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Abstract: With the rapid development of smart medical care, copyright security for medical images 

is becoming increasingly important. To improve medical images storage and transmission safety, 

this paper proposes a robust zero-watermarking algorithm for medical images by fusing Dual-Tree 

Complex Wavelet Transform (DTCWT), Hessenberg decomposition, and Multi-level Discrete Co-

sine Transform (MDCT). First, the low-frequency sub-band of the medical image is obtained 

through the DTCWT and MDCT. Then Hessenberg decomposition is used to construct the visual 

feature vector. Meanwhile, the encryption of the watermarking image by combining cryptographic 

algorithms, third-party concepts, and chaotic sequences enhances the algorithm’s security. In the 

proposed algorithm, zero-watermarking technology is utilized to assure the medical images’ com-

pleteness. Compared with the existing algorithms, the proposed algorithm has good robustness and 

invisibility and can efficiently extract the watermarking image and resist different attacks. 
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1. Introduction 

With the advancement of Internet technology and the continuous maturity of big 

data, digital technology is extensively infiltrating the medical field. Every day, numerous 

medical images are communicated and transmitted via the network, and medical images 

are vulnerable to illegal tampering, copying and leaking, and other issues during this 

transmission process [1,2]. Therefore, it has become an urgent problem to protect the pri-

vacy of patients and prevent the personal information on patients’ medical images from 

being leaked [3,4]. As an important information security technology, digital watermark-

ing is utilized for the authentication of image integrity and copyright protection. There-

fore, medical image-watermarking technology based on digital watermarking can solve 

the above problems effectively [5,6]. 

Medical image-watermarking technology hides patients’ personal information in the 

corresponding medical image, thereby protecting patients’ privacy and ensuring the safe 

transmission of this information [7]. However, medical images have their unique charac-

teristics. Most medical images are single-channel, grayscale images. The slight change in 

highly similar background tissues may represent a certain disease. Any subtle change 

may cause distorted medical images and affect doctor’s diagnosis [8,9]. Therefore, the 

particularity of medical images makes it difficult for traditional medical image digital wa-

termarking algorithms to solve these problems. To diminish watermarking’s impact on 

the original medical images, it is essential to design a lossless watermarking algorithm 

[10,11]. 
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The zero-watermarking technology uses important features of the image to construct 

the feature vector. Zero-watermarking, without altering the original medical image, can 

well overcome the issue of the invisibility and robustness of the watermarking restricting 

each other [12]. Hence, zero-watermarking is very appropriate for medical images’ copy-

right protection. As an effective method of medical images protection, zero-watermarking 

has become a popular research topic in the medical field. Xiao et al. proposed a novel 

algorithm based on enhanced singular value decomposition and cellular neural networks. 

They combined a neural network with homogenized singular values to solve the problem 

of diagonal distortion [13]. Wu et al. introduced a robust watermarking algorithm for 

medical images. They used Contourlet transform to obtain multi-scale image features and 

then Discrete Cosine Transform (DCT) to generate feature vectors of low-frequency sub-

bands. This algorithm has shown excellent utility in medical fields [14]. Qin et al. com-

bined Curvelet-DCT with RSA pseudo-random sequence and used the Curvelet-DCT to 

construct feature vectors by extracting the medical image with the most concentrated en-

ergy. They encrypted the watermarking with the RSA algorithm, which strengthened the 

protection of patient privacy [15]. Wu et al. utilized Curvelet transform, Discrete Wavelet 

Transform (DWT), and Singular Value Decomposition (SVD) to present a method for 

medical images, which integrated Curvelet transform and DWT to obtain image charac-

teristics and used the benefits of subdivision block to further enhance the stability of the 

algorithm [16]. Xue et al. used Nonsubsampled Shearlet Transform (NSST) and Hessen-

berg decomposition to propose a zero-watermarking algorithm, which constructed a fea-

ture matrix by performing operations, such as NSST transformation and block Hessenberg 

decomposition, on the image combined with QR codes to form a zero-watermarking, 

which effectively improved the robustness against rotation and cropping attacks [17]. Liu 

et al. utilized Dual-Tree Complex Wavelet Transform (DTCWT) and DCT transformation 

to introduce a scheme for medical images. This algorithm used DTCWT-DCT transfor-

mation to construct feature sequences. Furthermore, logistic chaos encryption technology 

was utilized to enhance the algorithm’s security [18]. Xia et al. used FoRHFMs to design 

a zero-watermarking algorithm. They extended IoRHFMs to FoRHFMs and effectively 

improved numerical stability and enhanced the algorithm’s robustness [19]. Vaidya et al. 

