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Abstract: We investigate the Hyers–Ulam stability of an equation involving a single variable of the
form ‖ f (x)− α f (kn(x))− β f (kn+1(x))‖ 6 u(x) where f is an unknown operator from a nonempty
set X into a Banach space Y, and it preserves the addition operation, besides other certain conditions.
The theory is employed and stability theorems are proven for various functional equations involving
several variables. By comparing this method with the available techniques, it was noticed that this
method does not require any restriction on the parity, on the domain, and on the range of the function.
Our findings suggest that it is very much easy and more appropriate to apply the proposed method
while investigating the stability of functional equations, in particular for several variables.
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convergence series
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1. Introduction

In the past few decades, the Hyers–Ulam stability analysis of functional equations has
attracted many researchers, and a number of research articles (of good quality) can be found
in the topic; for instance, see [1–9] and the references cited therein. Being an emerging field
for researchers, various methods (that is the direct method, the fixed point method, and so
on) have been developed and applied to a variety of functional equations [10–13].

Generally, proving the stability results of functional equations by using the direct
method requires one of the following two conditions: ‖ f (x)− 1

a f (ax)‖ 6 u(x) or ‖ f (x)−
a f ( 1

a x)‖ 6 u( x
a ). Depending on certain assumptions, we need different distinctions to

choose one approximate approach to solve some particular problems. The author in [14]
studied the stability of a functional equation involving a single variable while imposing
various conditions on the underlying constants. The results were then used to prove the
stability of a pair of functional equations in several variables by using a direct technique.
This work not only generalized and shortened the known available methods, but also
improved the approximating constants to a great extent. Before studying the idea of [14],
Forti in [15] presented a direct method for proving the Hyers–Ulam stability of functional
equations. The latter literature is considered as a special case of the former article. In fact,
these two research articles provided a solid background for the subject matter and opened
different doors of research related to the field. These research papers can be used for
obtaining stability results related to orthogonal additivity [10], the functional equation of
Drygas [16], and the functional equation with the quadratic property [17] without repeating
the same procedure.

It is important to mention that the proposed problem arises in various applications,
and the same functional equation may be extended to a class of functions involving several
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variables. However, the available approaches cannot be applied directly to these functional
equations, and thus, modifications of these methods are necessary. Keeping in view the
importance of the problem, in Section 2, the authors try to solve another class of functional
equations involving a single variable. We extend this approach, and various functional
inequalities are constructed, which definitely helped us perform the stability analysis of a
class of functional equations involving several variables.

The main theme of the present work is to analyze the stability of the solution of the
functional equation form:

‖ f (x)− α f (kn(x))− β f (kn+1(x))‖ 6 u(x)

where n = 1. The solution of the problem was checked for preserving the addition
operation, and we show that the solution satisfies a few identities from which the optimum
conditions can be obtained. Based on our main results, the authors solved a number of
functional equations, and to the best of our knowledge, these problems are novel and
not previously attempted by researchers. The authors have great concern about solving
more general forms of the inequalities in the near future. For the interest of the readers,
the authors provide a problem in the last paragraph of Section 3.

2. Main Results

Theorem 1. Assume that X is a nonempty set and (Y, ‖ · ‖) is a Banach space. Suppose that the
mapping f : X → Y satisfies the following inequality:

‖ f (x)− α f (k(x))− β f (k2(x))‖ 6 u(x), x ∈ X, (1)

where α and β are complex numbers, and the mapping k : X → X, u : X → [0, ∞) is arbitrarily
given, while the series ∑∞

n=0|αn|u(kn(x)) with:

α0 := 1, αn :=
n

∑
i=0

aibn−i, n ∈ N,

β0 := 0, βn := βαn−1, n ∈ N

where ab = −β, b = α− a (and where kn denotes the n−th iterate of the mapping k), is convergent
for all x ∈ X. Then, there exists a uniquely determined function g : X → Y such that:

g(x) = αng(kn(x)) + βng(kn+1(x)), (2)

and:

‖ f (x)− g(x)‖ 6
∞

∑
i=0
|αi|u

(
ki(x)

)
x ∈ X, n ∈ N. (3)

Proof. The proof is divided into two steps. The first step of the proof is to study the
existence of the limiting function by using an approximation argument. The second step
of the proof is used to prove the property (2) of the limiting function g(x) to prove the
uniqueness of the limiting function. First of all, we made an attempt to prove the following
inequality with n > m:∥∥∥ f (km(x))− αn f (kn(x))− βn f

(
kn+1(x)

