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61-614 Poznań, Poland
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Abstract: In this paper, we deal with the existence of integrable solutions of Gripenberg-type
equations with m-product of fractional operators on a half-line R+ = [0, ∞). We prove the existence
of solutions in some weighted spaces of integrable functions, i.e., the so-called LN

1 -solutions. Because
such a space is not a Banach algebra with respect to the pointwise product, we cannot follow the idea
of the proof for continuous solutions, and we prefer a fixed point approach concerning the measure of
noncompactness to obtain our results. Appropriate measures for this space and some of its subspaces
are introduced. We also study the problem of uniqueness of solutions. To achieve our goal, we utilize
a generalized Hölder inequality on the noted spaces. Finally, to validate our results, we study the
solvability problem for some particularly interesting cases and initial value problems.

Keywords: weighted Lebesgue spaces; measure of noncompactness; fractional calculus; Gripenberg-
type equations; initial value problem; generalized Hölder inequality

MSC: 45G10; 47H30; 47H08; 47N20

1. Introduction

In [1], Gripenberg investigated the problem of existence of continuous solutions for
the following quadratic integral equation:

x(t) = k
(

g1(t) +
∫ t

0
a1(t− s)x(s) ds

)(
g2(t) +

∫ t

0
a2(t− s)x(s) ds

)
for t ≥ 0. The above problem is studied for its use in epidemic models and has various
applications in mathematical biology, such as in models of the spread of diseases that do
not induce permanent immunity (for SI models, cf. [1,2]). Some generalizations of this
equation, in particular for convolution kernels yielding fractional-order Riemann–Liuoville
integral operators, have been studied in the space of continuous functions [3–5], in various
Banach algebras [6–8], and in classical Lebesgue Lp-spaces [9–12]. It is important that most
of these results are related to problems on compact intervals only (see [10] for a result
directly related to the above equation).

Our generalization of these studies is twofold. First, we examine the case of σ-finite
measure space by examining the existence of a solution in the corresponding weighted
space, which results in the need to study the properties of operators and measures of
noncompactness in such spaces. Some new solution spaces are also proposed. Second,
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we will consider equations not only for linear integral operators of convolution type, but
also for a general class of fractional operators composed with the Nemytskii superposition
operators, and we are not limited to quadratic integral equations.

Different types of the infectious disease samples are based on possibly discontinuous
data functions, so we are encouraged to check the discontinuous solutions of these problems.
This remains in close connection with the purely mathematical motivation for studying
integral equations with discontinuous solutions. Equations on unbounded intervals are
worth investigating in certain weighted Lebesgue spaces, and results are known for the
Hammerstein and Urysohn integral equations examined in weighted Lp-spaces in [13,14].
Note that the study of solutions in L1(R) requires significant restrictions on the growth of
functions (cf. [15], for instance). Here, we omit this problem.

Quadratic integral equations, however, require some special tools. In [16], the existence
and the uniqueness of LN

1 (R+)-solutions to the functional-integral equation

x(t) = h(t, x(ϕ3(t))) +
(

g1(t) + g3(t) · (Gx)(ϕ1(t))
)(

g2(t) +
1

Γ(α)

∫ t

0

u(s, x(ϕ2(s)))
(t− s)1−α

ds
)

has been verified, where 0 < α < 1, by compactness arguments, using the Schauder fixed
point theorem. Here, without the context of functional parts, we study the more general
problem and for the product of more than two operators, and we also consider some
subspaces of LN

1 , and the right-hand side considered here is more general (i.e., superposed
with some nonlinear function). Some assumptions on operators are also relaxed.

At this point it is worth noting one more extension considered here, specifically,
about considering the product of not just two operators, but any finite number of them.
It was proposed by Brestovanská [17] in the context of the Gripenberg equation and by
Brestovanská and Medved’ [6] for fractional integral operators. As the recent studies of
epidemic models are based rather on SIR or SEIR models than the SI model as in [1], it
seems to be worthwhile to study the product of more than two operators (cf. [18,19]), so
we propose to create a mathematical basis for this theory, especially for fractional-type
operators ([5,10], for instance). Let us note that in the previously investigated cases, all
operators were considered as acting on the same space, so it should be a Banach algebra,
which is not necessary in our approach. So far, it has been usual to consider operators
that allow the application of the Banach fixed point theorem or proofs that are based on a
weakly Picard operator technique, unfortunately, in both cases in Banach algebras (cf. [6,8]
for a discussion of prior proof methods and their limitations). By constructing a suitable
measure of weak noncompactness in the solution space, we are able to apply the Darbo
theorem and even the Schauder theorem here. However, for m-tuples of appropriate spaces,
we must carefully construct the contraction constant for measures of weak noncompactness,
so that it is indeed less than 1.

In this paper, we apply a Hölder inequality modified in the case of the weighted space
LN

1 (R+), N > 0 and use it to study solutions of the equation

x(t) =
∫ t

0
K(t, ϕ)h

(
ϕ,

m

∏
i=1

(
gi(ϕ) +

1
Γ(αi)

∫ ϕ

0

fi(s, x(s))
(ϕ− s)1−αi

ds
))

dϕ, (1)

where 0 < αi < 1, i = 1, · · · , m. In particular, we will study the case of K(t, ϕ) = (t−ϕ)−γ

Γ(1−γ)
.

As applications of our outcomes, we will examine some special cases and, in addition, the
initial value problem of the form dz(ϕ)

dϕ = h
(

ϕ, ∏m
i=1

(
gi(ϕ) + 1

Γ(αi)

∫ ϕ
0

fi(s,z(s))
(ϕ−s)1−αi

ds
))

z(0) = 0, ϕ ∈ R+, 0 < γ, αi < 1, i = 1, · · ·m,
(2)

which is a differential form of (1) with some special kernels K.
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Here we waive the monotonicity assumptions presented in [20–25] and use a general
set of assumptions to study the generalized Gripenberg equation in the case of m-product
of fractional operators (1) in LN

1 (R+), which, however, is not a Banach algebra with respect
to the pointwise product. Certain relationships between sets of values of the operators
under consideration will replace the requirement to operate in Banach algebras. We also
examine the uniqueness problem for solutions of the problem under investigation.

Finally, we check the solvability of some special cases and initial value problems to
validate the results. Defining appropriate new measures of weak noncompactness in certain
subspaces of LN

1 establishes the foundation for considering solutions in such cases as well.
We get our outcomes by utilizing the fixed point approach, fractional calculus, and some
measures of noncompactness. Finally, let us note that some comments about the possibility
of some numerical treatment of this problem can be found in Remark 2 (cf. also [26]).

2. Notation and Auxiliary Facts

Let R = (−∞, ∞), R+ = [0, ∞), J = [0, T] ⊂ R+. Denote by LN
p = LN

p (R+),
1 ≤ p < ∞ the weighted Lebesgue spaces of exponential type, i.e., the spaces of measurable
functions x endowed with the norm

‖x‖LN
p
=

( ∫ ∞

0
e−Ns|x(s)|p ds

) 1
p

< ∞, N > 0.