used hybrid transform to present a watermarking scheme. This algorithm combined the 

outstanding features of Lifting Wavelet Transform (LWT), DWT, and Local Binary Pattern 

(LBP) in the hybrid domain and has better robustness and imperceptibility to image at-

tacks [20]. Fang et al. introduced a watermarking algorithm. They added the Scale Invar-

iant Feature Transform (SIFT) for data preprocessing and used an optimized Bandelet and 

DCT (Bandelet-DCT) to extract visual features. The algorithm is robust under different 

attacks [21]. 

In the currently proposed methods for zero-watermarking, robustness is the focus of 

research. Most algorithms are less robust to geometric attacks. This is because geometric 

attacks changed the position of the attacked medical image in relation to the original med-

ical image, making the zero-watermarking information seriously out of sync with medical 

images and resulting in an extremely difficult extraction of zero-watermarking. Therefore, 

how to extract feature vectors that can resist geometric attacks and make the algorithm 

well robust without altering the original image is an important issue to be solved urgently 

[22]. 

To address the above problems, this paper proposes a new method of zero-water-

marking based on the combination of DTCWT and Hessenberg decomposition. This 

method uses DTCWT and Multi-level Discrete Cosine Transform (MDCT) to obtain the 

low-frequency sub-band of the medical image and constructs the feature vector through 

Hessenberg decomposition. The proposed algorithm utilizes chaos technology and the 

nature of hash function to encrypt the watermarking image and enhance the security of 

the watermarking. Experimental results show that effective resistance to various attacks 

is achieved by the proposed algorithm, with better robustness compared to other water-

marking algorithms. 
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Overall, the main contributions of this paper can be summarized as: 

(1) We proposed a novel zero-watermarking algorithm for medical images using 

DTCWT, MDCT, and Hessenberg decomposition. 

(2) The paper used DTCWT extract multi-directional and multi-scale features to better 

describe the feature information of medical images. In addition, when medical im-

ages are attacked, the proposed algorithm can show better orientation optionality 

and translation invariance and effectively improve the robustness against translation 

attacks. 

(3) The authors utilized the MDCT to take full advantage of the energy concentration 

characteristics of DCT, giving the algorithm fastness and accurate feature extraction 

capabilities. 

(4) The proposed algorithm used Hessenberg decomposition to effectively improve the 

execution efficiency and has good rotational invariance, which exhibits strong ro-

bustness against geometric attacks. 

2. Basic Theory 

2.1. DTCWT 

Due to the unique physical structure of real DWT, DWT has multi-resolution prop-

erties, but it still suffers from disadvantages, such as insufficient translation sensitivity 

and direction selectivity. To solve these disadvantages of the DWT, Kingsbury et al. 

[23,24] proposed DTCWT. DTCWT uses a two-way DWT structure of a binary tree, where 

one tree corresponds to the real part of the DWT, and the other tree corresponds to the 

imaginary part of the DWT. DTCWT uses a low-pass filter and a high-pass filter bank, the 

real part and the imaginary part are respectively subjected to multi-scale sub-band de-

composition at the same time, and then, multi-scale and multi-directional sub-band coef-

ficients are obtained. 

Figure 1 shows the realization structure of the DTCWT. Among them, ( )l n  and 

( )h n  are the low-pass and high-pass filters, respectively. In the transformation process, 

one part uses filters 1 2
{ ( ), ( )}l n l n  for row transformation and then uses filters 

1 2
{ ( ), ( )}h n h n  for column transformation. The other part uses filters 1 2

{ ( ), ( )}h n h n  for row 

transformation and then uses filters 1 2
{ ( ), ( )}l n l n  as columns transformation. Through the 

DTCWT, transform obtained one low-frequency sub-band and three high-frequency sub-

bands, respectively. The sum or difference of each pair of sub-bands can constitute two 

low-frequency sub-bands and six high-frequency sub-bands, of which six high-frequency 

complex sub-bands, respectively, describe the detailed information of the directions 

15 , 45 , 75   , respectively. Sub-bands can reflect the changes in the image in different 

directions at different scales to better describe the specific features of the image [25]. 

