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Abstract: In this paper, we propose a linear regression model in which the error term follows a
log-gamma-normal (LGN) distribution. The assumption of LGN distribution gives flexibility to
accommodate skew forms to the left and to the right. Kurtosis greater or smaller than the normal
model can also be accommodated. The regression model for censored asymmetric data is also consid-
ered (censored LGN model). Parameter estimation is implemented using the maximum likelihood
approach and a small simulation study is conducted to evaluate parameter recovery. The main
conclusion is that the approach is very much satisfactory for moderate and large sample sizes. Results
for two applications of the proposed model to real datasets are provided for illustrative purposes.

Keywords: log-gamma-normal distribution; linear regression models; asymmetric data; censored
data; maximum likelihood estimators

MSC: 60E05

1. Introduction

Regression models are one of the main statistical techniques frequently used in data
analysis in any area of knowledge, especially when there is interest in studying the relation-
ship between a dependent variable (response) and two or more independent (explanatory)
variables. In this sense, a regression model with a response variable following a normal
distribution is perhaps best known in the literature, and could be considered one of the
most widely used; however, the assumption of normality may not be adequate in the
dataset under analysis, since these may present degrees of skewness or kurtosis that are not
within the range covered by the normal model. Consequently, inferences made from the
fitted model may not have statistical validity, and erroneous conclusions may be reached.
A solution to the problem of the assumption of normality of the variable of interest is the
use of transformations, although it is well known that this solution makes it difficult to
interpret results since data are not in the original measurement scale. As an alternative
to this issue, many authors have introduced new family distributions that are capable of
capturing degrees of skewness and kurtosis greater than those that the normal distribution
can capture.

One of the most important works in the context of data with a high degree of asym-
metry is Azzalini [1], which is known in the statistical literature as the skew-normal (SN)
model. The main characteristic of the SN model is its ability to fit degrees of asymmetry
(on the left and right) greater than those of the normal model; however, it is not the best
model in terms of capturing high degrees of kurtosis. Relating to the latter, the power-
normal (PN) model introduced by Durrans [2] has the particularity of fitting data with a
higher degree of kurtosis than the normal and SN model but with less range of asymmetry.
The SN and PN models have been studied extensively by many authors, and different
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extensions of this model have been considered. In Gupta and Gupta [3] for example, the
authors showed the existing practical problems when the asymmetry parameter of the
SN model is estimated, and they proposed an alternative model named the PN model.
The authors also investigated the closeness between the proposed model and the SN model.
In Pewsey et al. [4], the authors presented the general results of the likelihood-based in-
ference for the family of power distributions, with particular emphasis on the case of the
PN model, complementing the work of Gupta and Gupta [3]. In Martínez-Flórez et al. [5],
the authors introduced a new model that generalized both the SN model by Azzalini [1]
and the PN model by Durrans [2]. The new model, which is called power-skew-normal
(PSN), has the particularity of fitting data with degrees of asymmetry greater than those
of the SN model, and is also capable of capturing degrees of kurtosis greater than those
of the PN model. Furthermore, the authors showed that the information matrix of the
new model is non-singular, which permits carrying out hypothesis tests on the asymmetry
parameters based on likelihood-ratio statistics. On the other hand, Martínez-Flórez et al. [6]
generalized the log-normal (LN) model from the SN and PN models. In addition, these new
proposals contain the LN model as a particular case, and they are more flexible regarding
skewness and kurtosis to fit positive data.

Alternatives for fitting asymmetric data with a high degree of kurtosis were reported
by other authors such as Tovar-Falón et al. [7], who introduced a new model that general-
izes the skew-t model of Azzalini and Capitanio [8] and power-t of Zhao and Kim [9]. Here,
the inference was carried out from a classical perspective using the maximum likelihood
method. This new model also has, as particular cases, the PSN, SN, PN, Student-t and nor-
mal models. In Tung et al. [10], the authors considered a mixture class of log-F distributions
to characterize asymmetric distributions by integrating it into a pH acceleration model.
The authors studied the impact of the new model in the presence of misspecification of
particle size distribution.

Models for asymmetric data with high degrees of skewness and kurtosis, and present-
ing more than one mode and censored data, were also considered. More details about these
topics can be found in Martínez-Flórez et al. [11] and Martínez-Flórez et al. [12], respec-
tively. In addition, all the aforementioned models are easily extensible to the situations of
regression models, including cases in which the data show censoring in some value; see
Sahu et al. [13], Martínez-Flórez et al. [14].

In Amini et al. [15], the authors introduced a new family of distributions useful for
modelling asymmetric data. This new family of continuous distributions is generated by
a distribution F and two positive real parameters δ and γ, which control the skewness
and tail weight of the distribution. The probability density function (PDF) of this family is
given by

g(x; δ, γ) =
γδ

Γ(δ)
[− ln F(x)]δ−1[F(x)]γ−1 f (x), (1)

where δ, γ ∈ R+ and Γ(·) is the complete gamma function, F(·) is the cumulative dis-
tribution function (CDF) of X, and f (·) is the associated PDF. In this work, the authors
studied the main properties of the distribution and addressed the estimation process of the
unknown parameters of the model using the likelihood approach.