In the particular case N = 0. we get the classical Lp-spaces for 1 ≤ p < ∞ with their
norm. Such a space, although very simple, seems to be sufficient for our research.

Let C(D) denote the space of continuous functions on a bounded and closed subset
∅ 6= D ⊂ R. Let T > 0 be arbitrary and let X be a nonempty and bounded subset of C(D).

For x ∈ X and ε > 0, we assign by ωT(x, ε) the (minimal) modulus of continuity of
the function x, on the interval [0, T], i.e.,

ωT(x, ε) = sup{|x(t2)− x(t1)| : t1, t2 ∈ [0, T], |t1 − t2| ≤ ε}.

We need to discuss some definitions and properties of fractional differential and inte-
gral operators that will be useful in sequel (cf. [11,16,27–29]). Let Γ(α) =

∫ ∞
0 e−ϕ ϕα−1 dϕ.

Definition 1. Let y ∈ Lloc
1 and α ∈ R+. The fractional Riemann–Liuouville integral of order α of

the function y is defined as

Iαy(t) =
1

Γ(α)

∫ t

0

y(s)
(t− s)1−α

ds, α > 0, ϕ > 0,

provided that the integral is almost everywhere pointwise defined (i.e., it is convergent).

Here is a good place to justify the choice of our function space. Namely, the operator
Iα is well-defined on the set of a locally integrable function on [0, ∞). Moreover, it defines
a bounded transformation of any of the Banach spaces of locally integrable functions
with a weight of exponential type for any choice of N, which will be clarified in the next
proposition. First, for completeness, let us recall a definition of the Caputo fractional
derivative.

Definition 2. Let y be an absolutely continuous function (AC) on the finite interval J. The Caputo
fractional derivative of order α ∈ (0, 1) of y, for t ∈ J is defined by

Dαy(t) = I1−αDy(t), D =
d
dt

.

Proposition 1.

(a) Let 0 < β, α < 1 and suppose that f , D f ∈ L1. Then the Riemann–Liouville operator
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1. Has a semigroup property Iβ Iα f (t) = Iα Iβ f (t) = Iα+β f (t),
2. Is the inverse operator for the Caputo differential operator DIα f (t) = IαD f (t), when-

ever f (0) = 0,
3. Dα Iβ f (t) = Iβ−α f (t), α < β,
4. Dα Iβ f (t) = Dα−β f (t), α > β, if moreover f (0) = 0.

(b) (cf. [29], Theorem 5.7) The fractional operator Iα, α > 0 when acting on LN
p (N > 0,

1 ≤ p ≤ ∞) has the following properties:

(1) The operator Iα maps LN
p into LN

p and is continuous,
(2) ‖Iα f ‖LN

p
≤ ( p

N )α‖ f ‖LN
p

for 1 ≤ p < ∞,

(3) ‖Iα f ‖LN
p
≤ ( 1

N )α‖ f ‖LN
p

for p = ∞.

We now need to recall a basic nonlinear operator and some of its properties on
considered weighted Lebesgue spaces.

Definition 3 ([30]). Assume that a function h(t, x) : R+ ×R → R satisfies the Carathéodory
conditions, i.e., it is measurable in t for any x ∈ R and continuous in x for almost all t ∈ R+. For
each measurable function x, we denote by Fh the Nemytskii (superposition) operator defined by

Fh(x)(t) = h(t, x(t)) , t ∈ R+.

Lemma 1 ([16]). Suppose that the function h satisfies the Carathéodory conditions and the following
growth condition: there exist a function a ∈ LN

q and a constant b ≥ 0 such that

|h(t, x)| ≤ a(t) + b · |x|
p
q (3)

for all t ∈ R+ and x ∈ R. Then Fh maps LN
p into LN

q (p, q ≥ 1) and is continuous.

We will need also the following version of the Scorza–Dragoni theorem:

Theorem 1. Let h : J × R → R be a function fulfilling Carathéodory conditions. Then there
exists a closed set Dε ⊂ J, ε > 0 such that h|Dε×R is continuous with meas(Dc

ε) ≤ ε, where
Dc

ε = J \ Dε.

Assume that (E, ‖ · ‖) is a Banach space with the zero element denoted by θ and let
Br = {u ∈ LN

1 : ‖u‖LN
1
≤ r}, r > 0. Let ∅ 6=ME and NW

E be the family of all nonempty,
bounded subsets and the subfamily containing all relatively weakly compact sets of E,
respectively. The symbols Conv Y and YW denote the convex hull and the weak closure of
a set Y, respectively.

Definition 4 ([31]). The function µ : ME → [0, ∞) is called a regular measure of weak
noncompactness in E if it fulfills:

(i) µ(Z) = 0 ⇐⇒ Z ∈ NW
E ,

(ii) X ⊂ Z ⇒ µ(X) ≤ µ(Z),

(iii) µ(ZW
) = µ(Conv Z) = µ(Z),

(iv) µ(λZ) = |λ| · µ(Z), f or λ ∈ R,
(v) µ(X + Z) ≤ µ(X) + µ(Z),
(vi) µ(X ∪ Z) = max{µ(X), µ(Z)},
(vii) If ∅ 6= Zn ⊂ E be a sequence of bounded and closed subsets, Zn = ZW

n such that Zn+1 ⊂ Zn,
n = 1, 2, · · · with limn→∞ µ(Zn) = 0, then Z∞ =

⋂∞
n=1 Zn 6= ∅.



Mathematics 2022, 10, 1172 5 of 18

De Blasi presented the following general definition of a measure of weak noncompact-
ness β (cf. [21], for instance):

β(Z) = inf{r > 0 : there exists a weakly compact subset X of E such that Z ⊂ X + Br}.

However, it is important to find an analytical formula for a measure of weak noncom-
pactness in LN

p (p ≥ 1) in the sense of Definition 4. The space of integrable functions over a
space with σ-finite measure, i.e., here L1(R+), has rather complicated weak compactness
criteria. Nevertheless, although the space we are studying contains functions defined on
the half-line, the use of the weight w(t) = e−Nt not only extends the set of functions, but
also allows us to use the results for a finite measure.

Note that our weighted space can be treated as L1(µ), where dµ = e−Ntdt and µ is a
finite measure. This allows us to apply the well-known criterion of weak compactness in
spaces of integrable functions with finite measure (cf. [32], p. 888). Namely, we have:

Proposition 2. Let X be a nonempty and bounded subset X of the space LN
1 , ε > 0 and let

cT(X) = lim
ε→0

sup
x∈X

{
sup

{∫
D

e−Nt|x(t)| dt : D ⊂ [0, T], meas(D) ≤ ε

}}
,

c(X) = lim
T→∞

cT(X), (4)

d(X) = lim
T→∞

sup
{∫ ∞

T
e−Nt|x(t)| dt : x ∈ X

}
. (5)

Then the following quantity

γ(X) = c(X) + d(X) (6)

becomes a measure of weak noncompactness on the space LN
1 , which is equivalent to the De Blasi

measure of weak noncompactness.

