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Abstract: The theory of quaternions has gained a firm ground in recent times and is being widely
explored, with the field of signal and image processing being no exception. However, many important
aspects of quaternionic signals are yet to be explored, particularly the formulation of Generalized
Sampling Expansions (GSE). In the present article, our aim is to formulate the GSE in the realm of
a one-dimensional quaternion Fourier transform. We have designed quaternion Fourier filters to
reconstruct the signal, using the signal and its derivative. Since derivatives contain information
about the edges and curves appearing in images, therefore, such a sampling formula is of substantial
importance for image processing, particularly in image super-resolution procedures. Moreover,
the presented sampling expansion can be applied in the field of image enhancement, color image
processing, image restoration and compression and filtering, etc. Finally, an illustrative example is
presented to demonstrate the efficacy of the proposed technique with vivid simulations in MATLAB.

Keywords: quaternion algebra; quaternionic signals; quaternion fourier transform; sampling expansion

MSC: 42A38; 26A33

1. Introduction

The Shanon’s sampling theorem [1] in the Fourier domain is one of the remarkable,
profound and elegant concepts of digital signal processing which serves as a bridge between
the analog and digital signals. The theorem asserts that a bandlimited signal can be
completely reconstructed from its values at regularly spaced times. Since the seminal work
of Shannon, many generalizations of the classical sampling theorem have been developed;
however, the most important ramification came in the form of the Generalized Sampling
Expansion (GSE), which is often referred as the multi-channel sampling expansion, mainly
for the reason that it relies on non-uniform or multi-channel data acquisition. The multi-
channel sampling procedure has attained a respectable status in the context of signal
processing due to the fact that it can be employed in situations where the classical Shannon’s
sampling procedure is not applicable. For instance, the classical Shanon’s sampling theorem
is infeasible for broad-band or non-stationary signals in case the sampling rate is not chosen
in accordance to the demand of a particular domain; however, the GSE proves to be handy
in such situations as it primarily relies on multi-channel data acquisition. As of now,
the GSE has been successfully applied in diverse aspects of signal and image processing,
such as digital flight control, flexible analog–digital converters, data compression, image
super-resolution and several other fields [2–4].

On the other hand, the quaternion algebra has flourished as one of the nicest alterna-
tives to the familiar system of real and complex numbers. The quaternion algebra offers a
simple and insightful approach for the efficient representation of signals, wherein several
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components are to be controlled simultaneously, for instance, in three-dimensional com-
puter graphics, aerospace engineering, artificial intelligence and color image processing.
Keeping in view the merits of the quaternion algebra, T.A. Ell [5] introduced the notion of
the quaternion Fourier transform (QFT) as an extension of the classical Fourier transform
to hyper-complex algebras. Since its advent, the QFT has proven to be a harbinger of
new research trends and has been successfully applied in numerous aspects of signal and
image processing, particularly in speech recognition, acoustics, three-dimensional color
field processing, space color video processing, crystallography, aerospace engineering and
for the solution of many types of quaternionic differential equations [6–20].

Owing to the prolificacy of the GSE, the concept has been extended to several new
directions in the open literature. For instance, Hoskins and Pinto [21] extended the GSE
to bandlimited distributions, Wei et al. [22] introduced the GSE to the fractional Fourier
transform, Cheung [23] extended the GSE to multi-dimensional setting and Li and Xu [24]
investigated the GSE in the linear canonical domain. Nevertheless, very recently, Shah
and Tantary [25] formulated the lattice-based multi-channel sampling theorem in the
multi-dimensional linear canonical domain and also demonstrated its applications for
signal reconstruction and image super-resolution. In 2016, R. Roopkumar introduced the
quaternionic one-dimensional fractional Fourier transform [26]. Bahri et al. defined a one-
dimensional quaternion Fourier Transform in 2019 [27]. Siddiqui et al. gave the definition
of a quaternion one-dimensional linear canonical transform [28]. M.I. Khalil investigated
a new steganography technique for hiding a textual message within a cover image using
the quaternion Fourier transform [29]. Although the uniform sampling theorems for
bandlimited signals in the quaternion domain have been derived in [30], to date, not
a single attempt has been made to extend the GSE to the quaternion Fourier domain
in one dimension. The aim of this paper is to fill this gap by formulating the GSE for
one-dimensional quaternionic bandlimited signals in Fourier transform domain. Such
a sampling expansion shall be of critical significance in diverse aspects of color image
processing, image enhancement, image restoration and compression, filtering and so on.