)∥∥∥ 6 γn(x), (4)

where:

γn(x) :=
n−1

∑
i=m
|αi|u

(
ki(x)

)
, x ∈ X, m, n ∈ N.
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Before studying of the inequality (4), due to it being related to certain parameters, then
it is necessary to claim that, for any m, n ∈ N:

αn+m = αmαn + βmαn−1, m, n ∈ N (5)

αn+1 = ααn + βn, βn+1 = βαn = αβn + ββn−1. (6)

Equation (6) is easily obtained by observation. Therefore, we straightforwardly prove
Equation (5) by induction. If m = 2, then we have:

αn+2 = α2αn + αβαn−1 + βαn = αnα2 + β2αn−1.

If m = 3, then we achieve:

αn+3 =α3αn + α2βn + αβn+1 + βn+2

=αn(α3 + 2βα) + (α2 + β)βn

=αnα3 + αn−1β3.

By induction, we can set that:

αn+i = αiαn + αn−1βi

holds for some i ∈ N. We prove that:

αn+i+1 = α(αiαn + αn−1βi) + β(αi−1αn + αn−1βi−1)

= αn(ααi + βαi−1) + (ββi−1 + αβi)αn−1

= αnαi+1 + βαn−1(βi−1 + ααi−1)

= αnαi+1 + αn−1βi+1.

The claim is proven. First, it is easy to see that (1) can give (4) for n = 1 with exchanging
km(x) for x, and by induction, later, we set that (4) holds for some n ∈ N. We prove that in
the case for n + 1 by making use of (1) and (6):

‖ f (km(x))− αn+1 f
(

kn+1(x)
)
− βn+1 f

(
kn+2(x)

)
‖

6
∥∥∥ f (km(x))− αn f (kn(x))− βn f

(
kn+1(x)

)∥∥∥
+
∥∥∥αn f (kn(x)) + βn f

(
kn+1(x)

)
− (ααn + βn) f

(
kn+1(x)

)
− βn+1 f

(
kn+2(x)

)∥∥∥
6

n−1

∑
i=m
|αi|u

(
ki(x)

)
+ |αn|

∥∥∥ f (kn(x))− α f
(

kn+1(x)
)
− β f

(
kn+2(x)

)∥∥∥
6

n−1

∑
i=m
|αi|u

(
ki(x)

)
+ |αn|u(kn(x))

=
n

∑
i=m
|αi|u

(
hi(x)

)
.

Since the series ∑∞
i=0|αi|u

(
hi(x)

)
is convergent for every x ∈ X, combined with (4) and

by virtue of the completeness of the space Y, the mapping can be well defined as:

g(x) := lim
n→∞

[
αn f (kn(x)) + βn f

(
kn+1(x)

)]
, x ∈ X. (∗)
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Combined with (6), we prove the following properties of the mapping g:

g(x) = lim
n→∞

[
αn+1 f

(
kn+1(x)

)
+ βn+1 f

(
kn+2(x)

)]
= lim

n→∞
[(ααn + βαn−1) f

(
kn+1(x)

)
+ (αβn + ββn−1) f

(
kn+2(x)

)
]

= lim
n→∞

[
α(αn f

(
kn+1(x)

)
+ βn f

(
kn+2(x)

)
)

+ β(αn−1 f
(

kn+1(x)
)
+ βn−1 f

(
kn+2(x)

)
)

]
= αg(k(x)) + βg(k2(x)).

Furthermore, we prove the more general property of g:

g(x) = αng(kn(x)) + βng
(

kn+1(x)
)

, f or all x ∈ X and n ∈ N. (7)

In a similar way, by induction, we set that Equation (7) is true for all natural numbers
k with k ≤ n with some n ∈ N. Let us calculate it in the case for k = n + 1:

αn+1g
(

kn+1(x)
)
+ βn+1g

(
kn+2(x)

)
)

= (ααn + βαn−1)g
(

kn+1(x)
)
+ (αβn + ββn−1)g

(
kn+2(x)

)
= α(αng

(
kn+1(x)

)
+ βng

(
kn+2(x)

)
) + β(αn−1g

(
kn+1(x)

)
+ βn−1g

(
kn+2(x)

)
)

= αg(k(x)) + βg
(

k2(x)
)

= g(x).

