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Abstract: Flight Maneuver Recognition (FMR) refers to the automatic recognition of a series of 

aircraft flight patterns and is a key technology in many fields. The chaotic nature of its input data 

and the professional complexity of the identification process make it difficult and expensive to 

identify, and none of the existing models have general generalization capabilities. A general 

framework is proposed in this paper, which can be used for all kinds of flight tasks, independent of 

the aircraft type. We first preprocessed the raw data with unsupervised clustering method, 

segmented it into maneuver sequences, then reconstructed the sequences in phase space, calculated 

their approximate entropy, quantitatively characterized the sequence complexity, and 

distinguished the flight maneuvers. Experiments on a real flight training dataset have shown that 

the framework can quickly and correctly identify various flight maneuvers for multiple aircraft 

types with minimal human intervention. 

Keywords: flight maneuver recognition (FMR); unsupervised clustering; phase space 

reconstruction 

 

1. Introduction 

Flight Maneuver, according to the standard definition given by the Federal Aviation 

Administration (FAA) [1], refers to a series of flight patterns of an aircraft under the 

control of the pilot. FMR as a key technology for automatic evaluation of flight technology 

is the focus of research on the application of artificial intelligence in the field of flight 

training. In the 1970s, for one-on-one, air-to-air combat training, NASA developed an 

adaptive maneuvering logic computer program (AML) [2,3], which provides an virtual 

competitor for human pilots at NASA Langley Research Center’s (LRC) Differential 

Maneuvering Simulator (DMS). As AI, AML recognizes the maneuvers and intentions of 

the opponent and makes the right decisions to drive the next maneuvers. In addition, the 

study of flight maneuvers’ aircraft loads is an important issue in the field of flight safety 

involving aircraft design, flight certification, and accident investigation, and FMR is the 

basic technology for this study. Barndt G. [4] examined how the Navy could process raw 

parameter data generated by HUMS to identify the maneuvers flown so as to support the 

structural monitoring function in 2007. Many studies in this area have been generated 

since then. 

Although there is also a wide demand for FMR in the field of UAV and air combat 

research, due to the limitation of data sources and author’s concentration, this paper only 

focuses on manned fixed-wing civil aviation training flight. 

The raw data of FMR is multivariate time-series data generated from nonlinear 

aircraft power system, which has typical chaotic characteristics and cannot be directly 
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applied to common time series analysis methods. As an artificial mechanical operating 

system, the data performance of the same flight maneuver of different pilots of different 

types of aircraft is very different, not to mention the influence of environmental factors 

such as weather variation. 

Essentially, FMR is a multiple nonlinear time-series pattern-recognition problem [5]. 

Pattern-recognition problems mainly include classification and clustering. 

Classification-based FMR 

In the time-series classification problem, feature volume construction and classifier 

design are the core problems. Time-series classification aims to take the whole time series 

as input to assign a discrete label. In FMR, different maneuvers often have different 

lengths due to differences in aircraft types, and the same maneuvers have different lengths 

due to differences in pilot operating habits. It is more difficult than the general 

classification problem owing to the inequational length of the classified time-series data, 

which makes it impossible to apply the general classification algorithm directly. 

In order to solve these difficulties, there are usually two approaches. First, define the 

appropriate distance degree using a distance-based pattern-recognition method, such as 

Dynamic Time Warping (DTW) distance [6–8], Locality Sensitive Hash (LSH) distance [9], 

and Approximate Entropy [10]. The advantages of these methods are that they conform 

to the basic principles of pattern recognition; the more similar the patterns are, the smaller 

their distances are; and the algorithms are simple and easy to implement, do not limit the 

length of the time series between patterns, and can analyze nonlinear time series. The 

significant disadvantages are expensive calculation and inability to identify subtle 

differences between patterns. 

Second, using knowledge rules or context-dependent modeling, each sequence is 

represented by an equal-length and same-dimension feature vector of model parameters 

and then trained and classified by a conventional classification algorithm, which is a 

domain-related approach called the model-based method. In general, model-based FMR 

methods can be divided into four categories: (1) feature extraction-based [11–14], (2) 

expert knowledge rule-based [15–27], (3) probabilistic graphical model-based [28–31], and 

(4) neural network-based [32–36]. 

(1) The main methods for feature extraction are SVD and SVM methods, combined 

with least squares or hierarchical classification methods, which reduce the computational 

effort by reducing the number of dimensions and compressing the data. The models are 

simple and easy to train but are not complete, and they are sensitive to temporal length 

and require manual prior knowledge. (2) The expert knowledge rule model method needs 

to establish the artificial rule knowledge database first, then use the pattern-matching 

query method to achieve recognition. The knowledge rule extraction method includes 

Natural Language Processing, Genetic Algorithm, and Swarm Optimization. This type of 

method is very widely used, with high recognition efficiency and correct rate, but the 

unavoidable disadvantages are high labor cost; the fact that a certain model only 

corresponds to a certain type of aircraft type or flight task; and the inability of the method 

be generalized. (3) The probabilistic graphical model-based mainly uses hidden Markov 

model (HMM), Kalman filtering, and dynamic Bayesian methods, which can not only 

identify but also predict and only need a few parameters to form a complete model but 

cannot handle nonlinear time series. (4) The model based on neural network work uses 

deep neural network with fully supervised training method to constitute the model, with 

high recognition rate and good model maturity but also with high cost of integration with 

labeled data and computational complexity. Different aircraft types correspond to 

different models and need to be completely retrained. 

