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Abstract: In this paper, we develop two new theorems relating to the series of floor and ceiling func-
tions. We then use these two theorems to develop more than forty distinct novel results. Furthermore,
we provide specific cases for the theorems and corollaries which show that our results constitute a
generalisation of the currently available results such as the summation of first n Fibonacci numbers
and Pascal’s identity. Finally, we provide three miscellaneous examples to showcase the vast scope of
our developed theorems.
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1. Introduction

The concept of an integer part of x (x ∈ R) was introduced by Legendre in the late
18th century, and Gauss introduced the “[x]” notation for the same. Following these
discoveries, in the second half of 20th century, the terms “floor” and “ceiling” functions [1]
were coined. The “floor of x” is mathematically defined as bxc = max{w ∈ Z | w ≤ x},
whereas the “ceiling of x” is defined as dxe = min{k ∈ Z | k ≥ x}. These two functions
and their respective series have a wide range of applications in computer science [1]. Along
with them, two of the other most famous findings in the theory of numbers are a partial
sum—“the Faulhaber’s Formula” [2] and a sequence—“the Fibonacci Numbers”, both
of which have very significant implication in different fields of mathematics and other
sciences. The Fibonacci sequence, as it is widely known, frequently occurs in mathematics
as well as across different patterns in nature. However, more than that, it is applied at
different instances in computer science [1]. Moreover, as recently as 2020, the applications
of Faulhaber’s formula and its extensions [3] are being found in different areas of advanced
sciences such as quantum gravity [4].

Due to such significances of partial summations, researchers have studied their proper-
ties of such partial sums and finite sequences and their relations in recent decades [3,5–14].
McGown and Parks [6] generalised Faulhaber’s formula to non-integer powers using the
Zeta function [15]. Schumacher [3] extended the formula for real values x ∈ R+

0 , whereas
Merca [7] provided an alternative of Faulhaber’s formula as a finite discrete convolution.
Moreover, Orosi [9] provided a simple derivation of the formula.
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Outline of the Article

In this series of two papers, we aim to generalise the scope of infinite series and partial
summations using the floor and ceiling functions.

“Part I” specifically deals with the finite summations and is structured as follows.
Section 2 provides the list of preliminary results useful for our study. Section 3 consists of
lemmas and theorems which lay the foundations for the results discussed in Sections 4–6.
Section 6 is followed by Section 7 which is devoted to the corollaries of the results of
the previous sections. Section 8 gives different results related to the Fibonacci numbers.
Section 9 provides results on specific values—especially Section 9.3.2, which gives two
alternate formulae for Faulhaber’s formula. Section 10 provides proof for two of the
corollaries using the simple yet powerful principle of mathematical induction. Finally,
Section 11 concludes the article with a discussion of the scope for future studies.

2. Preliminaries

The following results along with the results discussed in the previous section are
useful for our study and hence we explicitly provide them together in this section.

2.1. Faulhaber’s (Bernoulli’s) Formula

An expression of the sum of the q powers of the first n positive integers (Faulhaber’s
Formula [16]) can be equated as:

Fq(n) =
n

∑
i=1

iq =
1

q + 1
·

q

∑
k=0

(
q + 1

k

)
· Bk · nq+1−k =

Bq+1(n + 1)− Bq+1(1)
q + 1

(1)

where Bj is Bernoulli’s number of the second kind, defined as:

Bj =
j

∑
k=0

1
k + 1

·
k

∑
t=0

(−1)t · (t + 1)j ·
(

k
t

)
and Bn(x) is a Bernoulli polynomial of order n.

2.2. Floor and Ceiling Functions

The floor function [17] of any real number x (denoted by bxc) gives the greatest integer
not greater than x, i.e., bxc = max{w ∈ Z | w ≤ x}. For example, b1.4c = 1, b2c =
2, b−3.4c = −4 and b−2c = −2.

In the same way, the ceiling function [17] (denoted by dxe) gives the smallest integer
not smaller than x, i.e., dxe = min{k ∈ Z | k ≥ x}. For example, d1.4e = 2, d2e =
2, d−3.4e = −3 and d−2e = −2.

From above, we can see that dxe = bxc = x if and only if x ∈ Z.

2.3. Finite Lower-Order Polylogarithm

An important finite summation formula [18] of the form for values of m ∈ N and
z ∈ C is given as:

n

∑
k=1

kmzk =

(
z

d
dz

)m 1− zn+1

1− z
(2)

For example, for m = 1, the equation reduces to:

n

∑
k=1

kzk = z · 1− (n + 1)zn + nzn+1

(1− z)2 (3)
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2.4. Fibonacci Number

The nth Fibonacci number [19] is given by the formula:

Fn =
ϕn − (−ϕ)−n

√
5

where ϕ =
1 +
√

5
2

Furthermore, the summation of first n Fibonacci numbers—“Fibonacci Series”—can
be obtained with the following formula:

n

∑
i=1

Fi = Fn+2 − 1 (4)

2.5. Pascal’s Identity

Pascal’s identity [5] and its alternate form can be written as follows:

(n + 1)q+1 − 1 =
n

∑
m=1

(
(m + 1)q+1 −mq+1

)
=

q

∑
p=0

(
q + 1

p

)
(1p + 2p + · · ·+ np), (5)

nq+1 =
n

∑
m=1

(
mq+1 − (m− 1)q+1

)
=

q

∑
p=0

(−1)q+p
(

q + 1
p

)
(1p + 2p + · · ·+ np). (6)

3. Foundations

Lemma 1 (Floor–Ceiling Lemma). Let m, n ∈ N, a, b ∈ R+ such that b(bn)ac = m and
b(b(n + 1))ac = m + 1 (i.e., n is the largest integer such that b(bn)ac = m). Furthermore, let
y ∈ C and f : C→ C then

n

∑
i=1

f ((b(bi)ac+ y)x) =
b(bn)ac

∑
t=1

[⌈
(t + 1)

1
a

b

⌉
−
⌈

t
1
a

b

⌉]
f ((t + y)x) (7)

Proof. Let g1(m) denote the function that yields the number of consecutive integers, k,
for which b(bn)ac = m (or b(b(n− k))ac = . . . = b(b(n− 1))ac = b(bn)ac = m), i.e.,
g1(m) = k gives the number of repetitions of m for a particular n. Then, we have

n

∑
i=1

f ((b(bi)ac+ y)x) =
b(bn)ac

∑
t=1

g1(t) f ((t + y)x) (8)

Now, we know that:

m =
⌊
(bn)a⌋⇒ m ≤ (bn)a < m + 1⇒ m

1
a ≤ (bn) < (m + 1)

1
a
(
∵ a ∈ R+

)
⇒m

1
a

b
≤ n <

(m + 1)
1
a

b
⇒
⌈

m
1
a

b

⌉
≤ n <

⌈
(m + 1)

1
a

b

⌉
(∵ n ∈ N)

It follows that n is at least
⌈

m
1
a

b

⌉
and at most strictly less than

⌈
(m+1)

1
a

b

⌉
.

