667 3.500 1.833 3.000 2.500 3.333 3.333
B5 1.833 1.833 2.167 1.333 2.000 2.333 2.000 2.500 2.167 2.833
B6 2.167 3.500 2.667 2.833 2.167 2.167 1.500 2.833 3.333 3.667
B7 2.667 2.000 2.833 2.167 1.333 1.667 2.833 3.167 2.500 3.333
B8 3.000 3.167 3.333 2.333 2.500 2.333 2.667 1.333 2.833 3.833
B9 2.667 3.667 2.500 2.333 2.333 2.500 2.167 2.167 2.333 3.000

B10 1.833 3.167 2.833 3.333 2.333 2.333 2.500 3.167 3.000 3.167
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Table 7. Entropy value and entropy weight of risk factors.

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

Hj 0.7567 1.0342 0.9777 0.8663 0.8547 0.7297 0.5869 0.8266 1.1036 1.3052
Wj 0.2538 −0.0357 0.0233 0.1395 0.1516 0.2820 0.4311 0.1810 −0.1081 −0.3185

Table 8. Closeness degree and ranking results of evaluation indexes.

B6 B4 B5 B8 B3 B2 B10 B7 B1 B9

Ti 0.1193 0.1925 0.2381 0.2498 0.4302 0.4371 0.4377 0.5023 0.5351 0.7649
The order 1 2 3 4 5 6 7 8 9 10

Owing to the correlation between risk and resilience, the product of the correlation
matrix is used as the result of the initial matrix of the House of Mass. Risk itself exhibits
correlations between different risk factors. Therefore, the initial matrix must also include
the risk association matrix. The sustainable supply chain risk association matrix A * A is
multiplied by the sustainable supply chain risk–resilience association matrix A * B, and
then multiplied by the resilience association matrix B × B to obtain the initial QFD matrix
of the first stage. The initial matrix is normalised, as shown in Table 9.

Table 9. Association matrix of risk factors. (A × A).

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

A1 0.00 4.86 3.86 3.43 2.43 1.86 3.14 5.14 4.71 6.14
A1 3.14 0.00 3.29 4.86 2.43 2.57 2.43 2.71 3.57 4.00
A1 2.86 6.00 0.00 3.86 2.29 2.71 2.57 3.57 3.57 4.43
A1 2.00 5.57 3.29 0.00 2.57 2.86 2.57 2.43 3.57 2.86
A1 3.71 6.00 5.29 4.43 0.00 2.57 4.57 4.29 3.71 4.29
A1 3.43 4.57 4.43 3.57 2.86 0.00 2.57 3.14 3.14 2.43
A1 6.00 5.86 5.71 3.00 2.57 2.86 0.00 5.29 3.57 5.00
A1 5.86 5.86 4.57 3.29 2.14 2.57 5.14 0.00 5.71 4.14
A1 2.71 4.43 2.71 4.43 1.86 2.57 2.86 2.86 0.00 3.14
A1 5.43 5.29 4.29 4.43 2.43 3.43 2.57 2.43 3.29 0.00

At this point, the analysis of the first HoQ stage is completed. Figure 3 shows the
procedure of quality function deployment.

4.2. Stage 2: House of Quality
4.2.1. Fuzzy Delphi Method

The analysis in this stage mainly involves the use of Equation (12) and EXCEL2018
to calculate the G value and set an appropriate threshold value S for screening. After the
discussion of the experts, the threshold value was set to 6.55. If the G value of the big data
analysis enablers is ≥6.55, this criterion is acceptable. Otherwise, it is deleted.

After the screening process with the Fuzzy Delphi method, 10 of the 51 big data
analysis enablers with the highest G values were selected for aggregation. The specific
analysis steps are as follows:

1. Analysis of expert questionnaires

After integrating the data of the questionnaires from the seven experts, the extreme
values were excluded; subsequently, the data that represent the most optimistic and most
conservative cognitive values of the experts were excluded in the following calculation.
As the data analysis results are within two standard deviations of the mean, they do not
have to be eliminated.

2. Calculation of triangular fuzzy number and consensus value Gi
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The Gi value of the big data analysis enablers is calculated with Equation (12).
The greater the consensus value is, the higher the degree of consensus among experts
is, i.e., the greater the degree of consistency.

3. Setting of threshold

Based on the previous step, the threshold of the big data analysis enablers is set to 6.55.
If the value is smaller than the threshold, the corresponding big data analysis enablers will
be deleted; the results are shown in Tables 10–12.

Figure 3. The first stage of HoQ.

Table 10. Association matrix of resilience indexes. (B×B).