Naturally, hybrid methods combining multiple methods have also been proposed 

[37,38]; these methods have better recognition performance but still do not have the ability 

to generalize. 

Clustering-based FMR 
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In addition, some scholars have also conducted FMR from the perspective of 

clustering [39–42]. These methods do not require prior knowledge with the ability to 

generalize. However, the clustering results rely heavily on good temporal segmentation, 

and most of the papers appearing now use manual segmentation without automatic 

segmentation capability, and the clustered results still need to be interpreted by human 

experts and cannot correspond automatically. 

In summary, it can be found that the existing literature methods all perform FMR for 

a certain task of a certain aircraft model and generally have the significant disadvantages 

of relying on manual expert knowledge, being unable to automatically segment, and being 

difficult to generalize. 

To the best of our knowledge, there is no general framework that can automatically 

segment sequences and quickly discriminate between maneuvers with minimal human 

intervention. 

This paper proposes a new general framework; the general idea is to integrate the 

automatic segmentation capability of unsupervised clustering and the ability of 

information entropy to distinguish sequence complexity. 

This paper is organized as follows. Section 2 introduces the automatic segmentation 

method of flight maneuver sequence. Section 3 introduces the automatic recognition 

method of maneuver segments. Section 4 completely elaborates the overall framework of 

automatic FMR processing. Section 5 covers the experimental process and experimental 

results, and the conclusion is given in Section 6. 

2. Sequence Segmentation 

2.1. The Trend Fragmentation Algorithm 

In this paper, a key parameter is selected for trend identification, and the index of all 

trend segments is obtained using the slope method combined with a height change 

threshold, using a sliding model with a double window. 

The slope method is based on the least square method, where the sequence to be 

segmented is fitted to a straight line, and the main trend of the sequence is determined by 

comparing the slope of the line with a threshold size. 

Set 𝑫 = (𝑦1, 𝑦2, ⋯ 𝑦𝑚)
𝑇  is a sample set, 𝑿 = (𝑥1, 𝑥2, ⋯ , 𝑥𝑚)

𝑇  is the time sequence 

set, 𝐷𝑖  is a subset of the samples, 𝑖 = (1,2,⋯𝐿), and L is the number of trend segments. 

The model parameters are obtained by fitting the least squares method as in Equation (1). 

𝜔𝑖 = (𝑘𝑖 , 𝑏𝑖)
𝑇 = (𝐷𝑖

𝑇𝐷𝑖)
−1𝐷𝑖

𝑇 ∙ 𝑋𝑖 , 𝑖 = (1,2,⋯𝐿) (1) 

The height-change threshold is used to determine long, slow-climbing, or circling 

maneuvers in flight, which have small slopes and long durations and can be misjudged 

based on the slope alone. The algorithm is described in Algorithm 1. 

Algorithm 1 The Trend Fragmentation Algorithm. 

Input: sample set 𝑫 = (𝑦1, 𝑦2, ⋯ 𝑦𝑚)
𝑇; time sequence set 𝑿 = (𝑥1, 𝑥2, ⋯ , 𝑥𝑚)

𝑇; 

1. Set slope threshold 𝑘𝑠 and height-change threshold ∆𝑠 ;  

2. Initial value of fitting parameter 𝝎 = (𝑘, 𝑏)𝑇; 

3. Initialize the fixed window 𝑭 = (𝑥𝐹𝑠𝑡𝑎𝑟𝑡 , 𝑥2,⋯ , 𝑥𝐹𝑒𝑛𝑑)
𝑇 , 𝐹𝑠𝑡𝑎𝑟𝑡 = 1, 𝐹𝑒𝑛𝑑 = ℎ ; 

4. Initialize the sliding window 𝑺 = (𝑥𝑆𝑠𝑡𝑎𝑟𝑡 , 𝑥2, ⋯ , 𝑥𝑆𝑒𝑛𝑑)
𝑇 , 𝑆𝑠𝑡𝑎𝑟𝑡 = 1, 𝑆𝑒𝑛𝑑 = ℎ ; 

5. Initialize the output sequence 𝑂𝑗 = (𝑥𝐹𝑠𝑡𝑎𝑟𝑡 , 𝑥𝐹𝑒𝑛𝑑 , 𝑓); 

6. Read a samples subset 𝐷𝑖 = (𝑦𝑆𝑠𝑡𝑎𝑟𝑡 , ⋯ 𝑦𝑆𝑒𝑛𝑑)
𝑇; time sequence set 𝑋𝑖 = 𝑆; 

7. Least squares fitting model to obtain parameters: 𝜔𝑖; 

8. If 𝑘 ≥ 𝑘𝑠, identifies 𝑋𝑖 as an upward trend, set f = ‘U’; 

9. Otherwise, if −𝑘𝑠 < 𝑘 < 𝑘𝑠 identifies 𝑋𝑖 as a level trend, set f = ‘L’; 

10. Otherwise, identifies 𝑋𝑖 as a downward trend, set f = ‘D’; 
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11. If 𝑋𝑖 is not a level trend, and k’s signs are unchanged, set 𝐹𝑠𝑡𝑎𝑟𝑡 = 𝐹𝑠𝑡𝑎𝑟𝑡 , 𝐹𝑒𝑛𝑑 = 𝐹𝑒𝑛𝑑 + 1, 𝑆𝑠𝑡𝑎𝑟𝑡 = 𝑆𝑠𝑡𝑎𝑟𝑡 + 1, 𝑆𝑒𝑛𝑑 =

