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Abstract: In this work, a novel fuzzy neural network (NFNN) with a long short-term memory (LSTM)
structure was derived and an adaptive sliding mode controller, using NFNN (ASMC-NFNN), was
developed for a class of nonlinear systems. Aimed at the unknown uncertainties in nonlinear systems,
an NFNN was designed to estimate unknown uncertainties, which combined the advantages of
fuzzy systems and neural networks, and also introduced a special LSTM recursive structure. The
special three gating units in the LSTM structure enabled it to have selective forgetting and memory
mechanisms, which could make full use of historical information, and have a stronger ability to learn
and estimate unknown uncertainties than general recurrent neural networks. The Lyapunov stability
rule guaranteed the parameter convergence of the neural network and system stability. Finally,
research into a simulation of an active power filter system showed that the proposed new algorithm
had better static and dynamic properties and robustness compared with a sliding controller that uses
a recurrent fuzzy neural network (RFNN).

Keywords: fuzzy neural network; long short-term memory; adaptive sliding mode control
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1. Introduction

Most systems existing in nature are nonlinear. Many scholars have developed various
linearization methods [1,2], which are then used for analysis and processing. However,
especially in practical applications, for highly nonlinear systems, implementing control
tasks for dynamic systems with uncertain parameters is still a hot research issue. In recent
years, the scientific community has developed multiple advanced control strategies for
nonlinear systems. SMC became the most widely used and effective control method in
complex nonlinear systems [3–7].

However, traditional sliding mode control can often cause a system to have high-
frequency switching characteristics, which may have a serious impact on the system. Recently,
fuzzy logic systems (FLS) [8,9] and neural networks (NN) [10,11] have been widely applied
in parameter estimation and system identification as two main schemes. Due to its fuzzy
mechanism, FLS has a strong ability to deal with uncertain systems. In [8], a fuzzy logic
control method was designed to change controller parameters in order to adapt the system un-
certainty. Artificial neural networks (ANN) are adaptive and self-learning, and, theoretically,
a multilayer feedforward NN can approximate any complex nonlinear function [9]. In [10],
an NN controller was developed to approximate the upper bound of system uncertainties for
nonlinear systems. Subsequently, various forms and structures of neural networks [11–15]
were proposed for nonlinear control problems, such as the back propagation (BP) NN [12,13],
radial basis function (RBF) NN [14,15], and so on. RBF neural networks have also been
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developed and have changed rapidly. These neural networks can adaptively compensate for
the nonlinearity in a system using an adaptive feedback controller, which is described in [16].
The learning algorithm of an RBF neural network was improved and a new generalized
growth and pruning algorithm was proposed for RBF in [17]. An RBF neural network was
applied to robot trajectory tracking control in [18]. A fuzzy neural network (FNN) that com-
bined a fuzzy control method and an NN estimator were developed to approach unknown
system uncertainties in [19,20]. A recurrent feature-selection-type FNN was employed for
a synchronous reluctance motor in [21].

Considering that traditional BP neural networks and RBF neural networks are both
feed-forward networks, it is not easy to handle the time correlation issue without using
historical data. Therefore, for signals with complex features, various recurrent NN methods
have been proposed [22–24]. Advanced NN strategies using sliding mode schemes have
been researched for dynamic systems [25–27].

Hochreiter and Schmidhuber proposed a more effective long short-term memory
(LSTM) NN structure in [28]. Some variants of LSTM were studied and the forgetting-
gate property and output gate with output activation function were proved to be its
most critical components [29]. The interpretability of an LSTM structure was studied in
depth [30]. Due to its many compelling features, LSTM is used in areas such as motion
recognition [31], video subtitles [32], image classification [33], nonlinear regression [34],
and natural language processing [35]. LSTM was first applied to the field of control in [36],
where LSTM was used to deal with the nonlinear dynamics and long-term time dependence
that exists in human motion. Then, a new self-evolving interval type-2 fuzzy LSTMNN
was proposed with the help of FLS and LSTM structures in [37]. Advanced intelligent
control schemes were derived to approximate and provide a valid way of approaching for
nonlinear systems [38,39]

In this paper, the LSTM mechanism was introduced into an FNN; hence, a novel fuzzy
neural network (NFNN) with an LSTM structure was developed. Then, an adaptive sliding
mode control method, using the NFNN, was derived for nonlinear systems. The main
contributions of this work are discussed in the following:

(1) Compared with existing work, this paper introduces the LSTM mechanism into the
FNN and proposes a novel FNN sliding mode method. Using LSTM in this way
could satisfactorily solve the issue of time dependence and vanishing gradients. There
appears to be no need for parameter fine-tuning because an NFNN works for the
learning rate and initial value of the weight.

(2) Most systems have nonlinearity and unknown uncertainty, which bring many un-
foreseen problems to system control. In this study, an adaptive sliding mode method
based on an NFNN was designed for a class of nonlinear systems. This method had
the significant advantages of model-free control, with a wide range of applications,
strong disturbance rejection ability, and good static and dynamic performance.

(3) The robustness of the controller was the main performance index. In general, the
faster and more accurate the estimation of the time-varying unknown uncertainty of
the system, the better the robustness. The simulation studied the system performance
in the presence of parameter changes of the APF circuit, and compared it with SMC
and ASMC-RFNN, showing its stronger learning ability and robustness.