Proof. The proof is straightforward. It suffices to observe that our assumptions reformu-
lated in terms of the measure µ with the Radon–Nikodym derivative w(t) = dµ

dt are exactly
those in the original result. Thus our proposition follows from [21], Theorem 4. Moreover,
its equivalence with the De Blasi measure of noncompactness β

β(A) ≤ γ(A) ≤ 2β(A) , A ∈ MLN
1

follows from [21], Theorem 5.

Some comments about subspaces of LN
1 like LN

p (p > 1) or Orlicz spaces and measures
of weak noncompactness therein will be presented at the end of the paper.

Although we will construct a set on which our solving operator will be a contrac-
tion with respect to the measure of noncompactness, we will ultimately use the classical
Schauder theorem:

Theorem 2 ([33]). Let C 6= ∅ be a nonempty, closed, convex, and bounded subset of a Banach
space E. Let V : C → C be a completely continuous mapping. Then V has at least one fixed point
in C.

3. Main Results

Equation (1) can be written in the following operator form, which allows us to directly
exploit the properties of the operators on the selected weighted Lebesgue space:

x(t) = H(x)(t) =
∫ t

0
K(t, ϕ)h

(
ϕ, (Ax)(ϕ)

)
dϕ = K0Fh A(x)(t),
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where K0x(t) =
∫ t

0 K(t, ϕ)x(ϕ) dϕ is a linear integral operator with the kernel K and

Fh(A(x)) = h
(

ϕ, A(x)
)

, A(x) =
m

∏
i=1

Ai(x) =
m

∏
i=1

(
gi + Iαi Ffi

(x)
)

,

where Ffi
are the superposition operators as in Definition 3, and Iαi are fractional Riemann–

Liouville integral operators.
Let ∑m

i=1
1
pi
= 1, pi ≥ 1, p > 1 and consider the following set of assumptions:

(i) gi : R+ → R, where gi ∈ LN
pi

for i = 1, · · · , m,
(ii) Suppose that h, fi : R+ ×R→ R, i = 1, · · · , m, satisfy Carathéodory conditions,
(iii) There exist b, bi ≥ 0 (i = 1, . . . , m) and positive functions a ∈ LN

p , ai ∈ LN
pi

such that

|h(t, x)| ≤ a(t) + b|x|
1
p , | fi(t, x)| ≤ ai(t) + bi|x|

1
pi , i = 1, · · · , m (7)

for all t ∈ R+ and x ∈ R,
(iv) Let K(t, s) : R+ ×R+ → R be measurable such that K0x(t) =

∫ t
0 K(t, ϕ)x(ϕ) dϕ maps

LN
p into LN

1 continuously with

‖K0‖LN
1
=

∥∥∥∥‖K(t, ·)‖LN(1−q)
q

∥∥∥∥
LN

1

, where q =
p

p− 1
.

(v) Suppose that for the functions described in (i)–(iv) there additionally exists a constant
r > 0 satisfying the following inequality:

‖K0‖LN
1

[
‖a‖LN

p
+ b

m

∏
i=1

(
‖gi‖LN

pi
+

(
pi
N

)αi(
‖ai‖LN

pi
+ bi · r

1
pi

)) 1
p
]
≤ r.

Proposition 3. Under assumption (iv):

(a) The operator K0x(t) =
∫ t

0 K(t, s)x(s) ds maps the space LN
p into LN

1 and is continuous
satisfying

‖K0(x)‖LN
1
=

∥∥∥∥‖K(t, ·)‖LN(1−q)
q

∥∥∥∥
LN

1

‖x‖LN
p

, q =
p

p− 1
.

(b) Assume that 1 = ∑m
i=1

1
pi

, pi ≥ 1 and let gi ∈ LN
pi

, i = 1, · · · , m, we have∥∥∥∥ m

∏
i=1

gi

∥∥∥∥
LN

1

≤
m

∏
i=1
‖gi‖LN

pi
.

Proof. (a) Indeed, by assumption (iv) and the Hölder inequality, ([29], Inequality 1.38), we
get

|K0(x)(t)| =

∣∣∣∣ ∫ t

0
K(t, ϕ)x(ϕ) dϕ

∣∣∣∣
≤

( ∫ ∞

0

∣∣∣∣e Nϕ
p K(t, ϕ)

∣∣∣∣q dϕ

) 1
q
( ∫ ∞

0

∣∣∣∣e−Nϕ
p x(ϕ)

∣∣∣∣p dϕ

) 1
p

=

( ∫ ∞

0
e−Nϕ(1−q)

∣∣∣∣K(t, ϕ)

∣∣∣∣q dϕ

) 1
q

‖x‖LN
p

,

= ‖K(t, ·)‖
LN(1−q)

q
‖x‖LN

p
, q =

p
p− 1

.

Consequently,
‖K0(x)‖LN

1
≤ ‖K0‖LN

1
‖x‖LN

p
.
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(b) Now, directly applying the definition of the norm in the space under consideration
together with the Hölder inequality, we obtain∥∥∥∥ m

∏
i=1

gi

∥∥∥∥
LN

1

=
∫ ∞

0
e−Nϕ

∣∣∣∣ m

∏
i=1

gi(ϕ)

∣∣∣∣ dϕ

=
∫ ∞

0

∣∣∣∣e−Nϕ ∑m
i=1

1
pi

m

∏
i=1

gi(ϕ)

∣∣∣∣ dϕ

=

∥∥∥∥e
−Nϕ

p1 g1 · · · e
−Nϕ

pm gm

∥∥∥∥
L1

≤
∥∥∥∥e
−Nϕ

p1 g1

∥∥∥∥
Lp1

· · ·
∥∥∥∥e
−Nϕ

pm gm

∥∥∥∥
Lpm

≤
( ∫ ∞

0
e−Nϕ

∣∣∣∣g1(ϕ)

∣∣∣∣p1

dϕ

) 1
p1
· · ·
( ∫ ∞

0
e−Nϕ

∣∣∣∣g1(ϕ)

∣∣∣∣pm

dϕ

) 1
pm

= ‖g1‖LpN
1
· · · ‖gm‖LpN

m
=

m

∏
i=1
‖gi‖LpN

i
.

We are now ready to study the solvability problem for (1) in the weighted Lebesgue
space LN

1 (e.g., on R+).

Theorem 3. Let the assumptions (i)–(v) be satisfied. Fix an arbitrary N > 0. If, in addition, the
constant connecting our assumptions

W :=
(

b‖K0‖LN
1

m

∏
i=1

b
1
p
i

(
pi
N

) αi
p
)
< 1,

then Equation (1) has at least one solution x ∈ LN
1 on R+.

Proof. Although the proof of our theorem requires a precise study of the relations of many
spaces and operators, to make it easier to follow, we will adopt its main steps from [34]
taking into account, however, the peculiarities of our solution space.