𝑆𝑒𝑛𝑑 + 1; 

12. Otherwise, if k’s signs are changed, set 𝑂𝑗 = (𝑥𝐹𝑠𝑡𝑎𝑟𝑡 , 𝑥𝐹𝑒𝑛𝑑 , 𝑓), 𝐹𝑠𝑡𝑎𝑟𝑡 = 𝑆𝑠𝑡𝑎𝑟𝑡 , 𝐹𝑒𝑛𝑑 = 𝐹𝑠𝑡𝑎𝑟𝑡 + ℎ, 𝑆𝑠𝑡𝑎𝑟𝑡 = 𝑆𝑠𝑡𝑎𝑟𝑡 +

1, 𝑆𝑒𝑛𝑑 = 𝑆𝑒𝑛𝑑 + 1; 

13. If 𝑋𝑖 is a level trend, set 𝐹𝑠𝑡𝑎𝑟𝑡 = 𝐹𝑠𝑡𝑎𝑟𝑡 , 𝐹𝑒𝑛𝑑 = 𝐹𝑒𝑛𝑑 + 1, 𝑆𝑠𝑡𝑎𝑟𝑡 = 𝑆𝑠𝑡𝑎𝑟𝑡 + 1, 𝑆𝑒𝑛𝑑 = 𝑆𝑒𝑛𝑑 + 1; 

14. Least squares fitting model to obtain parameters: 𝜔𝑙 = (𝐷𝑙
𝑇𝐷𝑙)

−1𝐷𝑙
𝑇 ∙ 𝑋𝑙  ; 

15. Calculate fixed window height change ∆= |𝑘𝑙 ∙ (𝐹𝑒𝑛𝑑 − 𝐹𝑠𝑡𝑎𝑟𝑡)|; 

16. If |𝑘𝑙| > 𝑘𝑠, set f=’L’, set 𝑂𝑗 = (𝑥𝐹𝑠𝑡𝑎𝑟𝑡 , 𝑥𝐹𝑒𝑛𝑑 , 𝑓), 𝐹𝑠𝑡𝑎𝑟𝑡 = 𝑆𝑠𝑡𝑎𝑟𝑡 , 𝐹𝑒𝑛𝑑 = 𝐹𝑠𝑡𝑎𝑟𝑡 + ℎ, 𝑆𝑠𝑡𝑎𝑟𝑡 = 𝑆𝑠𝑡𝑎𝑟𝑡 + 1, 𝑆𝑒𝑛𝑑 = 𝑆𝑒𝑛𝑑 + 1; 

17. If |𝑘𝑙| < 𝑘𝑠, and ∆> ∆𝑠, set f=’U’(𝑘𝑙 > 0) or ’D’ (𝑘𝑙 < 0), set 𝑂𝑗 = (𝑥𝐹𝑠𝑡𝑎𝑟𝑡 , 𝑥𝐹𝑒𝑛𝑑 , 𝑓), 𝐹𝑠𝑡𝑎𝑟𝑡 = 𝑆𝑠𝑡𝑎𝑟𝑡 , 𝐹𝑒𝑛𝑑 = 𝐹𝑠𝑡𝑎𝑟𝑡 +

ℎ, 𝑆𝑠𝑡𝑎𝑟𝑡 = 𝑆𝑠𝑡𝑎𝑟𝑡 + 1, 𝑆𝑒𝑛𝑑 = 𝑆𝑒𝑛𝑑 + 1; 

18. Otherwise, if |𝑘𝑙| < 𝑘𝑠, and ∆< ∆𝑠, set 𝐹𝑠𝑡𝑎𝑟𝑡 = 𝐹𝑠𝑡𝑎𝑟𝑡 , 𝐹𝑒𝑛𝑑 = 𝐹𝑒𝑛𝑑 + 1, 𝑆𝑠𝑡𝑎𝑟𝑡 = 𝑆𝑠𝑡𝑎𝑟𝑡 + 1, 𝑆𝑒𝑛𝑑 = 𝑆𝑒𝑛𝑑 + 1; 

19. If 𝑆𝑒𝑛𝑑 ≥ 𝑚, end iterations; otherwise, go back to 7. 

Output: 𝑶. 

The core of Algorithm 1 is to use the sliding double window method to fit the slope 

to the original data and determine the flight attitude as ascending, leveling, or descending 

at that time based on the slope and use the change in attitude as the signal for automatic 

sequence segmentation. The 𝑘𝑠 is slope threshold, ∆𝑠 is height-change threshold, 𝝎 is 

fitting matrix, 𝑭  is the fixed window, 𝑺  is the sliding window, 𝑂𝑗  is the output 

subsequence, f is the flag bit, and takes values in the range { ‘U’, ‘L’, ‘D’}. 

2.2. The Clustering Algorithm 

With Algorithm 1, we obtain the trend segments, and this section will use the 

dynamic clustering method ISODATA (Iterative Self Organizing Data Analysis 

Techniques Algorithm) to complete the segment classification. ISODATA algorithm 

automatically selects a number of samples as cluster centers and adjusts the class centers 

by sample mean iteration in subsEquationuent calculations and realizes the adjustment of 

cluster center data by merging and splitting of patterns. However, the input data are time 

series, so the algorithm cannot be used directly; therefore, this paper improves the 

algorithm to TS-ISODATA, and the algorithm is described as follows Algorithm 2. 