The DTCWT has remarkable multi-resolution properties and also has translation in-

variance and efficient calculation efficiency, thereby improving the watermarking’s ro-

bustness against geometric attacks. 
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Figure 1. Decomposition structure of DTCWT. 

2.2. DCT 

DCT is an orthogonal transformation based on real numbers, which has a higher cal-

culation speed [26]. The formulas for two-dimensional discrete cosine sine transform (2D-

DCT) is as follows: 
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Among them, m N n N0,1, , 1;  0,1, , 1= − = − . ( , )f x y  represents the image and 

has dimensions N N ; ( , )F m n  represents the frequency coefficients. 

The frequency coefficient distribution of the image after the DCT is shown in Figure 

2. The DCT transforms the image data into the frequency domain, which is divided into 

direct current coefficient (DC) and alternating current coefficient (AC). The DC coefficient 

represents the mean value of the brightness of the image. A large part of the image infor-

mation focuses on the upper left corner. Therefore, DCT has a strong ability to concentrate 

information, and it can better relieve the correlation between image pixels and concentrate 

the image energy mainly in the low-frequency coefficients of the DCT spectrum, so it is 

broadly applied in the image compression field [27,28]. 
Traditional algorithms are to perform a whole DCT or a block DCT on the original 

image. Such a transformation cannot take full advantage of low-frequency coefficients and 

cannot reflect the energy concentration characteristics [29]. Therefore, the proposed algo-

rithm utilizes MDCT. We first performed one-level DCT on the original image, and then, 

we blocked the low-frequency coefficients and perform two-level DCT on each sub-block 

matrix. The result of the multi-level DCT is shown in Figure 3. 
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Figure 2. DCT coefficient frequency distribution diagram. 

 

Figure 3. The result of multi-level DCT. 

As can be seen from Figure 3, the energy after multi-stage DCT is better concentrated 

in the upper left corner, which is more conducive to feature extraction. Therefore, a rea-

sonable multi-level DCT can fully utilize the energy concentration property of the DCT, 

accordingly obtaining more data with larger values, and the MDCT can optimize the al-

gorithm’s performance and give the algorithm have the ability to extract features quickly 

and accurately. 

2.3. Hessenberg Decomposition 

The Hessenberg decomposition is a specific type of decomposition. The elements be-

low the sub-diagonal of the matrix H after the upper Hessenberg decomposition are all 

zero [30]. Hessenberg decomposition is to factorize matrix A by orthogonal transfor-

mation. The decomposition process can be shown as follows: 

1 2 3 3 2 1 2 3 3 2
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where Q is the orthogonal matrix obtained in QR decomposition; H is the upper Hes-

senberg matrix, as shown in Formula (4), and for any 1i j + , its element 0
ij

h = . P is 

the Householder matrix, which satisfies Formula (5). 

Where u  is a non-zero vector in the set n
R , n

I  represents the identity matrix of 

n n . 
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( 2 )T

n

T

I uu
P

u u

−
=  (5) 

Hessenberg decomposition is an intermediate step of QR decomposition, and this is 

because QR decomposition has lower computational complexity than other decomposi-

tion ways. Thus, compared with other decomposition methods, the computational com-

plexity of Hessenberg decomposition is relatively low, which effectively improves the ex-

ecution efficiency of the algorithm [31]. 

The image is decomposed by Hessenberg, the redundant information will be re-

moved, and a few values can be represented for the entire image. The image after Hessen-

berg decomposition has better stability; even when the image is geometrically distorted 

by rotation and cropping, the value will still not be changed dramatically. Hence, Hessen-

berg decomposition is frequently applied in the watermarking domain. 

Hessenberg decomposition enhances the safety and computational efficiency of the 

watermarking and extracts important features of the image to construct a more robust 

zero-watermarking. 

3. Zero-Watermarking Algorithm 

3.1. Watermarking-Generation Algorithm 

The key to the watermarking-generation algorithm is extracting image features with-

out altering the original medical image. In this paper, the use of DTCWT can make the 

generated zero-watermarking contain more directional feature information and has good 

translation invariance. MDCT is conducive to concentrating the image energy. Hessen-

berg decomposition extracts essential detail features of the image so that the image has 

rotation invariance, thus enhancing the algorithm’s robustness and computational effi-

ciency. 