The rest of the article is divided into five sections. In Section 2, we present the
preliminaries including the fundamental notions of quaternion algebra and the quaternion
Fourier transform abreast of their basic properties. Section 3 is completely devoted to
the formulation of GSE for one-dimensional bandlimited quaternion signals. Section 4
incorporates the details about the reconstruction formula using the derivatives of the
quaternionic signal. In addition, an illustrative example with simulation results describing
the applicability of the proposed sampling expansion in signal reconstruction is presented
in Section 5. Finally, a conclusion is extracted in Section 6.

2. The Quaternion Algebra and Quaternion Fourier Transform

In this section, we present the fundamental notions regarding the celebrated quater-
nion algebra and the associated Fourier transform, which shall be subsequently used while
formulating the main results.

2.1. Quaternion Algebra

The concept of quaternion algebra was introduced by W.R. Hamilton [31,32] in 1843. In
the sequel, the quaternion algebra appeared to be designated by the letter H in honor of the
Irish mathematician Sir W.R. Hamilton. The quaternion algebra provides an extension of a
well-known complex number system to an associative and non-commutative four-dimensional
algebra. In the hyper-complex plane, the quaternion algebra is written as follows:

H =
{

h = h0 + h1i + h2j + h3k; h0, h1, h2, h3 ∈ R
}

,

where the three imaginary units i, j and k obey the Hamilton’s multiplication laws as:

ijk = i2 = j2 = k2 = −1
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and
ij = −ji = k, jk = −kj = i, ki = −ik = j.

The addition of any pair of quaternions h = h0 + h1i + h2j + h3k and h′ = h′0 +
h′1i + h′2j + h′3k is defined component-wise, whereas the multiplication is governed by the
following law:

h h′ = (h0h′0 − h1h′1 − h2h′2 − h3h′3) + (h1h′0 + h0h′1 + h2h′3 − h3h′2) i

+ (h0h′2 + h2h′0 + h3h′1 − h1h′3) j + (h0h′3 + h3h′0 + h1h′2 − h2h′1)k.

Moreover, the conjugate of any quaternion h is given by h = h0 − h1i− h2j− h3k, so that
the multiplication of the quaternion h with its conjugate h takes the form hh = h2

0 + h2
1 + h2

2 + h2
3.

In addition, the modulus of the quaternion h is given by |h| =
√

hh =
√

h2
0 + h2

1 + h2
2 + h2

3.

Finally, we note that the inverse of any non-zero quaternion h can be expressed as h−1 = h
|h|2 .

2.2. The Quaternion Fourier Transform

The quaternion Fourier transform (QFT) serves as a natural extension of the usual
complex-valued Fourier transform; however, under such an extension, certain properties of
the classical Fourier transform are lost, while most of the fundamental properties, such as
the Parseval’s and inversion formulae, are preserved under suitable conditions in the hyper-
complex algebra. Primarily, the quaternion Fourier transforms can be broadly classified
into two categories: the one-dimensional QFT and the two-dimensional QFT. Nonetheless,
the extension beyond two dimensions is possible, but the same is best suited in the context
of the well-known Clifford algebra: a generalization of both the Grassmann’s exterior
algebra and Hamilton’s algebra of quaternions. One of the intrinsic features of the Clifford
analysis is that it encompasses all dimensions at once, as opposed to a multi-dimensional
tensorial approach with tensor products of one-dimensional phenomena. To work within
the scope of this article, we shall omit any further reference to the Clifford algebra and the
associated Fourier transform.