In the second step of the proof, we prove the uniqueness of the mapping g by using
the above Equation (7). Let us suppose that g̃ : X → Y is another approximating mapping
satisfying (2) and (3). Therefore, let us first prove the inequality together with Equation (6):

‖ f (km(x))− αm(αn f
(
kn+m(x)

)
+ βn f

(
km+n+1(x)

)
)

− βm(αn−1 f
(
kn+m(x)

)
+ βn−1 f

(
km+n+1(x)

)
)‖

=‖ f (km(x))− (αmαn + αn−1βm) f
(
kn+m(x)

)
− (αmβn + βmβn−1) f

(
kn+m+1(x)

)
‖

=‖ f (km(x))− αn+m f
(
kn+m(x)

)
− βn+m f

(
kn+m+1(x)

)
‖

6
m+n−1

∑
i=m

|αi|u
(

ki(x)
)

,

and letting n→ ∞, we have for any m ∈ N:

‖ f (km(x))− αmg(km(x))− βmg
(

km+1(x)
)
‖ 6

∞

∑
i=m
|αi|u

(
ki(x)

)
,

then we can rewrite:

‖g(x)− g̃(x)‖ 6‖ f (km(x))− αmg(km(x))− βmg
(

km+1(x)
)
‖

+ ‖ f (km(x))− αm g̃(km(x))− βm g̃
(

km+1(x)
)
‖

62
∞

∑
i=m
|αi|u(ki(x))
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for any x ∈ X and n ∈ N, which yields g = g̃ in X as m → ∞ by the convergence series
∑∞

n=0|αn|u(kn(x)).
Finally, we can assume αn+1 − aαn = b(αn − aαn−1) with a + b = α, −ab = β to prove

the form of the expression of the sequence (αn). Thus, we achieve:

αn+1 − aαn = bn(α1 − aα0) = bn+1,

and:

αn = an−1α + an−2b + · · ·+ abn−1 + bn =
n

∑
i=0

aibn−i.

This completes the proof.

Remark 1. In contrast to the paper [14,15], the parameters α, β in Equation (1) can be relaxed to
the complex field C, that is α, β ∈ C, and the mediate function k(x) does not need to be even or
odd (the mediate function in [14] is h(x), which is even, and β = 0 in [15]). In fact, the limiting
function g(x) is even if the mediate function is even. Conversely, the limiting function is not odd
even if the mediate function is odd. In a similar way as the proof, we give the following corollary to
prove that the sequences (αn) and (βn) in the literature have similar properties to the corresponding
sequences in [14]. At the same time, we present two other functional equations for application. See
the following:

‖ f (x)− α f (km(x))− β f (k2m(x))‖ 6 u(x), x ∈ X, (8)

‖ f (x)− α f (
√

k(x))− β f (
√

k(x))‖ 6 u(x), x ∈ X. (9)

We skip their proof, leaving it to the reader. On the other hand, it is worth noting that the
system of a+ b = α, ab = −β is seemingly always led to two different series ∑∞

j=0
∣∣αj
∣∣u(kj(x)

)
(see

the application in Section 3). In fact, two different series may not always appear in the general case
since the sequence (αn) is symmetric with respect to the parameters a and b. Now, we construct the
states α2, α3. and α4 in the following, which are to improve the evaluative effects of the sequence (αn):

α2 = α2 + β = (a + b)2 − ab = a2 + ab + b2,

α3 = α3 + 2αβ = (a + b)((a + b)2 − 2ab) = a3 + a2b + ab2 + b3,

and:

α4 = α4 + 3α2β + β2 = (a + b)2((a + b)2 − 3ab) + a2b2 = a4 + a3b + a2b2 + ab3 + b4.

Remark 2. As a matter of the fact, our first result can also be formulated in the β-homogeneous
F-space, the sequentially complete linear topological space, and so on. For simplicity, we do not repeat
them one by one. If α = 1, β = 0 and k(x) = x, the result may become trivial and meaningless.
Therefore, we may suppose that α is an element in C different from 0, 1 in Theorem 1. In contrast
with the paper [14], we may address this similar method to solve our model, which is stated in
the following.

Corollary 1. Assume that X is a nonempty set and (Y, ‖ · ‖) is a Banach space. Suppose that the
mapping f : X → Y satisfies the following inequality:

‖ f (x)− α f (k(x))− β f (k2(x))‖ 6 u(x), x ∈ X, (10)

where α and β are real constants, and the mapping k : X → X, u : X → [0, ∞) is arbitrarily
given, while the series ∑∞

n=0|αn|u(kn(x)) with:

α0 := 1, αn :=
n

∑
i=0

aibn−i, n ∈ N,

β0 := 0, βn := βαn−1, n ∈ N
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where ab = −β, b = α− a (and where kn denotes the n− th iterate of the mapping k), is convergent
for all x ∈ X. Then, there exists a uniquely determined function g : X → Y such that:

g(x) = αng(kn(x)) + βng(kn+1(x)), (11)

and:

‖ f (x)− g(x)‖ 6
∞

∑
i=0
|αi|u

(
ki(x)

)
x ∈ X, n ∈ N. (12)

Proof. We skip the same part of the proof of Theorem 1. From the definition of sequences
(αn) and (βn), we also would like to have:

αmαnβmαn−1 ≥ 0.