2. Problem Statement and Preliminaries

Consider a class of single-input single-output partially unknown nonlinear systems,
which are shown by the differential equation in [10].

x(n)(t) + f (x(t),
.
x(t), x(2)(t), · · · , x(n−1)(t)) =

b(x(t),
.
x(t), x(2)(t), · · · , x(n−1)(t))u(t)

(1)

where t is time, x(i)(t)(i = 2, . . . n) are the i-th time derivatives of the x(t), f (·) : Rn → R ,
b(·) : Rn → R are nonlinear functions, and u(t) ∈ R is control input.
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For general consideration, assumptions 1 and 2 are made.

Assumption 1. The nonlinear function of system f (x(t),
.
x(t), x2(t), · · · , x(n−1)(t)) is absolute

value bounded:∣∣∣ f (x(t),
.
x(t), x2(t), · · · , x(n−1)(t))

∣∣∣ < fb(x(t),
.
x(t), x2(t), · · · , x(n−1)(t)) (2)

where fb(x(t),
.
x(t), x2(t), · · · , x(n−1)(t)) is a positive function.

Assumption 2. The control gain b(x(t),
.
x(t), x2(t), · · · , x(n−1)(t)) is a known positive function,

and it is lower bounded:

b(x(t),
.
x(t), x2(t), · · · , x(n−1)(t)) > bl(x(t),

.
x(t), x2(t), · · · , x(n−1)(t)) (3)

where bl(x(t),
.
x(t), x2(t), · · · , x(n−1)(t)) is a positive function.

Then, considering parameter variances and disturbances, we can rewrite Equation (1)
using state–space notation as follows:

.
X = AX + Bu + F + δ (4)

where δ = [0, 0, · · · , δ]T ∈ Rn×1 is the lumped uncertainty of the nonlinear system, which is

caused by internal parameter perturbation and external disturbance; X =
[

x,
.
x, x(2) · · · , x(n−1)

]T
∈

Rn×1; B = [0, · · · , b(X)]T ∈ Rn×1; F = [0, · · · ,− f (X)]T ∈ Rn×1;

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0

 ∈ Rn×n.

Control Objective: A controller was designed to ensure that X accurately tracked the
reference trajectory Xm, so that the nonlinear system (4) was asymptotically stable, and all
the signals were bounded.

To achieve the above objectives, a traditional sliding controller was designed for
an n-order nonlinear system expressed by (4).

Denote a tracking error as:

E = X− Xm = [e,
.
e, · · · , e(n−1)]

T
∈ Rn×1 (5)

where Xm is the n-order reference trajectory vector, and E is the n-order error vector.
The derivative of Equation (5) is:

.
E =

.
X−

.
Xm (6)

A standard sliding surface is designed as:

S = CE (7)

where C = [c1, c2, · · · , cn] ∈ R1×n is the parameter vector of the sliding surface.

Remark 1. In this paper, a conventional linear sliding mode surface was selected. Its advantage was
that it was simple and practical. As long as the selected sliding mode surface parameters satisfied
the Hurwitz condition, the asymptotic stability of the system could be guaranteed. Although the
terminal sliding mode surface and nonsingular sliding mode surface developed in the follow-up
research improved asymptotic stability to finite-time stability, they generated some nonsingularity-
solving problems; hence, the design and implementation were slightly difficult. In future research,
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the authors may employ some more advanced nonlinear sliding mode surfaces to reduce system
chattering and achieve finite-time stabilization effects.

The derivative of Equation (7) is simplified by the Equations (4)–(7) and expressed as:

.
S = C

.
E = [c1, c2, · · · , cn]


.
e

e(2)
...

e(n)


= c1

.
e + c2e(2) + · · ·+ cn−1e(n−1) + cn(xn − xn

m)

= c1
.
e + c2e(2) + · · ·+ cn−1e(n−1) + cn(b(X)u− f (X) + δ− xn

m)

(8)

Letting
.
S = 0 to solve an equivalent control force ueq:

ueq = 1
b(X)

( f (X)− δ + xn
m)− 1

cnb(X)
(c1

.
e

+c2e(2) + · · ·+ cn−1e(n−1))
(9)

Consequently, a new controller using a switching term is given as:

u = 1
b(X)

( f (X) + xn
m) − 1

cnb(X)
(c1

.
e + c2e(2) + · · ·+ cn−1e(n−1))

−Ksgn(S)
(10)

where K a positive value, and sign(·) represents a sign function.

Remark 2. The sign function brought a certain amount of system chattering, so sat (saturation)
or tanh functions were used instead to improve smoothness and reduce chattering. In addition,
dynamic sliding mode and super-twisting sliding mode methods could also weaken the effect of
chattering well, which could be investigated in further research work.

A Lyapunov function is chosen as follows:

V1 =
1
2

STS (11)

Then, the derivative of V1 is derived as
.

V1 = ST(c1
.
e + c2e(2) + · · ·+ cn−1e(n−1) + cn(b(X)u− f (X) + δ− xn

m)) (12)

Substituting (10) into (12) the following is obtained:

.
V1 = ST(δ− cnb(X)Ksgn(S))

= −cnb(X)K|S|+ STδ

≤ −cnblK|S|+ |S|δb = |S|(δb − cnblK)

(13)

where b(X) is a known function with a positive lower bound bl , and δ is a lumped uncer-
tainty with upper bound δb. When K ≥ δb/cnbl , inequality (13) satisfies

.
V1 ≤ 0. From

Lyapunov theory, the system is asymptotically stable.

3. The Novel FNN Structure

The unknown f (X) needs to be used in the controller (10); therefore, in practical
applications, the unknown f (X) needs to be estimated. A novel FNN with an LSTM
structure was adopted to identify the f (X), as shown in Figures 1 and 2. Its unique
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recursive structure with LSTM greatly increased the ability to approximate unknown
time-varying functions.
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The basic rules and signal transmission of each layer of an NFNN are given in the
following steps.