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

B1 0.00 4.86 5.14 5.29 4.00 6.00 3.71 4.29 4.14 5.14
B2 5.57 0.00 4.43 2.71 3.71 5.14 4.14 4.00 2.86 5.14
B3 4.43 6.43 0.00 3.29 4.00 5.14 4.00 3.00 2.57 5.57
B4 4.57 5.14 4.14 0.00 3.57 4.43 3.71 3.00 3.00 5.14
B5 4.29 3.86 4.29 3.71 0.00 5.00 2.43 4.43 3.43 5.14
B6 5.86 5.29 6.43 3.29 3.14 0.00 5.00 3.14 3.57 5.00
B7 4.57 6.29 6.14 3.00 4.14 6.00 0.00 3.14 2.71 3.86
B8 5.43 5.29 5.14 4.71 3.86 4.57 3.29 0.00 4.14 3.86
B9 4.71 4.29 4.57 3.29 4.00 4.86 3.00 2.29 0.00 4.86

B10 5.00 5.00 5.43 2.86 3.86 6.00 4.14 5.57 3.43 0.00

4.2.2. VIKOR

The VIKOR method is applied in the calculation of the ranks of the big data analysis
enablers. The purpose of this step is to assess the impact of different enablers on the
enterprise resilience indexes; the ranking results are the final result of this study; they can
serve as guidance for enterprise managers.
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Table 11. Association matrix of risk factors and resilience indexes. (A×B).

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

A1 1.86 2.14 2.14 2.29 1.57 2.29 2.43 2.57 2.29 1.57
A2 3.00 2.57 2.43 2.00 1.57 1.71 2.57 2.71 3.14 2.71
A3 2.29 3.29 1.57 2.50 1.86 2.43 2.71 2.86 2.14 2.43
A4 2.43 3.14 2.29 2.29 1.14 1.86 2.43 2.00 2.00 2.86
A5 1.86 3.00 3.29 3.00 1.71 1.14 2.29 2.14 2.00 2.00
A6 1.86 2.71 2.57 1.57 2.00 1.43 2.00 2.00 2.14 2.00
B7 1.29 2.29 1.86 2.57 1.71 2.43 1.71 2.29 1.86 2.14
A8 2.43 3.00 1.86 2.14 2.14 2.71 2.43 1.14 1.86 2.71
A9 2.86 3.14 2.71 2.86 1.86 2.14 2.86 2.43 2.00 2.57
A10 3.14 3.14 3.00 2.86 2.43 2.86 2.71 3.29 2.57 2.71

Table 12. Standardization of the initial matrix of risk-resilience association matrix.

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

A1 0.0125 0.0128 0.0128 0.0089 0.0099 0.0134 0.0094 0.0093 0.0084 0.0122
A2 0.0099 0.0101 0.0101 0.0070 0.0078 0.0106 0.0075 0.0073 0.0066 0.0097
A3 0.0109 0.0113 0.0112 0.0079 0.0087 0.0118 0.0083 0.0081 0.0073 0.0107
A4 0.0095 0.0098 0.0097 0.0068 0.0075 0.0102 0.0072 0.0070 0.0064 0.0093
A5 0.0133 0.0136 0.0137 0.0095 0.0105 0.0142 0.0100 0.0098 0.0089 0.0129
A6 0.0103 0.0106 0.0106 0.0074 0.0082 0.0111 0.0078 0.0076 0.0069 0.0101
B7 0.0138 0.0141 0.0142 0.0099 0.0109 0.0148 0.0104 0.0101 0.0092 0.0135
A8 0.0135 0.0138 0.0138 0.0096 0.0106 0.0144 0.0101 0.0098 0.0090 0.0131
A9 0.0093 0.0095 0.0095 0.0067 0.0074 0.0099 0.0070 0.0068 0.0062 0.0091
A10 0.0111 0.0114 0.0114 0.0079 0.0088 0.0119 0.0083 0.0082 0.0074 0.0108

First, the correlation among the resilience index and big data analysis enablers (i.e., the
correlation between the resilience index itself and the big data analysis enablers itself)
should be considered for the construction of the initial matrix. Therefore, a correlation
questionnaire was designed; the questionnaire results were summed up and averaged.

Considering the previous correlation among the resilience indexes, the resilience
association matrix B*B is multiplied by the association matrix B*C of resilience-big data
analysis enablers, and then multiplied by the association matrix C*C of big data analysis
enablers to obtain the initial QFD matrix of the second stage. The standardised initial
matrix H can be obtained with Equation (13); the results are shown in Table 13.

Table 13. Big data analysis enablers.