For input raw data 𝑿 = [

𝑥11 ⋯ 𝑥1𝑛
⋮ ⋱ ⋮
𝑥𝑚1 ⋯ 𝑥𝑚𝑛

] , n parameters, m data points of the 

fragment, normalized as 

𝑥𝑖𝑗 =
𝑥𝑖𝑗 − 𝑥𝑗,𝑚𝑖𝑛

𝑥𝑗,𝑚𝑎𝑥 − 𝑥𝑗,𝑚𝑖𝑛
− 0.5 (2) 

calculate its statistics as 

𝑥̅𝑖 =
1

𝑚
∑ 𝑥𝑖𝑗  , 𝑠𝑖 =

1

𝑚
√∑ (𝑥𝑖𝑗 − 𝑥̅𝑖)

2
𝑚

𝑗=1
(𝑖 = 1,2,⋯ , 𝑛)

𝑚

𝑗=1
 (3) 

 

Algorithm 2 TS-ISODATA Algorithm. 

Input: 𝑿, trend sequence O; 

1. Normalized processing 𝑥𝑖𝑗 ; 

2. Statistics calculation 𝑥̅𝑖 , 𝑠𝑖 ; 

3. Construct feature vectors 𝒚 = (𝑥̅1, 𝑠1, 𝑥̅2, 𝑠2, ⋯ , 𝑥̅𝑛 , 𝑠𝑛)
𝑇 ; 

4. Randomly select 𝑘0 samples as initial clustering centers 𝐶 = {𝑐1, 𝑐2, ⋯ , 𝑐𝑘0}; 

5. Calculate the distance from each sample 𝑥𝑖 to the cluster center of the 𝑘0 cluster centers and assign it to the 

class with the min distance;  

6. Determine whether the number of elements in each class above is less than 𝑁𝑚𝑖𝑛. If so, discard the class, make 

𝑘 = 𝑘 − 1, and reassign the samples to the class with the min distance; 
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7. For each category 𝑐𝑖, recalculate the clustering centers 𝑐𝑖 =
1

|𝑐𝑖|
∑ 𝑥𝑥∈𝑥𝑖

 ; 

8. If the current k ≤
1

2
𝑘0, split operation; 

9. If the current k ≥ 2𝑘0, merge operation; 

10. Terminate if the maximum number of iterations is reached; otherwise, go back to 2. 

Output: Clustering results 

3. Flight Maneuver Recognition 

Algorithm 2 assigns the fragment to a specific class without knowing which flight 

maneuvers it is. In this section, the algorithm will use phase reconstruction to reconstruct 

the feature space and identify specific classes of flight maneuvers based on the principle 

that different maneuvers have different approximate entropy. 

3.1. Phase Space Reconstruction 

Due to the superiority of PSR (phase space reconstruction) for chaotic time-series 

computation [43], this paper adopts a multivariate data fusion reconstruction method 

based on Bayesian estimation theory, and the main calculation steps are as follows. 

3.1.1. Reconstruction Parameters 

The phase space reconstruction technique has two key parameters: the dimension of 

the embedding 𝑚  and the delay time 𝜏 , which are determined here using the C-C 

method. 

1. Define the correlation integral corresponding to each point y of the embedded time 

series in the reconstructed phase space as in Equation (4). 

𝐶(𝑚,𝑁, 𝑟, 𝑡) =
2

𝑀(𝑀 − 1)
∑ 𝜃(𝑟 − 𝑑𝑖𝑗)

1≤𝑖≤𝑗≤𝑚

 (4) 

𝑑𝑖𝑗 = ‖𝑌𝑖 − 𝑌𝑗‖∞, 𝜃(𝑧) = {
0, 𝑧 < 0
1, 𝑧 > 0

 (5) 

where 𝑌𝑖 is the reconstructed phase space vector, 𝑀 is the number of vectors 𝑀 = 𝑁 −

(𝑚 − 1)𝜏, m is the embedding dimension, N is the number of points of the original time 

series, t is time, and 𝜃(𝑧) is the associative integral, a cumulative distribution function 

that expresses the probability that the distance between any two points in the phase space 

is less than the radius r. Here, the distance between points is expressed as an infinite 

number of parameters of the difference of vectors. 

2. Split the given time series into t equationual and disjoint subsequences as Equation 

(6), where t is the reconstruction time delay. 