Therefore, the number of the consecutive integer n is such that m =
⌊
(bn)a⌋ is⌈

(m+1)
1
a

b

⌉
−
⌈

m
1
a

b

⌉
. Hence:

g1(m) =

⌈
(m + 1)

1
a

b

⌉
−
⌈

m
1
a

b

⌉
(9)

and the result follows from Equations (8) and (9).
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Theorem 1 (Floor–Ceiling Theorem). Let m, n ∈ N, a, b ∈ R+ such that b(bn)ac = m and
b(b(n + 1))ac 6= m + 1 (i.e., n is NOT the largest integer such that b(bn)ac = m). Furthermore,
let y ∈ C and ψ1, f : C→ C then

ψ1(x) =
n

∑
i=1

f ((b(bi)ac+ y)x) =
b(bn)ac

∑
t=1

[⌈
(t + 1)

1
a

b

⌉
−
⌈

t
1
a

b

⌉]
f ((t + y)x)

−
(⌈

(b(bn)ac+ 1)
1
a

b

⌉
− (n + 1)

)
f ((b(bn)ac+ y)x) (10)

Or equivalently

ψ1(x) =
n

∑
i=1

f ((b(bi)ac+ y)x) = (n + 1) f ((b(bn)ac+ y)x)−
⌈

1
b

⌉
f (xy)

−
b(bn)ac

∑
t=1

[ f ((t + y)x)− f ((t + y− 1)x)]

⌈
t

1
a

b

⌉
. (11)

Proof. Let b(b(n− k))ac = . . . = b(b(n− 1))ac = b(bn)ac = m for some k ∈ N such

that 0 < k <

(⌈
(b(bn)ac+1)

1
a

b

⌉
−
⌈
(b(bn)ac)

1
a

b

⌉)
and b(b(n− k− 1))ac = m− 1; then, from

Lemma 1, we have:

ψ1(x) =
n

∑
i=1

f ((b(bi)ac+ y)x) =
b(bn)ac−1

∑
t=1

[⌈
(t + 1)

1
a

b

⌉
−
⌈

t
1
a

b

⌉]
f ((t + y)x)

+ k · f ((b(bn)ac+ y)x)

Furthermore, let m = b(bn)ac = b(b(n + 1))ac = . . . = b(b(n + z))ac for smallest
z ∈ N such that b(b(n + z + 1))ac = m + 1 then, from the previous equation, we have

ψ1(x) =
b(bn)ac−1

∑
t=1

[⌈
(t + 1)

1
a

b

⌉
−
⌈

t
1
a

b

⌉]
f ((t + y)x) + k · f ((b(bn)ac+ y)x)

+ z · f ((b(bn)ac+ y)x)− z · f ((b(bn)ac+ y)x)

Here, it can be easily seen that g1(m) = k + z for m = b(bn)ac as m = b(b(n− k))ac =
. . . = b(b(n− 1))ac = b(bn)ac = b(b(n + 1))ac = . . . = b(b(n + z))ac.

Therefore, k + z =
(⌈

(b(bn)ac+1)
1
a

b

⌉
−
⌈
(b(bn)ac)

1
a

b

⌉)
.

Hence, by simplifying the previous equation, we obtain:

ψ1(x) =
b(bn)ac

∑
t=1

[⌈
(t + 1)

1
a

b

⌉
−
⌈

t
1
a

b

⌉]
f ((t + y)x)− z ∗ f ((b(bn)ac+ y)x)

Again, we have:

m + 1 =
⌊
(b(n + z + 1))a⌋⇒ m + 1 ≤ (b(n + z + 1))a < m + 2

⇒(m + 1)
1
a ≤ (b(n + z + 1)) < (m + 2)

1
a
(
∵ a ∈ R+

)
⇒ (m + 1)

1
a

b
≤ n + z + 1 <

(m + 2)
1
a

b
⇒
⌈
(m + 1)

1
a

b

⌉
≤ n + z + 1 <

⌈
(m + 2)

1
a

b

⌉
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⇒
⌈
(m + 1)

1
a

b

⌉
− (n + 1) ≤ z <

⌈
(m + 2)

1
a

b

⌉
− (n + 1)

Now, as it is known that b(b(n + z + 1))ac = m + 1 for the smallest z ∈ N, we obtain

z =

⌈
(m+1)

1
a

b

⌉
− (n + 1) =

⌈
(b(bn)ac+1)

1
a

b

⌉
− (n + 1) and hence Equation (10) is obtained.

Furthermore, consider the right-hand side of Equation (10):

b(bn)ac

∑
t=1

[⌈
(t + 1)

1
a

b

⌉
−
⌈

t
1
a

b

⌉]
f ((t + y)x)

−
(⌈

(b(bn)ac+ 1)
1
a

b

⌉
− (n + 1)

)
f ((b(bn)ac+ y)x)

=
b(bn)ac

∑
t=1

⌈
(t + 1)

1
a

b

⌉
f ((t + y)x)−

b(bn)ac

∑
t=1

⌈
t

1
a

b

⌉
f ((t + y)x)

−
(⌈

(b(bn)ac+ 1)
1
a

b

⌉
− (n + 1)

)
f ((b(bn)ac+ y)x)

=
b(bn)ac+1

∑
t=2

⌈
t

1
a

b

⌉
f ((t + y− 1)x)−

b(bn)ac

∑
t=1

⌈
t

1
a

b

⌉
f ((t + y)x)

−
(⌈

(b(bn)ac+ 1)
1
a

b

⌉
− (n + 1)

)
f ((b(bn)ac+ y)x)

=
b(bn)ac

∑
t=1

⌈
t

1
a

b

⌉
f ((t + y− 1)x)−

⌈
1

1
a

b

⌉
f (yx) +

⌈
(b(bn)ac+ 1)

1
a

b

⌉
f ((b(bn)ac+ y)x)−

b(bn)ac

∑
t=1

⌈
t

1
a

b

⌉
f ((t + y)x)−

(⌈
(b(bn)ac+ 1)

1
a

b

⌉)
f ((b(bn)ac+ y)x)+

(n + 1) f ((b(bn)ac+ y)x)

= (n+ 1) f ((b(bn)ac+ y)x)−
⌈

1
b

⌉
f (yx)−

b(bn)ac

∑
t=1

⌈
t

1
a

b

⌉
[ f ((t + y)x)− f ((t + y− 1)x)]

which is the right-hand side of the Equation (11).