Key Enablers Gi

C1 Capital investment 8.16
C2 Establishment of big data centres 8.09

C3 Regarding the combination of big data infrastructures to support platforms
and systems 7.37

C4 Regarding big data sharing and visualisation 7.19
C5 Guiding role of government departments 6.91
C6 Data mining 6.83
C7 Guiding role of government departments 6.82
C8 Maintain the storage of big data 6.73
C9 Strengthening database and information security protection 6.65

C10 Improving information technology and information management systems 6.56

The data in Table 14 were substituted into Equations (14) and (15) to obtain the positive
ideal solution f ∗i and negative ideal solution f−i of each big data analysis enabler.



Mathematics 2022, 10, 1233 23 of 35

Table 14. Association matrix of big data analysis enablers. (C*C).

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

C1 0.00 7.00 7.50 5.33 6.33 5.50 5.83 5.50 5.17 5.33
C1 2.50 0.00 6.33 7.00 4.00 6.00 5.00 7.00 5.83 6.83
C1 2.17 7.17 0.00 6.83 3.83 7.83 7.17 6.17 6.33 5.83
C1 2.67 5.00 5.00 0.00 4.00 5.33 6.67 4.83 6.83 6.67
C1 4.17 5.83 5.83 5.00 0.00 5.17 5.17 5.17 5.17 5.67
C1 3.17 7.67 7.33 5.33 3.83 0.00 7.67 5.67 5.83 7.17
C1 2.83 7.00 6.00 5.83 3.83 6.17 0.00 4.00 5.00 6.33
C1 2.50 7.50 7.00 6.50 3.83 5.17 7.17 0.00 5.83 6.33
C1 2.17 5.83 7.50 6.17 5.00 5.33 6.17 6.50 0.00 5.17
C1 4.00 5.33 6.67 6.33 5.00 6.33 7.67 5.50 7.17 0.00

Subsequently, group utility Sj and individual regret Rj were calculated; Wi in
Equations (16) and (17) was used to evaluate the relative weight of each resilience index.
It is expressed with the reciprocal form of the closeness degree of each resilience indexes.

The reciprocal closeness degree was substituted into Equations (18) and (19) to cal-
culate group utility Sj and individual regret Rj, as shown in Table 15. Finally, the profit
ratio Pj was calculated. In Equation (20), v is the decision-making mechanism coefficient.
To maximise group utility and minimise individual regret, v was set to 0.5.

Table 15. Association matrix of resilience–big data analysis enablers. (B*C).

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

B1 1.43 2.00 1.43 2.43 1.14 3.00 2.57 2.43 2.43 2.43
B2 1.43 2.14 1.57 1.71 2.29 2.57 2.00 2.43 2.71 2.86
B3 2.43 2.57 2.71 2.14 1.86 1.71 2.43 1.71 1.43 2.43
B4 1.71 2.14 2.71 2.71 1.86 1.71 2.43 2.57 2.14 3.00
B5 1.86 1.86 2.14 1.86 1.43 2.43 1.43 2.29 2.29 2.86
B6 3.43 2.14 3.14 2.29 2.29 2.29 2.57 2.86 3.14 2.29
B7 2.29 2.00 2.57 1.29 1.57 2.57 2.14 2.43 2.14 2.43
B8 1.71 2.86 3.14 2.43 1.86 2.86 3.29 2.43 2.71 3.00
B9 1.86 2.14 2.86 1.57 1.86 2.29 2.14 3.29 2.14 2.71

B10 2.57 2.29 2.43 2.29 2.00 3.14 2.00 2.43 1.71 2.29

In Equations (21) and (22), min
{

Sj
}

is the maximum group utility, min
{

Rj
}

is the
minimum individual regret, and Qj is the interest rate that can be generated by j’s decision.
The results calculated with Equations (20)–(22) are shown in Tables 16–19.

Table 16. The standardised initial matrix H.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

B1 0.0057 0.0128 0.0127 0.0120 0.0087 0.0115 0.0128 0.0109 0.0116 0.0118
B2 0.0050 0.0113 0.0112 0.0105 0.0077 0.0101 0.0113 0.0096 0.0102 0.0105
B3 0.0051 0.0114 0.0115 0.0107 0.0078 0.0102 0.0115 0.0097 0.0103 0.0106
B4 0.0048 0.0108 0.0109 0.0102 0.0074 0.0096 0.0109 0.0092 0.0098 0.0101
B5 0.0049 0.0110 0.0110 0.0103 0.0076 0.0099 0.0110 0.0094 0.0100 0.0103
B6 0.0053 0.0117 0.0118 0.0110 0.0080 0.0105 0.0118 0.0100 0.0107 0.0109
B7 0.0053 0.0118 0.0119 0.0111 0.0081 0.0106 0.0119 0.0101 0.0107 0.0110
B8 0.0052 0.0117 0.0118 0.0110 0.0080 0.0105 0.0118 0.0099 0.0107 0.0109
B9 0.0047 0.0106 0.0106 0.0099 0.0073 0.0094 0.0106 0.0090 0.0096 0.0098