We assume the original medical image as { ( , ) 1 ,1 }I f i j i M j M=      and the bi-

nary watermarking image as { ( , ) 1 ,1 }W w u v u N v N=     . The step by step of algo-

rithm is shown below. 

(1) Chaotic sequence generation by logistic mapping and logistic chaotic position 

scrambling was applied to the binary watermarking image to generate a scrambled binary 

watermarking image BW , and the scrambled key is 1
K . 

(2) We performed a two-level DTCWT transform on the original medical image I  to 

obtain the low-frequency sub-band 2
LL . 

(3) We computed a DCT on 2
LL  to obtain 1

D  and then divided 1
D  into non-over-

lapping sub-blocks of size 8 8  and marked sub-block as S ,  1,2, ,
m

m N= . 

(4) The DCT was performed on m
S  to obtain ,  1,2, ,

m
DS m N= . 

(5) We next used Hessenberg decomposition for each sub-block m
DS , extracted the 

maximum element in the upper Hessenberg matrix of each sub-block, and recorded it as  
max ,  1, 2, ,
m

H m N=  and then calculated the overall mean value avgH according to For-

mula (6). 

max

1

r

r
avg i

H

H
r

==


 

(6) 

(6) We generated a binary eigenvector L  by comparison of the maximum value el-

ement 
max

r
H  and the overall mean value avgH . The calculation formula is as follows: 
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(7) We utilized an XOR operation to generate zero-watermarking from the BW  and 

the feature vector L  and saved it on the third-party platform. The formula appears as 

follows: 

eyK BW L=   (8) 

Figure 4 displays the watermarking-embedding process. 

 

Figure 4. Watermarking-embedding flowchart. 

3.2. Watermarking-Extraction Algorithm 

During the extraction process, the attacked medical image is represented as 

{ ( , ) 1 ,1 }I f i j i M j M =     . The step by step of algorithm is shown below. 

(1) We performed steps 2 to 6 in Section 3.1 to generate the feature vector L  from 

the attacked medical image I  . 

(2) We next performed the XOR operation between the feature vector L  and the 

zero-watermarking eyK  to obtain the watermarking image BW  . The formula appears 

as follows: 

eyBW K L = 
 (9) 

(3) We restored the logistic chaotic position restoration of the obtained scrambled 

watermarking image BW   according to the key 1
K  to obtain the decrypted water-

marking image W  . 

Figure 5 displays the watermarking-extraction process. 

 

Figure 5. Watermarking-extraction flowchart. 
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4. Experiments and Results 

4.1. The Experimental Description 

In the experimental process, we selected different parts and types of medical images 

for testing. The experimental results show that the proposed watermarking algorithm has 

good robustness on various medical images. The simulation outcomes are given in this 

paper using five medical images as examples. The original medical image chooses a gray-

scale image of pixels 128 128  in Figure 6. The watermarking image of pixels 64 64  in 

Figure 7a. The key to chaotic encryption is 0
0.6, 4x = = , and Figure 7b displays the en-

crypted watermarking image. The watermarking image can be seen to become chaotic, 

and no valid information can be extracted from it, so it has high concealment, which sig-

nificantly improves the security of the watermarking. Figure 8 is a watermarked medical 

image that has not been attacked, showing the obtained watermarking. Observation 

shows that the medical image has not changed visually before and after the watermarking 

is embedded. This shows that the embedding of the watermarking does not affect the 

original medical image, which is in line with the zero-watermarking requirement. 

     
(a) (b) (c) (d) (e) 

Figure 6. Original medical images: (a) brain; (b) chest; (c) hand; (d) fundus vessels; and (e) breast. 

  

(a) (b) 

Figure 7. Watermarking image: (a) binary watermarking image; (b) encrypted watermarking image. 

  
(a) (b) 

Figure 8. Medical image and extracted watermarking without attack: (a) medical image; (b) ex-

tracted watermarking image. 
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4.2. Robustness Experiment 

The proposed algorithm utilizes a zero-watermarking method, so only the robustness 

of the algorithm needs to be checked. To examine the robustness of the method in this 

paper, the normalized correlation coefficient (NC) was applied to assess the degree of re-

semblance of watermarking images, and the peak signal-to-noise ratio (PSNR) was uti-

lized to assess the attack damage to the image [32]. The calculation formulas are described 

in the following: 

1 1

2 2

1 1 1 1

( , ) ( , )

( , ) ( , )