Remark 1. Alternatively, using b(b(n + z))ac = m + 1, one can obtain z =

⌈
(b(bn)ac)

1
a

b

⌉
− n

which leads to an alternate version of Equation (10) as

ψ1(x) =
n

∑
i=1

f ((b(bi)ac+ y)x) =
b(bn)ac

∑
t=1

[⌈
(t + 1)

1
a

b

⌉
−
⌈

t
1
a

b

⌉]
f ((t + y)x)

−
(⌈

(b(bn)ac) 1
a

b

⌉
− n

)
f ((b(bn)ac+ y)x) (12)
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Lemma 2 (Ceiling–Floor Lemma). Let m, n ∈ N, a, b ∈ R+ such that d(bn)ae = m and
d(b(n + 1))ae = m + 1 (i.e., n is the largest integer such that d(bn)ae = m). Furthermore, let
y ∈ C, and f : C→ C then

n

∑
i=1

f ((d(bi)ae+ y)x) =
d(bn)ae

∑
t=1

[⌊
t

1
a

b

⌋
−
⌊
(t− 1)

1
a

b

⌋]
f ((t + y)x) (13)

Proof. Let g2(m) denote the function that yields the number of consecutive integers, k, for
which d(bn)ae = m (or d(b(n− k))ae = . . . = d(b(n− 1))ae = d(bn)ae = m), i.e., g2(m)
gives the number of repetitions of m for particular n. Then, we have

n

∑
i=1

f ((d(bi)ae+ y)x) =
d(bn)ae

∑
t=1

g2(t) f ((t + y)x) (14)

Now, we know that

m =
⌈
(bn)a⌉⇒ m− 1 < (bn)a ≤ m⇒ (m− 1)

1
a < (bn) ≤ m

1
a
(
∵ a ∈ R+

)
⇒ (m− 1)

1
a

b
< n ≤ m

1
a

b
⇒
⌊
(m− 1)

1
a

b

⌋
< n ≤

⌊
m

1
a

b

⌋
(∵ n ∈ N)

It follows that n is at least strictly greater than
⌊
(m−1)

1
a

b

⌋
and at most

⌊
m

1
a

b

⌋
.

Therefore, the number of consecutive integers n is such that m =
⌈
(bn)a⌉ is

⌊
m

1
a

b

⌋
−⌊

(m−1)
1
a

b

⌋
. Hence,

g2(m) =

⌊
m

1
a

b

⌋
−
⌊
(m− 1)

1
a

b

⌋
(15)

and the result follows from Equations (14) and (15).

Theorem 2 (Ceiling–Floor Theorem). Let m, n ∈ N, a, b ∈ R+ such that d(bn)ae = m and
d(b(n + 1))ae 6= m + 1 (i.e., n is NOT the largest integer such that d(bn)ae = m). Furthermore,
let y ∈ C and ψ2, f : C→ C then

ψ2(x) =
n

∑
i=1

f ((d(bi)ae+ y)x) =
d(bn)ae

∑
t=1

[⌊
t

1
a

b

⌋
−
⌊
(t− 1)

1
a

b

⌋]
f ((t + y)x)

−
(⌊

(d(bn)ae) 1
a

b

⌋
− n

)
f ((d(bn)ae+ y)x) (16)

Or equivalently

ψ2(x) =
n

∑
i=1

f ((d(bi)ae+ y)x) = n f ((d(bn)ae+ y)x)

−
d(bn)ae−1

∑
t=1

[ f ((t + y + 1)x)− f ((t + y)x)]

⌊
t

1
a

b

⌋
. (17)
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Proof. Let d(b(n− k))ae = . . . = d(b(n− 1))ae = d(bn)ae = m for some k ∈ N such

that 0 < k <

(⌊
d(bn)ae

1
a

b

⌋
−
⌊
(d(bn)ae−1)

1
a

b

⌋)
and d(b(n− k− 1))ae = m− 1; then, from

Lemma 2, we have:

ψ2(x) =
n

∑
i=1

f ((d(bi)ae+ y)x) =
d(bn)ae−1

∑
t=1

[⌊
t

1
a

b

⌋
−
⌊
(t− 1)

1
a

b

⌋]
f ((t + y)x)

+ k · f ((d(bn)ae+ y)x)

Furthermore, let m = d(bn)ae = d(b(n + 1))ae = . . . = d(b(n + z))ae for the largest
possible z ∈ N such that d(b(n + z + 1))ae = m + 1; then, from the previous equation,
we have

ψ2(x) =
d(bn)ae−1

∑
t=1

[⌊
t

1
a

b

⌋
−
⌊
(t− 1)

1
a

b

⌋]
f ((t + y)x) + k · f ((d(bn)ae+ y)x)

+ z · f ((d(bn)ae+ y)x)− z · f ((d(bn)ae+ y)x)

Here, it can be easily seen that g2(m) = k + z for m = d(bn)ae as m = d(b(n− k))ae =
. . . = d(b(n− 1))ae = d(bn)ae = d(b(n + 1))ae = . . . = d(b(n + z))ae.

Therefore, k + z =
(⌊

(d(bn)ae)
1
a

b

⌋
−
⌊
(d(bn)ae−1)

1
a

b

⌋)
.

Hence, by simplifying the previous equation, we obtain:

ψ2(x) =
d(bn)ae

∑
t=1

[⌊
t

1
a

b

⌋
−
⌊
(t− 1)

1
a

b

⌋]
f ((t + y)x)− z · f ((d(bn)ae+ y)x)

Again, we have:

m =
⌈
(b(n + z))a⌉⇒ m− 1 < (b(n + z))a ≤ m⇒ (m− 1)

1
a < (b(n + z)) ≤ m

1
a

⇒ (m− 1)
1
a

b
< (n + z) ≤ m

1
a

b
⇒
⌊
(m− 1)

1
a

b

⌋
< (n + z) ≤

⌊
m

1
a

b

⌋

⇒
⌊
(m− 1)

1
a

b

⌋
− n < z ≤

⌊
m

1
a

b

⌋
− n

Now, as it is known that d(b(n + z))ae = m for the largest z ∈ N, we obtain z =⌊
m

1
a

b

⌋
− n and hence Equation (16) is obtained.

