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Abstract: In the game industry, tardiness is an important issue. Unlike a unifunctional machine,
a developer may excel in programming but be mediocre in scene modeling. His/her processing
speed varies with job type. To minimize tardiness, we need to schedule these developers carefully.
Clearly, traditional scheduling algorithms for unifunctional machines are not suitable for such
versatile developers. On the other hand, in an unrelated machine scheduling problem, n jobs can be
processed by m machines at n × m different speeds, i.e., its solution space is too wide to be simplified.
Therefore, a tardiness minimization problem considering three job types and versatile developers
is presented. In this study, a branch-and-bound algorithm and a lower bound based on harmonic
mean are proposed for minimizing the total tardiness. Theoretical analyses ensure the correctness of
the proposed method. Computational experiments also show that the proposed method can ensure
the optimality and efficiency for n ≤ 18. With the exact algorithm, we can fairly evaluate other
approximate algorithms in the future.

Keywords: harmonic mean; optimization; total tardiness; branch-and-bound algorithm; lower bound
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1. Introduction

Game development is a complicated professional domain in which three limited
resources, i.e., money, manpower, and time, have to be carefully managed. First, we should
note that the cost of developing a multimedia game, e.g., an online game, is rising. The
budget for developing a commercial multi-player game is at least $1,000,000. For some
large-scale games, e.g., Grand Theft Auto V, developing a single version may even cost a
company around $10,000,000 [1–4]. But once a successful game is released, it might earn a
billion dollars in profit, e.g., [5,6]. In light of the above observations, game development
involves considerable expertise, such as product planning, graphic design, sound design,
programming, and testing. To avoid endless budget amendments, it is essential to carefully
schedule all the jobs at the beginning.

Such a large game cannot be implemented by a single developer, making good team-
work another essential factor. A small-sized game may be implemented by a single de-
signer. However, for some large-scale multimedia games, the team size may range from 3
to 100 professionals [7,8]. Each game draws upon various areas of expertise. For instance,
a single piece of music requires various professional skills, e.g., composing, songwriting,
dubbing, and sound effects. The professionals with these skills are sourced from different
kinds of personnel pools. Some may be official company employees, while others may
be temporarily recruited freelancers. Clearly, semi-finished products made by the former
must be passed to the latter on schedule. If a critical job is delayed, it may leave dozens of
professionals idle. Since their wages, hotel expenses, and dining fees need to be paid even
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during such an idle period, such costly human resources need to be carefully scheduled
in advance.

The third major resource is time. These multimedia games must eventually be released
onto the market, so game developers have to race against time to finish them as early
as possible. Since these developers have various areas of expertise, their time costs are
different. Consider two developers, Mary and Tom. Mary may be highly proficient at
figure design, while Tom may excel in scene design. There are 100 figure design jobs,
and both developers are qualified for these jobs. Any daily delay of a job will result in
a $100 penalty. Consider further that Mary requires 30 person-days and charges $50,000;
Tom takes 50 person-days and charges $30,000. To whom should we assign these jobs?
How does a delayed job affect the following jobs? These jobs must be carefully scheduled
in the beginning. Any delay in a critical job may cause serious damage. For scheduling
such a project, the cost, time, and expertise should be considered as a whole. Clearly, it
is not easy to solve such a scheduling problem by labor-intensive means. That is, such a
scheduling problem in the game industry is no less challenging than those in the aviation,
semiconductor, and construction industries.

In light of the above observations, it is clear that tardiness minimization is important in
the game industry. In general, the jobs in a large multimedia game have various properties
and different tolerance degrees to delay. For example, the job of leading figure design
should be completed as early as possible—such an urgent job had better not be delayed.
Conversely, late poster design or user manual translation may not cause a huge loss. If
possible, all the jobs would best be completed on time. However, as in other industries, it is
difficult to schedule more than 20 jobs manually. Therefore, tailored scheduling algorithms
for reducing tardiness in the game industry are called for.

Assigning similar jobs to a developer with corresponding expertise helps to reduce
tardiness. With the continued refinement of the game industry, developers specialize in
different areas of expertise. Let us consider the above example again. Mary should be
assigned figure design jobs, and Tom, scene design jobs. However, there are still some other
constraints. Suppose that Mary is overloaded with a lot of figure design jobs. Although
Mary is highly proficient at figure design, we had better assign some figure design jobs
to Tom. Clearly, the computation of such trade-offs is very complicated. This is because
multi-specialty developers are not taken into account in traditional scheduling models.
Again, some new algorithms for scheduling such jobs and developers in the game industry
are needed.

The following three properties distinguish the presented problem from traditional
ones. First, for traditional heterogeneous machine scheduling problems, e.g., [9,10], a capa-
ble machine always outperforms others in terms of speed. However, for the presented
problem, a developer may excel in figure design and programming but be mediocre in
script design. That is, a single developer (or machine) simultaneously has both merits and
shortcomings. It depends on what jobs are assigned to him/her. The considerations of the
presented problem are more complicated than those of traditional heterogeneous machine
scheduling problems.

Second, compared with identical machine scheduling problems, e.g., [11,12], the
amount of computation of the presented problem is large. For m identical machines, we
do not need to consider their permutations. Therefore, the solution space of the presented
problem is about m! times larger than that of an identical machine scheduling problem. To
our best knowledge, few researchers have focused their efforts on this emerging industry.
However, the limited resources (i.e., money, time, and manpower) in this industry are
seldom discussed.

Third, it is difficult to develop efficient lower bounds in a traditional unrelated machine
scheduling problem, e.g., [13,14]. For n jobs, the processing speeds of m machines are
all different; there are m × n various combinations, i.e., a large solution space. However,
in most situations, a game developer usually processes his/her own desired jobs, i.e.,
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one or two types. Such unrelated machine models are too complicated to schedule these
developers in the game industry.

In this study, an optimization problem is presented. It is obvious that traditional
scheduling algorithms cannot be directly applied to the problem. First, in unifunctional
machine scheduling problems, a machine usually processes jobs at a fixed speed, e.g.,
a welding robot. In the presented problem, the processing speed is determined by the
fitness between developers and job types. That is, the combinations that are needed to
be considered become greater in number. Second, jobs with agreeable processing times
and due dates, e.g., [15], are commonly employed to develop lower bounds and minimize
tardiness. However, this technique will lead to an anomaly. Consequently, we propose
an exact algorithm to schedule these various jobs and versatile developers in the game
industry. Two main contributions are made in this study. First, a branch-and-bound
algorithm is proposed for ensuring the optimality for n ≤ 18. Second, a lower bound based
on a harmonic mean is developed to improve the execution efficiency.

The rest of this study is organized as follows. In the Section 2, past research is
introduced. In the Section 3, the scheduling problem considering versatile developers
is formulated. In the Section 4, a lower bound and a branch-and-bound algorithm are
developed. In the Section 5, experiments are conducted to show the execution efficiency of
the proposed algorithms. Conclusions are drawn in the Section 6.

2. Related Work

In this section, the motivations for tardiness minimization in the game industry are
introduced. Moreover, the differences between the presented problem and traditional ones
are also discussed.

2.1. Game Industry

Game development requires effective control of manpower, money, and time. Man-
power plays a vital role in this industry. Unlike ordinary industries (e.g., lumbering), the
modern game industry is dependent on versatile developers cooperating to develop their
products. These developers may be first-party designers (e.g., Nintendo), second-party
developers (e.g., [16]), or even third-party participants (e.g., [17–19]). Each of them may
be multi-functional, able to deal with several kinds of jobs. This implies that scheduling
these developers is more complicated than scheduling unifunctional machines in tradi-
tional industries. On the other hand, human resources in the game industry are expensive.
From 2007 to 2018, the annual salaries of these developers increased from $66,000 to
$73,000 [20,21]. Moreover, the team sizes range from a few to a hundred professionals,
and the members of a team may be geographically distributed across two or three con-
tinents [7,8]. Although the scale of a game project is not always so large, the amount of
computation for scheduling such a game project is still amazing. Especially for some critical
jobs, tardiness can lead to heavy penalties [22,23]. Poorly managed projects may result in
missed deadlines, cost overruns, reworking, or complaints. For more management failures,
please refer to [24].

Incurring high costs is a not a rare phenomenon in the game industry. Due to advance-
ments in technology, the plot of an online game may be more complicated than that of a
motion picture, and the settings of a large game may be more fantastic than any scenic
spot in the real world. Consequently, the costs of some well-known games, e.g., Call of
Duty ($250 million), are higher than those of some science fiction films [1,25]. Moreover, a
multimedia game is usually developed by a team instead of a single designer. Consequently,
any delay may keep dozens of developers idle, which may entail further expenditures
on wages, hotel expenses, and dining fees. In fact, due to bad control of budgets, most
commercial games did not earn profits [7,26,27]. Such failures imply that effective budget
control is an important issue in the game industry. For more information about game
budgets and revenues, readers can refer to [2–6,8,28–31].
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Time management is inevitable in the game industry. Both the game industry and
traditional industries require massive capital investment, but the game industry has a
special feature: time effectiveness. If a new house is 10 days late for the market, its price
will not change greatly. However, if the official release of a commercial game is postponed
and a rival gets ahead of the game, no players will consider the product of the loser because
the novelty soon wears off. Moreover, with big data, we are able to predict or estimate a
developer’s behaviors at the operational level easily. For example, all the technological
processes of a developer can be observed and recorded, e.g., processing time, job type,
failure probability; these data can be established as a database or a smart factory and such
experiences can be repeatedly accessed and utilized [32–34]. In light of these observations,
we learn that it becomes more possible and more necessary to punctually manage a large
game project than before.