N N

u v

N N N N

u v u v

W u v W u v

NC

W u v W u v

= =

= = = =



=





 

 (10) 

2

2

1 1

255
10 log( )

( ( , ) ( , ))
M M

x y

M M
PSNR

f x y f x y
= =

 
= 


 

(11) 

Among them, ( , )W u v  is the original watermarking image pixel value, ( , )W u v  is 

the extracted watermarking image pixel value, and N  is the watermarking image size. 
( , )f x y  and ( , )f x y , respectively represent the pixel values at the corresponding coordi-

nates of the original medical image and the tested medical image and the image of size 
M M . In the following specific experiments, we conducted common attacks and geomet-

ric attacks on different medical images.  

4.2.1. Common Attacks 

• Gaussian Noise Attacks 

We applied various extents of Gaussian noise attacks to different medical images. 

Figure 9 shows the results under the Gaussian noise attack. It can be seen that the original 

medical image blends in with the noise when the noise strength is 0.3, but the extracted 

watermarking image is distinguishable. Table 1 shows that as the noise strength becomes 

more intense, the quality of the image declines significantly. With noise strengths of 0.5, 

medical images maintain PSNR values of about 4 dB, and the NC values at this time are 

still as high as 0.97. Overall, the proposed algorithm has excellent performance. 

     
(a) (b) (c) (d) (e) 

     
(a1) (b1) (c1) (d1) (e1) 
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Figure 9. Attacked medical images and restored watermarking images under Gaussian noise 30%: 

(a,a1) brain and extracted watermarking image; (b,b1) chest and extracted watermarking image; 

(c,c1) fundus blood vessels and extracted watermarking image; (d,d1) hand and extracted water-

marking image; and (e,e1) breast and extracted watermarking image. 

Table 1. The result under Gaussian noise attacks. 

Name 
Noise 1% Noise 5% Noise 15% Noise 30% Noise 50% 

PSNR/dB NC PSNR/dB NC PSNR/dB NC PSNR/dB NC PSNR/dB NC 

Medical image A 21.3809 1.0000 14.6856 1.0000 10.7088 0.9877 8.6252 0.9753 7.9512 0.9754 

Medical image B 21.8515 1.0000 15.2301 1.0000 10.9588 0.9753 8.7182 0.9753 7.4081 0.9753 

Medical image C 17.7054 1.0000 11.0908 1.0000 7.3532 0.9877 5.6276 0.9753 4.6856 0.9754 

Medical image D 19.4994 1.0000 12.8283 1.0000 8.4299 0.9753 6.0647 0.9753 4.7484 0.9754 

Medical image E 18.1251 1.0000 11.5601 1.0000 7.4808 0.9877 5.4692 0.9753 4.3108 0.9754 

• JPEG Compression Attacks 

In order to improve transmission efficiency and reduce the amount of transmitted 

information, images are generally compressed during transmission. JPEG compression is 

mainly to remove redundant information from medical images. The result of the compres-

sion attack on the medical image is in Figure 10. Even if the image produced obvious 

blocky effects, the watermarking image could still be extracted correctly. Table 2 shows 

that the mean NC values are over 0.95 even when the compression quality falls to 2%. In 

summary, the proposed algorithm has better robustness under compression attacks. 

     
(a) (b) (c) (d) (e) 

     
(a1) (b1) (c1) (d1) (e1) 

Figure 10. Attacked medical images and restored watermarking images under JPEG compression 

2%: (a,a1) brain and extracted watermarking image; (b,b1) chest and extracted watermarking image; 

(c,c1) fundus blood vessels and extracted watermarking image; (d,d1) hand and extracted water-

marking image; and (e,e1) breast and extracted watermarking image. 
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Table 2. The result under JPEG compression attacks. 