Layer 1—Input Layer: For node i of the input layer, the node input and output were
derived as:

net1
i (N) = x1

i (N) (14)

y1
i (N) = f 1

i (net1
i (N)) = net1

i (N), i = 1 (15)

where superscript and subscript show the number of layer nodes respectively; x1
i (N) is the

input, net1
i (N) are the network inputs, y1

i (N) is the output, f 1
i (·) is a unity function of the

i-th node, respectively, and N is the sampling iteration number.
Layer 2—Fuzzification Layer: The relationship in this layer is expressed as:

x2
j (N) = y1

i (N), i = 1 (16)

net2
j (N) =

 (x2
j (N)− c2

j )
2

(b2
j )

2

 (17)

y2
j (N) = f 2

j (net2
j (N)) = e−net2

j (N), j = 1, 2, 3 (18)
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where x2
j (N) = y1

i (N) is the input of the fuzzification layer, c2
j is the mean value, b2

j is

the standard deviation, net2
j (N) is the Gaussian function, f 2

j (·) is the negative exponential

function, and y2
j (N) is the output of the j-th node, respectively.

Layer 3—LSTM Layer: The relationship of this layer is expressed as follows:

x3
k(N) = y2

k(N) (19)

f 3
k (N) = σ(w3

f k · h
3
k(N − 1) + u3

f k · x
3
k(N) + b3

f k) (20)

u3
k(N) = σ(w3

uk · h
3
k(N − 1) + u3

uk · x
3
k(N) + b3

uk) (21)

a3
k(N) = tanh(w3

ak · h
3
k(N − 1) + u3

ak · x
3
k(N) + b3

ak) (22)

c3
k(N) = c3

k(N − 1) ◦ f 3
k (N) + u3

k(N) ◦ a3
k(N) (23)

g3
k(N) = tanh(c3

k(N)) (24)

o3
k(N) = σ(w3

ok · h
3
k(N − 1) + u3

ok · x
3
k(N) + b3

ok) (25)

h3
k(N) = o3

k(N) ◦ g3
k(N) (26)

net3
k(N) = h3

k(N) (27)

y3
k(N) = f 3

k (net3
k(N)) = h3

k(N), k = 1, 2, 3 (28)

where
σ(z) =

1
1 + e−z (29)

tanh(z) =
ez − e−z

ez + e−z (30)

where
[
w3

f k, u3
f k, b3

f k

]
,
[
w3

uk, u3
uk, b3

uk
]
,
[
w3

ak, u3
ak, b3

ak
]
,
[
w3

ok, u3
ok, b3

ok
]

are the weight and bias
terms of the different LSTM parts, symbol ◦ denotes dot product, tanh(z) and σ(z) show
nonlinear activation functions, f 3

k (N) is the output of the forgetting gate, u3
k(N) ◦ a3

k(N)
is the output of the input gate, c3

k(N) is the state value, y3
k(N) is the output at the N-th

iteration of the k-th node, and h3
k(N) is the output of the output gate.

Layer 4—Defuzzification Layer: The relationship of this layer is expressed as:

x4
k(N) = y3

k(N) (31)

net4
j (N) =

∑
k

w4
kl · x

4
k(N)

∑
k

x4
k(N)

(32)

y4
l (N) = f 4

l (N) = net4
l (N), l = 1, 2, 3 (33)

where w4
kl is the weight of the fourth layer’s l-th node connected with the k-th input, net4

l (N)
is the network output, and y4

l (N) is the output of the l-th node.
Layer 5—Output Layer: The relationship of this layer is expressed as:

x5
l (N) = y5

l (N) (34)

net5
o(N) = ∑

l
w5

l · x
5
l (N) (35)

y5
o(N) = f 5

o (net5
o(N)) = net5

o(N), o = 1 (36)

where w5
l is the weight related to the fifth layer output node and the l-th input, net5

o(N) is
the network output, and y5

o(N) is the final output.
The learning mechanism of the NFNN is summarized as follows:

(1) The system error is transmitted as the input to the fuzzy layer by the input layer.
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(2) Then, each neuron of the fuzzy layer employs a Gaussian function to make the input
fuzzified, and the output is then passed to the LSTM layer for information extraction
and mining.

(3) The input of the LSTM layer and the feedback output of the previous state join with
the input information channel and pass through three gates of forgetting, input, and
output in turn.

(4) The output of the LSTM layer is then passed to the defuzzification layer, using the
weighted average method.

(5) Finally, a weighted summation is accomplished on the defuzzification result to obtain
the final output.

4. Adaptive Sliding Mode Controller Design Using the NFNN and Stability Analysis

Figure 3 gives the block diagram of the designed ASMC-NFNN, which mainly includes
three parts: reference signal, proposed controller, and dynamic system. In the controller
module, the NFNN took the error information of the system as input, used the gradient
descent method for optimization, and adaptively learnt in order to obtain the unknown
uncertainty of the system; SMC as the main body of the controller, combined with the
estimated value output by the NFNN and robust term, gave the final effective control
law. In addition, the control object was a system that had unmodeled dynamics and was
subject to internal parameter changes and external disturbances. The control goal was
not to rely on an accurate system model to achieve the task of accurate control under
different disturbances. The following introduces the design of the proposed NFNN and
ASMC-NFNN controller.
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According to the universal approximation rule, there are optimal weights to use the
output of the NFNN to estimate any smooth nonlinear function. Consequently, a NN is
designed to identify the unknown terms of the system.