𝑥1 = {𝑥1, 𝑥𝑡+1, ⋯ , 𝑥𝑁−𝑡+1}, 𝑥
2 = {𝑥1, 𝑥𝑡+2, ⋯ , 𝑥𝑁−𝑡+2},⋯ , 𝑥

𝑡 = {𝑥1, 𝑥2𝑡 , ⋯ , 𝑥𝑁} (6) 

3. Calculate the original sequence’s 𝑆1 and each sequence’s 𝑆2: 

𝑆1(𝑚,𝑁, 𝑟, 𝑡) = 𝐶(𝑚,𝑁, 𝑟, 𝑡) − 𝐶
𝑚(1, 𝑁, 𝑟, 𝑡) (7) 

𝑆2(𝑚, 𝑟, 𝑡) =
1

𝑡
 [ (8) 

4. Select the two radiuses r with the max and min values and define the increments ∆𝑆2: 

∆𝑆2(𝑚, 𝑡) = 𝑚𝑎𝑥{𝑆2(𝑚, 𝑟𝑗 , 𝑡)} − 𝑚𝑖𝑛{𝑆2(𝑚, 𝑟𝑗 , 𝑡)} (9) 

5. Calculate the statistics: 
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𝑆2̅(𝑡) =
1

16
∑∑𝑆2(𝑚, 𝑟𝑗 , 𝑡)

4

𝑗=1

5

𝑚=2

 (10) 

∆𝑆̅(𝑡) =
1

4
∑ ∆𝑆(𝑚, 𝑡)

5

𝑚=2

 (11) 

𝑆2𝑐𝑜𝑟(𝑡) =  ∆𝑆2(𝑚, 𝑡) + |𝑆2(𝑚, 𝑟, 𝑡)| (12) 

6. Take the value corresponding to the first zero point of 𝑆2̅(𝑡) or the first minimal 

value of ∆𝑆̅(𝑡) as the optimal time delay 𝜏. 

7. Let the t corresponding to the global minimum of 𝑆2𝑐𝑜𝑟(𝑡) be the length of the time 

series window and the embedding dimension m. 

3.1.2. Fusion Phase 

As previously stated, the single variable delay time is 𝜏 , and the embedding 

dimension is 𝑚. To ensure that the multivariate is fully expanded in the same phase space 

without distortion, each variable’s 𝜏 = min(𝜏𝑖), and 𝑚 = max(𝑚𝑖), (𝑖 = 1,2,⋯ , 𝑟). Each 

reconstructed sequence expression 𝑋𝑖 as in Equation (13). 

𝑋𝑖 = [

𝑥𝑖,1 𝑥𝑖,1+𝜏 … 𝑥𝑖,1+(𝑚−1)𝜏
𝑥𝑖,2 𝑥𝑖,2+𝜏 … 𝑥𝑖,2+(𝑚−1)𝜏
⋮ ⋮ ⋮ ⋮
𝑥𝑖,𝑀 𝑥𝑖,𝑀+𝜏 … 𝑥𝑖,𝑀+(𝑚−1)𝜏

] , 𝑖 = 1,2,⋯ , 𝑟 (13) 

Extract the 𝑟 reconstructed sequences of the same position 𝑘 out of phase points in 

Equation (13) to form the fusion set 𝐷𝑘 = [𝑥1, 𝑥2, ⋯ , 𝑥𝑟]. The specific expression is given 

in Equation (14). 

{

𝑥1 = [𝑥1,𝑘 𝑥1,𝑘+𝜏 … 𝑥1,𝑘+(𝑚−1)𝜏]

𝑥2 = [𝑥2,𝑘 𝑥2,𝑘+𝜏 … 𝑥2,𝑘+(𝑚−1)𝜏]
⋮

𝑥𝑟 = [𝑥𝑟,𝑘 𝑥𝑟,𝑘+𝜏 … 𝑥𝑟,𝑘+(𝑚−1)𝜏]

 (14) 

Let the expression of the phase point at position 𝑘 after fusion be 𝑧𝑘, and the optimal 

fusion phase point at 𝑘 is obtained according to Equation (15). 

𝑝(𝑧𝑘|𝑥1, 𝑥2, ⋯ , 𝑥𝑟) =
𝑝(𝑥1, 𝑥2, ⋯ , 𝑥𝑟|𝑧𝑘)

𝑝(𝑥1, 𝑥2, ⋯ , 𝑥𝑟)
∙ 𝑝(𝑧𝑘) (15) 

Let 𝑝(𝑧𝑘|𝑥1, 𝑥2, ⋯ , 𝑥𝑟) obey a normal distribution with mean 𝑧  and variance 𝛿2 . 

According to (16) and (17), the calculation gives (18). 

{
 
 

 
 1

𝜎2
=∑

1

𝜎𝑖
2

𝑟

𝑖=1

+
1

𝜎0
2

𝑧

𝜎2
=∑

𝑥𝑖
𝜎𝑖
2

𝑟

𝑖=1

+
𝑧0
𝜎0

2

 (16) 

𝛾𝑒𝑥𝑝[−
1

2
∑(

𝑥𝑖 − 𝑧𝑘
𝜎𝑖

)2
𝑟

𝑖=1

−
1

2
(
𝑧𝑘 − 𝑧0
𝜎0

)2] =
1

√2𝜋𝜎
𝑒𝑥𝑝[−

1

2
(
𝑧𝑘 − 𝑧

𝜎
)2] (17) 

z =

∑
𝑥𝑖
𝜎𝑖
2

𝑟
𝑖=1 +

𝑧0
𝜎0

2

∑
1
𝜎𝑖
2

𝑟
𝑖=1 +

1
𝜎0

2

 (18) 

The final Bayesian estimate of the optimal fusion phase point at position k is obtained 

as in Equation (19), where the upper and lower limits of 𝜔  are the maximum and 
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minimum values of the phase point, and the PSR can be completed after finding all M 

position phase points. 