Then:

g(x)− g̃(x) = αn[g(kn(x))− g̃(kn(x))] + βn

[
g
(

kn+1(x)
)
− g̃
(

kn+1(x)
)]

, x ∈ X,

and on account of (5) and (6), we can rewrite:

‖g(x)− g̃(x)‖ 6 2|αn|
∞

∑
i=0
|αi|u

(
ki+n(x)

)
+ 2|βn|

∞

∑
i=0
|αi|u

(
ki+n+1(x)

)
= 2

∞

∑
i=1

[(|αiαn|+ |αi−1βn|)u
(

ki+n(x)
)
+ 2|αn|u(kn(x))]

= 2
∞

∑
i=1

[(|αiαn + αi−1βn|)u
(

ki+n(x)
)
+ 2|αn|u(kn(x))]

= 2
∞

∑
j=n

∣∣αj
∣∣u(kj(x)

)
for any x ∈ X and n ∈ N, which yields g = g̃ in X as n→ ∞. This completes the proof.

An extended conclusion can be stated in the following, which discusses several cases
in detail in Theorem 1.

Theorem 2. Assume that X is a nonempty set and (Y, ‖ · ‖) is a Banach space. Suppose that the
mapping f : X → Y satisfies the conditions of Theorem 1. Then, there are several cases to discuss:

(1) If the condition α = 0 or β = 0 holds true, then there exist results that were stated in [15]
and also a special case in Theorem 1, which will not be repeated;

(2) If the condition is either the situation α = β = 1 and k(x) = x or k(x) = −x or the
situation α = β = 0 with an arbitrary function k established, then there is an exactly unique trivial
solution of Equation (3): If the other cases are establish, then there exist results stated in Theorem 1,
which will not be repeated.

3. Applications

An F-space is called β-homogeneous if ‖tx‖ = tβ‖x‖ for all x ∈ X and all t ∈ C (see
the definition in [18]). In this section of Theorem 3, β1, β2 are considered as positive real
numbers with β1 ≤ 1 and β2 ≤ 1. Furthermore, X is supposed as a β1-homogeneous
F-space, while Y is assumed as a β2-homogeneous F-space. In fact, there was also a similar
solution of the functional inequality in the Banach space in [14]. The following functional
inequality was originally derived from the inner product space [19,20].
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Theorem 3. Let f : X → Y be a function such that, for some K ≥ 0 and r < β2
β1

:

‖ f (x + y + z) + f (x) + f (y) + f (z)− f (x + y)− f (z + y)− f (x + z)‖
6 K(‖x‖r + ‖y‖r + ‖z‖r)

(13)

for all x, y, z ∈ X. Then, there exists a unique mapping ψ1 : X → Y such that:

‖ f (x)− ψ1(x)‖ 6 (2 + 2rβ1 + 3 · 2β2)2β1rK
(2β2 − 2β1r)8β2

‖x‖r

for all x ∈ X. Moreover, ψ1 is the unique solution of the following equation satisfying the above
equality:

ψ1(x + y + z) + ψ1(x) + ψ1(z) + ψ1(y) = ψ1(x + y) + ψ1(z + y) + ψ1(x + z)

for all x, y, z ∈ X.

Proof. From (x, x, x) in (13), we have:

‖ f (3x) + 3 f (x)− 3 f (2x)‖ 6 3K(‖x‖r),

and then:
‖2 f (3x) + 6 f (x)− 6 f (2x)‖ 6 3 · 2β2 K(‖x‖r). (14)

From (x, x, 2x) in (13), we have:

‖ f (4x) + 2 f (x)− 2 f (3x)‖ 6 (2 + 2rβ1)K(‖x‖r). (15)

Combining (14) and (15), we obtain:

‖ f (x)− 3
4

f (2x) +
1
8

f (4x)‖ 6 (2 + 2rβ1 + 3 · 2β2)K‖x‖r/8β2 .