Name 
Compress 2% Compress 5% Compress 9% Compress 15% Compress 25% 

PSNR/dB NC PSNR/dB NC PSNR/dB NC PSNR/dB NC PSNR/dB NC 

Medical image A 20.707 0.9628 22.0045 0.9877 23.6216 0.9503 24.9075 0.9629 26.7087 0.9628 

Medical image B 22.557 0.9877 24.6316 0.9753 26.9914 0.9754 28.9971 0.9628 31.0536 0.9754 

Medical image C 23.2354 0.9877 25.2333 0.9877 28.5905 0.9877 30.9748 0.9877 33.1253 0.9753 

Medical image D 26.1048 0.9877 26.4586 0.9753 32.8437 1.0000 34.6839 1.0000 35.0334 1.0000 

Medical image E 24.0996 0.9877 24.4521 0.9753 29.9548 1.0000 32.1558 0.9877 34.9622 1.0000 

• Median Filter Attacks 

Figure 11 shows the experimental results under the median filter attack. As can be 

seen from the figure, when the median filter is (7 × 7), and the attack is repeated 20 times, 

the medical image becomes a white elliptical outline, it has a huge change in shape and 

detail. However, the extracted watermarking image is still very clear. Table 3 indicates 

that as the window size and filtering time increase, the NC values show a downward 

trend, but the NC values can still reach above 0.9. Therefore, the algorithm exhibits strong 

robustness under median filter attacks. 

     
(a) (b) (c) (d) (e) 

     
(a1) (b1) (c1) (d1) (e1) 

Figure 11. Attacked medical images and restored watermarking images under (7 × 7), 20 times me-

dian filter attacks: (a,a1) brain and extracted watermarking image; (b,b1) chest and extracted water-

marking image; (c,c1) fundus blood vessels and extracted watermarking image; (d,d1) hand and 

extracted watermarking image; and (e,e1) breast and extracted watermarking image. 

Table 3. The result under median filter attacks. 

Name 

Parameter (3 × 3) Parameter (5 × 5) Parameter (7 × 7) 

10 Times 20 Times 10 Times 20 Times 10 Times 

PSNR/dB NC PSNR/dB NC PSNR/dB NC PSNR/dB NC PSNR/dB NC 

Medical image A 20.91 0.9504 20.3341 0.9377 17.2479 0.9126 16.6834 0.9123 15.917 0.9124 

Medical image B 26.5736 0.9754 26.02 0.9629 22.609 0.9753 22.1802 0.9754 19.9116 0.9753 

Medical image C 35.49 1.0000 35.2661 1.0000 32.6347 0.9877 32.3348 0.9877 31.4819 0.9877 

Medical image D 38.0348 1.0000 37.2862 1.0000 28.0059 0.9629 26.3181 0.9753 24.288 0.9629 

Medical image E 35.173 1.0000 34.9371 1.0000 29.2758 0.9877 28.4422 0.9877 26.391 0.9877 
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Experiments demonstrate that the algorithm is consistently more robust under com-

mon attacks of various strengths. Because the DTCWT has excellent denoising property 

and direction selectivity, and the low-frequency sub-bands obtained after MDCT and Hes-

senberg decomposition have strong stability, the proposed algorithm shows excellent ro-

bustness in resistance to common attacks. 

4.2.2. Geometric Attacks 

• Rotation Attacks 

We applied a clockwise rotation attack to the medical image, increasing the rotation 

angle from 5 to 40. Table 4 presents the results showing that as the strength of the rotation 

increases, the quality of the image and the NC values drop dramatically. Even when the 

rotation is 40 degrees, the NC values can still reach 0.9 or more. Figure 12 displays that 

the position of the medical image after the rotation has changed greatly, but the water-

marking image can still be fully presented, which indicates the great robustness of the 

proposed algorithm to rotational attacks. 

     
(a) (b) (c) (d) (e) 

     
(a1) (b1) (c1) (d1) (e1) 

Figure 12. Attacked medical images and restored watermarking images under clockwise rotation 

30°: (a,a1) brain and extracted watermarking image; (b,b1) chest and extracted watermarking image; 

(c,c1) fundus blood vessels and extracted watermarking image; (d,d1) hand and extracted water-

marking image; and (e,e1) breast and extracted watermarking image. 

Table 4. The result under clockwise rotation attacks. 

Name 
Rotation 5% Rotation 10% Rotation 20% Rotation 25% Rotation 40% 

PSNR/dB NC PSNR/dB NC PSNR/dB NC PSNR/dB NC PSNR/dB NC 

Medical image A 15.5831 0.9752 12.9944 0.9377 12.068 0.9378 11.9703 0.9628 11.232 0.9753 

Medical image B 18.1468 0.9379 14.5409 0.9629 11.5648 0.9503 10.7143 0.9504 9.448 0.9378 

Medical image C 30.0359 0.9877 28.5605 0.9877 27.0817 0.9877 26.5903 0.9877 25.7494 0.9877 