𝑧̂𝑘 = ∫ 𝑧𝑘
1

√2𝜋𝜎
𝑒𝑥𝑝[−

1

2
(
𝑧𝑘 − 𝑧

𝜎
)2] 𝑑𝑧𝑘 , ∀𝑘 = 1,2,⋯ ,𝑀

𝜔

 (19) 

3.2. Recursion Graphs and Approximate Entropy 

Recursion graphs (RP) is an effective method for qualitative analysis of nonlinear 

dynamical systems, which can reveal the internal state evolution process of the system by 

using the image-change pattern. It is generally implemented using the Heaviside function. 

The black dots in the RP diagram indicate that the attractor trajectories reach the same 

region of the orbit at different moments and vice versa for the white dots. 

Approximate entropy can quantitatively analyze the structural complexity of 

nonlinear systems [44] as defined in Equation (20). Different flight maneuvers generally 

have different complexity and have different approximate entropy. By calculating the 

approximate entropy and combining with the maneuvers entropy library, we can know 

which maneuver it is. 

𝐴𝑝𝐸𝑛(𝑚, 𝑟) = 𝑙𝑖𝑚
𝑁→∞

[𝛷𝑚(𝑟) − 𝛷𝑚+1(𝑟)], 𝛷𝑚(𝑟) =
1

𝑁 −𝑚 + 1
∑ 𝑙𝑛

𝑁−𝑚+1

𝑖=1

𝐶𝑖
𝑚(𝑟) (20) 

𝐶𝑖
𝑚(𝑟) =

1

𝑁 −𝑚
{𝑑[𝑋𝑖, 𝑋𝑗] < 𝑟} (21) 

𝑑[𝑋𝑖 , 𝑋𝑗] = 𝑚𝑎𝑥
𝑘=0,1,⋯𝑚−1

|𝑥𝑖+𝑘 − 𝑥𝑗+𝑘| (22) 

where 𝑖 = (1,2,⋯𝑁 −𝑚 + 1), 𝑗 = (1,2,⋯ ,𝑁 −𝑚 + 1), and 𝑖 ≠ 𝑗. 

4. The FMR General Framework 

The general idea of the generic framework proposed in this paper is to integrate the 

automatic segmentation capability of unsupervised clustering and the information 

entropy capability of distinguishing sequence complexity. 

First, the original input data are processed using a dynamic clustering method such 

as ISODATA, and the algorithm outputs the segmented, unknown kinds of maneuver 

sequences. Second, the multivariate phase space reconstruction calculation is applied to 

establish the complete phase space of the dynamical system. Then, the recurrence map 

and approximate entropy are calculated in the new phase space to analyze the complexity 

of the sequences qualitatively and quantitatively. Finally, according to the principle that 

the complexity of different kinds of maneuver sequences is different, the specific kind of 

the sequence is determined based on the calculation results so as to complete the FMR. 

The specific flow chart is shown in Figure 1. 
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Figure 1. A general framework for FMR. 

In the flow chart, the raw flight data are first preprocessed to extract some of the 

parameter columns. The speed, altitude, roll angle, and pitch angle form a parameter 

matrix, which is involved in the unsupervised clustering calculation. Using the double-

window algorithm, the trend identification is completed by using the normal load as the 

slope primitive, and the trend is used to segment the whole raw sequence into subseries 

and output the index values. Based on the index values of subsequences in the previous 

step, parameter fragments are extracted for each of the four parameter sequences. The 

extracted four parameter fragments are fed into the C-C algorithm, and the phase space 

reconstruction is performed according to the calculated minimum delay time and 

maximum embedding dimension, respectively, and the phase points at the same position 

in these four spaces are fused to extract the action fragments. After a comprehensive 
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analysis of the qualitative values of the recurrence map and the quantitative values of the 

approximate entropy, the action recognition results are finally obtained. 

5. Experiments 

The experimental environment is Windows 10 operating system, Anaconda 

development environment, python language, and Matlab7.1 simulation platform. The 

visualization tool is the three-dimensional flight path recovery system (3D-FPRS) 

developed by the author’s team. The system is based on the open-source CesiumJS 

platform and implemented using WebGL, HTML5 technology, which can reduce the 

input flight raw data into 3D dynamic visualization of flight trajectory. 

The experimental raw data were obtained from CAFUC real flight training records: 

the aircraft type is C172R, file name 1 log_210721ZUCK, 5724 lines; file name 2 

log_210316ZUUU, 6445 lines. Due to the problem of data accuracy, 1104 rows of data in 

log_210721ZUCK and 4626 rows of data in log_210316ZUUU were used during the 

experiment, with six columns of data in each row, totaling 34,380 pieces of data. The total 

length of the experimental sequence was 5730. The whole raw flight data are visualized 

as Figure 2. 

 

Figure 2. The visualization of whole raw flight data (file 1 and file 2). 

The speed, sideslip angle, altitude, pitch angle, roll angle, and normal overload are 

considered as key data during the experiment, with other multi-column flight parameter 

data participating in the feature dataprocessing. 

TS-ISODATA model has six clustering parameters, and K = 7, L = 1, and I = 100 were 

selected in the experiment, and the genetic algorithm was used to find 𝜃𝑛, 𝜃𝑆, 𝜃𝐶 . The final 

optimal parameter setting values obtained are 𝜃𝑛 = 1, 𝜃𝑆 = 0.0373, and 𝜃𝐶 = 0.0043, and 

the evaluation result using this set of parameter values is 6.3823. The input raw sequence 

is segmented into 96 maneuver segments. The segmentation calculation process takes an 

average of 76 s. 