Let u(x) = K1‖x‖r = (2 + 2rβ1 + 3 · 2β2)K‖x‖r/8β2 . We apply the results obtained
in Section 2 with α = 3

4 , β = −1
8 and k(x) = 2x. We can easily compute that either

(a, b) = ( 1
4 , 1

2 ) or (a, b) = ( 1
2 , 1

4 ). Thus:

αn = [
n

∑
i=0

(
1
4
)i(

1
2
)n−i]β2 = [

1
2n (1−

1
2n )]

β2 .

Therefore:

∞

∑
n=0
|αn|u(2nx) =

∞

∑
n=0

[
1
2n (1−

1
2n )]

β22β1rnK1‖x‖r ≤ 2β2

2β2 − 2β1r K1‖x‖r.

Therefore, the series ∑∞
i=0 |αn|u(knx) is convergent for all x ∈ X.

Related to the above results, there exists a uniquely determined mapping ψ1 = g :
X → Y satisfying (2) and (3).
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In order to show that g satisfies the last equation of Theorem 3, it is easy to see that:∥∥∥∥αn

[
f (2n(x + y + z)) + f (2nx) + f (2ny) + f (2nz)

− f (2n(x + y))− f (2n(z + y))− f (2n(x + z))
]

+ βn

[
f (2n+1(x + y + z)) + f (2n+1x) + f (2n+1y) + f (2n+1z)

− f (2n+1(x + y))− f (2n+1(z + y))− f (2n+1(x + z))
]∥∥∥∥

6(|αn|+ |βn|)K(‖x‖r + ‖y‖r + ‖z‖r)

which tends to zero as n → ∞ by the convergence series ∑∞
i=0 |αn|u(ki(x)), and this com-

pletes the proof.

In Theorem 3, the problem can also be derived in the Banach space with
αn = 1

2n (1 − 1
2n ) and ∑∞

i=0 |αn|u(knx) = ε. For the Euler–Lagrange equation, we pro-
vide another approach to prove its stability in comparison to that from [11] in completing
the stability of the title functional equation.

Theorem 4. Assume that (X,+) is a group and (Y, ‖ · ‖) is a Banach space. Suppose that the
mapping f : X → Y such that for all x, y, z ∈ X and some ε > 0:

‖ f (x + y + z) + f (x− y + z) + f (x + y− z) + f (x− y− z)− 4 f (x)− 4 f (y)− 4 f (z)‖ 6 ε. (16)

Then, there exists a uniquely determined function g : X → Y such that:

g(x) =
1
8

g(2x)− 1
32

g(4x)− 5
21

f (0), x ∈ X

and:
‖ f (x)− g(x)‖ 6 4ε

21
x ∈ X.

In particular, if X is commutative, then g is also the solution of the following equality:

g(x + y + z) + g(x− y + z) + g(x + y− z) + g(x− y− z) = 4g(x) + 4g(y) + 4g(y),

for all x, y ∈ X.

Proof. We show that (x, x,−2x) in (16) and obtain:

‖ f (4x)− 3 f (−2x) + f (2x)− 8 f (x) + f (0)‖ 6 ε, x ∈ X. (17)

From (0, x, x) in (16), we have:

‖ f (2x)− 2 f (0) + f (−2x)− 8 f (x)‖ 6 ε, x ∈ X. (18)

Consequently, (17) and (18) yield that:

‖ f (4x) + 4 f (2x)− 32 f (x)− 5 f (0)‖ 6 4ε, x ∈ X.
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Without loss of generality, we may assume that f (0) = 0. Let u(x) = ε
8 . We apply the

results obtained in Section 2 with α = 1
8 , β = 1

32 , and k(x) = 2x. We can easily compute
that either (a, b) = (−1

8 , 1
4 ) or (a, b) = ( 1

4 , −1
8 ). Thus:

αn =
n

∑
i=0

(
−1
8

)i(
1
4
)n−i =

2
4n (1 +

(−1)n

2n+1 ).

Therefore,
∞

∑
n=0
|αn|u(2nx) =

4ε

21
.

Therefore, the series ∑∞
i=0 |αn|u(knx) is convergent for all x ∈ X.

It remains to interpret that if X is commutative, then for all x, y, z ∈ X and n ∈ N, we
have by (2):

‖αn[ f (2n(x + y + z)) + f (2n(x− y + z)) + f (2n(x + y− z))

+ f (2n(x− y− z))− 4 f (2nx)− 4 f (2ny)− 4 f (2nz)]

+ βn[ f (2n+1(x + y + z)) + f (2n+1(x− y + z)) + f (2n+1(x + y− z))+

f (2n+1(x− y− z))− 4 f (2n+1x)− 4 f (2n+1y)− 4 f (2n+1z)]‖
6(|αn|+ |βn|)ε

which tends to zero as n→ ∞ by the convergence series ∑∞
i=0 |αi|u(ki(x)) and the relation

between (αn) and (βn). According to the commutativeness of X, we prove that the last
equation of Theorem 4 holds for all x ∈ X. This completes the proof.