Step 1. Using assumptions (ii), (iii), and Lemma 1, we see that Ffi
maps LN

1 into LN
pi

(i = 1, . . . , m) and is continuous. Because the operators Iαi : LN
pi
→ LN

pi
are continuous,

it follows from assumption (i) that the operators Ai : LN
1 → LN

pi
are continuous. Then,

using Proposition 3(b), we find that A : LN
1 → LN

1 is continuous. Finally, the operator
Fh is a continuous mapping from LN

1 into LN
p by virtue of assumption (iv) and then by

Proposition 3(a), we obtain that H(x) = K0Fh(A(x)) : LN
1 → LN

1 is continuous.
Step 2. Using Proposition 3(a) and our assumptions, we have an estimation

‖H(x)‖LN
1

= ‖K0Fh(A(x))‖LN
1

≤ ‖K0‖LN
1
‖Fh(A(x))‖LN

p

≤ ‖K0‖LN
1
‖a + b|A(x)|

1
p ‖LN

p
.

By Proposition 3(b), we obtain ‖(A(x))
1
p ‖LN

p
= ‖A(x)‖

1
p

LN
1
≤ ∏m

i=1 ‖Ai(x)‖
1
p

LN
pi

, and

then
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‖H(x)‖LN
1
≤ ‖K0‖LN

1

[
‖a‖LN

p
+ b

m

∏
i=1

∥∥∥∥gi + Iαi Ffi
(x)
∥∥∥∥ 1

p

LN
pi

]

≤ ‖K0‖LN
1

[
‖a‖LN

p
+ b

m

∏
i=1

(
‖gi‖LN

pi
+ ‖Iαi Ffi

(x)‖LN
pi

) 1
p
]

≤ ‖K0‖LN
1

[
‖a‖LN

p
+ b

m

∏
i=1

(
‖gi‖LN

pi
+

(
pi
N

)αi
∥∥∥∥ fi(ϕ, x)

∥∥∥∥
LN

pi

) 1
p
]

≤ ‖K0‖LN
1

[
‖a‖LN

p
+ b

m

∏
i=1

(
‖gi‖LN

pi
+

(
pi
N

)αi
∥∥∥∥ai + bi|x|

1
pi

∥∥∥∥
LN

pi

) 1
p
]

≤ ‖K0‖LN
1

[
‖a‖LN

p
+ b

m

∏
i=1

(
‖gi‖LN

pi
+

(
pi
N

)αi(
‖ai‖LN

pi
+ bi‖x

1
pi ‖LN

pi

)) 1
p
]

≤ ‖K0‖LN
1

[
‖a‖LN

p
+ b

m

∏
i=1

(
‖gi‖LN

pi
+

(
pi
N

)αi(
‖ai‖LN

pi
+ bi‖x‖

1
pi
LN

1

)) 1
p
]

.

Then the operator H : LN
1 → LN

1 . For x ∈ Br, where r is given by assumption (v) and
Br = {u ∈ LN

1 : ‖u‖LN
1
≤ r}, we have

‖H(x)‖LN
1
≤ ‖K0‖LN

1

[
‖a‖LN

p
+ b

m

∏
i=1

(
‖gi‖LN

pi
+

(
pi
N

)αi(
‖ai‖LN

pi
+ bi · r

1
pi

)) 1
p
]
≤ r.

We then get an invariant ball for H and the operator H : Br → Br is continuous.
Step 3. We need to prove that H is a contraction with respect to the measure of weak

noncompactness γ on the ball Br. Let ∅ 6= X ⊂ Br and x ∈ X. For arbitrary ε > 0 and
T > 0 such that for any D ⊂ [0, T] with meas(D) ≤ ε, by Proposition 3, we obtain∫

D
e−Nϕ|(H(x))(ϕ)|dϕ ≤ ‖K0Fh(A(x))‖LN

1 (D)

≤ ‖K0‖LN
1 (D)‖Fh(A(x))‖LN

p (D)

≤ ‖K0‖LN
1 (D)‖a + b|A(x)|

1
p ‖LN

p (D)

≤ ‖K0‖LN
1 (D)

[
‖a‖LN

p (D) + b‖A(x)‖
1
p

LN
1 (D)

]

≤ ‖K0‖LN
1 (D)

[
‖a‖LN

p (D) + b
∥∥∥∥ m

∏
i=1

Ai(x)
∥∥∥∥ 1

p

LN
1 (D)

]

≤ ‖K0‖LN
1 (D)

[
‖a‖LN

p (D) + b
m

∏
i=1

(
‖gi‖LN

pi (D) +

(
pi
N

)αi(
‖ai‖LN

pi (D) + bi‖x
1
pi ‖LN

pi (D)

)) 1
p
]

≤ ‖K0‖LN
1 (D)

[
‖a‖LN

p (D) + b
m

∏
i=1

(
‖gi‖LN

pi (D)

+

(
pi
N

)αi(
‖ai‖LN

pi (D) + bi

( ∫
D

e−Nϕ|x(ϕ)|dϕ

) 1
pi
)) 1

p
]

.

Since gi, ai ∈ LN
pi

and a ∈ LN
p , we have

lim
ε→0

{
sup
x∈X

{
sup

(
‖a‖LN

p (D) : D ⊂ R+, meas(D) ≤ ε

)}}
= 0
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so

lim
ε→0

{
sup
x∈X

{
sup

(
‖gi‖LN

pi (D) +

(
pi
N

)αi

‖ai‖LN
pi (D) : D ⊂ R+, meas(D) ≤ ε

)}}
= 0.

From Equation (4) and as
( ∫

D e−Nϕ|x(ϕ)|dϕ

) 1
p

≤
∫

D e−Nϕ|x(ϕ)|dϕ, we have

c(H(X)) ≤
(

b‖K0‖LN
1 (D)

m

∏
i=1

b
1
p
i

(
pi
N

) αi
p
)
· c(X) = W · c(X). (8)

Thus for any T > 0 and x ∈ X, we get

∫ ∞

T
e−Nϕ|(H(x))(ϕ)|dϕ ≤ ‖K0‖LN

1 (T)

[
‖a‖LN

p (T)

+ b
m

∏
i=1

(
‖gi‖LN

pi (T)
+

(
pi
N

)αi(
‖ai‖LN

pi (T)
+ bi

( ∫ ∞

T
e−Nϕ|x(ϕ)|dϕ

) 1
pi
)) 1

p
]

.

We then pass with T to the limit T → ∞ and by the definition of d(X) in (5), we get

d(H(X)) ≤W · d(X). (9)

Adding Equations (8) and (9) on both sides and by the definition of γ, i.e., formula (6),
we have

γ(H(X)) ≤W · γ(X). (10)

Step 4. Define B1
r = Conv(H(Br)), B2

r = Conv(H(B1
r )) and so on, where Br is as in

Step 2. We have a decreasing sequence {Bn
r }, i.e., Bn+1

r ⊂ Bn
r for n ∈ N. Obviously, all the

sets in this sequence are closed and convex, and hence weakly closed. From Step 3, we
have γ(H(X)) ≤W · γ(X) for all bounded subsets X of Br, so

γ(Bn
r ) ≤Wnγ(Br),

which implies that limn→∞ γ(Bn
r ) = 0. Then, from property (vii) of Definition 4, it follows

that the set Q = ∩∞
n=1Bn

r 6= ∅ is closed, convex, and weakly compact (as γ(Q) = 0).
Moreover, H(Q) is a subset of Q. We must prove that this set contains a more regular
invariant subset that is not only weakly relatively compact in LN

1 , but also strongly relatively
compact.