Due to the non-commutativity of the quaternions, there are several approaches of
defining the two-dimensional quaternion Fourier transform. In fact, for a given two-
dimensional quaternion signal, the two-sided, right-sided and left-sided quaternion Fourier
transforms are defined as follows:

(i) Two-sided QFT: For a given two-dimensional quaternionic signal f (u, v), the two-
sided QFT is denoted by FT(r, s) and is defined as:

FT (r, s) =
∫

R2
e−i2πru f (u, v) e−j2πsvdu dv. (1)

(ii) Right-sided QFT: The right-sided QFT for two-dimensional quaternionic signal f (u, v),
is denoted by FR(r, s) and is defined as:

FR(r, s) =
∫

R2
f (u, v) e−i2πrue−j2πsvdu dv. (2)

(iii) Left-sided QFT: For the quaternionic signal f (u, v), the left-sided QFT is denoted by
FL(r, s) and is defined as:

FL(r, s) =
∫

R2
e−i2πrue−j2πsv f (u, v) du dv. (3)

Not withstanding the notion of two-dimensional QFT, another important variant of
the quaternion Fourier transform is the one-dimensional QFT, which is practically reliable
in the sense that it is governed by a one-dimensional integral expression. Below, we present
the formal definition of the one-dimensional quaternion Fourier transform.
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Definition 1. One-dimensional QFT: For a given quaternion-valued signal f (t) ∈ L1(R, H),
the one-dimensional quaternion Fourier transform is denoted by FQ{ f }(ω) and is defined as [27]:

FQ{ f }(ω) =
∫

R
f (t) e−j2πωtdt. (4)

The inversion formula corresponding to the one-dimensional QFT given in (4) is
defined in [27]:

f (t) = F−1
Q

[
FQ{ f }

]
(t) =

∫
R

FQ{ f }(ω)ej2πωtdω. (5)

Moreover, if the input function f (t) ∈ L1(R, H) is a continuously differentiable func-
tion, then the following differentiation property holds:

FQ

{
dn f
dtn

}
(ω) =

(
j2πω

)nFQ{ f }(ω), n ∈ N (6)

In addition, other fundamental properties of the one-dimensional QFT given in (4) can
be found in [27].

From Definition 1, it follows that, for the function f (t) to be a real value, we can
interchange the position of the kernel e−2πjωt to either the left or right side of the function.
Otherwise, the same is not possible due to the non-commutativity of the quaternions.

In [30], the authors have derived GSE associated with QFT in two dimensions. They
have used the matrix and vector approach for this. In the present article, we have proposed
the GSE using the signal and its derivative as that of [22]. This GSE is performed for the
first time in one-dimensional quaternionic signals.

3. Generalized Sampling Expansion in the Quaternion Fourier Domain

This section constitutes the centerpiece of this article and is completely devoted to the
formulation and validity of the GSE in the context of a one-dimensional QFT.

To begin with, we have the following definition:

Definition 2. Bandlimited Signal: A signal f (t) is said to be bandlimited in the quaternion
Fourier domain if FQ{ f }(ω) = 0, for |ω| > Bα. In that case, the scalar Bα is called as the
bandwidth of the quaternion-valued signal f (t).

In order to facilitate the formulation of the GSE in the quaternion Fourier domain, we
choose a set of M linear filters:

Hα
1 (ω), Hα

2 (ω), . . . , Hα
M(ω), (7)

which are bandlimited in the quaternion Fourier domain. Applying these M linear filters
to the quaternionic bandlimited signal f (t) and invoking the inversion Formula (5) yields
the following output:

gk(t) =
∫

R
FQ{ f }(ω) Hα

k (ω) ej2πωtdω, k = 1, 2, · · ·, M. (8)

Then, our goal is to demonstrate that the bandlimited signal f (t) can be exactly
reconstructed from the outputs

gk(nT0), k = 1, 2, . . . , M and n ∈ Z,
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which are sampled at 1/M of the Nyquist rate of the quaternion Fourier domain with the
sampling period T0, satisfying T0 = MT = Mπ/Bα. To do so, we generate the following
system of equations:

Hα
1 (ω)Y1(ω, t) + · · ·+ Hα

M(ω)YM(ω, t) = 1

Hα
1 (ω + c)Y1(ω, t) + · · ·+ Hα

M(ω + c)YM(ω, t) = ej2πct

...