From the F(x) generator, the authors studied some particular properties of the family,
among which are the exponential, Weibull, power, Pareto, extreme value and Gumbel distri-
butions. If δ = 1 and F(·) = Φ(·) and f (·) = φ(·) in model (1), i.e., the CDF and PDF of the
standard normal distribution, respectively, the model in (1) is reduced to the PN model by
Durrans [2]. Hence, the model in (1) is an extension of the PN model. In Cordeiro et al. [16],
the authors studied in detail the properties of the log-gamma-generated family of distri-
butions introduced by Amini et al. [15] and presented some applications of this family.
Other particular cases of the model introduced by Amini et al. [15] correspond to the gener-
alized gamma and log-gamma distributions, which have been extensively studied by
many authors; see Prentice [17], Lawless [18], Young and Bakir [19], Ortega et al. [20,21]
among others.
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The main goal of this article is to focus on the study of the regression model under
the assumption that the errors follow a log-gamma-normal (LGN) distribution, which is
obtained by taking F(x) = Φ(x) and f (x) = φ(x) in model (1). We also consider the case
of the regression model for censored data, and we conduce the parameter estimation using
the maximum likelihood approach and its large sample properties.

Although there are many works in the literature related to the generalized log-
gamma distribution, our proposal is based on the family of distributions presented by
Amini et al. [15], which is known in the literature as log-gamma-generated. For the case of
this family, we focus on the case in which the generating function is the normal distribution
and the distribution called log-gamma-normal is obtained, and this distribution does not
correspond to the distributions previously mentioned. In our proposal, we change the
assumption that the errors in the multiple linear regression model follow a normal distribu-
tion to that of errors with a log-gamma-normal distribution. It is also important to note
that the generalized log-gamma and log-gamma distributions are also particular cases of
the family introduced by Amini et al. [15] (assuming a gamma distribution instead of the
standard normal distribution), but in our proposal we do not consider these cases.

In addition to carrying out the estimation process of the parameters in the model, we
present two applications using real datasets. The first dataset was previously analyzed by
Zhang and Davidian [22], and the second dataset is related to a study on the abundance of
beryllium scaled to the Sun’s abundance. For the particular case of these datasets, the model
fits well, and therefore we can conclude that, apart from the existence of statistical literature
for the analysis of asymmetric data, our proposal is a viable alternative that competes with
existing models. The main contribution of this model is that the trend of the dataset under
examination is better explained using a model with log-gamma type errors instead of one
with asymmetric errors using another distribution.

The article is organized as follows. In Section 2, we define the family of LGN distribu-
tions and discuss some of its properties. In Section 3, the LGN regression model is defined,
and its properties studied. The inference is implemented using the maximum likelihood
approach. The censored LGN model for dealing with censored data by maximum likeli-
hood estimation is discussed in Section 4. The results of a small-scale simulation study
reveal the good performance of the estimation approach in Section 5. In Section 6, two real
data applications are considered, revealing that the datasets in question are better fitted by
LGN model than PN and models.

2. Log-Gamma-Normal Distribution

In this section, we define the LGN model, which is obtained from the family given in (1)
by taking the CDF of the standard normal distribution, and we study some basic properties.

Definition 1. The random variable X is said to have a LGN distribution, if X has PDF given by

fLGN(x; δ, γ) =
γδ

Γ(δ)
[− ln Φ(x)]δ−1[Φ(x)]γ−1φ(x), x ∈ R, (2)

where δ, γ ∈ R+, Γ(a) =
∫ ∞

0 ua−1e−udu is the gamma function, and the functions φ(·) and Φ(·)
are the PDF and CDF of the standard normal distribution, respectively.

A random variable with LGN distribution is shortly denoted by X ∼ LGN(δ, γ). One
can note that the function (2) is a proper PDF since fLGN(x; δ, γ) ≥ 0 for all x ∈ R and
δ, γ ∈ R+. Thus, letting y = − ln Φ(x), it follows that

∫
R

γδ

Γ(δ)
[− ln Φ(x)]δ−1[Φ(x)]γ−1φ(x)dx =

∫ +∞

0

γδ

Γ(δ)
yδ−1e−γydy = 1.

Figure 1 depicts some shapes of LGN distribution for some selected values of the
parameters δ and γ. It can be seen that the parameters δ and γ affect both the skewness
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and kurtosis of the model, and hence, the LGN distribution is more flexible for fitting data
that may be skewed as well as having thinner or thicker tails than the normal, SN and
PN distributions.
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Figure 1. PDF of the LGN distribution: (a) δ = 0.6 and γ = 0.30 (dotted line), 0.60 (dashed line),
1.0 (dotted–dashed line), 3.0 (long dashed line) and 6.0 (solid line). (b) γ = 1.5 and δ = 0.30 (dotted
line), 0.60 (dashed line), 1.0 (dotted–dashed line), 2.0 (long dashed line) and 5.0 (solid line).

The LGN distribution reduces to some specific distributions as special cases for speci-
fied values of the parameters δ and γ; some of them are available in the literature and have
been widely studied.

Proposition 1. Let X ∼ LGN(δ, γ)

(i) if δ = γ = 1, then X ∼ N(0, 1),
(ii) if δ = 1, then X ∼ PN(γ),
(iii) if δ = 1 and γ = 2, then X ∼ SN(1).

Proof. Demonstration of (i)–(iii) is immediate from the definition of LGN distribution.

2.1. Moments

Measures of skewness and kurtosis can be given from the moments of the LGN
distribution. The following proposition gives an expression of the rth moment of the
random variable X ∼ LGN(δ, γ) which does not have a closed form.

Proposition 2. Let X ∼ LGN(δ, γ) then

E
[
Xk] = E

[(
Φ−1(e−W)

)k
]

, for k = 1, . . . , n, (3)

where Φ−1(·) is the inverse of the CDF Φ(·) and the random variable W follows a gamma distribu-
tion with parameters δ and γ.

Proof. We have by definition that

E
[
Xk] = ∫

R
xk γδ

Γ(δ)
[− ln Φ(x)]δ−1[Φ(x)]γ−1φ(x)dx.