Medical image D 20.8156 0.9877 17.0125 0.9877 13.8992 0.9877 13.0057 0.9753 12.16 0.9377 

Medical image E 20.5585 0.9877 16.717 0.9754 13.4887 0.9877 12.7267 0.9753 11.4282 0.9877 

• Scaling Attacks 

From the result in Table 5, for the scaling attack, the NC values obtained under the 

general scale attack are 1. In the case of high-strength scaling, the NC values remain above 
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0.87. Figure 13 shows the result of the experiment with a scaling down of 0.125 and then 

scaling up of 8 times, showing that the image already has a patch effect and has been 

severely distorted, but the watermarking image can still be extracted accurately. There-

fore, the proposed algorithm has good performance under scaling attacks. 

     
(a) (b) (c) (d) (e) 

     
(a1) (b1) (c1) (d1) (e1) 

Figure 13. Attacked medical images and restored watermarking images under scaling factors 0.125 

then factors 8: (a,a1) brain and extracted watermarking image; (b,b1) chest and extracted water-

marking image; (c,c1) fundus blood vessels and extracted watermarking image; (d,d1) hand and 

extracted watermarking image; and (e,e1) breast and extracted watermarking image. 

Table 5. The result under scaling attacks. 

Name 

Zoom Factor 

0.125 then 8 

Zoom Factor 

0.25 then 4 

Zoom Factor 

0.5 then 2 

Zoom Factor 

2 then 0.5 

Zoom Factor 

4 then 0.25 

PSNR/dB NC PSNR/dB NC PSNR/dB NC PSNR/dB NC PSNR/dB NC 

Medical image A 15.6234 0.8746 17.8888 0.9628 21.5809 0.9753 30.2404 1.0000 30.5191 1.0000 

Medical image B 18.504 0.9124 21.7819 0.9753 27.4683 1.0000 38.8449 1.0000 39.1239 1.0000 

Medical image C 25.5095 0.9754 29.7844 0.9877 35.0533 1.0000 45.9477 1.0000 46.6227 1.0000 

Medical image D 26.6648 0.9753 33.0577 0.9877 41.1167 1.0000 52.6998 1.0000 53.3732 1.0000 

Medical image E 27.2548 0.9877 31.7092 0.9877 37.6185 1.0000 48.3699 1.0000 49.124 1.0000 

• Cropping Attacks 

As shown in Table 6 that even when the X-axis is 40%, and the Y-axis is 25%, the NC 

values remain at about 0.93. Figure 14 shows the experimental results of different medical 

images with 40% cropping on the X-axis and 30% on the Y-axis. We can see that the at-

tacked images’ outer contour changes considerably, and most information is removed, 

but the extracted watermark is nevertheless distinctly recognizable, and all have NC val-

ues above 0.95. Therefore, the algorithm’s robust performance under the cropping attack 

is excellent. 
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(a) (b) (c) (d) (e) 

     
(a1) (b1) (c1) (d1) (e1) 

     
(f) (g) (h) (i) (j) 

     
(f1) (g1) (h1) (i1) (j1) 

Figure 14. Attacked medical images and restored watermarking images under X-axis cropping 40% 

and Y-axis cropping 30%: (a,f,a1,f1) brain and extracted watermarking image; (b,g,b1,g1) chest and 

extracted watermarking image; (c,h,c1,h1) fundus blood vessels and extracted watermarking image; 

(d,i,d1,i1) hand and extracted watermarking image; and (e,j,e1,j1) breast and extracted watermark-

ing image. 

Table 6. The result under cropping attacks. 

Name 
X-Axis Crop 5% X-Axis Crop 15% X-Axis Crop 40% Y-Axis Crop 10% Y-Axis Crop 25% 

PSNR/dB NC PSNR/dB NC PSNR/dB NC PSNR/dB NC PSNR/dB NC 

Medical image A 90.1377 1.0000 56.9175 1.0000 12.9247 0.9753 18.7664 0.9377 13.59 0.9377 

Medical image B 50.2622 1.0000 23.43 0.9630 14.5185 0.9629 28.6074 0.9753 14.3028 0.9754 

Medical image C 32.7365 0.9877 20.7318 0.9877 12.3005 0.9629 24.811 0.9877 16.2596 0.9753 

Medical image D 87.581 1.0000 87.581 1.0000 19.3996 0.9877 19.4777 0.9629 16.4589 0.9629 