Furthermore, from the right-hand side of Equation (16), we have:

d(bn)ae

∑
t=1

[⌊
t

1
a

b

⌋
−
⌊
(t− 1)

1
a

b

⌋]
f ((t + y)x)

−
(⌊

(d(bn)ae) 1
a

b

⌋
− n

)
f ((d(bn)ae+ y)x)

=
d(bn)ae

∑
t=1

⌊
t

1
a

b

⌋
f ((t + y)x)−

d(bn)ae

∑
t=1

⌊
(t− 1)

1
a

b

⌋
f ((t + y)x)

−
(⌊

(d(bn)ae) 1
a

b

⌋
− n

)
f ((d(bn)ae+ y)x)
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=
d(bn)ae+1

∑
t=2

⌊
(t− 1)

1
a

b

⌋
f ((t + y− 1)x)−

d(bn)ae

∑
t=1

⌊
(t− 1)

1
a

b

⌋
f ((t + y)x)

−
(⌊

(d(bn)ae) 1
a

b

⌋
− n

)
f ((d(bn)ae+ y)x)

=
d(bn)ae

∑
t=1

⌊
(t− 1)

1
a

b

⌋
f ((t + y− 1)x)−

d(bn)ae

∑
t=1

⌊
(t− 1)

1
a

b

⌋
f ((t + y)x)

+ n f ((d(bn)ae+ y)x)

= n f ((d(bn)ae+ y)x) −
d(bn)ae

∑
t=1

⌊
(t− 1)

1
a

b

⌋
[ f ((t + y)x)− f ((t + y− 1)x)]

= n f ((d(bn)ae+ y)x) −
d(bn)ae−1

∑
t=1

[ f ((t + y + 1)x)− f ((t + y)x)]

⌊
t

1
a

b

⌋

which is the right-hand side of (17).

4. Shah Formulae

Theorem 3 (F-Shah Formula). Let a, b ∈ R+ and p, n ∈ N then, the following equation
holds true:

FSa,p
b (n) =

n

∑
i=1
b(bi)acp = (n + 1)b(bn)acp −

b(bn)ac

∑
t=1

p−1

∑
k=0

(−1)p−k+1
(

p
k

)
tk

⌈
t

1
a

b

⌉
(18)

Proof. Consider Equation (11) with f (x) = xp and y = 0; then, we have

ψ1(x) =
n

∑
i=1

((b(bi)ac)x)p = (n + 1)((b(bn)ac)x)p −
b(bn)ac

∑
t=1

[
(tx)p − ((t− 1)x)p]⌈ t

1
a

b

⌉

Hence, for x = 1, ψ1(x) reduces as:

ψ1(1) =
n

∑
i=1
b(bi)acp = (n + 1)b(bn)acp −

b(bn)ac

∑
t=1

[tp − (t− 1)p]

⌈
t

1
a

b

⌉

Now, as it is known that tp − (t− 1)p = ∑
p−1
k=0 (−1)p−k+1(p

k)t
k; then, by substitution,

the previous equation reduces to Equation (18).

Theorem 4 (C-Shah Formula). Let a, b ∈ R+ and p, n ∈ N; then, the following equation
holds true:

CSa,p
b (n) =

n

∑
i=1
d(bi)aep = nd(bn)aep −

d(bn)ae−1

∑
t=1

p−1

∑
k=0

(
p
k

)
tk

⌊
t

1
a

b

⌋
(19)

Proof. Consider Equation (17) with f (x) = xp and y = 0 then, we have

ψ2(x) =
n

∑
i=1

((d(bi)ae)x)p = n((d(bn)ae)x)p −
d(bn)ae−1

∑
t=1

[
((t + 1)x)p − ((t)x)p]⌊ t

1
a

b

⌋
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Hence, for x = 1, ψ2(x) reduces as:

ψ2(1) =
n

∑
i=1
d(bi)aep = nd(bn)aep −

d(bn)ae−1

∑
t=1

[
(t + 1)p − tp]⌊ t

1
a

b

⌋

Again, as we have (t + 1)p − tp = ∑
p−1
k=0 (

p
k)t

k; then, by substitution, the previous
equation reduces to Equation (19).

5. Floor and Ceiling Geometric Series

Theorem 5 (Floor Geometric Series). Let z, x ∈ C, a, b ∈ R+, n ∈ N; then, the following
equation holds true:

n

∑
i=1

zb(bi)acx = (n + 1)zb(bn)acx −
⌈

1
b

⌉
− (1− z−x)

b(bn)ac

∑
t=1

ztx

⌈
t

1
a

b

⌉
(20)

Proof. By substituting y = 0 and f (x) = zx in Equation (11), we obtain:

n

∑
i=1

zb(bi)acx = (n + 1)zb(bn)acx −
⌈

1
b

⌉
−
b(bn)ac

∑
t=1

[
ztx − z(t−1)x

]⌈ t
1
a

b

⌉
Furthermore, with a basic manipulation, we arrive at Equation (20).

Theorem 6 (Ceiling Geometric Series). Let z, x ∈ C, a, b ∈ R+, n ∈ N; then, the following
equation holds true:

n

∑
i=1

zd(bi)aex = nzd(bn)aex − (zx − 1)
d(bn)ae−1

∑
t=1

ztx

⌊
t

1
a

b

⌋
(21)

Proof. By substituting y = 0 and f (x) = zx in Equation (17), we obtain:

n

∑
i=1

zd(bi)aex = nzd(bn)aex −
d(bn)ae−1

∑
t=1

[
z(t+1)x − ztx

]⌊ t
1
a

b

⌋
Furthermore, with a few basic manipulations, we arrive at Equation (21).

6. Floor and Ceiling Telescoping Equivalent Formulae

Theorem 7 (C-Telescoping Identity). Let a, b ∈ R+, n ∈ N and a sequence kn(∀n ∈ N∪ {0});
then, the following equation holds true:

n

∑
i=1

(ki − ki−1)

⌈
i

1
a

b

⌉
=

⌈
(n + 1)

1
a

b

⌉
kn −

⌈
1
b

⌉
k0 −

n

∑
i=1

[⌈
(i + 1)

1
a

b

⌉
−
⌈

i
1
a

b

⌉]
ki (22)

Proof. Equation (22) is obtained by substituting y = 0 and f (x) = kx for some sequence kt
in Equations (10) and (11) and subtracting them.

Theorem 8 (F-Telescoping Identity). Let a, b ∈ R+, n ∈ N and a sequence kn(∀n ∈ N∪ {0});
then, the following equation holds true:

n−1

∑
i=1

(ki+1 − ki)

⌊
i

1
a

b

⌋
=

⌊
n

1
a

b

⌋
kn −

n

∑
i=1

[⌊
i

1
a

b

⌋
−
⌊
(i− 1)

1
a

b

⌋]
ki (23)

Proof. Equation (23) is obtained by substituting y = 0 and f (x) = kx for some sequence kt
in Equations (16) and (17) and subtracting them.
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7. Corollaries
7.1. Corollaries of Section 4

Corollary 1. For any a, b ∈ R+ and n ∈ N, the following equation holds true:

FSa,1
b (n) =

n

∑
i=1
b(bi)ac = (n + 1)b(bn)ac −

b(bn)ac

∑
t=1

⌈
t

1
a

b

⌉
(24)

Proof. By substituting p = 1 in Equation (18), we arrive at Equation (24).