Hα
1
(
ω + (M− 1)c

)
Y1(ω, t) + · · ·+ Hα

M
(
ω + (M− 1)c

)
YM(ω, t) = ej2π(M−1)ct

(9)

where −Bα ≤ ω ≤ −Bα + c and c = 2Bα/M is the sub-bandwidth parameter in the sense
that it divides the total band of the given signal in the quaternion Fourier domain into M
equal parts. The above system of equations gives rise to a set of M unknown functions
Y1(ω, t), . . . , YM(ω, t), and the necessary condition for this system to have a solution is that
the determinant of its coefficients is non-zero for every ω ∈ [−Bα,−Bα + c]. Moreover,
another reasonable assumption, which ought to be mentioned, is that each of these M
unknown functions can be expanded via the Fourier series over the interval [−Bα,−Bα + c].
Consequently, we infer that the filter functions Hα

k (ω) are not completely arbitrary as they
have to satisfy the system of Equation (9).

Theorem 1. Suppose that a quaternionic bandlimited signal f (t) with bandwidth Bα is passed
through M quaternion Fourier filters Hα

1 (ω), Hα
2 (ω), . . . , Hα

M(ω). Then, we have:

f (t) =
∞

∑
n=−∞

[
g1(nT0) y1(t− nT0) + g2(nT0) y2(t− nT0) + · · ·+ gM(nT0) yM(t− nT0)

]
, (10)

where gk(t), k = 1, 2, . . . , M are the M outputs of the given set of quaternion Fourier filters (7) and

T0 =
2π

c
=

Mπ

Bα
,

with the synthesis functions being given by:

yk(t) =
1
c

∫ −Bα+c

−Bα

Yk(ω, t) ej2πωt dω. (11)

Proof. Firstly, note that:

c(t + nT0) = ct + cnT0 = ct +
(

2Bα

M

)
n
(

Mπ

Bα

)
= ct + 2nπ, (12)

which demonstrates that the right side of the system of Equation (9) is periodic with period
T0. In addition, since each of the filter functions appearing in (7) are independent of t,
therefore, we conclude that each of the functions Y1(ω, t), Y2(ω, t), . . . , YM(ω, t) must be
periodic in t with the same period T0. Thus, we have:

Yk(ω, t + nT0) = Yk(ω, t), k = 1, 2, . . . , M. (13)

Consequently, in view of (11), we obtain:

yk(t− nT0) =
1
c

∫ −Bα+c

−Bα

Yk(ω, (t− nT0)) ej2πω(t−nT0) dω

=
1
c

∫ −Bα+c

−Bα

Yk(ω, t) ej2πωte−j2πωnT0 dω, k = 1, 2, . . . , M. (14)
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The expression (14) clearly indicates that yk(t− nT0) is the nth Fourier coefficient of
the Fourier series expansion of the function Yk(ω, t) ej2πωt over the interval [−Bα,−Bα + c].
Hence, employing the formal definition of Fourier series yields the following:

Yk(ω, t) ej2πωt =
∞

∑
n=−∞

yk(t− nT0) ej2πωnT0 , k = 1, 2, . . . , M. (15)

Upon multiplying both sides of the system (9) with ej2πωt and then plugging (15) into
(9), we obtain:

Hα
1 (ω)

∞

∑
n=−∞

y1(t− nT0) ej2πωnT0 + · · ·+ Hα
M(ω)

∞

∑
n=−∞

yM(t− nT0) ej2πωnT0 = ej2πωt

Hα
1 (ω + c)

∞

∑
n=−∞

y1(t− nT0) ej2πωnT0 + · · ·+

Hα
M(ω + c)

∞

∑
n=−∞

yM(t− nT0) ej2πωnT0 = ej2π(c+ω)t

...