Step 5. Since γ(Q) = 0, by virtue of the criterion of the weak compactness (cf. (6)), and
then for arbitrary sequence {xn} ⊂ Q, there exists T > 0 such that for all n the following
inequality is satisfied: ∫ ∞

T
e−Ns|xn(s)| ds ≤ ε

4
. (11)

Considering the functions h(ϕ, x), fi(ϕ, x), i = 1, · · · , m on the set [0, T] × R, and
K(t, ϕ) on the set [0, T] × [0, T], then it follows from Theorem 1 that there exists a
closed set Dε ⊂ [0, T] such that meas(Dc

ε) ≤ ε, gi
∣∣
Dε

, i = 1, · · · , m are continuous
and h

∣∣
Dε×R, K

∣∣
Dε×[0,T], fi

∣∣
Dε×R, i = 1, · · · , m are continuous. Hence we conclude that

K
∣∣
Dε×[0,T] is uniformly continuous.
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Denote by Hn(t) = K0Fh(A(xn))(t), where A(xn) = ∏m
i=1 Ai(xn), n ∈ N. We need to

show that the operator (Hn) is equibounded and equicontinuous in the space C(Dε). Then

|Hn(t)| ≤ |K0Fh(A(xn))(t)| ≤
∣∣∣∣ ∫ t

0
K(t, ϕ)h(t, (A(xn))(ϕ))dϕ

∣∣∣∣
≤ K

∫ t

0

(
|a(ϕ)|+ b|A(xn)(ϕ)|

1
p

)
dϕ

≤ K
∫ t

0

[
d + b

( m

∏
i=1
|Ai(xn)(ϕ)|

) 1
p
]

dϕ

= K
∫ t

0

[
d + b

m

∏
i=1

(
|gi(ϕ)|+ 1

Γ(αi)

∫ ϕ

0

| fi(s, xn(s))|
(ϕ− s)1−αi

ds
) 1

p
]

dϕ

≤ K
∫ t

0

[
d + b

m

∏
i=1

(
di +

1
Γ(αi)

∫ ϕ

0

|ai(s)|+ bi|xn(s)|
1
pi

(ϕ− s)1−αi
ds
) 1

p
]

dϕ

≤ K
∫ t

0

[
d + b

m

∏
i=1

(
di +

ci + bi(r∗)
1
pi

Γ(αi)

∫ ϕ

0

ds
(ϕ− s)1−αi

ds
) 1

p
]

dϕ

≤ K
∫ t

0

[
d + b

m

∏
i=1

(
di +

ci + bi(r∗)
1
pi

Γ(αi + 1)
Tαi

) 1
p
]

dϕ

≤ K · T
[

d + b
m

∏
i=1

(
di +

ci + bi(r∗)
1
pi

Γ(αi + 1)
Tαi

) 1
p
]

,

where K = max{K(t, s) : (t, s) ∈ Dε × [0, T]}, and |a(ϕ)| ≤ d, |gi(ϕ)| ≤ di, |ai(ϕ)| ≤
ci, |xn(ϕ))| ≤ r∗ for ϕ ∈ Dε. It follows from the above estimate that {Hn} is equibounded
in C(Dε). Then, for any ϕ1, ϕ2 ∈ Dε, where ϕ1 < ϕ2, we obtain

|Aixn(ϕ2)− Aixn(ϕ1)|

=

∣∣∣∣gi(ϕ2) +
1

Γ(αi)

∫ ϕ2

0

fi(s, xn(s))
(ϕ2 − s)1−αi

ds− gi(ϕ1)−
1

Γ(αi)

∫ ϕ1

0

fi(s, xn(s))
(ϕ1 − s)1−αi

ds
∣∣∣∣

≤ |gi(ϕ2)− |gi(ϕ1)|+
∣∣∣∣ 1
Γ(αi)

∫ ϕ2

0

fi(s, xn(s))
(ϕ2 − s)1−αi

ds− 1
Γ(αi)

∫ ϕ1

0

fi(s, xn(s))
(ϕ2 − s)1−αi

ds
∣∣∣∣

+

∣∣∣∣ 1
Γ(αi)

∫ ϕ1

0

fi(s, xn(s))
(ϕ2 − s)1−αi

ds− 1
Γ(αi)

∫ ϕ1

0

fi(s, xn(s))
(ϕ1 − s)1−α

ds
∣∣∣∣

≤ ωT(gi, |ϕ2 − ϕ1|) +
1

Γ(αi)

∫ ϕ2

ϕ1

| fi(s, xn(s))|
(ϕ2 − s)1−αi

ds

+
1

Γ(αi)

∫ ϕ1

0

| fi(s, xn(s))|
(ϕ2 − s)1−αi − (ϕ1 − s)1−αi

ds

≤ ωT(gi, |ϕ2 − ϕ1|) +
ci + bi · (r∗)

1
pi

Γ(αi + 1)

((
ϕ2 − ϕ1

)αi +
(

ϕ
αi
2 − ϕ

αi
1
)
− (ϕ2 − ϕ1)

αi

)
,

where ωT(gi, ·) refers to the (minimal) modulus of continuity of the functions gi, i =
1, · · · , m on the set Dε. Recall that they are continuous on this set. According to the mean
value theorem, there exists y such that ϕ1 < y < ϕ2 such that ϕα

2 − ϕα
1 = αyα−1(ϕ2 − ϕ1) ≤

(ϕ2 − ϕ1), then we have

|Ai(xn)(ϕ2)− Ai(xn)(ϕ1)| ≤ ωT(gi, |ϕ2 − ϕ1|) +
ci + bi · (r∗)

1
pi

Γ(αi + 1)

((
ϕ2 − ϕ1

))
. (12)
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Moreover, for any t1, t2 ∈ Dε such that t1 < t2 we obtain

|Hn(t2)− Hn(t1)|

≤
∣∣∣∣ ∫ t2

0
K(t2, ϕ)h(ϕ, (A(xn))(ϕ))dϕ−

∫ t2

0
K(t1, ϕ)h(ϕ, (A(xn))(ϕ))dϕ

∣∣∣∣
+

∣∣∣∣ ∫ t2

0
K(t1, ϕ)h(ϕ, (A(xn))(ϕ))dϕ−

∫ t1

0
K(t1, ϕ)h(ϕ, (A(xn))(ϕ))dϕ

∣∣∣∣
≤

∫ t2

0
|K(t2, ϕ)− K(t1, ϕ)||h(ϕ, (A(xn))(ϕ))|dϕ

+
∫ t2

t1

|K(t1, ϕ)||h(ϕ, (A(xn))(ϕ))|dϕ

≤ ωT(K, ·)
(
d + b · |A(xn)|

1
p
)
T + K

(
d + b · |A(xn)|

1
p
)
(t2 − t1)

≤ ωT(K, ·)
(

d + b ·
m

∏
i=1

(
di +

ci + bi(r∗)
1
pi

Γ(αi + 1)
Tαi

) 1
p
)

T

+ K
(

d + b ·
m

∏
i=1

(
di +

ci + bi(r∗)
1
pi

Γ(αi + 1)
Tαi

) 1
p
)
(t2 − t1), (13)

where ωT(K, ·) refers to the modulus of continuity of the function K on the sets Dε. The
inequalities (12) and (13) are obtained because Q ⊂ Br.