Letting W = − ln Φ(X), then X = Φ−1(e−W), it follows that

E
[
Xk] = ∫ +∞

0

(
Φ−1(e−w)

)k γδ

Γ(δ)
wδ−1e−γwdw,
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which is the expected value of the function
[
Φ−1(e−W)

]k, where W follows a Gamma(δ, γ)
distribution.

Based on moments (3), one can obtain the skewness (
√

β1) and the kurtosis (β2)
coefficients of the LGN model using the following expressions

√
β1 =

µ3 − 3µ1µ2 + 2µ3
1

(µ2 − µ2
1)

3/2
,

and

β2 =
µ4 − 4µ1µ3 + 6µ2µ2

1 − 3µ4
1

(µ2 − µ2
1)

2

respectively, where µk = E
[
Xk] for k = 1, . . . , 4. The skewness and kurtosis coefficients

for values of δ and γ ranging between 0.1 and 200 were calculated using numerical in-
tegration with an integrate function of R Development Core Team [23] for LGN model.
It was found that

√
β1 ∈ [−1.0190, 1.0143] and β2 ∈ [1.7170, 4.9356]. The given inter-

vals contain the corresponding intervals of skewness and kurtosis coefficients of the SN
model, which are (−0.9953, 0.9953) and [3.0000, 3.8692), respectively, and the PN model,
which are [−0.6115, 0.9007] and [1.7170, 4.3556], respectively. More details can be found
in Pewsey et al. [4]. The previous results illustrate the fact that the LGN model contains
models with greater (and smaller) asymmetry degree than both the SN and PN models.

2.2. Distribution Function

In this section, we present the explicit formula for the CDF of LGN distribution.

Proposition 3. Let X ∼ LGN(δ, γ), then

FLGN(x) =
Γ(δ,−γ ln Φ(x))

Γ(δ)
, (4)

where Γ(a) =
∫ ∞

0 ua−1e−udu is the gamma function and Γ(a, x) =
∫ ∞

x ua−1e−udx is the upper
incomplete gamma function.

Proof. The CDF of the LGN distribution is obtained as follows:

FLGN(x) =
∫ x

−∞
fLGN(t)dt

=
∫ x

−∞

γδ

Γ(δ)
[− ln Φ(t)]δ−1[Φ(t)]γ−1φ(t)dt

= −
∫ − ln Φ(x)

+∞

γδ

Γ(δ)
sδ−1e−γsds; by s = − ln Φ(t)

=
∫ +∞

− ln Φ(x)

γδ

Γ(δ)
sδ−1e−γsds

=
Γ
(
δ,−γ ln Φ(x)

)
Γ(δ)

It can be shown that (see Cordeiro et al. [16]) for the density function given in (2),
the quantile function is given by:

Q(u) = Φ−1(exp
{
−γ−1Q−1(δ, u)

})
,

where Q−1(δ, u) is the inverse function of Q(δ, u) = Γ(δ, u)/(Γ(δ)).
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The inversion method can be used to generate a random variable with LGN distribu-
tion. Thus, let δ, γ ∈ R+ and U be a random variable with uniform distribution, namely
U ∼ U(0, 1). Then, the random variable X with distribution LGN(δ, γ) can be obtained
by letting

X = Φ−1
(

e−F−1(1−U,δ,γ)
)

,

where Φ−1(·) and F−1(·, δ, γ) are the inverses of the CDF of the normal and gamma
distributions, respectively. The survival and hazard functions for the LGN distribution can
be obtained from (2) and (4), and they are given by

S(t) = Γ(− ln Φ(t); δ, γ),

and

r(t) =
γδ

Γ(δ) [− ln Φ(t)]δ−1[Φ(t)]γ−1φ(t)

Γ(− ln Φ(t), δ, γ)
,

respectively.

2.3. Location-Scale Extension

Let X ∼ LGN(δ, γ). The location-scale extension of the random variable X is defined
using the transformation Y = ξ + σX, where ξ ∈ R and σ ∈ R+. The corresponding PDF
of Y is given by

fLGN(y; ξ, σ, δ, γ) =
γδ

σΓ(δ)

[
− ln Φ

(
y− ξ

σ

)]δ−1[
Φ
(

y− ξ

σ

)]γ−1
φ

(
y− ξ

σ

)
, (5)

where ξ is a location parameter and σ is a scale parameter. The random variable Y that has a
distribution with density function given in Equation (5) is denoted as Y ∼ LGN(ξ, σ, δ, γ).

The previous representation of location scale can be extended to the case where
response variable depends on regressor variables, say Z1, . . . , Zp, through the relationship
ξi = z>i β; where β = (β0, β1, . . . , βp)> is an unknown vector of regression coefficients and
z = (1, z1, . . . , zp)> is a vector of known regressors correlated with the response vector.

The rth moment of a variable Y ∼ LGN(ξ, σ, δ, γ) can be obtained using the formula

E[Yr] =
r

∑
l=0

(
r
l

)
ξ lσr−lE[Xr−l ], r = 1, . . . ,

where X ∼ LGN(δ, γ).

Proof. Let X ∼ LGN(δ, γ), then, for Y = ξ + σX and r = 1, . . . it has

E[Yr] = E
[
(ξ + σX)r]

= E
[

r

∑
l=0

(
r
l

)
ξ l(σX)r−l

]

=
r

∑
l=0

(
r
l

)
ξ lσr−lE[Xr−l ].

In the second line, the binomial theorem is used.