In summary, the game industry has grown to a considerable scale. It is impossible
for a single designer to implement a large-scale multimedia game. Consequently, more
efficient and effective management of manpower, money, and time is needed, rather than
traditional labor-intensive tools.

2.2. Total Tardiness

In traditional multi-machine scheduling problems, the objective is usually to minimize
the total tardiness, i.e., the sum of all jobs’ tardiness. Each job is tagged with a due date.
Once a job is delayed, the objective cost increases. Moreover, in general, the tardiness
of a job may lead to its successors’ tardiness. That is, there might be a ripple effect, in
which the delay of a small job can affect the whole project. This means that the amount of
computation of scheduling is huge, especially for multi-machine scheduling. For example,
Mensendiek et al. [35] aimed to minimize the total tardiness of all the jobs on identical
machines. They proposed a branch-and-bound algorithm for generating the optimal
solutions and a metaheuristic algorithm, i.e., a genetic algorithm for obtaining approximate
solutions. Due to the NP-hardness of this problem, the branch-and-bound algorithm
performed well only for n ≤ 18, where n means the number of jobs. Wang [9] considered
a total minimization problem on heterogeneous machines. A branch-and-bound algorithm
was developed to ensure optimality for n ≤ 18. Note that m identical machines are much
easier to schedule than m heterogeneous machines. For m identical machines, we only
focus on how to permute n jobs, and we do not need to consider how to permute these
identical machines. For example, in [13,36,37], they solved easier multi-machine scheduling
problems. The reasons are stated as follows. First, since these machines are the same, the
number of all the possible solutions for identical machines is just about 1/(m!) of that for
heterogeneous machines. Second, each identical machine processes all jobs at a fixed speed.
However, in our presented problem, a developer can perform jobs at different speeds. It
depends on the type of each job. These differences imply that scheduling heterogeneous
machines is more difficult. For more references to tardiness minimization, we can refer
to [11,38–41].

Developing a large-scale game may involve thousands of jobs and hundreds of de-
velopers. Without proper scheduling algorithms, some jobs may be tardy. More seriously,
a ripple effect will cause more jobs to be delayed. For example, tardiness will lead to
low return rate and poor customer satisfaction [42,43]. Consequently, it is worthwhile to
develop scheduling algorithms to minimize the total tardiness in the game industry.

2.3. Branch-and-Bound Algorithm

Branch-and-bound algorithms always generate the optimal solutions. These solution
techniques are used for solving discrete and combinatorial optimization problems. Their
great merit is their optimality, whereas their shortcoming is time consumption. Conse-
quently, they are employed only for a small problem. For example, for using branch-and-
bound algorithms to minimize total tardiness on a single machine, the maximal problem
sizes for [44–46] are 18, 20, and 25, respectively. For minimizing the total tardiness on



Mathematics 2022, 10, 1200 5 of 24

identical machines, the maximal problem sizes for [11,47] are 10, and 25, respectively. If
machines are heterogeneous, the optimally solvable problem size of a branch-and-bound
algorithm will decrease, e.g., n = 15 in [43] and n = 18 in [9]. This is because the solution
space of a heterogeneous machine scheduling problem will be m! times larger than that
of an identical machine scheduling problem. Even so, many researchers have focused
on developing branch-and-bound algorithms in traditional industries. Unlike traditional
industries, however, the modern game industry has various jobs and versatile developers.
Namely, more efficient algorithms are needed for the complicated situation in the game
industry. However, such exact algorithms are very time-consuming. For some tardiness
minimization problems, e.g., an unrelated machine scheduling problem [48], their lower
bounds were obtained by directly solving two max-min sub-problems, i.e., brute-force
search. Consequently, some efficient lower bounds for accelerating branch-and-bound
algorithms are also required.

Table 1 lists relevant studies that employ branch-and-bound algorithms to achieve
their objectives in different environments. We divide these environments into two types:
unifunctional machines and multi-functional ones. For example, a pump is a unifunc-
tional machine used only for water distribution in [49]. Furthermore, branch-and-bound
algorithms for scheduling unifunctional machines can be subdivided into three subtypes.
First, the algorithms designed for a single machine are too simple to schedule multiple
machines. Second, the branch-and-bound algorithms for identical machines still have
their limitations, since they do not consider the permutations of different machines when
optimizing. For example, since machines in [45] are identical, their position orders do
not influence the design of a branch-and-bound algorithm. However, in this study, the
situation is complicated by various developers. Third, even for heterogeneous machines,
they process jobs of the same type only. For example, a powerful asphalt milling machines
in [43] is still not able to lift containers. For each heterogeneous machine, only one fixed
processing speed is considered. However, a developer in the game industry can process
jobs of different types, e.g., programming and songwriting; hence, one developer may
process jobs at several different paces. That is, a branch-and-bound algorithm for this
study needs to search a larger solution space than other branch-and-bound algorithms for
heterogeneous machines.

Table 1. Comparisons between different scheduling environments.

Types Unifunctional Multi-Functional

Objective Single Machine Identical
Machines

Heterogeneous
Machines

Unrelated
Machines

Versatile
Developers

Tardiness [44–46] [47,50,51] [9,43] [48,52] [this study]
Completion time [53–56] [57–59] [60]

Makespan [61,62] [63] [64] [65]
Other objective [49,66] [67,68] [69,70]

A multi-functional machine can process jobs of multiple types, i.e., different speeds.
For unrelated machines, they can perform various jobs, and hence there are m × n different
speeds, where m is the number of machines and n is the number of jobs. Suffering from no
regular patterns summarized and deduced from such many relationships, some researchers
had abandoned their attempt to develop an exact algorithm, e.g., [14]. Consequently, only
a few studies focused on developing branch-and-bound algorithms for these unrelated
machines. On the other hand, in the game industry, developers requiring preparations are
relevant to unrelated machines with uncertain setup times. However, jobs regarding game
development can be categorized into few types and only few relationships need to be taken
into account. That is, an unrelated machine model is too complicated to develop an efficient
lower bound. Some new exact algorithms for scheduling these versatile developers are
thus required.
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Moreover, the optimal solutions generated by branch-and-bound algorithms can be
good benchmarks for evaluating metaheuristic algorithms. Despite the high number of jobs
in game development, these jobs may be merely scheduled in Microsoft Excel or recorded in
Google Calendar. Clearly, such a handmade itinerary is not qualified to be a benchmark for
evaluating other methods. To our best knowledge, no researchers have investigated similar
tardiness minimization problems in the game industry. A likely reason is that traditional
grey-media PC games are simple and can be implemented by a few amateurs. Nowadays,
however, the tide of the game industry is turning. Scheduling the jobs of a multimedia
game project can be very complicated; hence, we need exact solutions to evaluate other
metaheuristic algorithms.

3. Problem Formulation

The optimization problem is formulated as follows. There are n non-preemptive jobs
and m developers. Each job j has a default processing time pj, a due date dj, and a job
type ej ∈ {1, 2, 3} for j = 1, 2, . . . , n. For each job type x, developer a has a processing
difficulty ratio rax for a ∈ {1, 2, . . . , m} and x ∈ {1, 2, 3}. That is, if job j of type x (i.e.,
ej = x) is assigned to developer a, the actual processing time is pjrax. Each job needs to be
assigned to one and only one developer, and each developer can process only one job at a
time. On the other hand, if job j is assigned to developer a according to a schedule π, the
actual completion time is denoted by Cj@a(π) and the tardiness is defined by Tj@a(π) =
max

{
0, Cj@a(π)− dj

}
. Under the above assumptions and constraints, we aim to determine

an optimal schedule π∗ which minimizes the total tardiness; i.e., the minimization problem
is defined by

Minimize f (π) =
m

∑
a=1

n

∑
j=1

Tj@a(π),

where f (π) means the objective function.
A problem instance is shown in Figure 1a. Let n = 5, m = 2, pj = 20, 10, 30, 6, 10,

dj = 20, 20, 50, 70, 10, and ej = 1, 1, 2, 3, 3, for j = 1, 2, 3, 4, 5. The processing difficulty ratios
are listed in Figure 1b. Let π = (1, 2, 4, 0, 5, 3) be a schedule, where number 0 means a
separator used to divide jobs between developers. Since developer 1 is highly proficient at
dealing with jobs of type 1, job 1 and job 2 are assigned to developer 1, and their processing
times are 20 and 10, respectively. Similarly, since developer 2 excels at processing jobs
of type 2, job 3 is processed by developer 2, and its actual processing time is 30. Note
that neither developer is skilled in processing jobs of type 3 (i.e., jobs 4 and 5). Since job
5 has an early due date, let developer 2 process it first, and its actual processing time is
30 (= 10 × r23 = 10 × 3). Similarly, developer 1 requires a processing time of 30 (= 6 × r13 =
6 × 5) to process job 5. Eventually, the total tardiness is f (π) = 40 (i.e., 0 + 10 + 10 + 0 + 20).
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It is clear that the above scheduling problem is different from traditional ones. The
following features differentiate the presented problem from traditional ones:

• Compared with traditional unrelated machine scheduling problems, the concept of
job type can reduce the amount of computation. For example, all the relationships
between machines and jobs must be taken into account, e.g., the probability of machine
i processing job j (pij) in [13] and the processing time of machine i processing job j (pij)
in [14]. All the m× n combinations must be considered. If a job set is not given, blindly
estimating each machine’s average processing speed cannot determine a good lower
bound. However, in the presented problem, jobs can be categorized into three types
and only m × 3 processing speeds are considered and their average processing speeds
can be employed to develop a lower bound.