Since {xn}) ⊂ Q, we obtain γ({xn}) ≤ γ(Q) = 0. If, in inequalities (12) and (13), we
pass to the limit with (ϕ2 − ϕ1) → 0 and (t2 − t1) → 0, respectively, we see that the
obtained inequalities allow us to estimate moduli of continuity independently of xn. Set

Y = sup{ ‖Hn|Dε‖∞ : n ∈ N}.

As we just proved that {Hn} is equibounded in C(Dε), the number Y is finite. Recall
that Dε ⊂ [0, T] is closed, so as a closed subset of the compact set [0, T] is also compact.
Clearly, continuous functions on a compact domain are uniformly continuous, the sets
Dε × [−Y, Y] are compact, and we can conclude that the functions h

∣∣
Dε×[−Y,Y], fi

∣∣
Dε×[−Y,Y],

are continuous. Thus, we conclude that {Hn} = {K0Fh(A(xn)) : n ∈ N} is equicontinuous
and equibounded in C(Dε). It follows from the Ascoli–Arzéla theorem ([33], for instance)
that {Hn|Dε} is relatively compact in the space C(Dε).

We note that the above reasoning about the set Dε does not depend on the choice
of the value of ε. We can then construct a sequence of closed sets Dδn ⊂ [0, T] such that
meas(Dc

δn
) → 0 as n → ∞ with the property that {Hn|Dδn

} is relatively compact in every
space C(Dδn). It means that passing to subsequence if necessary, the sequence (Hn) is a
Cauchy sequence in each space C(Dδn), n = 1, 2, . . ..

Now, we need to control the behavior of the set {Hn|Dc
δn
}. Because the set H(Q) is

weakly compact in LN
1 , we get its uniform integrability (cf. Proposition 2), so we can choose

a number δ > 0 such that for every closed set Dδ ⊂ [0, T], we get∫
Dc

δ

e−Ns|(H(x))(s)| ds ≤ ε

4
, (14)

for any x ∈ Q. Keeping in mind that the sequence (H(xn)) is a Cauchy sequence in the
spaces C(Dl), l = 1, 2, · · · , we can choose a number l0 such that meas(Dc

l0
) ≤ δ (with

meas(Dl0) > 0), and for arbitrary natural numbers n, m ≥ l0 we have

|(H(xn))(s)− (H(xm))(s)| ≤
ε · eN·meas(Dl0

)

4 ·meas(Dl0)
(15)
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for any s ∈ Dl0 . Using (14) and (15), we get

∫ T

0
e−Ns|(H(xn))(s)− (H(xm))(s)| ds =

∫
Dl0

e−Ns|(H(xn))(s)− (H(xm))(s)| ds

+
∫

Dc
l0

e−Ns|(H(xn))(s)− (H(xm))(s)| ds

≤
∫

Dl0

e−Ns · ε · eN·meas(Dl0
)

4 ·meas(Dl0)
ds +

∫
Dc

l0

e−Ns|(H(xn))(s)| ds +
∫

Dc
l0

e−Ns|(H(xm))(s)| ds

≤ ε

4
+

ε

4
+

ε

4
=

3ε

4

and then by (11)∫ ∞

0
e−Ns|(H(xn))(s)− (H(xm))(s)| ds =

∫ T

0
e−Ns|(H(xn))(s)− (H(xm))(s)| ds

+
∫ ∞

T
e−Ns|(H(xn))(s)− (H(xm))(s)| ds ≤ ε,

which implies that ‖(H(xn))− H(xm))‖LN
1
≤ ε, so (H(xn)) is a Cauchy sequence in LN

1 . As
this space is complete, the sequence (H(xn)) is convergent in this space, and because we
can choose a norm convergent subsequence from any sequence from H(Q), this set is a
relatively compact norm in LN

1 .
Step 6. Let Q0 = Conv(H(Q)) and using the Mazur theorem, we obtain that Q0 is

again compact in LN
1 . Moreover, by definition Q0 ⊂ H(Q) ⊂ Q, so H(Q0) ⊂ H(Q) ⊂

Conv(H(Q)) = Q0 and then H : Q0 → Q0 and is continuous. We can then apply Theorem 2
for H|Q0 , which completes the proof.

Remark 1. The outcomes referenced in Theorem 3 can also be applied to some subspaces of LN
1 , such

as the spaces LN
p (R+) (p > 1) or more generally to weighted Orlicz spaces Lw

ϕ (cf. [35]) under a
proper set of hypotheses (cf. [36]). In the second case, it is interesting to observe that weakly compact
sets in LN

1 can be characterized in terms of Orlicz spaces (due to de la Vallée Poussin criterion of
uniform integrability). However, the case of σ-finite measure require some effort (cf. [37]).

Interestingly, there are only a few known analytic formulas for measures of weak noncompact-
ness in function spaces that can be adapted for these cases. Namely, we can define the following the
measures: if X ⊂ LN

p is bounded, then we can put

µ(X) = lim
ε→0

{
sup
x∈X

{
sup

[∫
D

e−Nt · |x(t)|p dt, D ⊂ I, measD ≤ ε

]}}

+ lim
T→∞

sup
{∫ ∞

T
e−Nt|x(t)|p dt : x ∈ X

}
.

The above formula generalize from [38] (formulated for N = 0 only), which is based on a
different compactness criterion.