3. Log-Gamma-Normal Regression Model

Regression models have been a statistical technique widely used in many areas of
knowledge to explain the behavior of a response variable, say Y, as a function of other
variables called regressors, say Z1, . . . , Zp, and a vector of unknown parameters called
regression coefficients denoted by β. Specifically, for a random sample of n individuals
indexed by i = 1, . . . , n, we have
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yi = z>i β + εi for i = 1, 2, . . . , n; (6)

where εi is a random variable (random error) with certain PDF, the most common being
the normal distribution assumption, i.e., εi ∼ N(0, σ2). Given the multiple departures
from the normality assumption and the actual behavior of the random variable εi, this
assumption has been replaced in numerous instances by other more realistic ones, usually
looking for distributions to fit data with higher or lower skewness and/or kurtosis than that
allowed by the normal distribution. Notable inferential mistakes are made (invalid results)
when we work under the normal assumption and this assumption is not true. In some
cases, a simple transformation helps to solve this problem, but this strategy typically has
problems of interpretability of the results or the coefficients of the model.

Now, we change the normal assumption using the LGN assumption in the random er-
ror term εi, so we suppose that εi ∼ LGN(0, σ, δ, γ) and this leads to Yi ∼ LGN(z>i β, σ, δ, γ)
for i = 1, . . . , n. The case δ = γ = 1 follows the ordinary normal regression model. Using
the least squares method, we obtain the estimators β̃ =

(
z>z

)−1
z>y, which are not un-

biased for the parameters of the regression coefficients but the correction β̃∗0 = β̃0 + Ê[ε],
where the last term represents the estimated expected value of the random variable ε, such
that we can obtain unbiased estimators of the parameters.

Estimation Using Maximum Likelihood Method

We initially define some quantities: Z is a matrix n × (p + 1) where rows zi corre-
spond to observations for the ith individual for p independent variables; y is a vector
n × 1 corresponding to responses for the ith individual; and β = (β0, β1, . . . , βp)> is
an unknown vector of regression coefficients. Thus, given a random sample of size n,
say y = (Y1, . . . , Yn)>, where Yi ∼ LGN(z>i β; σ, δ, γ) for i = 1, . . . , n; the log-likelihood
function for the vector θ = (β>, σ, δ, γ)> can be written as follows:

`(θ; y) = n[δ ln(γ)− ln(Γ(δ))− ln(σ)− 0.5 ln(2π)]− 1
2σ2 (y− Zβ)>(y− Zβ)

+ (δ− 1)
n

∑
i=1

ln

[
− ln Φ

(
yi − z>i β

σ

)]
+ (γ− 1)

n

∑
i=1

ln

[
Φ

(
yi − z>i β

σ

)]
. (7)

After taking the first partial derivatives of the log-likelihood function (7) regard-
ing the parameters of interest and setting them equal to zero, we obtain the following
score equations:

U(β) =
1
σ2 Z>(y− Zβ)− 1

σ
Z>[(δ− 1)U + (γ− 1)In]∆1 = 0, (8)

U(σ) = −n
σ
+

1
σ3 (y− Zβ)>(y− Zβ)

− 1
σ2 (y− Zβ)>[(δ− 1)U + (γ− 1)In]∆1 = 0, (9)

U(δ) = n ln(γ)− nψ(δ) +
n

∑
i=1

ln[− ln Φ(xi)] = 0, (10)

U(γ) =
nδ

γ
+

n

∑
i=1

ln[Φ(xi)] = 0, (11)

where ∆1 = (v1, . . . , vn)>, and U = diag{1/u1, . . . , 1/un} with vi = φ(xi)/Φ(xi) and
ui = ln[Φ(xi)]; and xi = (yi − z>i β)/σ for i = 1, . . . , n; In is the identity matrix of order n,
and ψ(·) is the digamma function.
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The elements of the observed information matrix for the parameter θ = (β>, σ, δ, γ)>

are easily computed by taking second partial derivatives, obtaining:

j
β> =

1
σ2 Z>Z +

δ− 1
σ2 Z>∆2Z +

γ− 1
σ2 Z>∆3Z,

jβσ =
2
σ3 Z>(y− Zβ) +

δ− 1
σ2 Z>∆4 +

γ− 1
σ2 Z>∆5,

jσσ = − n
σ2 +

3
σ2

n

∑
i=1

x2
i +

δ− 1
σ2

n

∑
i=1

{
−2

vi
ui

xi +
v2

i
u2

i
x2

i +
vix3

i + v2
i x2

i
ui

}

+
γ− 1

σ2

n

∑
i=1

[
−2vixi + vix3

i + x2
i v2

i

]
,

jβγ =
1
σ

Z>∆1, jβδ =
1
σ

Z>∆6, jσδ =
1
σ

X>∆6, jσγ =
1
σ

X>∆1,

jδδ = nψ1(δ), jδγ = − n
γ

, jγγ =
nδ

γ2 ,

where ∆2 = diag
{

v2
i /u2

i + (vixi + v2
i )/ui

}
and ∆3 = diag

{
vixi + v2

i
}

with i = 1, . . . , n;
∆4 = (a1, . . . , an)>, ∆5 = (b1, . . . , bn)>, and ∆6 = (c1, . . . , cn)> with ai = −vi/ui +
v2

i xi/u2
i + (vix2

i + v2
i xi)/ui, bi = vix2

i + v2
i xi − vi, ci = vi/ui for i = 1, . . . , n, ψ1(·) is

the trigamma function and X = (x1, · · · , xn)> with xi = (yi − z>i β)/σ for i = 1, . . . , n.
The Fisher information matrix I(θ) can be obtained numerically, calculating n−1

times the expected value of the observed information matrix. When δ = γ = 1, we
obtain the case of the normal distribution N(0, σ2) for the random variable εi. Using nu-
merical approximation, the determinant of the Fisher information matrix is det(I(θ)) =
det(Z>Z)[−0.3137det(Z>Z) + 0.3093 ∑

p
j=0 z̄2

j ], where det(·) denotes the determinant func-
tion of a matrix and z̄j denotes the mean in the sample of the variable Zj. Thus, the de-
terminant of the information matrix is different to zero, and the information matrix is
non-singular, ensuring the conditions to apply asymptotic approximation to the normal
distribution of the maximum likelihood estimator vector of θ. Here, the covariances matrix
of θ̂ is the inverse of the Fisher information matrix, i.e., Σθ̂ = I−1(θ).