• In past heterogeneous machine scheduling models [41,69,71], a capable developer (or
machine) always outperforms others in terms of processing speed. That is, each het-
erogeneous machine has its own fixed speed. However, in this presented problem, a
developer might be mediocre in processing jobs of type 1 but excel in dealing with jobs
of other types. Clearly, these developers cannot be modeled by such unifunctional ma-
chines.

• Compared with traditional identical machine scheduling problems, e.g., [11,12], the
presented problem is more difficult. An example is given in Table 2. Consider that we
allocate the three jobs to three identical machines. It is obvious that there is only one
schedule, and it is just the optimal schedule; i.e., each machine takes one job. However,
in the presented problem, a capable developer might take all three jobs to achieve
optimality. Consequently, we need to check all the possible situations listed in Table 2
to determine the optimal schedule.

• Traditional tardiness minimization techniques cannot be directly applied to this prob-
lem. Jobs with larger processing difficulty ratios may take precedence over jobs with
earlier due dates. In the presented problem, the processing difficulty ratio, processing
time, and due date should be considered as a whole.

Table 2. The number of all possible schedules.

Job Assignment Number of Possible Schedules

one developer takes three jobs; two developers are idle C3
13!

one developer takes two jobs and another one takes one job;
the remaining one is idle C3

12!C2
11!

each developer takes one job C3
1C2

1C1
1

total 36

In light of the above observations, traditional scheduling algorithms cannot be directly
applied to this problem, and a new optimization algorithm is thus required. That is, if a
project meets the following two criteria, manpower can be arranged by such algorithms.
First, a project is interdisciplinary and it recruits cross-domain workers, no matter what
kinds of workers it needs, e.g., employee or freelancer. A developer may acquire several
competencies and can perform several kinds of jobs in the project. Second, the performance
pattern of each developer is known. That is, we have the big data of all developers and can
estimate each one’s processing time for processing a given kind of job [32–34].

4. Branch-and-Bound Algorithm

In this section, we develop a branch-and-bound algorithm (named BB). To obtain the
optimal schedules, BB will explore each search tree in the depth-first-search (DFS) order.
Moreover, to deter us from exploring useless partial schedules, we also propose some
dominance rules and develop a lower bound.
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4.1. Dominance Rules

For convenience, we introduce some notations at the beginning of developing domi-
nance rules. Let π = (α, β) be an undetermined schedule, where α is a determined partial
sequence and β is the undetermined part. We wonder if there exists any better schedule
π′ that outperforms π. Consequently, some dominance rules are developed to prove our
doubts. Since these rules are similar, we provide only the first proof.

Case I: Consider that jobs i and j are the last two jobs of α and both jobs are assigned
to the same developer a. Let π′ be the schedule obtained by only interchanging the last
two jobs i and j in α. For simplicity, let Ci@a(π) = ti, Cj@a(π

′) = t′j, and Cj@a(π) = tj =

Ci@a(π
′) = t′i. In the following rules, both jobs i and j in π are tardy. However, if we

interchange both of them, their tardiness can be alleviated a little. In Rule 1, though both
jobs are still tardy in π′, their resulting tardiness is lower than π. In Rule 2, the interchange
makes job j not tardy, i.e., the resulting tardiness is reduced.

Rule 1. If ti > di, tj > dj, t′j > dj, t′i > di, and ti + tj − t′i − t′j > 0, then π′ dominates π.

Proof. We prove this property by showing Ti@a(π) + Tj@a(π)>Ti@a(π
′) + Tj@a(π

′). That is,

Ti@a(π) + Tj@a(π)
= (ti − di) + (tj − dj)
= (ti + tj)− (di + dj)

> (t′i + t′ j)− (di + dj)
(

since ti + tj − t′i − t′j > 0
)

= (t′i − di) + (t′j − dj)

= Ti@a(π
′) + Tj@a(π

′).

The proof is complete. �

Rule 2. If ti > di, tj > dj, t′j ≤ dj, and ti + tj − t′i > dj, then π′ dominates π.

In the following four rules, job j is tardy and job i is not in π. Rules 3 and 4 show that
job j can be done in time in π′ and the resulting tardiness can be improved. In Rules 5 and
6, job j is still tardy in π′, but the accumulated tardiness can be alleviated.

Rule 3. If ti ≤ di, tj > dj, t′j ≤ dj, and t′i ≤ di, then π′ dominates π.

Rule 4. If ti ≤ di, tj > dj, t′j ≤ dj, t′i > di, and tj − t′i > dj − di, then π′ dominates π.

Rule 5. If ti ≤ di, tj > dj, t′j > dj, t′i ≤ di, and ti − t′i > 0, then π′ dominates π.

Rule 6. If ti ≤ di, tj > dj, t′j > dj, t′i > di, and tj − t′j − t′i > −di, then π′ dominates π.

Rule 7 lets the job with an earlier due date be processed first if both jobs, i.e., i and j,
are not tardy in π. That is, both objective costs of π′ and π are the same, and we can stop
searching for one of them.

Rule 7. If t′i ≤ di, t′j ≤ dj, and dj < di, let π′ dominate π.

Case II: Consider that job i is the last job of α, which is assigned to developer a, and job
j can be any undetermined job in β. Moreover, job i is also the last job assigned to developer
a. For simplicity, let Ci@a(π) = ti and ej = y ∈ {1, 2, 3}. In Rule 8, it would be wasteful to
assign very few jobs to developer a. That is, he/she can accept some extra job in β if no
tardiness occurs.

Rule 8. If ti + pjray ≤ dj, then π′ dominates π.

Case III: Consider that job i is the last job of α, which is assigned to developer a, and job
j can be any undetermined job in β. Let ei = x ∈ {1, 2, 3}, ej = y ∈ {1, 2, 3}, and π′ be the
schedule obtained by interchanging job i in α and job j in β. For simplicity, let Ci@a(π) = ti
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and Cj@a(π
′) = t′j. In Rule 9, we interchange job i in α and job j in β if job j is more urgent

and the total tardiness will not deteriorate. In Rule 10, developer a is mediocre at processing
jobs of type x but highly proficient at processing jobs of type y. On the other hand, all the
remaining developers excel at dealing with jobs of type x and are mediocre at processing
jobs of type y. Therefore, we interchange jobs i in α and j in β. Note that the total tardiness
will not be worse in the case.

Rule 9. If ei = ej, pi = pj, dj < di, and t′j ≤ dj, then π′ dominates π.

Rule 10. If x 6= y, pirax > pjray, dj ≤ di, ti − di ≥ t′j − dj, and max
{

pira+1,x, pira+2,x, . . . ,
pirmx

}
≤min

{
pjra+1,y, pjra+2,y, . . . , pjrmy

}
, then π′ dominates π.

The following lemma shows that each developer’s workload has a squeeze effect.
That is, if there exists a developer whose workload is unreasonably heavy, then there must
be another developer who has a relatively light workload. Due to space limitations, the
following proofs can be found in Appendix A.

Lemma 1. For a schedule π, if there exists a developer a whose maximum completion time is
larger than ∑n

j=1 maxm
i=1

{
pjriej

}
/m+maxm

i=1

{
maxn

j=1

{
pjriej

}}
, there exists another developer

b whose maximum completion time is less than (∑n
j=1 maxm

i=1

{
pjriej

}
)/m.

The following rule can help us to avoid some unnecessary searches if any developer is
overloaded. If there exists a developer whose maximum completion time is unreasonably
long, then we can remove a job from the overloaded developer and assign it to a half-loaded
developer. That is, the previous schedule is dominated.

Rule 11. For an optimal schedule π∗, each developer’s maximum completion time is less
than or equal to ∑n

j=1 maxm
i=1

{
pjriej

}
/m + maxm

i=1

{
maxn

j=1

{
pjriej

}}
.