The index of the extracted motorized fragment for a particular experiment was (0, 54, 

108, 162, 216, 270, 378, 432, 486, 540, 594, 648, 702, 756, 810, 864, 918, 972, 1026, 1080, 1134, 

1188, 1242, 1296, 1350, 1404, 1458, 1512, 1566, 1674, 1728, 1782, 1836, 1890, 1944, 1998, 2052, 

2160, 2214, 2268, 2322, 2376, 2430, 2484, 2538, 2592, 2646, 2700, 2754, 2808, 2862, 2916, 3024, 

3078, 3132, 3186, 3240, 3294, 3348, 3402, 3456, 3510, 3564, 3618, 3672, 3726, 3780, 3834, 3888, 

3942, 3996, 4050, 4104, 4158, 4212, 4266, 4320, 4374, 4428, 4482, 4536, 4590, 4644, 4698, 4752, 
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4806, 4860, 4914, 4968, 5022, 5076, 5130, 5184, 5238, 5292, 5346, 5368), where each index 

number represents the specific moment when the file was imported, 

The feature vector extracted according to this was (1:{−0.131, 0.108, 0.203, 0.090, 

−0.039, 0.057, 0.176, 0.099, 0.203, 0.101, 0.472, 0.017},2:{0.018, 0.096, −0.042, 0.091, 0.034, 

0.029, 0.074, 0.050, −0.094, 0.109, 0.164, 0.055},…,96:{0.018, 0.096, −0.042, 0.091, 0.034, 0.029, 

0.074, 0.050, −0.094, 0.109, 0.164, 0.055}). The result of clustering is shown in Table 1. The 

clustering calculation process takes an average of 121 s. 

Table 1. TS-ISODATA clustering results. 

Categories Corresponding Maneuver Segments 

1 8,9,16,18,23,24,31,34,35,42,45,48,52,55,60,63,67,74,77,82,19,28,37,40,49,58,69,79 

2 1,87,92,94 

3 3,5,12,14,15,20,27,33,36,39,41,51,54,57,62,81,84,88,95,96,11,25,38,43,65,68,71,72, 

4 4,6,22,53,50,66,73,89,91,2,7,10,13,17,21,26,29,30,44,47,32,46,56,59,61,64,70,75,83,85,76,78,80,86,90,93 

After preliminary expert analysis, category 4 are all transitional-level flights between 

complex maneuvers, which are not significant, so this paper uses PSR method to study 

the recurrence graph and approximate entropy of category 1, 2, and 3. The ApEn results 

are given in Table 2. 

Table 2. The ApEn value for categories 1–3. 

Categories 1 2 3 4 5 6 7 8 9 10 Average 

1 0.3937 0.3148 0.4985 0.3512 0.2881 0.4112 0.3309 0.2490 0.3989 0.4117 0.3648 

2 0.3166 0.3594 0.4252 0.0870 0.2491 0.0408 0.0870 0.0741 0.1295 0.1922 0.1961 

3 0.1346 0.0941 0.2007 0.1178 0.0953 0.1457 0.1178 0.0953 0.1419 0.0344 0.1177 

Experimental results show that the dataset as a multivariate time series does fit the 

chaotic nonlinear dynamical system characteristics. Similar maneuvers show similar 

characteristics on the recurrence graph, with close values of approximate entropy (ApEn), 

while different maneuvers vary widely. Thus, the phase space reconstruction recognition 

method based on approximate entropy can distinguish the recognition of flight 

maneuvers, especially complex maneuvers. 

Three samples of the trace recovery visualization and recurrence map experiment are 

given in Figures 3–5. 

 
 

(a) (b) 

Figure 3. (a) Category 1 maneuver visualization reduction; (b) the maneuver’s RP and ApEn value. 
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(a) (b) 

Figure 4. (a) Category 2 maneuver visualization reduction; (b) the maneuver’s RP and ApEn value. 

 
 

(a) (b) 

Figure 5. (a) Category 3 maneuver visualization reduction; (b) the maneuver’s RP and ApEn value. 

In order to study what exactly these three categories of maneuvers are, this paper 

uses the recurrence diagrams of these three categories of maneuvers in conjunction with 

the visual flight path recovery system to be able to clearly distinguish the categories of 

maneuvers. As shown in Figures 3a, 4a, and 5a, category 1 is Eight maneuver, category 2 

is RectangularCourse maneuver, and category 3 is Spin maneuver. Not only do these three 

categories of maneuvers have different ApEn value, but their RPs also have significant 

differences, which perfectly match the complexity level given by flight experts as shown 

in Figures 3b, 4b, and 5b. The RP and ApEn calculation process takes an average of 88 s. 

The overall average time of the whole framework automatic FMR calculation process 

is 285 s with 5730 raw input data. 

In order to verify that the framework can be applied to multiple aircraft types, we 

selected two other datasets to complete the validation experiments, which are also from 

CAFUC real flight training records: aircraft types SR20 and DA42, file 3 name 

log_210521_ZHCC (13,750 lines), and file 4 name log_210531_ZUUU (13,018 lines); the 

raw flight data are visualized as Figure 6. 
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(a) (b) 

Figure 6. (a) File 1 visualization; (b) file 2 visualization. 