Approximation Np+4(θ, Σθ̂) can be used to construct confidence intervals for θr , which

are given by θ̂r ∓ z1−α/2

√
σ̂(θ̂r), where σ̂(θ̂r) corresponds to the rth diagonal element of the

matrix Σθ̂ and z1−α/2 denotes 100(1− α/2) quantile of the standard normal distribution.

4. Censored LGN Model

Models for censored data are common in economic research, medicine, biology,
and survival analysis. Usually, this type of data is analyzed using the Tobit model (see
Tobin [24], also known as censored normal model (CN)). In some cases, the tails of the
distribution of the random errors are more or less heavy than the tails of the normal dis-
tribution, consequently showing that the Tobit model does not estimate the probability
in the censored part very well, and this leads to bad estimates. In these cases, it must be
assumed that another distribution to model errors, especially in the case of asymmetric
errors, can work with the power-normal Tobit model (PNT) (see Martínez-Flórez et al. [25]),
the censored SN model, or any other model that fits the degree of asymmetry and the
kurtosis of the errors in the model. We now extend the LGN regression model to the
censored data, which we will call the censored LGN regression model (CLGN).

Censored LGN Variable

Consider a random variable Y∗ ∼ LGN(ξ, σ, δ, γ) and let
{

y∗1 , y∗2 , . . . , y∗n
}

be a random
sample of size n of Y∗. Let T be a value of censorship for the Y∗ variable. The CLGN
random variable Y is defined as
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yi =

{
y∗i , if y∗i > T,
T, if y∗i ≤ T,

for i = 1, . . . , n. We use the notation CLGN(ξ, σ, δ, γ). Consequently, the probability mass at
the value T is Pr(yi = T) = Pr(y∗i ≤ T) = 1− Γ(− ln Φ(zTi); δ, γ), where zTi = (T − ξ)/σ.
For y∗i > T, the distribution of the variable Y is LGN(ξ, σ, δ, γ). Although the formulation
above the threshold T is not null, it can be transformed back to zero by taking y∗i − T.
Hence, there is no loss of generality in taking T = 0.

When we have regressor variables, say Z1, . . . , Zp, through the relationship ξi = z>i β,
where β = (β0, β1, . . . , βp)> is an unknown vector of regression coefficients, and z =

(1, z1, . . . , zp)> is a vector of known regressors correlated with the response vector, we have
a CLGN regression model defined by the random variable yi = max{y∗i , T}, with y∗i =
z>i β + εi, i = 1, . . . , n; i.e.,

yi =

{
z>i β + εi, if z>i β + εi > 0,
0, otherwise.

(12)

For a sample of size n, y = (y1, . . . , yn)>, where Yi ∼ CLGN(z>i β; σ, δ, γ) for i =

1, . . . , n; the log-likelihood function for the vector θ = (β>, σ, δ, γ)> is given by

`(θ; y) = ∑0[1− Γ(− ln Φ(xTi); δ, γ)] + ∑1

[
ln
(

γδ

σΓ(δ)

)
+ (δ− 1) ln[− ln Φ(xi)]

]
+ ∑1

[
− 1

2σ2 x2
i + (γ− 1) ln[Φ(xi)]

]
,

where ∑0 and ∑1 denote the sum in the censored part and uncensored part, respectively;
xi = (yi − z>i β)/σ and xTi = (T − z>i β)/σ.

Special cases from model (12) occur when δ = γ = 1, so the Tobit model follows (see
Tobin [24]) and with δ = 1 the Tobit PN model follows (see Martínez-Flórez et al. [25]).
The parameters estimation can be performed by the maximum likelihood method, i.e., by
maximizing the function `(θ; y), whose solution using iterative numerical methods leads
to the maximum likelihood estimator (MLE) of the model.

5. Simulation Study

To study the performance of the MLE θ̂ = (β̂
>

, σ̂, δ̂, γ̂)> of parameter vector
θ = (β>, σ, δ, γ)>, we conducted a Monte Carlo simulation study with small and moderate
samples. In the study, we generated 5000 samples of sizes n = 50, 100, 200 and 500, and we
considered the LGN model. The following parameter values were taken: δ, γ = 0.75, 1.50;
β = (β0, β1)

> = (2.0, 1.0)> and we took σ = 0.50.
We considered a linear model with a single covariate Z whose values were generated

according to a uniform distribution U(0, 1). We also took errors εi ∼ LGN(0, σ, δ, γ).
To evaluate estimators performance for point estimates we considered the bias (Bias),
the relative bias (RB) defined as (absolute value of bias / true parameter value) and the
square root of the mean squared error RMSE =

√
MSE, which is the mean over all samples

of the squared bias plus the variance. Maximum likelihood parameter estimates were
computed using the optim function in statistical package R Development Core Team [23].