Hα
1
(
ω + (M− 1)c

) ∞

∑
n=−∞

y1(t− nT0) ej2πωnT0 + · · ·+

Hα
M
(
ω + (M− 1)c

) ∞

∑
n=−∞

yM(t− nT0) ej2πωnT0 = ej2π(c(M−1)+ω)t

(16)

where−Bα ≤ ω ≤ −Bα + c. In addition, by virtue of (12), we have , ej2πωnT0 =, ej2π(ω+c)nT0 ,
so the system (16) can be unified as follows:

Hα
1 (ω)

∞

∑
n=−∞

y1(t− nT0) ej2πωnT0 + · · ·+ Hα
M(ω)

∞

∑
n=−∞

yM(t− nT0) ej2πωnT0 = ej2πωt (17)

Invoking the inversion formula for the one-dimensional QFT, we obtain:

f (t) =
∫

R
FQ{ f }(ω) ej2πωtdω

=
∫

R
FQ{ f }(ω) [Hα

1 (ω)
∞

∑
n=−∞

y1(t− nT0) ej2πωnT0

+ · · ·+ Hα
M(ω)

∞

∑
n=−∞

yM(t− nT0) ej2πωnT0 ]dω.

Finally, using the expression (8), we obtain the desired GSE as:

f (t) =
∞

∑
n=−∞

[
g1(nT0) y1(t− nT0) + g2(nT0) y2(t− nT0) + · · ·+ gM(nT0) yM(t− nT0)

]
.

This evidently completes the proof.

Here, it is important to mention that the above-obtained GSE reveals that a quater-
nionic bandlimited signal can be exactly reconstructed from a given set of M quaternion
Fourier filters; that is, if the original signal is not directly accessible, we still can reconstruct
the signal using the GSE.

4. Sampling Using the Signal and Its Derivative

Having formulated the GSE pertaining to the quaternion Fourier transform, we shall
next obtain another reconstruction formula using the derivatives of the quaternionic signal.
Since derivatives contain information about the edges and curves appearing in images,
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therefore, such a sampling formula is of substantial importance for image processing,
particularly in image super-resolution procedures.

Theorem 2. If Bα is the bandwidth of a continuously differentiable quaternion-valued function f ,
then we have:

f (t) =
∞

∑
n=−∞

[
f (nT0)

(
sin2(πBα(t− nT0))

π2B2
α(t− nT0)2

)
+ f ′(nT0)

(
sin2(πBα(t− nT0))

π2B2
α(t− nT0)

)]
. (18)

Proof. In view of the differentiation property (6) of the QFT, we choose the quaternionic
filters as:

Hα
1 (ω) = 1, Hα

2 (ω) = (j2πω), Hα
3 (ω) = (j2πω)2, . . . , Hα

M(ω) = (j2πω)M−1. (19)

In addition, for M = 2, the sub-bandwidth parameter is given by c = Bα. Conse-
quently, the system of Equation (9) becomes:

Y1(ω, t) + (j2πω)Y2(ω, t) = 1

Y1(ω, t) +
(
j2π(ω + Bα)

)
YM(ω, t) = ej2πBαt (20)

Upon solving the above pair of equations, we obtain:

Y1(ω, t) = 1−
ω
(
ej2πBαt − 1

)
Bα

, and Y2(ω, t) =
ej2πBαt − 1

j2πBαt
(21)

Therefore, plugging the explicit expressions for the functions Y1(ω, t) and Y2(ω, t) into
(11) yields:

y1(t) =
1

Bα

∫ 0

−Bα

[
1−

ω
(
ej2πBαt − 1

)
Bα

]
ej2πωt dω =

sin2(πBαt)
π2B2

αt2 (22)

and

y2(t) =
1

Bα

∫ 0

−Bα

(
ej2πBαt − 1

j2πBαt

)
ej2πωt dω =

sin2(πBαt)
π2B2

αt
. (23)

Now, it remains to obtain the respective outputs of the filters applied to the quater-
nionic bandlimited signal. In this direction, we shall invoke (8), so that:

g1(t) =
∫

R
FQ{ f }(ω) Hα

1 (ω) ej2πωtdω =
∫

R
FQ{ f }(ω) ej2πωtdω = f (t) (24)

and

g2(t) =
∫

R
FQ{ f }(ω) Hα

2 (ω) ej2πωtdω

=
∫

R
(j2πω) FQ{ f }(ω) ej2πωtdω

=
∫

R
FQ

{
d f
dt

}
(ω) ej2πωtdω

=
d f
dt

= f ′(t). (25)
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Finally, implementing (23)–(25) into (10), we obtain the desired reconstruction formula
involving the derivatives of the quaternion-valued signal as:

f (t) =
∞

∑
n=−∞

[
f (nT0)

(
sin2(πBα(t− nT0))

π2B2
α(t− nT0)2

)
+ f ′(nT0)

(
sin2(πBα(t− nT0))

π2B2
α(t− nT0)

)]

This completes the proof.