B10 0.0055 0.0123 0.0123 0.0116 0.0085 0.0111 0.0123 0.0105 0.0111 0.0114
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Table 17. Positive ideal solution and negative ideal solution of each big data analysis enabler.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

f ∗i 0.0138 0.0141 0.0142 0.0099 0.0109 0.0148 0.0104 0.0101 0.0092 0.0135
f−i 0.0093 0.0095 0.0095 0.0067 0.0074 0.0099 0.0070 0.0068 0.0062 0.0091

Table 18. The calculation results of group utility and individual regret.

1/Ti C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

B1 1.8688 0 0 0 0 0 0 0 0 0 0
B2 2.2878 1.6378 1.5548 1.6140 1.5794 1.5397 1.5936 1.5996 1.6040 1.5633 1.5398
B3 2.3245 1.3643 1.3799 1.3268 1.4064 1.4339 1.5345 1.3779 1.4805 1.4914 1.4253
B4 5.1948 4.5551 4.5336 4.4995 4.4658 4.5996 4.7059 4.5528 4.6239 4.6273 4.5459
B5 4.1999 3.2725 3.2938 3.3570 3.2766 3.3528 3.2625 3.3932 3.3533 3.2832 3.2275
B6 8.3822 3.4700 4.0571 3.7258 3.9032 3.9872 4.2217 3.9462 3.9972 3.7228 3.9506
B7 1.9908 0.8092 0.8656 0.7971 0.8723 0.8519 0.8694 0.8602 0.8465 0.8663 0.8410
B8 4.0032 1.8373 1.8819 1.7939 1.9145 1.8920 1.9666 1.8605 1.9981 1.9061 1.9275
B9 1.3074 1.3074 1.3074 1.3074 1.3074 1.3074 1.3074 1.3074 1.3074 1.3074 1.3074

B10 2.2847 0.4359 0.4867 0.4289 0.4601 0.4505 0.4954 0.5300 0.4819 0.5436 0.4840
Sj — 18.6895 19.3607 18.8502 19.1858 19.4149 19.9569 19.4278 19.6928 19.3113 19.2490
Rj — 4.5551 4.5336 4.4995 4.4658 4.5996 4.7059 4.5528 4.6239 4.6273 4.5459

Table 19. The calculation results of Qj.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Q 0.1859 0.4061 0.1336 0.1958 0.5649 1.0000 0.4724 0.7251 0.5817 0.3876

S∗ = 18.6895, S− = 19.9569, R∗ = 4.4698, R− = 4.7059, v = 0.5

In accordance with the two previously presented conditions, Qj was substituted into
Equation (23). Owing to the limitation of condition 2© (acceptable decision reliability),
if both conditions are true, the order can be carried out according to the size of Q (the smaller
Qj is, the better).

The method continued to rank the big data analysis enablers. In accordance with
the two conditions, Qj was substituted into Equation (21). If both conditions are true,
it can be sorted according to the size of Q; the sorting results are shown in Table 20 above
(the smaller Qj is, the better). The final sorting result can be obtained by comparing the
enablers in pairs with the judgment rule:

C3, C1, C4 > C10, C2, C7, C5, C9 > C8 > C6

Table 20. Ranking results of big data enablers.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

S 18.6895 19.3607 18.8502 19.1858 19.4149 19.9569 19.4278 19.6928 19.3113 19.2490
R 4.5551 4.5336 4.4995 4.4658 4.5996 4.7059 4.5528 4.6239 4.6273 4.5459
Q 0.1859 0.4061 0.1336 0.1958 0.5649 1.0000 0.4724 0.7251 0.5817 0.3876

The order of S 10 5 9 8 4 1 3 2 6 7
The order of R 5 8 9 10 4 1 6 3 2 7
The order of Q 2 5 1 3 7 10 6 9 8 4

Weights (1 − Q) 0.1523 0.1111 0.1620 0.1504 0.0814 0.0000 0.0987 0.0514 0.0782 0.1145

At this point, the second stage of the HoQ analysis has been completed. Because the
smaller the Qj value is, the better, 1−Qj was uniformly used as the index weight for the
second-stage HoQ application. The results of the quality function expansion in the second
stage are shown in Figure 4.
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Figure 4. The second stage of HoQ.