Tables 1 and 2 present the results of the simulation study. It can be seen from the table
that the RMSEs of MLEs for β0, β1, σ, δ and γ decreases as sample sizes increase, which
is expected since estimators are consistent. The relative bias of the MLEs also decrease
as sample sizes increase. The MLEs of β0 are unstable because this parameter is affected
by the asymmetry parameter; however, its MLE becomes more stable as the sample size
becomes larger. It can also be seen that when the parameter γ increases, the bias of the
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MLEs of the β0, δ and γ is larger. The main conclusion is that we are quite safe working
with the MLEs if sample sizes are greater than 100.

Table 1. Performance evaluation for the MLE of β0, β1, σ, δ and γ under LGN model for δ = 0.75 and
γ = 0.75, 1.50.

δ = 0.75, γ = 0.75 δ = 0.75, γ = 1.50

n θ̂ Bias RB RMSE Bias RB RMSE

50 β̂0 0.027 1.3 0.625 0.093 4.6 0.605
β̂1 0.003 0.3 0.207 0.003 0.3 0.171
σ̂ −0.034 6.8 0.194 −0.049 9.8 0.193
δ̂ 0.124 16.6 0.586 0.243 32.4 1.187
γ̂ 0.439 58.5 1.898 0.464 30.9 2.304

100 β̂0 0.024 1.2 0.489 0.047 2.4 0.455
β̂1 0.001 0.1 0.143 0.001 0.1 0.119
σ̂ −0.021 4.2 0.166 −0.019 3.8 0.165
δ̂ 0.112 15.0 0.526 0.208 27.7 0.953
γ̂ 0.291 38.8 1.242 0.414 27.6 1.946

200 β̂0 0.010 0.5 0.344 0.020 1.0 0.308
β̂1 0.001 0.1 0.102 0.001 0.1 0.085
σ̂ −0.018 3.7 0.142 −0.017 3.4 0.155
δ̂ 0.111 14.8 0.450 0.162 21.6 0.760
γ̂ 0.214 28.5 0.908 0.393 26.2 1.639

500 β̂0 0.004 0.2 0.163 0.006 0.3 0.157
β̂1 0.001 0.1 0.051 0.001 0.0 0.042
σ̂ −0.004 0.3 0.108 −0.006 1.2 0.126
δ̂ 0.072 9.6 0.321 0.085 11.3 0.430
γ̂ 0.124 16.5 0.543 0.281 18.7 1.108

Table 2. Performance evaluation for the MLE of β0, β1, σ, δ and γ under LGN model for δ = 1.50 and
γ = 0.75, 1.50.

δ = 1.50, γ = 0.75 δ = 1.50, γ = 1.50

N θ̂ Bias RB RMSE Bias RB RMSE

50 β̂0 0.018 0.9 0.673 0.095 4.7 0.660
β̂1 −0.003 0.3 0.180 −0.002 0.2 0.144
σ̂ −0.032 6.3 0.273 −0.069 13.9 0.188
δ̂ 0.316 21.1 1.747 0.269 17.9 1.364
γ̂ 0.593 79.5 2.210 0.422 28.2 2.355

100 β̂0 0.013 0.6 0.522 0.058 2.9 0.540
β̂1 −0.001 0.1 0.126 −0.001 0.1 0.100
σ̂ −0.017 3.3 0.244 −0.026 5.2 0.159
δ̂ 0.308 20.6 1.527 0.257 17.1 1.180
γ̂ 0.446 59.5 1.647 0.415 27.7 2.016

200 β̂0 0.012 0.6 0.387 0.034 1.7 0.406
β̂1 −0.001 0.1 0.090 −0.001 0.1 0.072
σ̂ −0.014 2.8 0.198 −0.014 2.7 0.135
δ̂ 0.246 16.4 1.222 0.231 15.4 0.991
γ̂ 0.309 41.2 1.281 0.344 22.9 1.602

500 β̂0 0.011 0.5 0.212 0.001 0.1 0.213
β̂1 −0.001 0.1 0.045 −0.001 0.1 0.036
σ̂ −0.003 0.6 0.124 −0.001 0.1 0.102
δ̂ 0.150 10.0 0.757 0.131 8.7 0.628
γ̂ 0.139 18.6 0.657 0.240 16.0 1.043
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6. Real Data Applications
6.1. Application 1

We consider a dataset related to longitudinal data on cholesterol levels collected as part
of the famed Framingham heart study. The file includes information for n = 200 randomly
selected individuals, reported in Zhang and Davidian [22]. The considered variables were
the cholesterol level (Y), the age of the individual at baseline (Z1) and the gender indicator
(Z2) (0 = female, 1 = male). For this application, we take only the observations in the
second period of time of the measurement (n = 176). Table 3 presents the summary statistic,
including measures of skewness and kurtosis for cholesterol data. Clearly, the values of the
skewness and kurtosis for cholesterol data justify using an asymmetric model, the PN, SN
or LGN model.

Table 3. Summary statistics for cholesterol levels for 176 subjects of the Framingham cholesterol study.

Mean SD
√

b1 b2

224.597 41.242 0.896 3.594

A model with errors following a normal distribution was fitted, and it was found
that the Shapiro–Wilk normality test gives a value of the test statistic W = 0.9599 with
p-value = 6.254× 10−5, so the normality of the errors is rejected. We fitted linear regression
models by assuming errors following an asymmetric distribution, namely SN, PN and
LGN distributions. For estimating parameters in the considered models, we use the optim
function available in R Development Core Team [23].

Table 4 presents the MLE for the estimated parameters of the fitted models. We took
the obtained estimates from the normal model using the function lm R Development Core
Team [23] as the initial values. For δ and γ (and some cases σ) we took the obtained
estimates under the SN, PN and LGN location-scale models fitted to Y variable. From the
table, the age at baseline variable (Z1) is not significant and the cholesterol level depends
solely on the gender in normal, PN and SN models. For the LGN model, it follows that the
cholesterol level depends on the sex and the age of the individual at the baseline.