Assume that optimal weights W∗, r∗, w∗f , u∗f , b∗f , w∗a , u∗a , b∗a , w∗u, u∗u, b∗u, w∗o , u∗o , b∗o , c∗,
b∗ exist that could estimate the unknown f (X). This five-layer NFNN is given in Figure 1,
written as:

f (X) = W∗TΦ∗ + ε (37)

where Φ∗ = Φ∗(x, r∗, w∗f , u∗f , b∗f , w∗a , u∗a , b∗a , w∗u, u∗u, b∗u, w∗o , u∗o , b∗o , c∗, b∗),

W∗ =
[

W5
1
∗ W5

2
∗ W5

3
∗ ]T , Φ∗ is the ideal output in the fourth layer with regards to the

weights, W∗ is the ideal weight generated from online learning, and ε is a reconstruction
error, ensuring |ε| ≤ εb, εb is a positive value.
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Practically, the estimate of f (X) by the NFNN is written as:

f̂ (X) = ŴTΦ̂ (38)

Then, the estimation error of f (X) function is derived as:

f (X)− f̂ (X) = W∗TΦ∗ − ŴTΦ̂ + ε

= W∗T(Φ̂ + Φ̃2)− ŴTΦ̂ + ε

= W∗TΦ̂ + W∗TΦ̃− ŴTΦ̂ + ε

= W̃TΦ̂ + ŴTΦ̃ + W̃TΦ̃ + ε

(39)

where W̃TΦ̃ + ε = ε0 is the approximation error, W̃ = W∗ − Ŵ, and Φ̃ = Φ∗ − Φ̂. Then,
the Taylor expansion of Φ̃ is applied to convert the nonlinear NFNN into a partially linear
form as follows:

Φ̃ = ∂Φ
∂w f

∣∣∣w f =ŵ f (w
∗
f − ŵ f ) +

∂Φ
∂u f

∣∣∣u f =û f (u
∗
f − û f ) +

∂Φ
∂b f

∣∣∣b f =b̂ f
(b∗f − b̂ f )

+ ∂Φ
∂wa
|wa=ŵa (w

∗
a − ŵa) +

∂Φ
∂ua
|ua=ûa (u

∗
a − ûa) +

∂Φ
∂ba

∣∣∣ba=b̂a
(b∗a − b̂a)

+ ∂Φ
∂wu
|wu=ŵu (w

∗
u − ŵu) +

∂Φ
∂uu
|uu=ûu (u

∗
u − ûu) +

∂Φ
∂bu

∣∣∣bu=b̂u
(b∗u − b̂u)

+ ∂Φ
∂wo
|wo=ŵo (w

∗
o − ŵo) +

∂Φ
∂uo
|uo=ûo (u

∗
o − ûo) +

∂Φ
∂bo

∣∣∣bo=b̂o
(b∗o − b̂o)

+ ∂Φ
∂r |r=r̂ (r∗ − r̂) + ∂Φ

∂c |c=ĉ (c∗ − ĉ) + ∂Φ
∂b

∣∣
b=b̂ (b

∗ − b̂) + Oh

= Φ w f · w̃ f + Φ u f · ũ f + Φ b f
· b̃ f + Φ wa · w̃a + Φ ua · ũa + Φ ba · b̃a

+Φ wu · w̃u + Φ uu · ũu + Φ bu · b̃u + Φ wo · w̃o + Φ uo · ũo + Φ bo · b̃o

+Φr · r̃ + Φc · c̃ + Φb · b̃ + Oh

(40)

where Oh is the higher-order term of the expansion and the partial terms, which can be
calculated by the chain rule [36], are represented as:

Φr =


∂Φ1
∂w4

11
· · · ∂Φ1

∂w4
33

...
. . .

...
∂Φ3
∂w4

11
· · · ∂Φ3

∂w4
33


∣∣∣∣∣∣∣∣∣
r=r̂

∈ R3×9 Φb =


∂Φ1
∂b2

1
· · · ∂Φ1

b2
3

...
. . .

...
∂Φ3
∂b2

1
· · · ∂Φ3

∂b2
3


∣∣∣∣∣∣∣∣∣
b=b̂

∈ R3×3

Φc =


∂Φ1
∂c2

1
· · · ∂Φ1

c2
3

...
. . .

...
∂Φ3
∂c2

1
· · · ∂Φ3

∂c2
3


∣∣∣∣∣∣∣∣∣
c=ĉ

∈ R3×3 Φw f =


∂Φ1
∂w3

f1

· · · ∂Φ1
∂w3

f3
...

. . .
...

∂Φ3
∂w3

f1

· · · ∂Φ3
∂w3

f3


∣∣∣∣∣∣∣∣∣∣
w f =ŵ f

∈ R3×3

Then, from Equation (10), a practical controller is designed as follows:

u =
1

b(X)
(
_
f (X) + xn

m) −
1

cnb(X)
(c1

.
e + c2e(2) + · · ·+ cn−1e(n−1))− Ksgn(S) (41)

Theorem 1. Considering the nonlinear system (4), the proposed controller with the ASMC-NFNN
strategy can be guaranteed to be asymptotically stable if the following conditions are satisfied:

(1) The ASMC-NFNN controller is designed as in (41).
(2) The updating laws of the NFNN are derived as in (42)–(57).