4.2. Lower Bound

A lower bound is needed to avoid unnecessary searching if we are in the middle
of a schedule that is dominated or outperformed by others. That is, after adding up the
determined cost and the estimated cost of the remaining part, if the sum is still larger than
the current minimal objective cost, we can abandon further searches for the remaining
part. Consequently, the earlier we can stop useless searches, the more execution time we
can save.

Arranging jobs with agreeable processing times and due dates is a useful way to obtain
a lower bound for traditional tardiness minimization problems [15]. Here agreeableness is
a kind of job correlation. As with precedence between two jobs in which a successor (e.g.,
testing) cannot start until a predecessor (e.g., programming) has finished, agreeableness
between any two jobs implies that the smaller job (i.e., less processing time) always has
an earlier due date, i.e., another kind of job correlation. However, it may lead to some
anomalies in our problem. Consider that two identical developers (or machines) deal
with the two jobs shown in Figure 2a. To obtain a lower bound, in Figure 2b, traditional
algorithms may adjust the processing times and due dates and make them agreeable, i.e.,
d(i) ≤ d(j) if and only if p(i) ≤ p(j). Hence, the lower bound for these jobs is 0; i.e.,
max{0, 4 − 6} + max{0, 6 − 8}. However, in our problem, an anomaly occurs. Let e1 = 1,
e2 = 2, and the processing difficulty ratios are shown in Figure 2c. For the original jobs
shown in Figure 2a, the optimal objective cost is 4; i.e., max{0, 3 × 4 − 8} + max{0, 1 × 6
− 6}. For these virtual jobs shown in Figure 2b, the lower bound is 6; i.e., max{0, 3 × 4
− 6} + max{0, 1 × 6 − 8}. However, a lower bound is never larger than the minimal cost.
Consequently, we cannot directly apply this technique here. In our problem, a job with
a larger processing difficulty ratio may be more urgent than another with an earlier due
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date. That is, the processing times, due dates, and processing difficulty ratios should be
considered as a whole in this problem.
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Since these developers differ in their abilities (i.e., various processing difficulty ratios),
we aim to fabricate an equivalent substitute to replace these heterogeneous developers in
the real world. Consider that there are k different developers in the real world and assume
that there are k virtually identical developers whose integrated ability is just equal to the
sum of all the real ones’ abilities. The following definition gives the correct magnitude of
processing difficulty ratio for each virtual developer. It is interesting that the magnitude is
the harmonic mean of all the real developers’ processing difficulty ratios.

Definition 1. There are k available developers numbered from m − k + 1 to m in the real world. Let
there be k virtually identical developers. For each job type x, the equivalent processing difficulty ratio
of each virtual developer is k/(1/rm−k+1,x + 1/rm−k+2,x + . . . + 1/rmx) and denoted by k r̃x.

The following lemma shows that the throughput (i.e., the amount of work per unit
time) of these virtual developers is the same as the sum of all the real ones’ throughputs.
For more information about harmonic mean, readers can refer to [72,73].

Lemma 2. For a given job type x, the sum of the last k real developers’ throughputs (i.e.,
∑m

a=m−k+1 1/rax) is equivalent to that of the k virtual ones’ throughputs (i.e., k/k r̃x).

Now we can merge these virtual developers into a virtual substitute. The following
definition gives the correct magnitude of the processing difficulty ratio of the single substi-
tute. Moreover, the following lemma shows that the throughput of the k virtual developers
is exactly equal to that of the virtual single substitute.

Definition 2. There are k available developers numbered from m − k + 1 to m in the real world.
Let there be only one virtually equivalent developer, called the substitute. For each job type x, the
processing difficulty ratio of the substitute is 1/(1/rm−k+1,x + 1/rm−k+2,x + . . . + 1/rmx) and
denoted by krx, i.e., krx = k r̃x/k.

Lemma 3. For a given job type x, the sum of the last k real developers’ throughputs (i.e.,
∑m

a=m−k+1 1/rax) is equivalent to that of the substitute’s throughput (i.e., 1/krx).

For each different job type, the virtual substitute still has different processing difficulty
ratios. The following definition provides the upper and lower limits of the processing
difficulty ratios for the substitute. The following lemma shows the boundary of the k
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real developers’ throughputs. This lemma guarantees that the throughput of the virtual
substitute is larger than or at least equal to that of the k real developers.

Definition 3. For each virtual developer transformed by k available real developers, let krmin =
min

{
kr1, kr2, kr3

}
and krmax = max

{
kr1, kr2, kr3

}
denote his/her minimal processing difficulty

ratio and maximal processing difficulty ratio, respectively.

Lemma 4. The throughput of the last k real developers is less than or equal to1/krmin.

Algorithm 1 shows the algorithm of the proposed lower bound (named LB). Note that
BB explores a schedule π = (α, β) in the DFS order. Since the jobs in α are determined, we
let some job k be the last job of α, i.e., l j(α)=k, and some developer a process it, i.e., ld(α)=a.
Hence, there are m− a available developers before Ck(π). By Lemma 4, we can regard
the m− a developers as a virtual developer with processing speed 1/m−armin. Similarly,
the m− a + 1 developers before Ck(π) can be viewed as another virtual developer with
processing speed 1/m−a+1rmin. In Step 1, we determine which job is the last job in α and
which developer completes the job. In Steps 2–3, the jobs in β are transformed into n− l
new jobs whose processing times and due dates are agreeable, i.e., p(i) ≤ p(j) if and only
if d(i) ≤ d(j). This modification ensures that such a lower bound will not be larger than
the actual optimal cost [74,75]. Then we allocate these jobs to the two virtual developers
at the pace of a unit job in Steps 5–14. We preemptively allocate the transformed jobs and
start from time 0. If LB proceeds before time Ck(π), we allocate the workload to the first
virtual developer (Steps 9–10); otherwise, we let the second virtual developer process the
remaining part (Steps 12–13). In Step 15, the estimated tardiness is accumulated, if any.
Finally, the estimated lower bound is returned.

Algorithm 1. The proposed lower bound (LB(π,l)).

INPUT
π = (α, β), where α is a determined partial sequence and β is the undetermined part
l is the number of jobs in α

OUTPUT
costlb is the lower bound for the current schedule π = (α, β)

(1) Set a = ld(α) and k = l j(α);
(2) Sort the processing times of the jobs in β in ascending order, i.e., p(j) for j = 1 to n − l;
(3) Sort the due dates of the jobs in β in ascending order, i.e., d(j) for j = 1 to n− l;
(4) Set costlb = f (α) and currentTime=0; //start to allocate the workload of β

(5) For j = 1 to n− l do Steps 6–15;
(6) Set currentAmount=p(j); //the amount of work of job (j)
(7) Repeat Steps 8–14 until currentAmount=0;
(8) If currentTime < Ck(π) then do Steps 9–10;
(9) Set4 = min{currentAmount, 1/m−armin};
(10) Set currentTime = currentTime +4×m−a rmin};
(11) Else do Steps 12–13;
(12) Set4 = min{currentAmount, 1/m−a+1rmin};
(13) Set currentTime = currentTime +4×m−a+1 rmin};
(14) Set currentAmount = currentAmount−4;

(15) Set costlb = costlb + max
{

0, currentTime− d(j)

}
;

(16) Output costlb.

Theorem 1 shows the correctness of the proposed lower bound. By Theorem 1, the
object cost of the substitute (i.e., the lower bound) will not be larger than the actual optimal
cost in the real world.

Theorem 1. Let f (π∗) be the optimal objective cost and LB(π) be the lower bound. Then
f (π∗) ≥ LB(π), where π∗ denotes the optimal schedule and π denotes a schedule.
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4.3. Branch-and-Bound Algorithm

Given the above dominance rules and lower bound, a branch-and-bound algorithm
(named BB) is therefore developed and shown in Algorithm 2. The exact algorithm re-
cursively explores the solution space in a DFS manner. Every time we enter the recursive
algorithm, we check if the current partial sequence α of length l is dominated or the current
lower bound is larger than the up-to-the-minute lowest cost (Step 1). If not, BB recursively
calls itself (Steps 5–8). Since there are still n − l + 1 undetermined jobs in β, we make
n− l + 1 new subsequences, and each starts with a different leading job. Then, we repeat-
edly replace the original β and obtain n− l + 1 new schedules (Steps 5–7). At the end, BB
is recursively called by itself for n− l + 1 times (Step 8). Note that both cost∗ and π∗ are
global variables. When the recursive algorithm ends, the globally optimal schedule and the
minimal cost are stored in both of them.

Algorithm 2. The proposed branch-and-bound algorithm (BB(π,l)).

INPUT
π = (α, β), where α is a determined partial sequence and β is the undetermined part
l is the number of jobs in α

OUTPUT
cost∗ is the minimal cost //a global variable
π∗ is the optimal schedule //a global variable

(1) If (π is not dominated and LB(π,l)≤ cost∗) then do Steps 2–8;
(2) If l = n then do Step 3;
(3) If f (π) < cost∗ then set cost∗ = f (π) and π∗ = π;
(4) Else do Steps 5–8;
(5) For j = l + 1 to n do Steps 6–8;
(6) Set π0 = π;
(7) Swap the (l+1)st and jth jobs of π0;
(8) Call BB(π0,l+1) recursively.