4.3. Results and Discussion

Owing to the limited resources of the enterprise, it is impossible to improve, simul-
taneously, the supply chain resilience and big data analysis enablers of all aspects of the
enterprise. Therefore, to maximise corporate interests, limited resources must be used to
reduce or mitigate the most critical sustainable supply chain risks. To reduce risks effec-
tively, suitable supply chain resilience and big data analysis enablers must be identified
and improved. Therefore, a method for improving supply chain resilience based on big
data analysis enablers, the K-J method, fuzzy comprehensive evaluation method, entropy
weight method, Fuzzy Delphi method, and the integration of VIKOR into QFD is presented
to mitigate sustainable supply chain risks. Through the implementation of the two-stage
HoQ, sustainable supply chain risk is transformed into supply chain resilience, and supply
chain resilience is transformed into big data analysis enablers.

One should not select too few indexes or enablers when selecting supply chain re-
silience indexes and big data analysis enablers. Too few choices will result in a diminishing
marginal effect. In other words, when other inputs are fixed, a continuously increasing
input will gradually reduce its new output or income. That is, if an enterprise improves
on only one measure, the benefits may be limited, no matter how great the improvement
is. Of course, it is not advisable to choose too many indexes or factors, because enterprise
resources may become dispersed, and the desired effect will not be achieved. Therefore,
in the case of limited resources, enterprises should first reduce or mitigate the most critical
sustainable supply chain risks; low-level risks can be temporarily shelved until resources
are available. To mitigate sustainable supply chain risks, the most important big data analy-
sis enablers must be improved to strengthen the most critical supply chain resilience factor;
subsequently, the overall supply chain resilience ability must be improved to improve the
risk resilience of enterprises.

A two-stage HoQ and MCDM-combining framework was used in this study. With this
framework, manufacturers can obtain information on key sustainable supply chain risks
that affect the enterprise, and which supply chain resilience solutions should be prioritised
to mitigate sustainable supply chain risks. In addition, the most important big data analysis
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enablers are identified, which enables enterprises to focus on their resources to strengthen
supply chain resilience. In the following sections, we discuss the rankings of the results of
the two HoQs, and the management recommendations arising from the correlation among
these three variables.

4.3.1. Sustainable Supply Chain Risks and Supply Chain Resilience in the First HoQ

The evaluation value E of ‘IT infrastructure risks’, calculated by the fuzzy comprehen-
sive evaluation method, was 4.833 (ranked first). Tied for the second place (all with an E of
4.333) were the ‘risk of interruptions in the customer supply’, ‘transportation interruption
risks’, ‘natural disaster risks’, and ‘risk of government instability’. The evaluation value E of
the other 14 risks was below 4. The priority was to mitigate these five key risks, and avoid
harming the sustainability characteristics of the supply chain.

Risks regarding the IT infrastructure are common in manufacturing. The IT infras-
tructure represents the ability to combine internal and external electronic communication
through hardware and software. IT involves different communication technologies, com-
puters, databases, and technology platforms. The IT infrastructure comprises all IT re-
sources that are crucial for the implementation of business applications and organisational
communication. Therefore, it directly affects the competitiveness of an organisation [121].
Moreover, IT infrastructures are of vital national interest. Some researchers have stated
that IT infrastructure and its security are essential components of smart government sys-
tems, regardless of the national strength of a country. Owing to the rapid development
of information technology, information security risk has become a concern worldwide.
Information system risks can cause huge losses to users [122]. Therefore, each enterprise
should attach great importance to the security of its information system, and increase
respective investments to ensure that information security risks are as low as possible.

Risk regarding customer supply disruptions is one type of the more severe risks. Dis-
ruptions can cause actual economic losses to customers, and, thereby, affect the reputation
of the enterprise. In October 2015, many subsidiaries of an electronics manufacturer in
Shenzhen, China, went bankrupt after its employees went on a strike and the company was
unable to deliver products to its customers. In September 2021, owing to the COVID-19
pandemic, more than 50 cargo ships did not leave the Port of Los Angeles for more than
eight days, which led to interruptions in many supply chains. There are many reasons for
possible customer supply interruptions. Some researchers have pointed out that suppliers
can prevent supply interruptions by influencing the reliability of the supply process [123].

Transportation interruptions have frequently occurred in recent years. There are many
reasons why transportation interruptions have a profound impact on supply chains. When
a cargo ship ran aground in March 2021, the Suez Canal was closed for just a few days;
nevertheless, the electronics sector in many countries was affected by the shortage of
mobile phones, computers, and batteries. Pellegrino et al. pointed out that the shortage of
transport capacity can rapidly cause the entire supply chain to cripple [124]. Pan stated
that transport quality must be ensured, and transport supervision must be strengthened to
prevent disruptions. Moreover, economic and social conditions should be considered to
choose appropriate measures for different types of interruption events [125].