In fact, the stability problem for the equation can also be solved in the β−homogeneous
space and the more direct method derived in [11]. The Drygas equation has been solved by
many papers in [16], and also, an interesting property of the equation is that it is symmetric
to y. Applying the property, we solve the following stability problem.

Theorem 5. Assume that (X,+) is a group and (Y, ‖ · ‖) is a Banach space. Suppose that the
mapping f : X → Y such that for all x, y ∈ X and some ε > 0:

‖ f (x + y) + f (x− y)− 2 f (x)− f (y)− f (−y)‖ 6 ε, x, y ∈ X. (19)

Then, there exists a unique mapping g : X → Y such that:

g(x) =
3
4

g(2x)− 1
8

g(4x), x ∈ X

and:
‖ f (x)− g(x)‖ 6 2ε x ∈ X.

In particular, if X is commutative, then g also satisfies:

g(x + y) + g(x− y) = 2g(x) + g(y) + g(−y), x, y ∈ X. (20)

Proof. Without loss of generality, we may assume that f (0) = 0. Substitute in the sequel
(x, x) in (19) in order to obtain:

‖ f (2x) + f (0)− 3 f (x)− f (−x)‖ 6 ε, x ∈ X. (21)

From (3x, x) in (19), we have:

‖ f (4x) + f (2x)− 2 f (3x)− f (x)− f (−x)‖ 6 ε, x ∈ X. (22)
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Consequently, (21) and (22) yield that:

‖ f (4x) + 2 f (x)− 2 f (3x)‖ 6 2ε, x ∈ X. (23)

From (2x, x) in (19), we have:

‖ f (3x)− 2 f (2x)− f (−x)‖ 6 ε, x ∈ X. (24)

Combined with the inequality (21), we have:

‖ f (3x)− 3 f (2x) + 3 f (x)‖ 6 2ε, x ∈ X, (25)

and this inequality together with (23) give:

‖ f (4x)− 6 f (2x) + 8 f (x)‖ 6 6ε, x ∈ X. (26)

The rest of the proof is the same as in the previous Theorem 3 if β1 = β2 = 1 and
u(x) = ε.

Theorem 6. Assume that (X,+) is a unique two-divisible group and (Y, ‖ · ‖) is a Banach space.
Suppose that the mapping f : X → Y satisfies the condition:

‖ f (x + dy) + d f (x− y)− f (x− dy)− d f (x + y)‖ 6 ε, x, y ∈ X, (27)

where d is an integer with d > 1 and ε is a nonnegative constant. Then, there exists a uniquely
determined function g : X → Y satisfying (2) and such that:

‖ f (x)− g(x)‖ 6 3d2 + 6d + 1
2(1− d2)(1 + d)

ε, x ∈ X. (28)

In particular, if X is commutative, then g satisfies:

g(x + dy) + dg(x− y) = g(x− dy) + dg(x + y), x, y ∈ X.

Proof. Observe first that without loss of generality, we may assume that f (0) = 0. Cur-
rently, substitute (−x,−x) and (−dx, x) in the place of (x, y) in (27), in order to have:

‖ f ((d− 1)x) + d f (−2x)− f (−(d + 1)x)‖ 6 ε, x ∈ X,

‖a f (−(d + 1)x)− f (−2dx)− d f (−(d− 1)x)‖ 6 ε, x ∈ X.

From the above two inequalities, this leads to:∥∥∥d f ((d− 1)x) + d2 f (−2x)− f (−2dx)− d f (−(d− 1)x)
∥∥∥ 6 (1 + d)ε, x ∈ X,

and this inequality together with the one with x changed for −x can obtain:∥∥∥d2 f (2x) + d2 f (−2x)− f (2dx)− f (−2dx)
∥∥∥ 6 2(1 + d)ε, x ∈ X.

By virtue of the unique two-divisibility of X, we have:∥∥∥d2 f (x) + d2 f (−x)− f (dx)− f (−dx)
∥∥∥ 6 2(1 + d)ε, x ∈ X.