So far, we have proposed an exact algorithm named BB for locating the optimal
solutions. With the aid of the dominance rules and lower bound, BB does not need to search
for the entire solution space. Some dominated branches can be omitted, and the execution
time is thereby reduced.

5. Experimental Results

In this section, we will observe the performance of the proposed branch-and-bound
algorithm for n ≤ 18 and the efficiency of the proposed lower bound for n ≤ 12. Moreover,
sensitivity tests are performed to show the influence of each control parameter. All the
proposed algorithms are implemented in Pascal and executed on an Intel Core i7 @ 3.40 GHz
with 8 GB RAM in a Windows 7 SP1 environment. For each setting, 50 random trials are
conducted, and their execution times are measured in seconds. Finally, experimental results
are discussed and compared.

5.1. Computational Results

We conduct experiments to observe the performance of BB and LB, and we show
how the parameters (e.g., n) affect the objective costs of this problem. Table 3 lists all the
parameters used in this section. Parameters m, n, pj, and dj have already been defined
in Section 3. To model different job types, we let nj be the number of jobs of type ej for
j = 1, 2, 3, where n1 + n2 + n3 = n. To realize different processing difficulties, we let there
be three kinds of developers in the following experiments. The first kind means average
developers, i.e., rax ∈ {4, 5, 6, 7}. The second kind means uni-specialty experts who excel
in only one arbitrary job type, i.e., rax ∈ {1, 2, 3}; however, for the other two job types,
their processing difficulty ratios are in {4, 5, . . . , 10}. The third kind means bi-specialty
experts who are highly proficient at two arbitrary job types with processing difficulty ratios
less than or equal to 3; for the remaining job type, their processing difficulty ratios are in



Mathematics 2022, 10, 1200 13 of 24

{4, 5, . . . , 10}. Now we let mi be the number of the ith kind developers for i = 1, 2, 3, where
m1 + m2 + m3 = m. Moreover, we let T be the total default processing time and use τ and
R to control pj and dj such that they follow two discrete uniform distributions, respectively,
i.e., pj ∼ DU(1, 100) and dj ∼ DU(T(1− τ − R/2)/m, T(1− τ + R/2)/m).

Table 3. The parameters used in the experiments.

Parameter. Default Range Meaning

m 3 m ∈ {3, 4, . . . , 10} the number of developers
n 15 n ∈ {12, 15, 18} the number of jobs

n1 : n2 : n3 1:1:1 n1, n2, n3 ∈ {1, 2, 3, 4, 6} the ratios of numbers of three types of jobs
m1 : m2 : m3 1:1:1 m1, m2, m3 ∈ {1, 2} the ratios of numbers of three kinds of developers

pj pj ∈ {1, 2, . . . , 100} the default processing time of job j
dj DU(T(1− τ − R/2)/m, T(1− τ + R/2)/m) the due date of job j
τ 0.5 τ ∈ {0.25, 0.5, 0.75} a control parameter
R 0.5 R ∈ {0.25, 0.5, 0.75} a control parameter

For clarity, the experiments are divided into three parts. In the first part, we observe
the performance of BB. Table 4 shows the performance of BB when the problem size is
small, i.e., n = 12. Note that all the other parameters are set to their default values. Clearly,
the execution time increases if we add an extra developer, no matter what kind of developer
he/she is. It implies that m also affects the execution time. On the other hand, τ influences
the execution time more greatly than R. When all the jobs have earlier due dates, i.e., a large
τ, each urgent job competes for limited resources, i.e., the m developers, more intensively.
Consequently, BB will consume more execution time.

Table 4. The effects of different developers on the performance of BB for n = 12.

Nodes Run Time

m1 m2 m3 τ R Mean Max Mean Max

1 1 1 0.25 0.25 18,370.78 181,419 0.06 0.50
0.50 9593.32 212,150 0.04 0.51
0.75 19,524.00 446,583 0.05 0.92

0.50 0.25 39,897.70 1,232,184 0.10 2.22
0.50 26,260.88 187,200 0.08 0.41
0.75 56,571.82 897,059 0.14 1.73

0.75 0.25 15,846.60 151,177 0.06 0.47
0.50 96,882.38 888,828 0.21 1.65

2 1 1 0.25 0.25 101,401.70 910,464 0.36 3.35
0.50 109,910.36 1,092,293 0.36 2.95
0.75 97,957.36 802,617 0.33 2.47

0.50 0.25 270,988.78 2,223,591 0.91 6.35
0.50 176,245.60 1,806,727 0.66 5.88
0.75 212,420.18 1,995,777 0.79 6.01

0.75 0.25 298,785.28 3,410,329 1.07 10.55
0.50 273,726.30 2,054,655 1.03 5.93

1 2 1 0.25 0.25 256,641.64 2,077,102 0.88 5.91
0.50 74,059.52 1,132,219 0.24 3.21
0.75 127,228.54 2,405,058 0.41 6.66

0.50 0.25 257,390.84 1,437,686 0.97 5.18
0.50 204,801.28 2,012,269 0.77 6.55
0.75 130,780.72 1,637,102 0.50 5.43

0.75 0.25 365,249.76 3,624,957 1.27 10.92
0.50 286,986.04 3,464,396 1.12 10.34

1 1 2 0.25 0.25 61,395.10 1,368,806 0.20 4.40
0.50 87,579.64 1,151,718 0.27 3.09
0.75 35,620.74 457,695 0.12 1.62

0.50 0.25 221,134.08 1,639,608 0.74 5.02
0.50 159,399.06 1,401,974 0.59 4.45
0.75 111,593.84 1,778,863 0.38 4.84

0.75 0.25 183,150.22 1,821,915 0.75 5.52
0.50 261,788.22 3,446,590 1.00 10.53
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Table 5 shows the performance of BB when we have a fixed number of developers,
i.e., m = 3. For the fixed numbers of developers and jobs, job type does not affect BB’s
performance. Even if there are only one job type and one developer type, BB will spend the
same execution time to solve the problem. Unless all the m developers degenerate into the
same developer type with the same processing difficulty or the n jobs degenerate into the
same jobs with the same processing time and due date, the problem will not become easy.

Table 5. The effects of different job types on the performance of BB for n = 12 and m = 3.

Nodes Run Time

n1 n2 n3 τ R Mean Max Mean Max

4 4 4 0.25 0.25 18,370.78 181,419 0.06 0.47
0.50 9593.32 212,150 0.03 0.52
0.75 19,524.00 446,583 0.05 0.89

0.50 0.25 39,897.70 1,232,184 0.10 2.14
0.50 26,260.88 187,200 0.08 0.39
0.75 56,571.82 897,059 0.14 1.70

0.75 0.25 15,846.60 151,177 0.06 0.45
0.50 96,882.38 888,828 0.20 1.67

6 3 3 0.25 0.25 48,235.18 610,127 0.10 1.08
0.50 15,033.78 289,255 0.05 0.53
0.75 30,411.54 810,984 0.08 1.62

0.50 0.25 81,822.56 1,363,082 0.17 2.34
0.50 86,449.52 1,937,334 0.19 3.43
0.75 71,117.54 1,515,854 0.17 2.95

0.75 0.25 56,112.42 599,630 0.14 1.16
0.50 55,230.54 596,208 0.14 1.17

3 6 3 0.25 0.25 48,950.30 824,686 0.10 1.50
0.50 41,753.44 718,820 0.10 1.40
0.75 19,455.30 337,312 0.05 0.72

0.50 0.25 27,156.02 498,306 0.06 0.97
0.50 28,169.92 266,235 0.07 0.48
0.75 96,447.08 1,073,225 0.20 1.92

0.75 0.25 28,469.94 386,418 0.08 0.69
0.50 17,570.98 161,400 0.07 0.36

3 3 6 0.25 0.25 77,097.48 1,825,223 0.15 3.17
0.50 19,010.46 429,951 0.06 0.92
0.75 10,107.86 118,662 0.03 0.33

0.50 0.25 13,850.10 140,747 0.05 0.27
0.50 34,581.10 615,020 0.09 1.26
0.75 19,981.30 300,472 0.07 0.78

0.75 0.25 62,164.04 645,173 0.15 1.14
0.50 82,895.56 1,211,363 0.19 2.01

Table 6 shows the performance of BB when the problem size is medium, i.e., n = 15. At
the beginning, we let the setting m1 = m2 = m3 = 1 be a benchmark for later observations.
The column of NA means the number of problem instances unsolved within a hundred
million nodes. Again, the more developers we have, the more difficult the problem becomes.
However, for all the settings with m1 + m2 + m3 = 4, the results reveal that the problem
instances having later due dates (τ = 0.25) are easier to solve. Most of them can be solved
within a hundred million nodes.