Natural disasters are dangerous events for businesses because the loss cannot be
compensated. In July, 2011, floods hit southern Thailand, thereby forcing the closure
of more than 200 processing plants, and causing 1% direct economic loss of the annual
GDP. In 2018, the Hokkaido earthquake affected many Silicon fabrication plants in Japan;
production had to be suspended, which severely impacted the global semiconductor market.
Permani1 and Xu believe that natural disasters will destroy the trade supply chains of
different countries in the future [126]. Owing to the increasing frequency and severity of
natural disasters, they constitute a great threat to human life and property [127].

Regarding government instability, in the economic development of each country,
the relationship between the government and market has always been an unavoidable key
issue. In June 2019, riots broke out in Hong Kong. Owing to political instability, many
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factories experienced large-scale strikes, and society has been brought to a standstill; in ad-
dition, the electronics industry was affected by the riots. Some researchers have pointed
out that long-term instable political situations will undoubtedly cause great obstacles to
the recovery and development of the manufacturing industry. Moreover, instability in
the policy environment can cause developmental problems or even survival struggles in
enterprises. According to Ilyas et al., government support can significantly strengthen
the relationship between enterprise senior management and supply chain management;
a healthy relationship can help to achieve sustainable development [128].

To help case enterprises reduce these five key sustainable supply chain risks, we also
identified five resilience indices that can improve enterprise resilience. The closeness degree,
Ti, of ‘financial ability’, calculated by the entropy weight method, was 0.1193 (ranked first).
The Ti values of ‘flexibility’, ‘corporate culture’, ‘information sharing’, and ‘robustness’
were 0.1925, 0.2381, 0.2498, and 0.4302, respectively (ranked second to fifth in that order).
The sorting results of the first HoQ have thus been highlighted. The bottom five resilience
indices will not be discussed in this study.

Financial capability is a prominent index of resilience, and one of the most important
indexes of an enterprise. There are many factors that influence financial capability, such as
the environment, society, and policies [129]. To improve the resilience in terms of financial
capability, enterprises must consider many aspects. South Korea’s Samsung Electronics
published its first operating profit loss in 2019 after sales fell sharply short of market
expectations. Nevertheless, owing to its financial strength, Samsung Electronics still spent
the highest amount on R&D worldwide at that time. This investment doubled Samsung’s
assets by 2020. This demonstrates the importance of the financial capability of enterprises.
Improving financial capability has always been the most important research aspect in
financial management for enterprises [130].

Many researchers consider flexibility an important intrinsic feature of systems. In many
manufacturing industries, increasing flexibility across the board can significantly increase
the sustainability of an enterprise, in particular, in industries with high customisation
requirements. For example, Sophia, which is a well-known Chinese clothing brand, has a
flexible production capacity of 28,000 pieces per day, which can be filled with about 700 sets
of wardrobes. Sophia’s flexible production line has formed a strong production support
system in China, which leads the national industry. In addition, Fastems (a century-old
enterprise from Finland) is currently the world’s largest supplier of flexible production
line solutions. The enterprise helped MTU, which is Germany’s largest engine producer,
to achieve flexible production. This reduced the production time, and significantly in-
creased production flexibility. Therefore, some researchers have pointed out that ensuring
comprehensive and accurate implementation standards for flexibility and improving all
factors of flexibility is crucial [131].

Regarding corporate culture, if the culture within a company is not consistent with
the brand’s vision, the produced products will be different from the advertised products;
consequently, its reputation will suffer. Therefore, corporate culture is essential. For exam-
ple, IBM is considered one of the world’s top ten companies with the best corporate culture.
For more than a century, IBM has unswervingly adhered to the three principles: ‘respect for
employees, respect for customers, and excellence in performance’. Owing to IBM’s unique
corporate culture, it was selected as the second-best employer in the world by Forbes 2021
in October 2021. Haier Group, which is also the flagship enterprise of Chinese Electric
Appliances has always placed much importance on its corporate culture. Almost every
cultural aspect of the enterprise has its own slogan. Today, Haier Group is a world-famous
brand. Hence, corporate culture has a crucial role on employees and productivity [132].

Information sharing can solve many current manufacturing problems, e.g., improve
the allocation of resources and supply capacity. In 1984, General Motors was hit by the
oil crisis. Subsequently, it formed an information sharing partnership with Toyota, and re-
ceived first-hand information about Toyota’s production and efficient management modes;
this helped General Motors to overcome the crisis. Qualcomm and Nuvia cannot share
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information, owing to their different design architectures and competitive relationship.
However, in January 2021, Qualcomm acquired Nuvia. This allowed Qualcomm to develop
more core designs and use Nuvia’s architecture, which greatly improved the competi-
tiveness of the enterprise. Many researchers have shown that information sharing can
reduce supply chain costs, improve supply–demand matching, and reduce the bullwhip
effect [133].