Moreover, for X ⊂ LN
φ we can define a measure of weak σ(φ, φ∗) measure of noncompactness

(cf. [39], Example 1):

µw(X) = lim
ε→0

sup
x∈X

1
ε

∫
[0,∞)

φ
(

ε · e−Nt · x(t)
)

dt

for some class of Orlicz functions φ satisfying the ∆2 condition.
Although the study of integral equations in subspaces of integrable functions seems a perfectly

natural approach, it is novel for the problem we are studying. The starting point is the measures of
weak noncompactness we define above, and the subsequent results are expected.
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Theorem 4. Suppose that the assumptions of Theorem 3 are satisfied, but instead of assumption
(iii), consider the following hypotheses:

(vi) There exist a, ai ∈ LN
1 (i = 1, . . . , m) such that |h(s, 0)| ≤ a(s), | fi(s, 0)| ≤ ai(s), s ≥ 0

and

|h(s, x)− h(s, y)| ≤ b|x− y|
1
p , | fi(s, x)− fi(s, y)| ≤ bi|x− y|

1
pi , i = 1, · · · , m,

where x, y ∈ Q and Q is defined as in the proof of Theorem 3,
(vii) If for some constant W ≥ 0, the following inequality is satisfied:

W ≤ b‖K0‖LN
1

[(
p1

N

)α1 m

∏
i=2

(
‖gi‖LN

pi
+

(
pi
N

)αi[
‖ai‖LN

pi
+ bi · r

1
pi

])
b1 ·W

1
p1

+

(
‖g1‖LN

p1
+

(
p1

N

)α1[
‖a1‖LN

p1
+ b1 · r

1
p1

])(
p2

N

)α2

×
m

∏
i=3

(
‖gi‖LN

pi
+

(
pi
N

)αi[
‖ai‖LN

pi
+ bi · r

1
pi

])
b2 ·W

1
p2 + · · · +

+
m−1

∏
i=1

(
‖gi‖LN

pi
+

(
pi
N

)αi[
‖ai‖LN

pi
+ bi · r

1
pi

])(
pm

N

)αm

bm ·W
1

pm

] 1
p

,

then W = 0, where r is defined in assumption (v).

With this set of assumptions, Equation (1) has a unique solution x ∈ LN
1 (in the set Q).

Proof. Using assumption (vi), we obtain∣∣∣∣|h(s, x)| − |h(s, 0)|
∣∣∣∣ ≤ |h(s, x)− h(s, 0)| ≤ b|x|

1
p

⇒ |h(s, x)| ≤ |u(s, 0)|+ b|x|
1
p ≤ a(s) + b|x|

1
p .

Similarly, we can prove that | fi(ϕ, x)| ≤ ai(ϕ)+ bi|x|
1
pi , i = 1, · · · , m. Then from Theorem 3

we conclude that (1) has at least one solution x ∈ LN
1 on R+.

Next, let x and y be any two solutions of Equation (1). We then obtain

‖x− y‖LN
1
=

∥∥∥∥K0Fh(A(x))− K0Fh(A(y))
∥∥∥∥

LN
1

≤ ‖K0‖LN
1
‖Fh(A(x))− Fh(Ay)‖LN

p

≤ ‖K0‖LN
1
‖b|A(x)− A(y)|

1
p ‖LN

p

= b‖K0‖LN
1
‖A(x)− A(y)‖

1
p

LN
1

= b‖K0‖LN
1

∥∥∥∥ m

∏
i=1

Ai(x)−
m

∏
i=1

Ai(y)
∥∥∥∥ 1

p

LN
1

= b‖K0‖LN
1

∥∥∥∥A1(x)A2(x) · · · Am(x)− A1(y)A2(y) · · · Am(y)
∥∥∥∥ 1

p

LN
1
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≤ b‖K0‖LN
1

[∥∥∥∥A1(x)A2(x) · · · Am(x)− A1(y)A2(x) · · · Am(x)
∥∥∥∥

LN
1

+

∥∥∥∥A1(y)A2(x) · · · Am(x)− A1(y)A2(y)A2(x) · · · Am(x)
∥∥∥∥

LN
1

+ · · ·+
∥∥∥∥A1(y)A2(y) · · · Am−1(y)Am(x)− A1(y)A2(y) · · · Am−1(y)Am(y)

∥∥∥∥
LN

1

] 1
p

= b‖K0‖LN
1

[∥∥∥∥|A1(x)− A1(y)|A2(x) · · · Am(x)
∥∥∥∥

LN
1

+

∥∥∥∥A1(y)|A2(x)− A2(y)|A3(x) · · · Am(x)
∥∥∥∥

LN
1

+ · · · +

∥∥∥∥A1(y)A2(y) · · · Am−1(y)|Am(x)− Am(y)|
∥∥∥∥

LN
1

] 1
p

≤ b‖K0‖LN
1

[∥∥∥∥A1(x)− A1(y)
∥∥∥∥

LN
p1

m

∏
i=2
‖Ai(x)‖LN

pi

+ ‖A1(y)‖LN
p1

∥∥∥∥A2(x)− A2(y)
∥∥∥∥

LN
p2

m

∏
i=3
‖Ai(x)‖LN

pi

+ · · ·+
m−1

∏
i=1
‖Ai(y)‖LN

pi

∥∥∥∥Am(x)− Am(y)
∥∥∥∥

LN
pm

] 1
p

≤ b‖K0‖LN
1

[∥∥∥∥Iα1 | f1(ϕ, x)− f1(ϕ, y)|
∥∥∥∥

LN
p1

m

∏
i=2

(
‖gi‖LN

pi
+

(
pi
N

)αi[
‖ai‖LN

pi
+ bi · r

1
pi

])

+

(
‖g1‖LN

p1
+

(
p1

N

)α1[
‖a1‖LN

p1
+ b1 · r

1
p1

])∥∥∥∥Iα2 | f2(ϕ, x)− f2(ϕ, y)|
∥∥∥∥

LN
p2

×
m

∏
i=3

(
‖gi‖LN

pi
+

(
pi
N

)αi[
‖ai‖LN

pi
+ bi · r

1
pi

])

+ · · ·+
m−1

∏
i=1

(
‖gi‖LN

pi
+

(
pi
N

)αi[
‖ai‖LN

pi
+ bi · r

1
pi

])∥∥∥∥Iαm | fm(ϕ, x)− fm(ϕ, y)|
∥∥∥∥

LN
pm

] 1
p

≤ b‖K0‖LN
1

[(
p1

N

)α1
∥∥∥∥ f1(ϕ, x)− f1(ϕ, y)

∥∥∥∥
LN

p1

m

∏
i=2

(
‖gi‖LN

pi
+

(
pi
N

)αi[
‖ai‖LN

pi
+ bi · r

1
pi

])

+

(
‖g1‖LN

p1
+

(
p1

N

)α1[
‖a1‖LN

p1
+ b1 · r

1
p1

])(
p2

N

)α2
∥∥∥∥ f2(ϕ, x)− f2(ϕ, y)

∥∥∥∥
LN

p2

×
m

∏
i=3

(
‖gi‖LN

pi
+

(
pi
N

)αi[
‖ai‖LN

pi
+ bi · r

1
pi

])

+ · · ·+
m−1

∏
i=1

(
‖gi‖LN

pi
+

(
pi
N

)αi[
‖ai‖LN

pi
+ bi · r

1
pi

])(
pm

N

)αm∥∥∥∥ fm(ϕ, x)− fm(ϕ, y)
∥∥∥∥

LN
pm

] 1
p

≤ b‖K0‖LN
1

[(
p1

N

)α1
∥∥∥∥b1|x− y|

1
p1

∥∥∥∥
LN

p1

m

∏
i=2

(
‖gi‖LN

pi
+

(
pi
N

)αi[
‖ai‖LN

pi
+ bi · r

1
pi

])