The considered linear model was

Yi = β0 + β1Z1i + β2Z2i + εi, i = 1, 2, . . . , 176.

Table 4. Estimates and standard error (SE) for normal, PN, SN and LGN linear regression models
fitted to cholesterol data.

Normal PN SN LGN

β0 150.6 (15.9) 71.1 (25.0) 128.1 (14.0) 90.9 (0.2)
β1 −9.3 (5.8) −7.7 (5.5) −5.7 (5.0) −5.3 (2.6)
β2 1.9 (0.4) 1.6 (0.4) 1.3 (0.4) 1.1 (0.2)
σ 38.4 (2.1) 61.8 (6.1) 60.3 (4.8) 29.2 (0.1)
λ - - 3.6 (1.1) -
δ - - - 0.2 (0.1)
γ - 8.2 (3.5) - 9.2 (4.1)

To compare the normal, PN and LGN models, which are nested models, we used the
AIC, by Akaike [26], AICc (corrected Akaike information criterion), and BIC (Bayesian
information criterion) by Schwarz [27], which are written as

AIC = −2ˆ̀(·) + 2k,

AICc = AIC +
(
2k(k + 1)

)
/
(
n− (k + 1)

)
,

BIC = −2ˆ̀(·) + k log(n),

where k is the number of unknown parameters in the considered model. The best model is



Mathematics 2022, 10, 1199 12 of 16

the one with the smallest AIC or AICc or BIC.
Using the Normal, PN, SN and LGN distributions, the scaled residuals ei = (yi −

z>i β̂)/σ̂ are evaluated and presented in Figures 2 and 3.
The normality assumption for errors can be tested by the hypothesis

H01 : (δ, γ) = (1, 1) versus H11 : (δ, γ) 6= (1, 1),

using the likelihood-ratio (LR) statistics, −2 log(Λ1) = −2
(
`N(θ̂)− `LGN(θ̂)

)
, which for

the dataset under study, leads to −2 log(Λ1) = 18.228, so that p−value< 0.05, with strong
indication against the null hypothesis.

Similarly, the assumption of PN distribution for the errors can be tested by the hypothesis

H02 : δ = 1 versus H12 : δ 6= 1,

using the LR statistics, −2 log(Λ2) = −2
(
`PN(θ̂) − `LGN(θ̂)

)
, which leads to

−2 log(Λ2) = 6.622, so that p-value < 0.05, with strong indication against the null hypothesis.
Table 5 presents the AIC, AICc and BIC criteria for the normal, PN, SN and LGN mod-

els. Please note that according to these criteria, the model that best fits the dataset is the SN,
since it has a lower value of AIC, AICc and BIC, followed by the LGN model. However, we
remember that the SN model presents a singular information matrix when the asymmetry
parameter λ is zero, and therefore, hypothesis tests about the model parameters using
likelihood-ratio statistics are not feasible from the theory of large samples; for example, for
testing the significance of the asymmetry parameter in the SN model. This constitutes a
disadvantage related to the LGN model, for which it was shown that it has a non-singular
information matrix. In addition, as mentioned in Section 2, the LGN model has higher
ranges of asymmetry and kurtosis than the SN model, so in practice it may be preferable in
certain situations.

Table 5. AIC, AICc, and BIC for normal, PN and LGN linear models.

Criteria Normal Model PN Model SN Model LGN Model

AIC 1789.584 1779.979 1773.770 1775.356
AICc 1789.817 1780.331 1764.123 1775.853
BIC 1799.096 1795.832 1789.622 1794.379

This discussion illustrates that the final selection of a model is often simply a matter
of choice. The LGN model can be considered appropriate if we want to use a model with
which we can carry out hypothesis tests about the parameters, especially those associated
with skewness and kurtosis in the model. In any case, the final choice must be duly justified.

For non-nested models, we used a generalized LR statistic test studied by Vuong [28].
This test was derived to compare competing models that are strictly non-nested. Since Fθ

and Gζ are two non-nested models, f (yi | xi, θ) and g(yi | xi, ζ) two densities corresponding
to these non-nested models, the LR statistics to compare both models is given by

LR
(
θ̂, ζ̂
)
=

{
1√
n

n

∑
i=1

log
f
(
yi | xi, θ̂

)
g
(
yi | xi, ζ̂

)},

which does not follow a chi-square distribution. To overcome this problem, Vuong [28]
proposed an alternative approach based on the Kullback–Liebler information criterion [29].
Based on the distance between each model and the true process generating the data, namely
the model h0(y | x), he arrived at the statistics

TLR,NN =
1√
n

LR
(
θ̂, ζ̂
)

ŵ
, (13)
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where

ŵ2 =
1
n

n

∑
i=1

(
log

f
(
yi | xi, θ̂

)
g
(
yi | xi, ζ̂

))2

−
(

1
n

n

∑
i=1

log
f
(
yi | xi, θ̂

)
g
(
yi | xi, ζ̂

))2

.
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Figure 2. Histogram for scaled residuals for (a) Normal model, (b) PN model, (c) SN model, and
(d) LGN model fitted to the cholesterol data.