Table 7 shows the performance of BB when the problem size is large, i.e., n = 18.
Again, for all the settings with m1 + m2 + m3 = 4, the problem instances having later
due dates are still easier to solve than others. Compared with similar total tardiness
minimization problems on identical machines, e.g., [76], the proposed branch-and-bound
algorithm performs well for versatile developers. In [76], the maximum problem size that
a branch-and-bound algorithm can solve is n = 20. Note that their machines are identical
and unifunctional for processing the same kind of jobs. As discussed earlier, a permutation
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problem of m identical machines and n jobs is much easier than ours. The reason is that its
solution space is just 1/(m!) of that of an m-heterogeneous-machine scheduling problem.
On the other hand, BB is also compared with a metaheuristic algorithm, i.e., GA [77]. The
relative error percentage (REP) is defined as (fGA − fBB)/(fBB) × 100%, where f means an
objective cost. In some situations, although GA takes only 0.02 s, it usually converges at
local minimums prematurely; and its objective costs might be 512 times larger than the
optimal ones. It implies that an approximate algorithm cannot ensure solution quality even
for n = 18 only. In light of the above comparisons, we learn that n = 18 is a proper problem
size to observe the performance of a branch-and-bound algorithm for solving such a total
tardiness minimization problem for versatile developers.

Table 6. The effects of different developers on the performance of BB for n = 15.

Nodes Run Time

m1 m2 m3 τ R Mean Max Mean Max NA

1 1 1 0.25 0.25 832,453.28 17,232,335 2.23 40.61 0
0.50 1,173,016.88 18,230,680 2.76 34.65 0
0.75 2,839,962.76 90,961,123 6.37 186.42 0

0.50 0.25 3,570,734.50 91,641,006 7.11 159.01 0
0.50 1,172,994.72 29,159,216 2.99 57.91 0
0.75 1,344,699.38 25,665,172 3.22 52.54 0

0.75 0.25 1,585,250.42 45,125,597 3.27 84.97 0
0.50 1,887,259.78 37,617,906 4.38 77.03 0

2 1 1 0.25 0.25 9,280,351.84 92,376,059 35.60 328.35 0
0.50 11,525,379.06 76,888,161 43.80 245.14 0
0.75 5,708,317.28 72,583,683 22.44 247.59 0

0.50 0.25 12,132,170.62 70,022,775 52.61 247.34 3
0.50 13,159,371.16 80,050,726 55.29 375.85 6
0.75 6,812,266.80 44,382,802 30.67 178.57 0

0.75 0.25 10,194,654.96 46,754,558 43.85 173.58 1
0.50 12,479,543.60 85,937,662 53.63 317.48 3

1 2 1 0.25 0.25 7,337,408.85 87,562,414 28.12 297.81 3
0.50 1,523,108.36 20,681,937 7.21 92.70 3
0.75 3,289,152.32 48,793,151 13.53 215.75 0

0.50 0.25 13,103,920.89 98,946,177 55.18 418.29 3
0.50 7,720,935.63 76,197,365 34.11 250.87 2
0.75 7,960,357.32 70,165,954 38.45 318.60 3

0.75 0.25 12,444,367.94 94,805,781 60.85 399.64 2
0.50 14,428,769.51 66,722,021 71.14 340.97 1

1 1 2 0.25 0.25 7,099,596.36 56,396,794 26.69 226.65 0
0.50 2,039,534.46 33,925,880 8.72 168.64 0
0.75 3,038,446.44 39,536,363 11.74 154.89 0

0.50 0.25 3,089,474.55 31,463,439 14.45 135.10 1
0.50 5,715,252.84 63,253,517 26.02 262.58 0
0.75 3,938,160.00 82,372,316 18.97 371.99 1

0.75 0.25 4,460,356.04 92,613,311 23.85 412.17 4
0.50 9,424,598.91 93,532,752 48.06 410.98 5

In the second part, we analyze the efficiency of the proposed lower bound. To show the
performance of LB, we add an extra branch-and-bound algorithm without the aid of LB and
compare it with the original BB. Table 8 shows the performances of two branch-and-bound
algorithms for n = 12. In general, the original BB only takes 13.86% of the execution time of
the modified BB. It is clear that the proposed LB based on the harmonic mean can effectively
prune unnecessary nodes and reduce execution time.
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Table 7. The effects of different developers on the performance of BB for n = 18.

BB GA

Nodes Run Time Run Time REP

m1 m2 m3 τ R Mean Max Mean Max NA Mean Max Min Max

1 1 1 0.25 0.25 5,762,157.45 81,285,117 23.74 332.25 1 0.02 0.03 99.47 3700.00
0.50 3,628,152.57 40,038,729 15.61 142.29 3 0.02 0.05 2108.40 51,200.00
0.75 4,071,432.28 55,782,442 18.53 301.04 4 0.02 0.05 1944.37 26,700.00

0.50 0.25 8,719,240.57 83,839,140 26.00 209.26 4 0.02 0.03 14.35 65.52
0.50 6,508,956.43 69,159,123 23.11 225.41 3 0.03 0.05 35.75 339.62
0.75 5,836,731.36 46,618,119 21.49 144.13 5 0.03 0.05 65.80 733.33

0.75 0.25 12,581,501.02 82,922,868 39.76 302.70 1 0.03 0.05 5.94 19.89
0.50 7,687,742.75 77,017,571 28.95 226.59 2 0.03 0.05 8.40 31.47

2 1 1 0.25 0.25 14,387,272.49 84,461,497 74.39 500.20 13 0.02 0.05 556.39 6750.00
0.50 8,560,801.22 99,789,118 45.41 470.38 9 0.02 0.03 1017.79 24,200.00
0.75 7,799,331.11 97,912,476 42.16 489.28 6 0.02 0.05 2067.63 36,300.00

0.50 0.25 12,532,081.72 57,014,342 70.50 326.21 21 0.02 0.03 55.80 1000.00
0.50 25,200,898.16 93,045,526 155.94 577.97 25 0.03 0.05 695.09 8800.00
0.75 15,254,631.65 88,093,147 104.37 615.17 24 0.03 0.05 69.59 425.00

0.75 0.25 26,880,921.61 81,801,617 177.40 550.81 19 0.03 0.05 8.37 23.09
0.50 31,888,108.54 97,906,180 239.75 813.34 26 0.03 0.05 9.47 33.13

1 2 1 0.25 0.25 6,934,481.32 89,737,391 41.23 606.05 9 0.02 0.03 200.18 5200.00
0.50 8,104,353.27 75,131,834 41.68 396.62 13 0.02 0.03 1574.05 32,500.00
0.75 11,389,631.81 97,371,415 67.21 635.24 8 0.02 0.03 973.96 10,900.00

0.50 0.25 11,972,032.38 72,998,847 75.52 460.36 21 0.02 0.05 187.98 2600.00
0.50 20,888,892.76 99,316,192 151.94 854.50 21 0.03 0.05 738.41 13,500.00
0.75 12,208,503.65 98,419,788 87.94 811.97 13 0.02 0.03 553.83 14,500.00

0.75 0.25 18,446,195.00 92,978,274 144.92 927.43 24 0.03 0.05 16.09 130.07
0.50 17,140,527.50 72,477,027 131.78 561.23 32 0.03 0.05 5.99 25.53

1 1 2 0.25 0.25 8,741,455.63 80,537,248 43.27 373.65 7 0.01 0.03 244.25 6800.00
0.50 1,980,305.16 49,705,383 8.50 198.84 7 0.01 0.03 571.91 13,800.00
0.75 3,236,374.02 47,501,031 15.10 237.34 5 0.01 0.05 719.46 20,900.00

0.50 0.25 9,795,567.08 74,698,092 54.31 376.99 12 0.02 0.05 54.79 800.00
0.50 7,757,011.29 76,424,743 55.74 582.80 15 0.02 0.03 857.03 14,100.00
0.75 10,335,814.24 99,167,724 66.88 527.67 13 0.02 0.05 673.48 7400.00

0.75 0.25 17,221,577.32 97,238,251 140.52 905.93 22 0.03 0.05 14.55 90.00
0.50 25,031,222.46 97,899,506 196.07 749.69 17 0.03 0.05 242.58 7500.00

In the third part, three control parameters are adjusted to observe their influences on
objective cost and execution time. A sensitivity test of pj and dj is shown in Figure 3. In this
experiment, we set m1 = m2 = m3 = 1 and n1 = n2 = n3 = 5 to simulate an average case.
Other parameters are set to their default values. Intuitively, objective cost decreases if each
job’s processing time is reduced. For example, a 15% decrease in each job’s processing time
can achieve a 50% decrease in objective cost, where −50% means cost reduction. On the
other hand, objective cost decreases if we can postpone each job’s due date. For example,
a 15% increase in each job’s due date leads to a 35% decrease in objective cost. In the real
world, it is not easy to compress the processing time of each job. However, we can negotiate
with our customers to postpone a job’s due date. It is worthwhile to postpone the due date
by 15% and achieve a 35% cost reduction.