+

(
‖g1‖LN

p1
+

(
p1

N

)α1[
‖a1‖LN

p1
+ b1 · r

1
p1

])(
p2

N

)α2
∥∥∥∥b2|x− y|

1
p2

∥∥∥∥
LN

p2

×
m

∏
i=3

(
‖gi‖LN

pi
+

(
pi
N

)αi[
‖ai‖LN

pi
+ bi · r

1
pi

])

+ · · · +
m−1

∏
i=1

(
‖gi‖LN

pi
+

(
pi
N

)αi[
‖ai‖LN

pi
+ bi · r

1
pi

])(
pm

N

)αm∥∥∥∥bm|x− y|
1

pm

∥∥∥∥
LN

pm

] 1
p
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≤ b‖K0‖LN
1

[(
p1

N

)α1 m

∏
i=2

(
‖gi‖LN

pi
+

(
pi
N

)αi[
‖ai‖LN

pi
+ bi · r

1
pi

])
b1‖x− y‖

1
p1
LN

1

+

(
‖g1‖LN

p1
+

(
p1

N

)α1[
‖a1‖LN

p1
+ b1 · r

1
p1

])(
p2

N

)α2

×
m

∏
i=3

(
‖gi‖LN

pi
+

(
pi
N

)αi[
‖ai‖LN

pi
+ bi · r

1
pi

])
b2‖x− y‖

1
p2
LN

1

+ · · · +
m−1

∏
i=1

(
‖gi‖LN

pi
+

(
pi
N

)αi[
‖ai‖LN

pi
+ bi · r

1
pi

])(
pm

N

)αm

bm‖x− y‖
1

pm
LN

1

] 1
p

.

Using assumption (vii) together with the above inequality, we obtain x = y almost
everywhere, and this concludes the proof.

4. Applications

In the last part of the paper, we will check the existence of solutions for the special
case of Equation (1) and the solvability of the initial value problem (2) through Theorem 3.

4.1. Fractional Gripenberg Equations

Consider the following generalized Gripenberg integral equation:

x(t) =
∫ t

0

(t− ϕ)−γ

Γ(1− γ)
h
(

ϕ,
m

∏
i=1

(
gi(ϕ) +

1
Γ(αi)

∫ ϕ

0

fi(s, x(s))
(ϕ− s)1−αi

ds
))

, (16)

where t ∈ R+, γ, αi ∈ (0, 1). Equation (16) is related to

x(t) = I1−γh
(

t,
m

∏
i=1

(
gi(t) + Iαi fi(t, x(t))

))
, t ∈ R+ , γ, αi ∈ (0, 1).

Equation (16) is a special case of (1), as we can put K(t, ϕ) = (t−ϕ)−γ

Γ(1−γ)
, γ ∈ (0, 1). Thus

for Riemann–Liouville fractional operators we have

Corollary 1. Let assumptions of Theorem 3 be satisfied with K(t, s) = (t−s)−γ

Γ(1−γ)
, γ ∈ (0, 1). Then

Equation (16) has at least one solution x ∈ LN
1 on R+.

Corollary 2. Let assumptions of Theorem 4 be fulfilled with K(t, s) = (t−s)−γ

Γ(1−γ)
, γ ∈ (0, 1). Then

Equation (16) has a unique solution x ∈ Q ⊂ LN
1 .

4.2. Initial Value Problems

We will now look at the result concerning IVP (2). As a solution to a differential
problem, we require here nothing more from the function than its absolute continuity.

Definition 5. A function z is a solution of IVP (2) if it is absolutely continuous and satisfies
IVP (2).

Theorem 5. Let the assumptions of Theorem 3 be fulfilled with K(t, ϕ) = (t−ϕ)−γ

Γ(1−γ)
. Then the initial

value problem (2) has a solution z(t) = Iγx(t), where x fulfills (16).

Proof. Let x satisfy Equation (16). Put

z(t) = Iγx(t), γ ∈ (0, 1), (17)
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and then, by applying the semigroup property for fractional integrals

z(t) = Iγx(t)

= Iγ I1−γh
(

t,
m

∏
i=1

(
gi(t) + Iαi fi(t, x(t))

))
= I1h

(
t,

m

∏
i=1

(
gi(t) + Iαi fi(t, x(t))

))
=

∫ t

0
h
(

ϕ,
m

∏
i=1

(
gi(ϕ) +

1
Γ(αi)

∫ ϕ

0

fi(s, x(s))
(ϕ− s)1−αi

ds
))

.

We obtain that z is absolutely continuous, so, in particular, the derivative Dγz(t) exists
and z(0) = 0. Further,

Dγz(t) = I1−γ d
dt

z(t) = I1−γ d
dt

Iγx(t)

= I1−γ d
dt

Iγ

(
I1−γh

(
t,

m

∏
i=1

(
gi(t) + Iαi fi(t, x(t))

)))

=
d
dt

(
I1−γ Iγ

)
I1−γh

(
t,

m

∏
i=1

(
gi(t) + Iαi fi(t, x(t))

))
=

d
dt

I1 I1−γh
(

t,
m

∏
i=1

(
gi(t) + Iαi fi(t, x(t))

))
= (

d
dt

I1)I1−γh
(

t,
m

∏
i=1

(
gi(t) + Iαi fi(t, x(t))

))
= I1−γh

(
t,

m

∏
i=1

(
gi(t) + Iαi fi(t, x(t))

))
= x(t).

Applying Equation (17), we obtain

d
dt

z(t) =
d
dt

(
Iγx(t)

)
=

d
dt

Iγ

(
I1−γh

(
t,

m

∏
i=1

(
gi(t) + Iαi fi(t, x(t))

)))

=
d
dt

I1h
(

t,
m

∏
i=1

(
gi(t) + Iαi fi(t, x(t))

))
= h

(
t,

m

∏
i=1

(
gi(t) + Iαi fi(t, x(t))

))
,

which means that if x(t) fulfills Equation (16), then z(t) = Iγx(t) satisfies the initial value
problem (2), which completes the proof.

Remark 2. We should complete the paper with a note on the numerical treatment of the considered
problem. Because our considerations are based on properly developed Gronwall-type inequalities
(cf. Step 3 of the proof of Theorem 3), presenting an interesting numerical example requires discrete
equivalents of such inequalities. For the case m = 1 one can find such a result, e.g., in a recently
published paper [40] or in [3], but quadratic problems and for the pointwise product of m operators
have not yet been studied, and their inclusion here would definitely go beyond the intended scope
and volume of the paper. However, the main problem in this case is the use of numerical methods
for non-continuous functions. This problem with continuous data for some fractional equations is
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described in [26], for instance. Integrable solutions for some (non-quadratic) singular problems were
studied in [41]. However, research in Orlicz’s spaces remains an open problem.

Basic approximation and numerical treatment for quadratic integral equations (related to the
quadratic Chandrasekhar equation) can be found in [42], where a class of approximate methods for
solution of this equation in a general context is presented. Interestingly, this paper also uses the
same type of weight, although in the space of continuous functions. Thus, our paper provides a basis
for further research.
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