.
W̃ = η1STΦ̂ (42)
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.
r̃

T
= η2STŴTΦr (43)

.
w̃ f

T = η3STŴΦw f (44)
.
ũ f

T = η4STŴΦu f (45)
.

b̃ f
T = η5STŴΦb f

(46)
.

w̃a
T = η6STŴΦwa (47)

.
ũa

T = η7STŴΦua (48)
.

b̃a
T = η8STŴΦba (49)

.
w̃o

T = η9STŴΦwo (50)
.
ũo

T = η10STŴΦuo (51)
.

b̃o
T = η11STŴΦbo (52)

.
w̃u

T = η12STŴΦwu (53)
.
ũu

T = η13STŴΦuu (54)
.

b̃u
T = η14STŴΦbu (55)

.
c̃

T
= η15STŴTΦc (56)

.

b̃
T
= η16STŴTΦb (57)

where η1, η2, · · · , η16 are learning rate parameters, both of which are positive constants.

Remark 3. Compared with the existing research, the proposed control strategy had a better control
performance. First, compared to traditional sliding mode control, the ASMC-NFNN had the
advantage of less chattering because, in the case of unknown system disturbances, traditional
sliding mode control often relies on high-gain switching gain to achieve disturbance compensation.
Although this could bring a good steady-state performance, it could cause high-frequency output
chattering, which could bring huge adverse effects to the system. On the contrary, the proposed
method firstly relied on the learning and estimation ability of the neural network to realize the
active compensation of the disturbance, thereby reducing the burden of the sliding mode on the
disturbance, and reducing the system chattering while improving the performance. Second, the
proposed strategy had better dynamic performance and robustness than other neural network-based
sliding mode control strategies because it adopted a novel neural network with an LSTM structure.
As mentioned above, in theory, it had a selective forgetting mechanism, avoided the problem of
gradient disappearance, and had the advantages of a strong learning ability. Therefore, it could
compensate for the unknown time-varying uncertainty of the system faster and more accurately,
and, thus, had better dynamic performance. The subsequent simulation comparison results also
showed that the proposed control strategy could cope with larger parameter changes and had better
dynamic performance.
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Proof. The following Lyapunov function is designed as:

V2 = 1
2 STS + 1

2η1
tr(W̃TW̃) + 1

2η2
tr(r̃T r̃) + 1

2η3
tr(w̃ f

Tw̃ f )

+ 1
2η4

tr(ũ f
T ũ f ) +

1
2η5

tr(b̃ f
T b̃ f ) +

1
2η6

tr(w̃T
a w̃a)

+ 1
2η7

tr(ũT
a ũa) +

1
2η8

tr(b̃T
a b̃a) +

1
2η9

tr(w̃T
o w̃o)

+ 1
2η10

tr(ũT
o ũo) +

1
2η11

tr(b̃T
o b̃o) +

1
2η12

tr(w̃T
u w̃u)

+ 1
2η13

tr(ũT
u ũu) +

1
2η14

tr(b̃T
u b̃u) +

1
2η15

tr(c̃T c̃) + 1
2η16

tr(b̃T b̃)

(58)

where V2 is positive definite. The last 16 items in Equation (58) are denoted as M. �

Remark 4. The designed Lyapunov function not only included the quadratic form of the systematic
error, but also the quadratic form of the estimation error of the neural network weight, which not
only ensured the convergence of the systematic error, but also ensured that the parameter error
was small. In addition, because the learning rate of the weight was relatively large, the quadratic
term of the system error had a larger proportional coefficient than the weight error, which meant
that the convergence of the system error was guaranteed to a greater extent. In addition, compared
with the traditional neural network method using gradient descent to optimize the error, this paper
incorporated the quadratic form of the weight error into the design of the Lyapunov function, so
that the adaptive rate of the neural network could be reversely derived through the stability proof.
Although the form of the two was found to be similar after derivation, it was clear that the method
proposed in this paper had more theoretical support, which was a unique contribution of this paper.

Taking the derivative of (58) and then substituting (8) into it the following is obtained:

.
V2 = ST

.
S +

.
M

= ST [c1
.
e + c2e(2) + · · ·+ cn−1e(n−1) + cn(b(X)u− f (X) + δ− xn

m)] +
.

M

= ST [ f̂ (X)− f (X) + δ− cnb(X)Ksgn(S)] +
.

M

= ST [−W∗TΦ2
∗ − ε + ŴTΦ̂2 + δ− cnb(X)Ksgn(S)] +

.
M

= ST [−W̃TΦ̂2 − ŴTΦ̃2 − ε0 + δ− cnb(X)Ksgn(S)] +
.

M

(59)

Substituting Taylor’s expansion (40) into (59) yields

.
V2 = −STW̃TΦ̂− STŴT(Φ w f · w̃ f + Φ u f · ũ f + Φ b f

· b̃ f + Φ wa · w̃a

+Φ ua · ũa + Φ ba · b̃a + Φ wu · w̃u + Φ uu · ũu + Φ bu · b̃u + Φ wo · w̃o

+Φ uo · ũo + Φ bo · b̃o + Φr · r̃ + Φc · c̃ + Φb · b̃ + Oh)

+ST [−ε0 + δ− cnb(X)Ksgn(S)] + 1
η1

tr(W̃T
.