Robustness refers to the ability of a supply chain to maintain benefits and continuous
operation functions under the uncertain interference of internal operations and external
emergencies. Owing to the more global economy, supply chains have become increasingly
complex. Every link bears potential risks. In addition, because any problem in any link can
severely impact the entire supply chain, the supply chain must be resistant. For example,
the global manufacturing sector was severely impacted by the COVID-19 pandemic in 2020;
Toyota’s annual sales fell to their lowest level after approximately nine years. Nevertheless,
Toyota still achieved profits, which demonstrate the robustness of Toyota. Owing to
China’s epidemic prevention measures, production could be resumed smoothly. Global
customers have recognised the robustness of China’s supply chains, and global orders have
been transferred to China. A robust supply chain does not suffer significant performance
degradation in response to disruptions [134].

4.3.2. Supply Chain Resilience and Big Data Analysis Enablers in Second HoQ

The weight of each big data analysis enabler was calculated by the VIKOR method.
Among the enablers, ‘the combination of big data infrastructure to support platforms
and systems’ was ranked first, with a weight value of 0.1620. The second was ‘capital
investment’, with a weight of 0.1523. The third was ‘big data sharing and visualisation’,
weighing 0.1504. Compared with the former, the weight values of the latter seven enablers
showed a large gap, which will not be discussed in this study. From the compromise
ranking results of the second HoQ, it can be seen that these three enablers are listed
as the first key enablers of big data analysis. Therefore, it would be insufficient if the
case enterprises improve only one enabler; enterprise managers should consider, at least,
the above three enablers to improve supply chain resilience. In addition, there can also
be some interaction between the three kinds of enablers: enterprise capital investment
can not only help companies build large, effective data centres, and support data sharing
mechanisms, but also support enterprises in building big data technology support platforms
and systems, which will help firms improve their quality of big data, and enhance their
competitive position.

Capital investment is the most direct and effective way to improve the financial
capability and, thereby, the supply chain resilience of an enterprise. The case enterprise is
one of the top 100 electronic manufacturing enterprises in China; hence, capital investment
is an essential aspect. The innovation and upgrade of products and the manufacture of
electronic components require huge investments. For example, TSMC is the world leader
in chip manufacturing. The company expects to invest $100 billion in chip manufacturing
from 2021 to 2023. Furthermore, capital investment is crucial for competitiveness in the
manufacturing industry. Sena pointed out that, over time, the more capital is invested
in enterprises with BDA capabilities, the faster the frontier transfer (i.e., technological
progress) of enterprises is [135]. Increasing the investment can improve the reputation of
enterprises, and attract more investors [136].

Regarding big data sharing and visualisation, for manufacturing companies, collation
and analysis of data is a way to connect with consumers. Big data infrastructure and
visualisation are crucial for this approach. Some researchers have pointed out that data vi-
sualisation makes data more convincing, reveals more in-depth information, and improves
coherence in information transmission [137]. Today, big data applications are moving to
digital platforms, e.g., the real estate analysis platforms, college student teaching service
platforms, audit analysis platforms, and airline Nebula platform. Hence, invisible data



Mathematics 2022, 10, 1233 29 of 35

become visible. Finally, data visualisation enables us to communicate better with the
world [138].

Regarding the combination of big data infrastructures to support platforms and sys-
tems, as the number of internet users worldwide is increasing, data has become an increas-
ingly valuable asset in modern society; the huge data amounts will generate inestimable
value in the future. For example, there are reportedly at least a few hundred thousand
devices that use Google’s services. Even with such a vast big data infrastructure, Google is
still building its own data centres worldwide. Alibaba founder Jack Ma said that ‘Alibaba
Group is essentially a company that expands the value of data.’ Alibaba can be considered
at the forefront regarding the construction of big data infrastructure. In 2017, Alibaba set up
a separate data centre: ‘Ali Data’. Infrastructure is the cornerstone of internet development.
Every upgrade of a key technology is accompanied by an upgrade of its infrastructure,
and BDA infrastructure is crucial for enhancing enterprise resilience [139]. Hence, BDA is
closely related to infrastructure capacity, and can promote SCRE [139].

The second-ranked enablers are the ‘establishment of big data centres’, ‘guiding role
of government departments’, ‘improving the efficiency of big data analysis and processing’,
‘strengthening database and information security protection’, and ‘improving information
technology and information management systems’. The third enabler is ‘storage and
maintenance of big data’.