Corollary 2. For any a, b ∈ R+ and n ∈ N, the following equation holds true:

CSa,1
b (n) =

n

∑
i=1
d(bi)ae = nd(bn)ae −

d(bn)ae−1

∑
t=1

⌊
t

1
a

b

⌋
(25)

Proof. By substituting p = 1 in Equation (19), we arrive at Equation (25).

Corollary 3. For any a ∈ R+ and p, n ∈ N, the following equation holds true:

FSa,p(n) =
n

∑
i=1
biacp = (n + 1)bnacp −

bnac

∑
t=1

p−1

∑
k=0

(−1)p−k+1
(

p
k

)
tk
⌈

t
1
a

⌉
(26)

Proof. By substituting b = 1 in Equation (18), we arrive at Equation (26).

Corollary 4. For any a ∈ R+ and p, n ∈ N, the following equation holds true:

CSa,p(n) =
n

∑
i=1
diaep = ndnaep −

dnae−1

∑
t=1

p−1

∑
k=0

(
p
k

)
tk
⌊

t
1
a

⌋
(27)

Proof. By substituting b = 1 in Equation (19), we arrive at Equation (27).

Corollary 5. For any a ∈ R+ and n ∈ N, the following equation holds true:

FSa,1(n) =
n

∑
i=1
biac = (n + 1)bnac −

bnac

∑
t=1

⌈
t

1
a

⌉
(28)

Proof. Equation (28) can be obtained by simply substituting b = 1 in Equation (24) or p = 1
in Equation (26).

Corollary 6. For any a ∈ R+ and n ∈ N, the following equation holds true:

CSa,1(n) =
n

∑
i=1
diae = ndnae −

dnae−1

∑
t=1

⌊
t

1
a

⌋
(29)

Proof. Equation (29) can be obtained by simply substituting b = 1 in Equation (25) or p = 1
in Equation (27).

Remark 2. Corollaries 5 and 6 can be independently proven using the principle of mathematical
induction (see Section 10).

Hypothesis 1. No result from Theorems 3 and 4 and Corollaries 1–6 can be proven using the
principle of mathematical induction other than Corollaries 5 and 6.
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Corollary 7. For any a of the form a = 1
q where q ∈ N and p, n ∈ N, the following equation

holds true:

FS
1
q ,p

(n) =
n

∑
i=1

⌊
q√i
⌋p

= (n + 1)
⌊

q
√

n
⌋p −

p−1

∑
k=0

(−1)p−k+1
(

p
k

)
Fq+k(

⌊
q
√

n
⌋
) (30)

where Fq(n) denotes Faulhaber’s formula (see Section 2.1).

Proof. By substituting a = 1
q , q ∈ N in Equation (26) assumes the form:

FS
1
q ,p

(n) =
n

∑
i=1

⌊
q√i
⌋p

= (n + 1)
⌊

q
√

n
⌋p −

b q√nc
∑
t=1

p−1

∑
k=0

(−1)p−k+1
(

p
k

)
tk

⌈
t

1

( 1
q )

⌉

= (n + 1)
⌊

q
√

n
⌋p −

b q√nc
∑
t=1

p−1

∑
k=0

(−1)p−k+1
(

p
k

)
tkdtqe

Now, as both t, q ∈ N⇒ dtqe = tq,

⇒ FS
1
q ,p

(n) =
n

∑
i=1

⌊
q√i
⌋p

= (n + 1)
⌊

q
√

n
⌋p −

p−1

∑
k=0

(−1)p−k+1
(

p
k

)b q√nc
∑
t=1

tq+k


Again, using Faulhaber’s formula for ∑

b q√nc
t=1 tq+k, the previous equation reduces to

Equation (30).

Corollary 8. For any a of the form a = 1
q where q ∈ N and p, n ∈ N, the following equation

holds true:
CS

1
q ,p

(n) =
n

∑
i=1

⌈
q√i
⌉p

= n
⌈

q
√

n
⌉p −

p−1

∑
k=0

(
p
k

)
Fq+k(

⌈
q
√

n
⌉
) (31)

Proof. By substituting a = 1
q , q ∈ N in Equation (27) assumes the form:

CS
1
q ,p

(n) =
n

∑
i=1

⌈
q√i
⌉p

= n
⌈

q
√

n
⌉p −

d q√ne−1

∑
t=1

p−1

∑
k=0

(
p
k

)
tk

⌊
t

1

( 1
q )

⌋

= n
⌈

q
√

n
⌉p −

d q√ne−1

∑
t=1

p−1

∑
k=0

(
p
k

)
tkbtqc

Now, as both t, q ∈ N⇒ dtqe = tq,

⇒ CS
1
q ,p

(n) =
n

∑
i=1

⌈
q√i
⌉p

= n
⌈

q
√

n
⌉p −

p−1

∑
k=0

(
p
k

)d q√ne−1

∑
t=1

tq+k


Again, using Faulhaber’s formula for ∑

(d q√ne−1)
t=1 tq+k, the previous equation reduces

to Equation (31).

Corollary 9. For any a of the form a = 1
q where q ∈ N and n ∈ N, the following equation

holds true:
FS

1
q ,1
(n) =

n

∑
i=1

⌊
q√i
⌋
= (n + 1)

⌊
q
√

n
⌋
− Fq(

⌊
q
√

n
⌋
) (32)

Proof. By substituting p = 1 in Equation (30), we arrive at Equation (32).
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Corollary 10. For any a of the form a = 1
q where q ∈ N and n ∈ N, the following equation

holds true:
CS

1
q ,1
(n) =

n

∑
i=1

⌈
q√i
⌉
= (n)

⌈
q
√

n
⌉
− Fq(

⌈
q
√

n
⌉
− 1) (33)

Proof. By substituting p = 1 in Equation (31), we arrive at Equation (33).

7.2. Corollaries of Section 5

Corollary 11. For any a of the form a = 1
q where q ∈ N, z ∈ C and n ∈ N, the following equation

holds true:

n

∑
i=1

zb
q√ic = (n + 1)zb

q√nc − 1− (1− z−1) ·
(

z
d
dz

)q 1− zb
q√nc+1

1− z
(34)

Proof. By substituting a = 1
q , q ∈ N, b = x = 1 in Equation (20), we obtain

n

∑
i=1

zb
q√ic = (n + 1)zb

q√nc − 1− (1− z−1)
b q√nc
∑
i=1

iqzi

Finally, substituting Equation (2) in previous equation, we obtain Equation (34).