W̃) + 1
η2

tr(
.
r̃

T
r̃)

+ 1
η3

tr(
.

w̃ f
Tw̃ f ) + 1

η4
tr(

.
ũ f

T ũ f ) +
1
η5

tr(
.

b̃ f
T b̃ f ) +

1
η6

tr(
.

w̃
T
a w̃a)

+ 1
η7

tr(
.
ũ

T
a ũa) +

1
η8

tr(
.

b̃
T

a b̃a) +
1
η9

tr(
.

w̃
T
o w̃o) + 1

η10
tr(

.
ũ

T
o ũo)

+ 1
η11

tr(
.

b̃
T

o b̃o) +
1

η12
tr(

.
w̃

T
u w̃u) + 1

η13
tr(

.
ũ

T
u ũu) +

1
η14

tr(
.

b̃
T

u b̃u)

+ 1
η15

tr(
.
c̃

T
c̃) + 1

η16
tr(

.

b̃
T

b̃)

(60)
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Finally, substituting the updating laws (42)~(57) into (60) the following is obtained:

.
V2 = ST [δ− ε0 + Oho − cnb(X)Ksgn(S)]

= ST(δ− ε0 + Oho)− cnb(X)K|S|

≤ |S|(δb − ε0 + Oho)− cnblK|S|

≤ |S|(δb + εE + OE − cnblK)

(61)

where Oho = ŵTOh. Suppose ε0 and Oho have upper bounds εE and OE respectively as
|ε0| ≤ εE,|Oho| ≤ OE. So, if K ≥ (δb + εE + OE)/cnbl ,

.
V2 ≤ 0.

Because
.

V2 is a semi-negative definite, V2, S are bounded. From inequality
.

V2 ≤ |S|(δb + εE + OE − cnblK) , S is integrated as
∫ t

0 |S|dt ≤ 1
δb+εE+OE−cnbl K

[V2(t)−V2(0)].

V2(0) is bounded and 0 ≤ V2(t) ≤ V2(0), lim
t→∞

∫ t
0 |S|dt is bounded. From Barbalat’s lemma,

S and e asymptotically converge to zero as t→ ∞ .

5. Simulation Study

To verify the effectiveness of the proposed ASMC-NFNN algorithm, a simulation
experiment was performed using Matlab/Simulink with a single-phase active power filter
(APF), as in Figure 4. In the simulation experiment, the computer system was 64-bit, the
CPU was i7-6500 U (2.5 GHz), and the Matlab software version was 2019b. The shunt
single-phase APF circuit model had three main components: grid voltage, nonlinear load,
and APF main circuit.
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In fact, the APF controller included three parts: harmonic detection module, DC side
voltage control module, and compensation current tracking control module. The control
goal was to force the compensation current to follow the reference current quickly and
accurately. On the one hand, the harmonic detection module was implemented by a single-
phase fast harmonic detection algorithm, which could obtain the reference current in real
time. On the other hand, the control of DC side voltage was realized by traditional PID
control due to low control requirements and low control difficulty, and voltage stability was
achieved by superimposing the output of the PID controller into the reference information.
Therefore, the voltage on the DC side was stable and could be regarded as a constant.

From circuit theory, the following equations are obtained: Us = L dic
dt + Ric + uUdc

uic = C dUdc
dt

(62)
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where Us is a grid voltage, ic is a compensation current, Udc is a capacitor voltage in DC
side, and L and R are inductance and resistance. respectively. u is defined as

u =

{
1 VT1, VT4 on, VT2, VT3 o f f

−1 VT2, VT3 on, VT1, VT4 o f f
(63)

In this paper, the state equation for the compensation current was studied since a PID
controller applied in the DC side voltage made it easy to obtain the voltage requirements.
The compensation current is derived as

.
ic = −

R
L

ic +
Us

L
− Udc

L
u (64)

However, under system uncertainties and disturbances, the state equation for the
compensation current is further revised as

.
ic = −

R + ∆R
L + ∆L

ic +
Us

L + ∆L
− Udc

L + ∆L
u + g (65)

where ∆R and ∆L are the uncertainties of R and L respectively, and g is the other uncertain
component. Further, Equation (65) is rewritten as:

.
ic = −

R
L

ic +
Us

L
− Udc

L
u + h0 (66)

where h0 is the lumped uncertainty bounded by H0, as |h0| ≤ H0.
Taking the derivative of Equation (66) one gets

..
ic = − R

L

.
ic +

.
Us
L −

.
Udc

L u +
.
h0

= − R
L (−

R
L ic + Us

L −
Udc

L u + h) +
.

Us
L −

.
Udc

L u +
.
h0

= R2

L2 ic +
.

Us
L −

R
L2 Us +

R
L2 Udcu− R

L h−
.

Udc
L u +

.
h0

= R2

L2 ic +
.

Us
L −

R
L2 Us +

R
L2 Udcu− R

L h +
.
h0

(67)

Then, the second-order dynamic equation is obtained as:{ .
x1 = x2
.
x2 = − f (x) + Bu + hk

(68)

where x1 represents ic,B represents R/L2 ∗Udc, which is a known constant, f (x) represents
−R2/L2 ∗ ic −

.
Us/L + R/L2 ∗ Us, which is an unknown function whose exact value is

difficult to obtain, hk represents −R/L∗h +
.
h0, and hk is the lumped uncertainty, with

an upper bound Hk, as |hk| ≤ Hk.
The parameters in the system simulation are explained in Table 1. The parameters of

the PID controller and the ASMC-NFNN controller are given as

Kp = 0.15, C = 17, 200, K = 2592

In the NFNN, learning rates were η1, η2 = 2.5× 10−3, η3, η4, · · · , η16 = 5, the initial
values of the center and width in Gaussian function were selected as c2 = [−0.075 0 0.075],
b2 = [1 1 1], and the initial weights were chosen to be 1, except for the initial weights
r4 = [0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9] in the fourth layer and w5 = [0.9 1.0 1.1] in the
fifth layer.
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Table 1. Parameters in simulation.