−2 −1 0 1 2 3

−
2

−
1

0
1

2

Sample quantiles

T
h

e
o

re
ti
c
a

l 
q

u
a

n
ti
le

s

(a)

0.5 1.0 1.5 2.0 2.5 3.0

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

Sample quantiles

T
h

e
o

re
ti
c
a

l 
q

u
a

n
ti
le

s

(b)

−0.5 0.0 0.5 1.0 1.5 2.0 2.5

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

Sample quantiles

T
h

e
o

re
ti
c
a

l 
q

u
a

n
ti
le

s

(c)

1 2 3 4 5 6 7

1
2

3
4

5
6

7

Sample quantiles

T
h

e
o

re
ti
c
a

l 
q

u
a

n
ti
le

s

(d)

Figure 3. QQplots for (a) Normal model, (b) PN model, (c) SN model, and (d) LGN model fitted to
the cholesterol data.
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For strictly non-nested models, the statistic (13) converges in distribution to a standard
normal distribution under the null hypothesis of equivalence of the models. Thus, the null
hypothesis is not rejected if |TLR,NN | ≤ zp/2. On the other hand, we reject at significance
level p the null hypothesis of equivalence of the models in favor of model Fθ being better
(or worse) than model Gζ if TLR,NN > zp (or TLR,NN < −zp).

We now use Voung for comparing the LGN versus SN and PN versus SN models
fitted to the data, since they are two non-nested models. Let f

(
yi | xi, θ̂

)
be the LGN model

and g
(
yi | xi, ζ̂

)
the SN model. The generalized LR test statistic value is TLR,NN = 33.981.

For PN versus SN, the generalized LR test statistic value is TLR,NN = 30.072. Therefore,
the LGN and PN models are significantly superior to the SN model, according to the
generalized LR statistic. Then, the LGN model is the better model compared with the
normal, PN and SN models.

6.2. Application 2

For the second application, we consider a dataset consisting of measurements for
68 solar-type stars. These data were previously described and analyzed by Santos et al. [30]
and Tovar-Falón et al. [31]. The dataset is available in the astrodatR library of the R Devel-
opment Core Team [23] package under the name Stellar Abundances. In this application,
we consider the response variable: log N(Be), which represents the log of the abundance of
beryllium scaled to Sun’s abundance, i.e., the Sun has log N(Be) = 0.0. The explanatory
variable is Teff/1000, which represents the effective stellar surface temperature (in Kelvin).

In astronomy, objects such as stars, galaxies or X-ray sources, among others, are
observed in some new wave bands. Some of these objects can go unnoticed due to lim-
ited sensitivities, leading to upper limits in the measurement of their luminosity (see
Feilgelson [32]). For the dataset, 14 observations (19.35%) were censored at 0.0, i.e., 12 beryl-
lium measurements were not detected.

We fitted the censored normal (CN) or Tobit model using the censReg function of R
Development Core Team [23]. Likewise, we also fitted the censored power-normal (CPN)
and censored LGN (CLGN) models. The Table 6 shows the MLEs of the fitted models.
The initial values for the parameters βk were initially taken from those returned by the
censReg package of the CN model. The outputs show that the explanatory variable X is
significant in the considered models.

Table 6. Estimates (standard error) for CN, CPN, and CLGN linear models.

Parameters CN Model CPN Model CLGN Model

β0 −0.9450 (0.5854) −1.6054 (0.6910) −1.1897 (0.4331)
β1 0.3224 (0.1023) 0.5222 (0.1208) 0.3520 (0.0732)
σ 0.3147 (0.0281) 0.0813 (0.0688) 0.3268 (0.0326)
α - - 2.0123 (0.5762)
λ - 0.0280 (0.0477) 4.5803 (0.9748)

Table 7 contains the AIC and AICC values for the fitted models, where it is observed
that the CLGN model presents the best fit. Figure 4a–c show the histogram, the CDF and
the qqplot of the CLGN model of the scale residual errors of the uncensored part. Here one
can see the good fit of the CLGN model.

Table 7. AI and AICC for CN, CPN and CLGN linear models.

Criteria CN Model CPN Model CLGN Model

AIC 50.2585 63.9628 −25.8152
AICC 50.6335 64.5977 −24.8474
BIC 62.9170 72.8408 −14.7176



Mathematics 2022, 10, 1199 15 of 16

We compare the Normal and PN models against the LGN model, so for hypothesis
testing

(δ, γ) = (1, 1) versus (δ, γ) 6= (1, 1)

and
δ = 1 versus δ 6= 1,

we have −2 log(∆1) = 8.4432 and −2 log(∆2) = 20.1476 both statistics with p-value < 0.05
for which both tests are rejected and therefore the LGN model performs better than the
Normal and PN models.
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Figure 4. (a) histogram for scaled residuals CLGN model, (b) CDF of the scaled residuals CLGN
model (c) qqplot for scaled residuals CLGN regression model.

7. Conclusions

In this paper, we have proposed the asymmetric LGN distribution to give flexibility
to the term of error in linear regression models. The LGN is based on the log-gamma-
generated families of distributions of Amini et al. [15]. This new model presents greater
ranges of asymmetry and kurtosis, and it extends the PN family of distribution; therefore,
it has more flexibility in terms of asymmetry and kurtosis. The ordinary Tobit model
Tobin [24] and the Tobit power-normal model Martínez-Flórez et al. [25] are special cases
from an extension of the studied model LGN to the case of censored data. The maximum
likelihood method was implemented, and the Fisher information matrix was derived, and it
was shown numerically to be non-singular, which guarantees valid large sample results
for the likelihood-ratio statistics. Two illustrations of real data reveal that the proposed
model can be a useful alternative to existing models such as normal, power-normal, Tobit
normal and Tobit power-normal. In addition, under certain considerations such as the
non-singularity of the information matrix of the model and larger ranges of asymmetry
and kurtosis, it may be a better alternative to the skew-normal distribution.
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