Corollary 12. For any a of the form a = 1
q where q ∈ N, z ∈ C and, n ∈ N, the following

equation holds true:

n

∑
i=1

zd
q√ie = nzd

q√ne − (z− 1) ·
(

z
d
dz

)q 1− zd
q√ne

1− z
(35)

Proof. By substituting a = 1
q , q ∈ N, b = x = 1 in Equation (21) we get,

n

∑
i=1

zd
q√ie = nzd

q√ne − (z− 1)
d q√ne−1

∑
i=1

iqzi

Finally, substituting Equation (2) in previous equation we get Equation (35).

7.3. Corollaries of Section 6

Corollary 13. For any q, n ∈ N and a finite sequence kt, the following equation holds true:

n

∑
i=1

iq(ki − ki−1) = (n + 1)qkn − k0 −
n

∑
i=1

q−1

∑
t=0

(
q
t

)
itki (36)

Proof. Equation (36) can be derived by substituting a = 1
q , q ∈ N and b = 1 in Equation (22).

Corollary 14. For any q, n ∈ N and a finite sequence kt, the following equation holds true:

n−1

∑
i=1

iq(ki+1 − ki) = nqkn −
n

∑
i=1

q−1

∑
t=0

(−1)q+t+1
(

q
t

)
itki (37)

Proof. Equation (37) can be derived by substituting a = 1
q , q ∈ N and b = 1 in Equation (23).
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8. Relations of Fibonacci Numbers

Theorem 9 (Shah–Pingala Formula of order q). Let n, q ∈ N and let Ft be the tth Fibonacci
number of the sequence, then the following equation holds true:

S(q, n) =
n

∑
i=1

iqFi = (n− 1)qFn+1 + nqFn + (−1)q−1 −
q−1

∑
t=0

(
q
t

)
[(−1)q−k − (−2)q−k]S(k, n) (38)

Proof. By substituting ki = Fi+2 in Equation (36) or ki = Fi+1 in Equation (37), we simply
arrive at Equation (38).

Theorem 10 (Floor Fibonacci Series). Let n, q ∈ N and let Ft be the tth Fibonacci number of the
sequence then the following equation holds true:

n

∑
i=1

Fb q√ic+2 = (n + 1)Fb q√nc+2 − 1− S(q,
⌊

q
√

n
⌋
) (39)

Proof. Replace function f with the sequence Ft in Equation (11) with y = 2, b = x =
1, and a = 1

q , q ∈ N.

Theorem 11 (Ceiling Fibonacci Series). Let n, q ∈ N and let Ft be the tth Fibonacci number of
the sequence, then the following equation holds true:

n

∑
i=1

Fd q√ie+1 = nFd q√ne+1 − S(q,
⌈

q
√

n
⌉
− 1) (40)

Proof. Replace function f with the sequence Ft in Equation (17) with y = b = x = 1,
and a = 1

q , q ∈ N.

9. Results for Specific Values
9.1. Specific Values—Section 4

By taking a = 1 in Equations (28) and (29) or q = 1 in Equations (32) and (33), all of
these are reduced to the Gauss formula (take Equation (28) for example):

FS1,1(n) =
n

∑
i=1

⌊
i

1
1

⌋
= (n + 1)

⌊
n

1
1

⌋
−

⌊
n

1
1

⌋
∑
i=1

⌈
i1
⌉
⇒

n

∑
i=1

i = (n + 1)n−
n

∑
i=1

i

⇒ 2
n

∑
i=1

i = (n + 1)n⇒
n

∑
i=1

i =
(n + 1)n

2

Similarly, if taking a = 1
2 in Equation (28) or q = 2 in Equation (32), both of these

reduce to:

FS
1
2 ,1(n) =

n

∑
i=1

⌊√
i
⌋
=

6n
⌊√

n
⌋
− 2
⌊√

n
⌋3 − 3

⌊√
n
⌋2

+ 5
⌊√

n
⌋

6
(41)

Moreover, taking a = 1
2 in Equation (29) or q = 2 in Equation (33), both of these

reduce to:

n

∑
i=1

⌈√
i
⌉
=

6n
⌈√

n
⌉
− 2
⌈√

n
⌉3

+ 3
⌈√

n
⌉2 −

⌈√
n
⌉

6
(42)

Both equations are discussed by Knuth and Patashnik [17]. With Equations (32) and
(33), one can go for a = 1

3 , 1
4 , 1

5 , . . ..
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9.2. Specific Values—Section 5

By substituting a = b = x = 1 in Equation (20) or Equation (21), we obtain Equation (3) of
Section 2.3.

9.3. Specific Values—Section 6
9.3.1. Generalised Pascal Identities
Ceiling Pascal Identity

By substituting kt = 1 (∀t) in Equation (22), we arrive at the “ceiling Pascal identity”:

n

∑
i=1

[⌈
(i + 1)

1
a

b

⌉
−
⌈

i
1
a

b

⌉]
=

⌈
(n + 1)

1
a

b

⌉
−
⌈

1
b

⌉
(43)

Remark 3. Pascal’s identity (Equation (5)) is a special case of Equation (43) for b = 1 and
a = 1

q , q ∈ N. The same can also be obtained by substituting kt = 1 (∀t) in Equation (36).

Floor Pascal Identity

By substituting kt = 1 (∀t) in Equation (23), we arrive at “floor Pascal identity”:

n

∑
i=1

[⌊
i

1
a

b

⌋
−
⌊
(i− 1)

1
a

b

⌋]
=

⌊
n

1
a

b

⌋
(44)

Remark 4. An alternate form of Pascal’s identity (Equation (6)) is a special case of Equation (44) for
b = 1 and a = 1

q , q ∈ N, which can also be obtained by substituting kt = 1 (∀t) in Equation (37).

9.3.2. Sum of qth Powers of First n Natural Numbers

By substituting kt = t, Equation (36) reduces as:

n

∑
i=1

iq =
n(n + 1)q

q + 1
− 1

q + 1

n

∑
i=1

q−1

∑
t=1

(
q

t− 1

)
it (45)

Whereas by substituting kt = t, Equation (37) reduces as:

n

∑
i=1

iq =
(n + 1)nq

q + 1
− 1

q + 1

n

∑
i=1

q−1

∑
t=1

(−1)q+t
(

q
t− 1

)
it (46)

Both of which relate to Fq(n) in terms of lower powers Fk(n), k = 1, 2, . . . , q− 1.

9.4. Specific Values—Section 8
9.4.1. For q = 0

The Shah–Pingala formula for q = 0 reduces to the “Fibonacci Series” (Section 2.4).