Parameter Value

Grid voltage and frequency 24 V/50 Hz
Nonlinear load in steady state R1 = 5 Ω, R2 = 15 Ω, C = 1 × 10−3 F

Additional nonlinear loads in parallel R1 = 15 Ω, R2 = 15 Ω, C = 1 × 10−3 F
Main circuit parameter L = 18 × 10−3 H, R = 1 Ω, Vref = 50 V

Sampling time Ts = 1 × 10−5 s

Simulation verification included three aspects: (1) steady state response simulation for
harmonic compensation; (2) dynamic response simulation and comparison with recurrent
FNN; (3) parameter variations simulation and comparison.

5.1. Steady−State Response

In the simulation, the harmonic compensation was set to be added in the APF system
from 0.05 s. Figure 5 gives the steady-state response of the system under the proposed
ASMC−NFNN. The waveform diagrams were load current, power supply current, com-
pensation current tracking curve, and tracking error figure, in order. As can be seen from
the load current curve in Figure 5, the load had serious nonlinear distortion and caused
serious harmonic distortion in the power supply current.

Mathematics 2022, 10, x FOR PEER REVIEW 14 of 24 
 

 

 
Figure 5. Current waveforms of steady−state response using ASMC-NFNN from top to bottom: 
load, compensation, and source currents. 

The degree of harmonic distortion could be seen from the spectrum analysis chart 
in Figure 6. In addition to the fundamental wave, there were many harmonics, and the 
total harmonic distortion (THD) rate reached 35.07%. However, after APF started to 
control at 0.05 s, the harmonics were suppressed in a short time. From Figure 7, the THD 
was reduced to 2.3%. Therefore, APF using the ASMC−NFNN controller could well pu-
rify harmonic pollution. As shown in Figure 8, the compensation current curve and the 
reference current curve almost completely coincided after a short time, and the tracking 
error was also nearly zero, which reflected the high accuracy of current tracking, fast 
response, and good harmonic compensation effect. 

 
Figure 6. Harmonic spectrum of power supply current before compensation. 

Figure 5. Current waveforms of steady−state response using ASMC-NFNN from top to bottom:
load, compensation, and source currents.

The degree of harmonic distortion could be seen from the spectrum analysis chart in
Figure 6. In addition to the fundamental wave, there were many harmonics, and the total
harmonic distortion (THD) rate reached 35.07%. However, after APF started to control at
0.05 s, the harmonics were suppressed in a short time. From Figure 7, the THD was reduced
to 2.3%. Therefore, APF using the ASMC−NFNN controller could well purify harmonic
pollution. As shown in Figure 8, the compensation current curve and the reference current
curve almost completely coincided after a short time, and the tracking error was also
nearly zero, which reflected the high accuracy of current tracking, fast response, and good
harmonic compensation effect.
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Figures 9–12 give adaptive adjustment curves of some parameters of the NFNN, which
did not need to be adjusted manually. After adaptive learning, convergence was achieved
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in a short time and the system response could also achieve good results. This showed that
the NFNN had an excellent adaptive adjustment performance and stability.

Mathematics 2022, 10, x FOR PEER REVIEW 16 of 24 
 

 

 
Figure 9. The first group of weights of adaptive learning curves. 

 
Figure 10. The second group of weights of adaptive learning curves. 

Figure 9. The first group of weights of adaptive learning curves.

Mathematics 2022, 10, x FOR PEER REVIEW 16 of 24 
 

 

 
Figure 9. The first group of weights of adaptive learning curves. 

 
Figure 10. The second group of weights of adaptive learning curves. Figure 10. The second group of weights of adaptive learning curves.



Mathematics 2022, 10, 1197 16 of 23
Mathematics 2022, 10, x FOR PEER REVIEW 17 of 24 
 

 

 
Figure 11. The third group of weights of adaptive learning curves. 

 
Figure 12. The fourth group of weights of adaptive learning curves. 

5.2. Dynamic Response Simulation and Comparison 
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5.2. Dynamic Response Simulation and Comparison

To verify the ability of APF to compensate for harmonics under sudden load changes
using ASMC−NFNN, sudden load increase and decrease experiments were designed and
the comparison simulation with ASMC−RFNN was given.

In the dynamic simulation, the APF was connected to the system at 0.05 s, and
a nonlinear load was added at 0.3 s and subtracted at 0.6 s. In addition, the parameters
of the increased load are given in Table 1. The dynamic response of the APF system was
observed when the load changed. The dynamic response waveforms of the supply current
using ASMC−NFNN is shown in Figure 13, which shows that no matter when the load
was increased in 0.3 s or the load was decreased in 0.6 s, the power current returned to
a sinusoidal steady state after a short adjustment, showing that the proposed controller
worked well under load changes with good dynamic properties.
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Moreover, the voltage control curve on the DC side is shown in Figure 14, verifying
the previous assumption that the DC side voltage was stable.
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Figure 14. DC side voltage curve.

Moreover, Figure 15 shows the current tracking curves under the two methods. In
both methods, the compensation current could track the reference current when the load
changed. Moreover, it was roughly seen that the tracking curve of the comparison method
was over-tracked and covered other curves, so its tracking compensation performance
was worse.
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Figure 15. Current tracking curves (load increases at 0.3 s, load decreases at 0.6 s).