Although these big data analysis enablers are also important, owing to the limited
resources of enterprises, they should apply the Pareto principle to the analysis results,
i.e., a small number of important causes can have a large impact. The electronics industry
can first focus on enhancing the most important big data analysis enablers to strengthen
the most critical supply chain resilience factors, thereby reducing or mitigating the most
critical sustainable supply chain risks. In addition, once the first three big data analysis
enablers have been improved, the other big data analysis enablers can be improved, thereby
strengthening other supply chain resilience factors and mitigating other sustainable supply
chain risks. Finally, when all sustainable supply chain risks have been mitigated, the risk
resilience of the entire electronic manufacturing supply chain can be greatly improved;
the results will improve the competitiveness of enterprises in the global market.

5. Conclusions

In the global market where sustainable supply chain risks are becoming increasingly
realistic threats, manufacturers have recognised the need to create resilient supply chains.
This study broadens the perspective of risk resilience management in sustainable supply
chains of electronic manufacturing enterprises by considering the major sustainable supply
chain risks, supply chain resilience, and big data analysis enablers from a supply chain
perspective. According to the empirical investigation of the largest relay manufacturer in
China, the main findings are as follows:

• The key sustainable supply chain risks to be mitigated are risks regarding the IT
infrastructure, information systems and communications efficiency, customer supply
disruptions, transport disruptions, natural disasters, and government instability.

• Supply chain resilience must be strengthened in terms of financial capability, flexibility,
corporate culture, information sharing, and robustness.

• The key big data analysis enablers to be improved are ‘capital investment’, ‘building
big data sharing mechanisms and visualisation’, and ‘consolidating big data infras-
tructures to support platforms and systems’.

The decision-making framework proposed in this paper is based on a circular ap-
proach to increase risk resilience based on big data analysis. Regarding the enterprise
strategy, the role of the HoQ is to unfold supply chain resilience based on the risk after es-
tablishing sustainable supply chain risk; subsequently, supply chain resilience is expanded
to determine the big data analysis enablers. Regarding enterprise technology, the role of
the HoQ is to strengthen supply chain resilience with big data analysis enablers, and to
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resist sustainable supply chain risks with the help of supply chain resilience. Thus, these
aspects are closely linked.

The main contributions of this study are as follows:
First, this study first proposed an integrated KJ-FCE-FDM-EWM-VIKOR method

based on the QFD framework for supply chain risk research. This method can support
decision-making to improve enterprise resilience. Using this method can not only reduce
the subjectivity brought by the questionnaire, but also bring more scientific and accurate
research results.

Second, this study integrates sustainable supply chain risk, supply chain resilience,
and big data analysis contributing factors into the above methodological framework for
the first time, and explores the interrelationship between these three variables to construct
feasible resilience solutions for enterprises to mitigate sustainable supply chain risk.

Finally, through the results of data analysis, enterprise managers can effectively adjust
the strategy, operation, and management of the company’s manufacturing system under
the condition of limited resources, and clearly understand where to improve big data
enablers to strengthen the resilience of the supply chain to deal with sustainable supply
chain risks.

We present two future research directions. First, supply chain systems in different
industries can use the framework to design risk resilience solutions. However, the different
characteristics of different industries must be considered to identify their unique risk
factors, which can be integrated in the proposed framework. Second, a practical decision
system for this framework can be developed to enable manufacturers and manufacturing
systems to identify risks effectively, and make decisions autonomously to improve supply
chain resilience.

The reasons for using this combined method are as follows. 1. The data in this study
are entirely from questionnaires, and the Fuzzy Delphi method is one of the mainstream
methods for analysing questionnaire data at present. 2. Considering the unique subjec-
tivity of the questionnaire, this paper hopes to use a more objective evaluation method to
offset the subjective influence brought by the data. Therefore, this study uses the fuzzy
comprehensive evaluation method and entropy weight method to calculate the weight.
Not only does this improve the objectivity of the data, but the results produced by the
former method can be used directly by the latter. The data are not over-processed, which
also ensures data consistency. 3. The most innovative research method in this study is the
use of the VIKOR method. This method is relatively novel and rarely cited by scholars.
In addition, some scholars have proven that this method is a better calculation method.
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Abbreviations

SC Supply chain
SSC Sustainable supply chain
SCM Supply chain management
SSCM Sustainable supply chain management
BDAEs Big data analysis enablers
SCRs Supply chain risks
SSCRs Sustainable supply chain risks
SCRE Supply chain resilience
BDA Big data analysis
QFD Quality function deployment
HoQ House of Quality
MCDM Multicriteria decision-making
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