In addition, in order to do comparison experiments, the project team developed an 

expert validation aid tool (EVAT) as shown in Figure 7. 

 

Figure 7. Expert validation aid tool (EVAT). 

The system is also based on the CesiumJS platform, which can not only be reduced 

to 3D dynamic visualization of flight trajectory but also can display each second of 

temporal parameters and mark them in sequence, helping flight experts to judge flight 

movements with the naked eye. 

With this tool, three flight experts made flight maneuvers judgments on the above 

two experimental files and two validation files, frame by frame, respectively, and the 

complete comparison results are shown in Table 3 below. 

Table 3. The overall experimental results. 

Categories 
File 1 + File 2 

C172, 5730 Lines 

File 3 

SR20, 13750 Lines 

File 4 

DA32, 13018 Lines 
Average 

Number FMR Expert Accuracy (%) FMR Expert Accuracy (%) FMR Expert Accuracy (%) Accuracy 

1 28 26 92.3 6 5 80 49 50 98.2 90.2 

2 4 4 100 20 24 83.3 7 5 60 81.1 

3 28 26 92.3 10 8 75 15 17 88.2 85.2 

Time (seconds) 
 Ratio  Ratio  Ratio Ratio 

285 15,675 55 382 17,569 45.9 349 21,638 62 54.3 

The experimental results in Table 3 show that the method in this paper can perform 

FMR for three types of aircraft and different file lengths, with the highest accuracy rate 

for category 1 (Eight maneuver), and the lowest accuracy rate for category 2 
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(RectangularCourse maneuver), with an overall average accuracy rate of 85.5%. The 

reason why the Eight maneuver accuracy is the highest is because the maneuver is 

significantly different from others, and the RectangularCourse maneuver accuracy is the 

lowest because the maneuver is generally time-consuming, which is accompanied by a 

half-spin maneuver, and the number of such maneuvers is small, so the recognition is not 

effective. 

In terms of time consumption, the consumption time is related to the document 

length, and overall, the recognition speed of this paper is 54.3 times faster than human 

flight experts. 

The comparison experiments were difficult to design and implement because none 

of the other papers disclosed the datasets used, and some of the papers corresponded to 

aircraft types that were fighter jets or UAVs, which differed greatly from the temporal 

nature of this paper; neither did any of the other methods cover temporal segmentation 

and automatic recognition. However, we still completed the recognition experiments 

using the same datasets provided in this paper, files 1 and 2, and the experimental results 

are shown in the following Table 4. 

Table 4. The comparison experiments results. 

Methods DTW [4] RF-SVM [10] Expert System [15] DBM [29] CNN-LSTM [33] Ours 

Accuracy (%) 79.6 61 89.6 77 71 85.5 

Time (Seconds) 314 276 656 295 489 285 

From the results, we can see that under the same flight-type condition, the accuracy 

of this paper’s method is second only to the expert system, and the speed is second only 

to SVM, which is better than other methods in the comprehensive evaluation. More 

importantly, if we want to follow the aircraft model, except for this paper, all other 

methods have to retrain the model or redesign the knowledge rules, which does not have 

generalization ability in practical application scenarios. 

6. Conclusions 

In this paper, a general framework was constructed for the first time for automated 

FMR based on dynamic clustering and phase space reconstruction. The framework 

decomposes the FMR task into two parts, which are automatic maneuver sequence 

segmentation and automatic maneuver class identification. The automatic maneuver 

sequence segmentation was implemented by the improved dynamic clustering method 

TS-ISODATA, which solves the problem of self-organized iterative clustering of 

multivariate time series and successfully segments the input data into multiple segments 

and automatically clusters them into four classes. Due to the chaotic nature of the flight 

dynamics system, the automatic recognition of maneuver categories partially reconstructs 

the phase space of multivariate fusion, transforms the representational dimensional 

change patterns of flight maneuvers that are difficult to organize into attractive 

subsequences that are easy to identify, and generates recursive graphs from them to 

calculate ApEn values that can characterize the complexity of maneuvers. With the help 

of a visual 3D flight-track reduction system, the flight maneuver categories are easily 

identified. With an input sequence of 5000 s, the entire framework computation process 

takes an average of 285 s, which is 54 times faster than human expert recognition, with an 

overall accuracy rate of 85.5%. 

In the next step, the entropy corresponding to different flight actions can be solidified 

so as to form an automatic identification library for fast and automatic classification 

output. This step requires collecting a large number of samples of a particular flight 

maneuver and deriving a reasonable range of approximate entropy values through a large 

number of experiments, and the range of values among the maneuvers should not overlap 

to avoid duality. According to different entropy value ranges corresponding to different 
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aircraft maneuvers categories, automatic identification rules were established to realize 

the final automatic output of flight maneuvers. For maneuvers with close approximate 

entropy values and little difference, the complexity of the recurrence graph should be 

considered, and the difference enhancement of information entropy should be designed 

to further strengthen the difference between maneuvers. In addition, as a pattern-

recognition category, although the method in this paper has better generalization ability 

and does not require pre-training, it is computationally intensive and time-consuming 

and cannot realize online real-time recognition. At this stage, it can only be used for post-

flight analysis to support the next application, such as flight technology scoring based on 

a specific flight maneuver and post-accident investigation after a flight accident. In the 

future, the principle of the method can be explored in depth to simplify the computation 

process. 
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