In order to see a more obvious comparison, the overall tracking error comparison
curves are given in Figure 16, and the partial enlarged comparison curves at the load
change point are given in Figure 17. It was clearly seen from Figure 17 that the error of
the proposed method (red curve) at the two load change nodes was closer to 0 than the
comparison method (blue curve). Therefore, the proposed controller with NFNN had better
dynamic performance than the RFNN.
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Several performance indicators were used to analyze the proposed NFNN-based
controller and the comparative RFNN−based controller. The performance comparison
results of THD are shown in Table 2. In three experimental states, the ASMC-NFNN
had a smaller THD than the ASMC−RFNN. In addition, compared with the dynamic
terminal sliding mode controller using a double hidden layer recurrent neural network
(DTSMC−DHLRNN) proposed in Ref. [40], the THD performance of ASMC−NFNN in
steady state was 0.66% better. In addition, the comparison results of some commonly
used performance indicators are given in Table 3, showing the proposed controller was
superior to the comparison method in various error performance indicators. However,
in the indicator of simulation calculation time, because the proposed method had a more
complicated structure, the calculation time was slightly longer than the comparison method.
In fact, the update complexity per weight and time step of the LSTM algorithm was,
essentially, that of BPTT, namely O(1), and LSTM was local in both space and time [36].
Therefore, the extra complexity introduced by LSTM was not high and, fortunately, with
the upgrade in computing power, the subtle difference in computing time was no longer
a serious problem.

Table 2. THD comparison in simulation.

State/Strategy THD of ASMC−NFNN THD of ASMC−RFNN THD of
DTSMC−DHLRNN [40]

Steady state 2.30% 2.91% 2.96%
Load increase 1.58% 1.61% 2.64%
Load decrease 2.47% 3.24% 2.96%

Table 3. Other performance index comparisons in simulation.

Controller/Index RMSE ITSE ITAE Calculation Time (s)

ASMC-NFNN 0.0897 1.2166 14.7448 19
ASMC-RFNN 0.0901 2.1508 27.4268 12

5.3. Parameter Variations Simulation and Comparison

Practically, it was not easy to obtain accurate parameters of the controlled object,
especially in the power system occasions, as the component parameters would also dynam-
ically change. For example, the aging of the resistance made the resistance value larger,
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and the inductance would change subject to environmental factors, such as temperature
and magnetic field. The changes in the internal parameters of these systems were called
internal disturbances, which would make the performance of general controllers worse
and even difficult to use in practice. Therefore, this section studies the robustness of the
proposed controller under parameter changes and compares it with the other two methods.
The selected variable parameters were the resistance and inductance values on the APF
main circuit.

Figure 18 shows the change curve using ASMC−NFNN of the steady−state THD
value with different degrees of inductance attenuation. When the inductance attenuation
percentage was small, the THD hardly changed. When the inductance attenuation degree
gradually became larger, the value and the change range of THD also increased contin-
uously. This showed that the inductance parameter had a great influence on the system
performance. However, it could be seen from the figure that even if the inductance was
attenuated by 40%, the THD of the power supply current was still below 5% under the
proposed method, which could still meet the application requirements. Therefore, the
proposed method had a large tolerance space for inductance parameters, and had good
robustness in terms of inductance parameter changes.
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In addition, the steady−state THD comparison chart of the three methods under
inductance attenuation is given in Figure 19, showing that the proposed strategy had
the smallest THD variation and the best parameter tolerance. The method based on
ASMC−RFNN had a small THD change when the inductance attenuation was small;
when the inductance attenuation was greater than 5%, the THD increased sharply; after
the inductance attenuation was 30%, the THD even exceeded the ordinary sliding mode
controller. The above shows that when the inductance attenuation was greater than 30%,
the RFNN network of the ASMC-RFNN method fell into disorder and failed to learn the
system parameters correctly. At the same time, it proved that the NFNN had a better
learning ability and adaptability than the RFNN. On the other hand, when the inductance
parameters were not particularly large, the proposed algorithm with the NN had greater
tolerance to inductance parameters and a smaller THD change trend than ordinary sliding
mode controllers, showing the advantage of good robustness.
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At the same time, the simulation comparison chart of resistance variation is given
in Figure 20, showing the change in the resistance had a very small effect on the system
performance. The SMC−based method could tolerate an increase of 3.4 times in resistance,
while the proposed ASMC−NFNN could tolerate an increase of 3.6 times in resistance.
In general, changes in resistance parameters had a limited impact on the system, and
ASMC−NFNN methods had better performances, to some extent.
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6. Conclusions

In this paper, an ASMC-NFNN strategy was studied for a general class of dynamic
systems with unknown uncertainties. Considering the existence of time-varying unknown
uncertainty perturbations in such systems, an NFNN with an LSTM structure was de-
veloped to approximate the system uncertainty where the LSTM structure had a special
gating unit that could selectively forget and remember, which was suitable for long-term
dependent learning problems. In addition, a sliding mode controller was given to im-
plement the tracking control of nonlinear systems, ensuring high tracking accuracy and
fast response speed under estimation error and external disturbances. An NFNN online
learning algorithm was derived and all the parameters of the NFNN were guaranteed to
converge under the adaptive laws. The proposed control strategy were verified on the
second-order single-phase APF system, and the numerical experimental results showed
that it had better steady-state and dynamic properties than other control methods, and
also had better robustness in the presence of parameter changes. Considering that the
control strategy was universally designed, and the algorithm integrating neural network
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and sliding mode were very suitable for power electronic control, the strategy could be
extended to the control of a series of similar electronic power systems, and could achieve
superior results. In future research, reducing the computational complexity of neural
networks and the difficulty of parameter adjustment will be a hot research direction. In
addition, the use of more advanced adaptive super-twisting sliding modes is also expected
to be a promising research direction.
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