Substitute (0, x) in (27) in order to know:

‖ f (dx) + d f (−x)− f (−dx)− d f (x)‖ 6 ε, x ∈ X.
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The above equation multiplied by d together with the above equation yield that:∥∥∥2d2 f (x)− (d + 1) f (dx) + (d− 1) f (−dx)
∥∥∥ 6 (2 + 3d)ε, x ∈ X. (29)

We exchange dx for x in (29):∥∥∥2d2 f (dx)− (d + 1) f (d2x) + (d− 1) f (−d2x)
∥∥∥ 6 (2 + 3d)ε, x ∈ X. (30)

From (0,−dx) in (27), we have:

‖ f (−d2x) + d f (dx)− f (d2x)− d f (−dx)‖ 6 ε, x, y ∈ X, (31)

and by virtue of (29), (30), and (31), we can obtain:

‖ 2d3

d− 1
f (x)− 2d2 + 2d

d− 1
f (dx) +

2
d− 1

f (d2x)‖ 6 3d2 + 6d + 1
d− 1

ε, x, y ∈ X. (32)

Let u(x) = 3d2+6d+1
2d3 ε. We apply the results obtained in Section 2 with α = 1+d

d2 , β = 1
d3

and k(x) = dx. We can easily compute that either (a, b) = ( 1
d , 1

d2 ) or (a, b) = ( 1
d2 , 1

d ). Thus:

αn =
n

∑
i=0

(
1
d
)i(

1
d2 )

n−i =
1

d2n
1− dn+1

1− d
.

Therefore:
∞

∑
n=0
|αn|u(2nx) =

3d2 + 6d + 1
2(1− d2)(1− d)

ε.

Therefore, the series ∑∞
i=0 |αn|u(knx) is convergent for all x ∈ X.

It remains to show that if X is commutative, then g satisfies the last equation of
Theorem 6. By (27) applied for (dnx, dn+1y) and (dn+1x, dn+2y), for all x, y ∈ X and n ∈ N,
we can obtain:

‖αn[ f
(

dnx + dn+1y
)
+ d f (dnx− dny)− f

(
dnx− dn+1y

)
− d f (dnx + dny)]− βn[ f

(
dn+1x + dn+2y

)
+ d f

(
dn+1x− dn+1y

)
− f

(
dn+1x− dn+2y

)
− d f

(
dn+1x + dn+1y

)
]‖

6(αn + βn)ε.

Letting n tend to infinity, by the commutativity of X and the convergence sequences
(αn) and (βn), we prove the last equation of Theorem 6 holds true.

In Equation (27), the stability for the problem can be derived in [14,21]. In particular,
d = 3 in Theorem 6 can be presented in the following as a corollary.

Corollary 2. Assume that (X,+) is a unique two-divisible group and (Y, ‖ · ‖) is a Banach space.
Suppose that the mapping f : X → Y satisfies the condition:

‖ f (x + 3y) + 3 f (x− y)− f (x− 3y)− 3 f (x + y)‖ 6 ε, x, y ∈ X

where ε > 0. Then, there exists a uniquely determined function g : X → Y such that:

‖ f (x)− g(x)‖ 6 23
16

ε, x ∈ X.
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In particular, if X is commutative, then g satisfies:

g(x + 3y) + 3g(x− y) = g(x− 3y) + 3g(x + y), x, y ∈ X.

Equation 9 f
(

x+y+z
3

)
+ f (x) + f (y) + f (z) = 4

[
f
(

x+y
2

)
+ f

(
y+z

2

)
+ f

( z+x
2
)]

was treated,
as well as the solutions of it were given in [14].

Theorem 7. Assume that (X,+) is a group uniquely divisible by two and by three, and let (Y, ‖ · ‖)
be a Banach space. Given an ε > 0, assume that f : X → Y satisfies for all x, y, z ∈ X the condition:∥∥∥∥9 f

(
x + y + z

3

)
+ f (x) + f (y) + f (z)− 4

[
f
(

x + y
2

)
+ f

(
y + z

2

)
+ f

(
z + x

2

)]∥∥∥∥ 6 ε. (33)

Then, there exists a uniquely determined function g : X → Y satisfying (2) and such that:

‖ f (x)− g(x)‖ 6 ε, x ∈ X.

In particular, if X is commutative, then g satisfies:

9g
(

x + y + z
3

)
+ g(x) + g(y) + g(z) = 4

[
g
(

x + y
2

)
+ g
(

y + z
2

)
+ g
(

z + x
2

)]
for all x, y, z ∈ X.