In Table 9, we perform another sensitivity test on a limited resource, i.e., developers.
Let m1 = m2 = m3 = 1 be a benchmark setting. Though an add-on developer can be
regarded as a creditable resource, it will increase the execution cost intensively. From
the viewpoint of run time, the number of developers (m) is also a kind of problem size
and directly affects the performance of BB adversely. However, from the viewpoint of
objective cost, a bi-specialty developer can perform more jobs than a uni-specialty developer
and reduce tardiness more. Clearly, such a versatile developer cannot be replaced by a
traditional unifunctional machine. That is, these versatile developers make this model
closer to the real world. Such findings distinguish our scheduling problem from traditional
scheduling problems.
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Table 8. The performance of the proposed lower bound for n = 12.

BB with Lower Bound BB without Lower Bound

Nodes Run Time Nodes Run Time

m1 m2 m3 τ R Mean Max Mean Max Mean Max Mean Max

1 1 1 0.25 0.25 42,276.02 1,026,898 0.10 2.00 2,132,185.88 11,100,631 2.76 13.20
0.50 18,419.28 308,491 0.05 0.73 1,435,415.30 5,279,539 1.83 6.29
0.75 16,773.42 352,553 0.05 0.81 1,412,859.42 6,115,195 1.78 7.52

0.50 0.25 26,669.64 234,495 0.08 0.61 2,808,892.00 10,641,151 3.77 12.92
0.50 35,354.56 338,165 0.10 0.83 2,338,295.24 8,188,160 3.11 10.61
0.75 27,859.88 334,716 0.08 0.77 2,335,009.72 7,447,778 3.10 9.78

0.75 0.25 39,222.88 313,230 0.10 0.66 2,943,512.38 10,873,649 4.12 14.04
0.50 49,452.34 514,758 0.13 1.14 3,444,563.50 11,191,537 4.78 15.18

2 1 1 0.25 0.25 206,949.78 1,944,748 0.63 5.30 2,349,684.30 6,509,635 3.91 11.28
0.50 80,490.70 1,047,328 0.29 3.39 1,811,185.86 6,656,642 3.03 11.93
0.75 70,723.60 1,134,179 0.24 3.23 1,855,144.46 5,790,027 3.08 10.09

0.50 0.25 383,091.48 4,261,839 1.18 11.58 2,964,802.52 11,078,433 5.14 18.83
0.50 247,573.04 2,859,813 0.86 8.36 2,886,595.68 8,803,275 5.00 15.05
0.75 250,884.56 2,834,030 0.87 8.42 2,850,440.98 9,221,096 4.89 15.71

0.75 0.25 273,149.28 3,076,310 0.99 8.55 3,509,200.24 10,537,716 6.60 19.56
0.50 196,154.28 1,495,334 0.76 4.29 3,368,034.58 8,282,861 6.22 15.83

1 2 1 0.25 0.25 135,732.34 1,036,384 0.47 3.37 1,551,230.66 5,660,869 2.73 9.33
0.50 77,068.10 560,483 0.28 2.23 1,884,116.10 8,195,081 3.25 14.31
0.75 132,448.72 2,196,499 0.42 6.33 1,726,587.70 10,437,722 2.90 17.46

0.50 0.25 341,313.58 4,163,147 1.14 12.31 2,548,694.28 8,118,259 4.59 15.10
0.50 325,703.40 2,179,476 1.11 7.04 2,741,957.28 8,483,175 4.86 14.17
0.75 249,316.18 1,865,731 0.88 5.54 2,666,610.64 6,937,518 4.73 12.40

0.75 0.25 352,760.16 2,795,517 1.24 7.74 2,923,537.98 8,713,258 5.49 16.43
0.50 483,784.64 3,322,235 1.69 9.22 3,799,477.30 10,886,270 7.02 20.65

1 1 2 0.25 0.25 42,309.16 623,968 0.14 1.83 1,006,227.78 5,347,762 1.71 9.47
0.50 24,157.68 452,422 0.08 1.30 629,863.82 4,094,081 1.07 7.35
0.75 24,828.94 289,151 0.09 0.86 629,284.18 6,296,674 1.04 10.27

0.50 0.25 73,120.12 676,696 0.28 2.22 1,696,145.42 6,441,167 3.02 10.53
0.50 133,397.28 1,577,439 0.50 5.37 2,158,887.92 9,222,693 3.70 14.87
0.75 82,625.40 1,569,480 0.28 4.81 1,673,649.00 6,449,975 2.91 10.83

0.75 0.25 229,872.18 1,864,585 0.90 7.11 2,730,292.74 7,710,644 5.13 15.09
0.50 308,544.02 3,202,914 1.12 9.91 3,460,403.62 8,910,499 6.30 15.49
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Figure 4 shows how pj and dj affect execution time. If we advance each job’s due date
(e.g.,−15%), we are going to be working to tight schedules, and BB requires more execution
time (e.g., 35.4%) to obtain the optimal solutions. Or if each job has a larger due date (e.g.,
15%), BB requires less execution time (e.g., −36.74%). This is because most jobs can be
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completed within their due dates. That is, BB can easily achieve zero or little tardiness,
and less computing is needed. On the other hand, if the processing time of each job is
lengthened, it means that the durations of jobs are very likely to overlap with each other
and BB needs more execution time to schedule them. In general, the default processing
time of a job is determined and fixed; however, its due date may be negotiable. It implies
that bargaining for a later due date can simultaneously benefit the objective cost and the
execution time.
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Table 9. The sensitivity test of BB for n = 15.

Nodes Run Time Objective Cost

m1 m2 m3 τ R Mean Change (%) Mean Change (%) Mean Change (%)

1 1 1 0.5 0.5 1,887,146.18 0% 2.56 0% 2156.54 0%
2 1 1 0.5 0.5 16,154,326.41 756% 40.87 1498% 2044.10 −5%
1 2 1 0.5 0.5 8,758,050.34 364% 23.95 836% 1598.98 −26%
1 1 2 0.5 0.5 1,911,256.04 1% 6.59 158% 928.02 −57%

5.2. Discussion

For traditional industries, a welder does not in general perform a spray job. Today,
arranging for a single worker to perform different kinds of jobs has become fairly com-
mon among modern industries, e.g., games or movies. Developing a multimedia game
heavily involves job scheduling, personnel management, time control, and cost reduction.
Therefore, we present an interesting scheduling problem to deal with human resource man-
agement in the game industry. For example, tardiness is an important issue mainly caused
by human factors. In general, for parallel machine scheduling, an acceptable problem
size is about 25, e.g., [11,47]. Since machines are identical, no permutation of machines is
needed. For versatile developers, such an optimization problem will become more difficult,
and the problem size that can be optimally solved will be smaller. This is because we must
take all the permutations of developers into account.

This study can be distinguished by the following five features. First, unifunctional
machines are replaced by cross-domain developers and this change makes the model
more realistic. Second, such scheduling algorithms are cost-effective. Compared with
enhancing computer hardware, job scheduling is a less expensive way to control budgets.
Third, we propose a lower bound based on harmonic mean that can prevent the anomaly
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from happening. Fourth, for some total tardiness minimization problems over heteroge-
neous machines, e.g., [9,43], their maximal solvable problem sizes for brand-and-bound
algorithms are about 25. Note that such problems are easier, i.e., each machine always
processes jobs at a fixed speed. On the other hand, the experiments show that the pro-
posed brand-and-bound algorithm can optimally solve this problem for n different kinds
of jobs and m heterogonous developers, i.e., n = 18 and m = 4. In this study, we need
to consider each developer’s processing difficulties for different kinds of jobs. It implies
that the presented problem is more difficult, and hence problem size 18 is a considerable
achievement. Fifth, the optimal solutions obtained by the proposed algorithm can be used
as fair benchmarks for evaluating other metaheuristic algorithms. Moreover, for other
industries, we can apply the algorithm to other industries if they have similar needs for
human resource management.

6. Conclusions

Today, a modern game is completed by multiple versatile developers and its tardiness
should be reduced as much as we possibly can. Clearly, unifunctional machine scheduling
is not suitable for this problem since developers can process jobs of different types. On
the other hand, unrelated machine scheduling considers m × n processing speeds, i.e., too
complicated to fit the presented problem. Consequently, we present an efficient branch-
and-bound algorithm to optimally solve this problem.

In this study, to develop a branch-and-bound algorithm, we first analyze the proper-
ties of the problem and establish some mathematical theories for the branch-and-bound
algorithm. Two main contributions are made in this study. First, this exact algorithm
achieves optimality by coordinating each developer’s multiple abilities. Second, a lower
bound based on a harmonic mean is developed to avoid the anomaly. The experiments
show that the proposed algorithm performs well for 18 jobs and 4 developers. That is, it
can be employed as benchmarks for evaluating metaheuristic algorithms when problem
sizes are less than or equal to 18.

The proposed exact algorithm is relatively efficient, but it still has limitations. Some
future research directions are suggested as follows.

• A lower bound based on non-preemptive techniques is worth exploring in greater
detail. This is because preemption might lead to underestimation of a lower bound.