By choosing the values of M ≥ 2 and noting that gk(t) = f k−1(t), k = 1, 2, . . . , M,
we can obtain a reconstruction formula involving the higher-order derivatives of the
quaternion-valued signal f (t).

5. Simulation Results

In order to show the correctness and effectiveness of the derived results, we have used
simulations in MATLAB. Consider the quaternion-valued signal f (t) = h sin c(t), where
h = h0 + h1i + h2j + h3k ∈ H. In order to carry out the numerical simulations, we choose
h0 = 1, h1 = 2, h2 = 3 and h3 = 4 and plot the corresponding function f (t) in Figure 1.
Firstly, we claim that f is bandlimited in the quaternion Fourier domain. To do so, we
proceed as follows:

FQ{ f }(ω) =
∫

R
f (t) e−j2πωtdt

=
∫

R
sin ch(t) e−j2πωtdt

=
h
2

χ[−1,1](−2ω)

=
h
2

χ[−1/2,1/2](−2ω), (26)

where χ denotes the usual characteristic function. From expression (26), it is clear that indeed
the quaternion Fourier spectrum of the signal f lives onto the interval [−1/2, 1/2] and is
zero outside. Hence, we conclude that f is bandlimited in the quaternion Fourier domain
with bandwidth Bα = 1/2. The quaternion Fourier transform of the signal f (t) is plotted
in Figure 2. Consequently, we have c = 2Bα/M = 1/M and T0 = MT = Mπ/Bα = 2π.
Hence, we choose M = 1 and Hα

1 (ω) = 1, yielding Yk(ω, t) = 1 and g1(t) = f (t), so that
g1(nT0) = g1(2nπ) = h sin c(2nπ). In addition, note that the synthesis function is given
by:

y1(t) =
1
c

∫ −Bα+c

−Bα

Yk(ω, t) ej2πωt dω

=
∫ 1/2

−1/2
ej2πωt dω

=

[
ej2πωt

j2πt

]1/2

−1/2

=
1

πt

(
ejπt − e−jπt

2j

)
=

sin(πt)
πt

= sin c(t).

Finally, using the reconstruction Formula (10) with M = 1, we obtain:

f (t) =
∞

∑
n=−∞

[
g1(nT0) y1(t− nT0)

]
= h

∞

∑
n=−∞

[
sin c(2nπ) sin c(t− nT0)

]
. (27)
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Figure 1. The quaternion-valued signal f (t) = (1 + 2i + 3j + 4k) sin c(t).
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Figure 2. The quaternion Fourier transform of the quaternion-valued signal f (t).

The sampled signal f (nT0) is plotted in Figure 3, whereas the reconstructed signal (27)
is plotted in Figure 4.
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Figure 3. The sampled parts of the quaternion-valued signal given by f (nT0).
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Figure 4. The reconstructed quaternionic signal.

6. Conclusions

Focusing on the signals in one dimension and its derivatives in the QFT domain, this
paper investigates several versions of the Generalized (multi-channel) Sampling Expansion.
Firstly, we obtained the most general form of the sampling expansion involving general
quaternionic filter and synthesis functions. Secondly, we deduced the GSE involving the
derivatives of the input signal as derivatives are significant where information is required
about the edges and curves appearing in images; therefore, such a sampling formula is
of critical importance for image processing, which stimulates interest for future work on
the subject. Moreover, this work can lead researchers to focus on the different aspects
of one-dimensional signals in the quaternion domain. Finally, the applicability of the
proposed multi-channel sampling procedure is demonstrated via an illustrative example
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on the quaternion signal reconstruction. The results in the simulation part clearly show the
effectiveness of the proposed scheme to reconstruct the signal from its derivatives.

Our future work about the sampling of quaternionic one-dimensional LCT is in progress.
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