Proof. Substitute (6x, 0, 0), (6x, 6x, 0), (0, 2x, 4x) in the place of (x, y, z), respectively, in (33)
in order to obtain:

‖9 f (2x) + f (6x)− 2 f (0)− 8 f (3x)‖ 6 ε, x ∈ X,

‖9 f (4x)− 2 f (6x) + f (0)− 8 f (3x)‖ 6 ε, x ∈ X,

‖6 f (2x) + f (4x) + f (0)− 4 f (3x)− 4 f (x)‖ 6 ε, x ∈ X.

Hence:
‖ f (x)− 3

4
f (2x) +

1
8

f (4x) +
3
8

f (0)‖ 6 3
8

ε, x ∈ X.

We do not repeat the calculation procedures, which are similar to the proof in Theo-
rem 3. It remains to show that if X is commutative, then g satisfies the last equation. By (33)
applied for (2nx, 2n+1y) and (2n+1x, 2n+2y), for all x, y ∈ X and n ∈ N, we can obtain:∣∣∣∣∣∣∣∣αn

{
9 f
(

2n(x + y + z)
3

)
+ f (2nx) + f (2ny) + f (2nz)

}
− 4αn

{
f
(

2n(x + y)
2

)
+ f

(
2n(y + z)

2

)
+ f

(
2n(z + x)

2

)}
− βn

{
9 f
(

2n+1(x + y + z)
3

)
+ f (2n+1x) + f (2n+1y) + f (2n+1z)

}
− 4βn

{
f
(

2n+1(x + y)
2

)
+ f

(
2n+1(y + z)

2

)
+ f

(
2n+1(z + x)

2

)}∣∣∣∣∣∣∣∣
6 (αn + βn)ε

=

(
1
2n (1−

1
2n )−

1
8
· 1

2n−1 (1−
1

2n−1 )

)
ε.

Letting n tend to infinity, by the commutativity of X and the convergence sequences
(αn) and (βn), we prove the last equation holds true.
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In the future, the functional inequality:

‖ f (x)− α f (kn(x))− β f (kn+1(x))‖ 6 u(x)

for x ∈ X and some n ∈ N with n > 1 will be further explored. In fact, the more general
forms:

‖ f (x)− α f (kn(x))− β f (km(x))− γ f (kl(x))‖ 6 u(x)

may be discussed to solve the stability problem for functional equations in several variables.
Finally, a useful example of the quartic functional equation is stated:

‖ f (x + 2y) + f (x− 2y) + 6 f (x)− 4[ f (x + y) + f (x− y) + 6 f (y)‖ ≤ ε

for all x, y ∈ X. Substitute (2x, x), (x, x), (x,−x) in the above equation to obtain:

‖ f (4x)− 4 f (3x) + 6 f (x) + 6 f (2x)− 28 f (x)‖ ≤ ε, (34)

‖| f (3x)− 4 f (2x) + f (−x)− 18 f (x)‖ ≤ ε, (35)

‖ f (3x)− 23 f (−x)− 4 f (2x)− 6 f (x)‖ ≤ ε (36)

an obvious fact that eliminates f (−x) combining (35) and (36) and also later eliminates
f (3x). Consequently, we can solve the functional inequality:

‖F( f (4x), f (2x), f (x))‖ ≤ mε

for some integer m ∈ N and x ∈ X by using Theorem 1. In parallel with this method, we
eliminate f (−3x) together with (35) and (36), and replacing 2x by x, we obtain functional
inequality:

‖F( f (x), f (
x
2
), f (

x
2
))‖ ≤ nε

for some integer n ∈ N and x ∈ X and solving this by the method in [14]. We listed it as
follows:

1. In Theorem 3, we achieve that the approximating constant is ε for β1 = β2 = 1.
However, the approximating constant was 3ε in [1,17] and 2ε in [14];

2. In Theorem 4, the approximating constant is more than the approximating constant
obtained in [11];

3. In Theorem 5, we achieve that the approximating constant is 2ε. However, the ap-
proximating constant was 3ε in [1,16,22], and also, there was ε in [14];

4. In Theorem 6, we achieve that the approximating constant is 3d2+6d+1
2(1−d2)(1+d) ε, and

there was 2+3d
2d(d−1) ε in [14]. Furthermore, the more concrete approximating constant were

presented as 4
3 ε in [23], 11

16 ε in [14], as well as 23
16 ε in Corollary 2 in our work;

5. The approximating constant is 1
6 ε in [14] and ε in Theorem 7 in the literature and

4
27 ε in [13,24].

To summarize, comparing these five application results for the approximating constant,
it is hard to say which method achieves the best approximating constant in the theory
of functional equations. Now, this may also be considered as an open problem for this
research field.
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