• A high-quality metaheuristic algorithm is still needed. For a real-world instance, BB
might take several hours to generate the optimal schedules. In the near future, we can
develop some approximate algorithms to solve large problem instances near optimally,
e.g., n = 100.

• Hybridization might improve efficiency. If a high-quality metaheuristic algorithm
is developed, an exact algorithm can start searching from a near-optimal solution
obtained by the metaheuristic algorithm. That would be helpful to improve execution
speed. With such a hybrid exact algorithm, we can evaluate other approximate
algorithms objectively and precisely.

Author Contributions: C.-H.S.—Conceptualization, Resources, Data Curation; J.-Y.W.—Funding
Acquisition, Methodology, Software, Validation, Formal Analysis, Investigation, Visualization, Super-
vision, Project Administration, Writing—original draft preparation, review & editing. All authors
have read and agreed to the published version of the manuscript.

Funding: This study was partially supported by the Ministry of Science and Technology of Taiwan,
R.O.C. under Projects MOST-109-2410-H-241-002 and MOST-110-2410-H-241-001.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: The authors thank the anonymous reviewers for their valuable comments and
suggestions to improve the quality of this study.



Mathematics 2022, 10, 1200 20 of 24

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Lemma A1. For a schedule π, if there exists a developer a whose maximum completion time is
larger than ∑n

j=1 maxm
i=1

{
pjriej

}
/m+maxm

i=1

{
maxn

j=1

{
pjriej

}}
, there exists another developer

b whose maximum completion time is less than (∑n
j=1 maxm

i=1

{
pjriej

}
)/m.

Proof. We prove this property by contradiction. Suppose the remaining m − 1 developers
have maximum completion times that are all larger than or equal to (∑n

j=1 maxm
i=1

{
pjriej

}
)/m.

Then, we sum up all the maximum completion times of the m developers. That is,

∑m
i=1 max

{
Cj@i(π)

}
>∑n

j=1 maxm
i=1

{
pjriej

}
/m+maxm

i=1

{
maxn

j=1

{
pjriej

}}
+

(m− 1)(∑n
j=1 maxm

i=1

{
pjriej

}
)/m.

On the other hand, consider the worst situation, in which each job j is assigned to
its worst matched developer; i.e., each job j consumes the maximum processing time
maxm

i=1

{
pjriej

}
. Consequently, the sum of all the maximum completion times of all the m

developers in schedule π is less than or equal to the total worst processing times of all the
n jobs. That is,

m

∑
i=1

max
{

Cj@i(π)
}
≤

n

∑
j=1

maxm
i=1

{
pjriej

}
.

Now we have

∑n
j=1 maxm

i=1

{
pjriej

}
/m + maxm

i=1

{
maxn

j=1

{
pjriej

}}
+(m− 1)(∑n

j=1 maxm
i=1

{
pjriej

}
)/m <

∑m
i=1 max

{
Cj@i(π)

}
≤ ∑n

j=1 maxm
i=1

{
pjriej

}
.

That is,

∑n
j=1 maxm

i=1

{
pjriej

}
/m + maxm

i=1

{
maxn

j=1

{
pjriej

}}
+(m− 1)(∑n

j=1 maxm
i=1

{
pjriej

}
)/m <

∑n
j=1 maxm

i=1

{
pjriej

}
.

It implies that

∑n
j=1 maxm

i=1

{
pjriej

}
+ mmaxm

i=1

{
maxn

j=1

{
pjriej

}}
+(m− 1)(∑n

j=1 maxm
i=1

{
pjriej

}
) <

m∑n
j=1 maxm

i=1

{
pjriej

}
, i.e., mmaxm

i=1

{
maxn

j=1

{
pjriej

}}
< 0.

It is a contradiction. The proof is complete. �

Rule A1. For an optimal schedule π∗, each developer’s maximum completion time is less
than or equal to ∑n

j=1 maxm
i=1

{
pjriej

}
/m + maxm

i=1

{
maxn

j=1

{
pjriej

}}
.

Proof. We prove it by contradiction. Let developer a be a developer in an optimal schedule
π∗ whose maximum completion time Cj′@a(π

∗) is larger than ∑n
j=1 maxm

i=1

{
pjriej

}
/m+

maxm
i=1

{
maxn

j=1

{
pjriej

}}
, where job j′ is the last job assigned to developer a in this optimal

schedule π∗. By Lemma 1, there exists another developer b whose maximum comple-
tion time is less than (∑n

j=1 maxm
i=1

{
pjriej

}
)/m. Now we check if the gap between the

maximum completion time of developer a and that of developer b can accommodate
job j′, and it will achieve an earlier completion time (i.e., less tardiness). Let Cj′@a(π

∗)
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be ∑n
j=1 maxm

i=1

{
pjriej

}
/m + maxm

i=1

{
maxn

j=1

{
pjriej

}}
+ ε, where ε > 0. Then, we have

(∑n
j=1 maxm

i=1

{
pjriej

}
/m + maxm

i=1

{
maxn

j=1

{
pjriej

}}
+ ε−(∑n

j=1 maxm
i=1

{
pjriej

}
)/m+

pj′rbej′
)=maxm

i=1

{
maxn

j=1

{
pjriej

}}
+ ε− pj′rbej′

>ε > 0. That is, we can move the last job

j′ from developer a to developer b and achieve an earlier completion time, i.e., less tardi-
ness for job j′. It contradicts the assumption that π∗ is an optimal schedule. The proof is
complete. �

Lemma A2. For a given job type x, the sum of the last k real developers’ throughputs (i.e.,
∑m

a=m−k+1 1/rax) is equivalent to that of the k virtual ones’ throughputs (i.e., k/k r̃x).

Proof. Since the processing difficulty ratio of developer m − k + 1 is rm−k+1,x, he/she
takes rm−k+1,x days to process a unit job (e.g., pj = 1) of type x. That is, for job type
x, his/her daily amount of work is 1/rm−k+1,x. Similarly, for each developer a, his/her
daily amount of work is 1/rax for a = m − k + 2, m − k + 3, . . . , m. Then, for the k real
developers, their daily amount of work is ∑m

a=m−k+1 1/rax. On the other hand, since the
processing difficulty ratio of each virtual developer is k r̃x, his/her daily amount of work is
1/k r̃x. Thus, their total daily amount of work is k/k r̃x. We prove the property by showing
k/k r̃x = ∑m

a=m−k+1 1/rax. We have

k/k r̃x= k(k/(1/rm−k+1,x + 1/rm−k+2,x + . . . + 1/rmx))
−1

= 1/rm−k+1,x + 1/rm−k+2,x + . . . + 1/rmx
= ∑m

a=m−k+1 1/rax.

The proof is complete. �

Lemma A3. For a given job type x, the sum of the last k real developers’ throughputs (i.e.,
∑m

a=m−k+1 1/rax) is equivalent to that of the substitute’s throughput (i.e.,1/krx).

Proof. Since the processing difficulty ratio of the substitute is krx, his/her daily amount of
work is 1/krx. Then, we have

1/krx
= 1/(k r̃x/k)
= k/k r̃x.

By Lemma 2, k/k r̃x=∑m
a=m−k+1 1/rax. Hence, 1/krx=∑m

a=m−k+1 1/rax holds. The proof
is complete. �

Lemma A4. The throughput of the last k real developers is less than or equal to 1/krmin.

Proof. For the same type of jobs, by Lemma 3, the throughputs of the k real developers
and the substitute are the same. That is, if all the remaining jobs belong to job type 1, the
throughput of the substitute is kr1. Similarly, the throughput of the substitute is kr2 if all the
jobs belong to job type 2, and his/her throughput is kr3 if all the jobs belong to job type 3.
Clearly, the maximal throughput is 1/krmin and the minimal throughput is 1/krmax. In the
real world, however, it is rare that all the jobs belong to the same job type. Consequently,
the throughput of the substitute is in [1/krmax,1/krmin] if each of the jobs is of a different
type. Namely, the throughput of the last k developers in the real world can be as large as
1/krmin only. The proof is complete. �

Theorem A1. Let f (π∗) be the optimal objective cost and LB(π) be the lower bound. Then
f (π∗) ≥ LB(π), where π∗ denotes the optimal schedule and π denotes a schedule.

Proof. We prove it by contradiction and suppose f (π∗) < LB(π). Let the average process-
ing difficulty ratio for the optimal schedule π∗ be r∗, where mrmin ≤ r∗ ≤ mrmax. Since
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the optimal objective cost is lower than that of the proposed lower bound, the actually
optimal throughput must be larger than the throughput of the substitute. That is, we
have 1/r∗ > 1/mrmin. On the other hand, note that mrmin = min{mr1, mr2, mr3}. Then, by
Lemma 4, we have

1/mrmin
= 1/min{mr1, mr2, mr3}

≤ 1/r∗. (sin ce mrmin ≤ r∗ ≤ mrmax).

It contradicts that 1/r∗ > 1/mrmin. The proof is complete. �
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