9.4.2. For q = 1

Using Equation (38), the Shah–Pingala Formula of order 1 can be obtained as:

n

∑
i=1

iFi = nFn+2 − Fn+3 + 2 (47)

9.4.3. For q = 2

Using Equations (38) and (47), the Shah–Pingala formula of order 2 can be obtained as:

n

∑
i=1

i2Fi = n2Fn+2 − 2nFn+3 + Fn+6 − 8 (48)

Furthermore, equations for q = 3, 4, . . . can be derived using the same method.
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10. Proofs Using Principle of Mathematical Induction

In this section, the proofs by principle of mathematical induction (for Corollaries 5 and 6)
mentioned in Remark 2 are given.

Proofs

Corollary 5: let P(n) be the following statement:

P(n) :
n

∑
i=1
biac = (n + 1)bnac −

bnac

∑
t=1

⌈
t

1
a

⌉
(49)

Basic step of induction: P(1) is clearly true:

P(1) : 1 = (1 + 1)1− 1 = 2× 1− 1 = 1
(
∵ a ∈ R+ ⇒ b1ac =

⌈
1

1
a

⌉
= 1

)
Inductive step: assume P(k) is true for some n = k. One shall prove P(k)⇒ P(k + 1)

P(k) :
k

∑
i=1
biac = (k + 1)bkac −

bkac

∑
t=1

⌈
t

1
a

⌉
(50)

It follows that

P(k + 1) :
k+1

∑
i=1
biac = (k + 1)bkac −

bkac

∑
t=1

⌈
t

1
a

⌉
+
⌊
(k + 1)a⌋ (51)

Consider m ∈ N such that m = bkac,

m = bkac ⇒ m ≤ ka < m + 1⇒ m
1
a ≤ k < (m + 1)

1
a
(
∵ a ∈ R+

)
⇒
⌈

m
1
a

⌉
≤ k <

⌈
(m + 1)

1
a
⌉
(∵ k ∈ N)

⇒
⌈

m
1
a

⌉
≤ k ≤

⌈
(m + 1)

1
a
⌉
− 1

This splits into two cases:

(I): k =
⌈
(m + 1)

1
a
⌉
− 1 & (II):

⌈
m

1
a

⌉
≤ k <

⌈
(m + 1)

1
a
⌉
− 1

Case (I): k =
⌈
(m + 1)

1
a
⌉
− 1⇒ k + 1 =

⌈
(m + 1)

1
a
⌉

Here, k ∈ N⇒ k + 1 ∈ N⇒
⌈
(m + 1)

1
a
⌉
∈ N⇒

⌈
(m + 1)

1
a
⌉
= (m + 1)

1
a

⇒ k + 1 = (m + 1)
1
a ⇒ (k + 1)a = m + 1

Again m ∈ N⇒ m + 1 ∈ N⇒ (k + 1)a ∈ N ⇒ (k + 1)a =
⌊
(k + 1)a⌋

⇒
⌊
(k + 1)a⌋ = m + 1 = bkac+ 1(∵ m = bkac)

⇒
⌊
(k + 1)a⌋ = bkac+ 1, if k =

⌈
(m + 1)

1
a
⌉
− 1 therefore, from Equation (51)

P(k + 1) :
k+1

∑
i=1
biac = (k + 1)bkac −

bkac

∑
t=1

⌈
t

1
a

⌉
+
⌊
(k + 1)a⌋

⇒ P(k + 1) :
k+1

∑
i=1
biac = (k + 1)

(⌊
(k + 1)a⌋− 1

)
−
b(k+1)ac−1

∑
t=1

⌈
t

1
a

⌉
+
⌊
(k + 1)a⌋
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⇒ P(k + 1) :
k+1

∑
i=1
biac = (k + 1)

⌊
(k + 1)a⌋+ ⌊(k + 1)a⌋− (k + 1)−

b(k+1)ac−1

∑
t=1

⌈
t

1
a

⌉

Now, as k+ 1 =
⌈
(m + 1)

1
a
⌉

and m+ 1 =
⌊
(k + 1)a⌋, we obtain k+ 1 =

⌈⌊
(k + 1)a⌋ 1

a

⌉

⇒ P(k + 1) :
k+1

∑
i=1
biac = ((k + 1) + 1)

⌊
(k + 1)a⌋− ⌈⌊(k + 1)a⌋ 1

a

⌉
−
b(k+1)ac−1

∑
t=1

⌈
t

1
a

⌉

⇒ P(k + 1) :
k+1

∑
i=1
biac = ((k + 1) + 1)

⌊
(k + 1)a⌋− b(k+1)ac

∑
t=1

⌈
t

1
a

⌉
Therefore, P(k)⇒ P(k + 1) for case (I).
Case (II) :⌈

m
1
a

⌉
≤ k <

⌈
(m + 1)

1
a
⌉
− 1⇒

⌈
m

1
a

⌉
+ 1 ≤ k + 1 <

⌈
(m + 1)

1
a
⌉

⇒
⌈

m
1
a

⌉
< k + 1 <

⌈
(m + 1)

1
a
⌉
⇒ m < (k + 1)a < m + 1

⇒
⌊
(k + 1)a⌋ = m⇒

⌊
(k + 1)a⌋ = bkac = m

Therefore, from Equation (51)

P(k + 1) :
k+1

∑
i=1
biac = (k + 1)bkac −

bkac

∑
t=1

⌈
t

1
a

⌉
+
⌊
(k + 1)a⌋

⇒ P(k + 1) :
k+1

∑
i=1
biac = (k + 1)

⌊
(k + 1)a⌋−b(k+1)ac

∑
t=1

⌈
t

1
a

⌉
+
⌊
(k + 1)a⌋ (∵ bkac =

⌊
(k + 1)a⌋)

⇒ P(k + 1) :
k+1

∑
i=1
biac = ((k + 1) + 1)

⌊
(k + 1)a⌋− b(k+1)ac

∑
t=1

⌈
t

1
a

⌉
Therefore, P(k)⇒ P(k + 1) for case (II).
Hence,

P(k)⇒ P(k + 1)∀ k such that
⌈

m
1
a

⌉
≤ k ≤

⌈
(m + 1)

1
a
⌉
− 1

Hence, P(k + 1) is true whenever P(k) is true.
Hence, by principle of mathematical induction, P(n) is true ∀n ∈ N.
Corollary (6): let P(n) be the following statement:

P(n) :
n

∑
i=1
diae = ndnae −

dnae−1

∑
t=1

⌊
t

1
a

⌋
(52)

Basic step of induction : P(1) is clearly true:

P(1) : 1 = 1(1)− 0 = 1
(
∵ a ∈ R+ ⇒

⌊
1

1
a

⌋
= d1ae =

⌊
d1ae

1
a
⌋
= 1

)
Inductive step: assume P(k) is true for some n = k. One shall prove P(k)⇒ P(k + 1):

P(k) :
k

∑
i=1
diae = kdkae −

dkae−1

∑
t=1

⌊
t

1
a

⌋
(53)
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It follows that:

P(k + 1) :
k+1

∑
i=1
diae = kdkae −

dkae−1

∑
t=1

⌊
t

1
a

⌋
+
⌈
(k + 1)a⌉ (54)

Consider m ∈ N such that m = dkae:

m = dkae ⇒ m− 1 < ka ≤ m⇒ (m− 1)
1
a < k ≤ m

1
a
(
∵ a ∈ R+

)
⇒
⌊
(m− 1)

1
a
⌋
< k ≤

⌊
m

1
a

⌋
(∵ k ∈ N)⇒

⌊
(m− 1)

1
a
⌋
+ 1 ≤ k ≤

⌊
m

1
a

⌋
This splits into two cases: (I): k =

⌊
m

1
a

⌋
& (II):

⌊
(m− 1)

1
a
⌋
+ 1 ≤ k <

⌊
m

1
a

⌋
Case (I) : k =

⌊
m

1
a

⌋
⇒ k = m

1
a

(
∵ k ∈ N⇒

⌊
m

1
a

⌋
∈ N⇒

⌊
m

1
a

⌋
= m

1
a

)

⇒ k + 1 = m
1
a + 1⇒ k + 1 > m

1
a ⇒ (k + 1)a > m⇒

⌈
(k + 1)a⌉ > dme

⇒
⌈
(k + 1)a⌉ > m(∵ m ∈ N)⇒

⌈
(k + 1)a⌉ = m+ 1⇒

⌈
(k + 1)a⌉ = dkae+ 1(∵ m = dkae)

⇒
⌈
(k + 1)a⌉ = dkae+ 1, if k =

⌊
m

1
a

⌋
. therefore, from Equation (54)

P(k + 1) :
k+1

∑
i=1
diae = kdkae −

dkae−1

∑
t=1

⌊
t

1
a

⌋
+
⌈
(k + 1)a⌉

⇒ P(k + 1) :
k+1

∑
i=1
diae = k

(⌈
(k + 1)a⌉− 1

)
+
⌈
(k + 1)a⌉− d(k+1)ae−2

∑
t=1

⌊
t

1
a

⌋

⇒ P(k + 1) :
k+1

∑
i=1
diae = (k + 1)

⌈
(k + 1)a⌉− k−

d(k+1)ae−2

∑
t=1

⌊
t

1
a

⌋
Furthermore, for case (I), we have dkae = m and

⌊
m

1
a

⌋
= k⇒

⌊
dkae

1
a
⌋
= k

This yields k =

⌊(⌈
(k + 1)a⌉− 1

) 1
a

⌋

⇒ P(k + 1) :
k+1

∑
i=1
diae = (k + 1)

⌈
(k + 1)a⌉− ⌊(⌈(k + 1)a⌉− 1

) 1
a

⌋
−
d(k+1)ae−2

∑
t=1

⌊
t

1
a

⌋

⇒ P(k + 1) :
k+1

∑
i=1
diae = (k + 1)

⌈
(k + 1)a⌉− d(k+1)ae−1

∑
t=1

⌊
t

1
a

⌋
Therefore, P(k)⇒ P(k + 1) for case (I).

Case (II):
⌊
(m− 1)

1
a
⌋
+ 1 ≤ k <

⌊
m

1
a

⌋
⇒
⌊
(m− 1)

1
a
⌋
+ 2 ≤ k + 1 <

⌊
m

1
a

⌋
+ 1

⇒
⌊
(m− 1)

1
a
⌋
< k + 1 ≤

⌊
m

1
a

⌋
⇒ (m− 1) < (k + 1)a ≤ m⇒

⌈
(k + 1)a⌉ = m

⇒
⌈
(k + 1)a⌉ = dkae = m

Therefore, from Equation (54)
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P(k + 1) :
k+1

∑
i=1
diae = kdkae −

dkae−1

∑
t=1

⌊
t

1
a

⌋
+
⌈
(k + 1)a⌉

⇒ P(k + 1) :
k+1

∑
i=1
diae = k

⌈
(k + 1)a⌉− d(k+1)ae−1

∑
t=1

⌊
t

1
a

⌋
+
⌈
(k + 1)a⌉

⇒ P(k + 1) :
k+1

∑
i=1
diae = (k + 1)

⌈
(k + 1)a⌉− d(k+1)ae−1

∑
t=1

⌊
t

1
a

⌋
Therefore, P(k)⇒ P(k + 1) for case (II).
Hence,

P(k)⇒ P(k + 1) ∀ k such that
⌊
(m− 1)

1
a
⌋
+ 1 ≤ k ≤

⌊
m

1
a

⌋
Hence, P(k + 1) is true whenever P(k) is true.
Hence, by principle of mathematical induction, P(n) is true ∀n ∈ N.

11. Conclusions and Future Scope

We developed theorems of floor and ceiling functions and used them as the basis
to provide more than 40 new results (as theorems or formulae or as their corollaries).
Furthermore, these theorems and their corollaries create the possibility of finding hundreds
of more results. In particular, implementing our theorems on the results of Schumacher’s
extended version of Faulhaber’s formula [3] may have some more applications [4] in
different fields. Considering the vast number of available finite summations, studying,
analysing and providing results for all of them is not possible in the scope of one paper.
Hence, we discussed just a few of the results which could be derived from the discussed
lemmas, theorems and corollaries.

Therefore, we put forth the open problem for future studies to implement our results
to different available finite summations (i.e., finite sums involving (1) exponential function,
(2) logarithmic function, (3) trigonometric functions, (4) permutations and combinations, (5)
extended Faulhaber’s formula [3] or partial summations of any other available functions).

To inspire future studies, we list a few examples for reference:
(1) For the binomial coefficient (n

k):

n

∑
i=0

(
n
i

)
=

n

∑
i=0

i
(

2i + 1− n
n + 1

)(
n + 1
i + 1

)
+ 1 = 2n

or (2) for the generalised Harmonic number H(m)
n :

n

∑
i=1

1
b q
√

icm
=

q−1

∑
t=0

(
q
t

)
H(m−t)
b q√nc − (b q

√
ncq − n)

1
b q
√

ncm

or (3) for logarithms:
n

∑
i=1

i log
[

i + 1
i

]
= log

[
(n + 1)(n+1)

(n + 1)!

]
.
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