Medical image E 20.3824 0.9877 15.3823 0.9754 9.7896 0.9630 32.9291 0.9877 16.7177 0.9877 
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• Translation Attacks 

Figure 15 shows the results of the experiment in which the medical images of differ-

ent parts are shifted 20% to the left and 30% downwards. The figures show that some 

information has been missed; however, the restored watermarking image still has a good 

visible effect. Observing Table 7, we can see that regardless of whether they move largely 

left or vertically, their NC values perform well. When shifted 41% to the left or 40% down-

ward, the NC means can still reach 0.93. Therefore, under the translation attack, the algo-

rithm shows good robustness. 

     
(a) (b) (c) (d) (e) 

     

(a1) (b1) (c1) (d1) (e1) 

     
(f) (g) (h) (i) (j) 

     

(f1) (g1) (h1) (i1) (j1) 

Figure 15. Attacked medical images and restored watermarking images under left translation 20% 

and down translation 30%: (a,f,a1,f1) brain and extracted watermarking image; (b,g,b1,g1) chest 

and extracted watermarking image; (c,h,c1,h1) fundus blood vessels and extracted watermarking 

image; (d,i,d1,i1) hand and extracted watermarking image; and (e,j,e1,j1) breast and extracted wa-

termarking image. 
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Table 7. The result under translation attacks. 

Name 
Left 5% Left 17% Left 41% Down 13% Down 40% 

PSNR/dB NC PSNR/dB NC PSNR/dB NC PSNR/dB NC PSNR/dB NC 

Medical image A 11.1507 0.9753 8.6638 0.9377 6.6029 0.9503 11.2107 0.9250 8.8705 0.9376 

Medical image B 11.8073 0.9752 8.9485 0.9504 8.7963 0.9628 9.1991 0.9628 9.0726 0.9378 

Medical image C 17.8609 0.9754 12.6764 0.9877 8.654 0.9877 13.9912 0.9753 8.4723 0.9753 

Medical image D 17.481 0.9877 12.2204 0.9877 10.4476 0.9630 19.1956 0.9877 15.9374 0.9753 

Medical image E 16.7173 0.9877 10.358 0.9877 6.3622 0.9380 11.2122 0.9877 7.67 0.9877 

Experiments show that the algorithm is robust under different intensities of geomet-

ric attacks. Because this paper uses DTCWT and Hessenberg decomposition, the con-

structed feature matrix has translation and rotation invariance. At the same time, the al-

gorithm used by MDCT decreases the contact area with the image and improves the ro-

bustness against cropping attacks and translation attacks to some degree. Therefore, the 

proposed algorithm shows strong robustness in resisting geometric attacks. 

4.3. Comparison Experiments 

• Robustness comparison 

For better verification of the robustness of the proposed algorithm, we selected the 

MRI brain medical image as the original medical image. Both the proposed algorithm and 

the comparison algorithm use the watermarking image size 64 64 , but the reference 

method remains the same as the original. We compared this algorithm with the algorithms 

of 2. Rani et al. [2], Wu et al. [14], Qin et al. [15], and Liu et al. [18]. The changing trend of 

the corresponding NC value is illustrated in Figures 16 and 17. 

 
(a) 
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(b) (c) 

Figure 16. Comparison of the robustness of different algorithms under common attacks: (a) Gauss-

ian noise; (b) JPEG compression; and (c) median filtering. 

Figure 16 displays that for Gaussian noise attacks, as the strength of the noise attack 

gradually became larger, the NC values of the five algorithms all show a downward trend, 

but the downward trend of the algorithm in this paper is relatively slow, and the noise 

intensity of 30% the NC value obtained can still reach 0.97. For compression attacks, the 

five algorithms are not much different in the NC values. Although the NC value is slightly 

lower than the other four algorithms at a compression strength of 10, when the compres-

sion strength is 2, the NC value remains above 0.96. 

This is because DCT has good robustness against small-range noises and compres-

sion attacks, but when the attack intensity increases, the DCT changes quickly, which in 

turn leads to poor structural feature stability. The algorithm in this paper also uses the 

upper triangular matrix of Hessenberg decomposition for information integration, which 

makes the image more robust. In terms of median filtering attacks, the NC values of the 

algorithm in this paper have no big gap with the literature [2,14,18] and are slightly lower 

than the literature [15]. This is because the DWT used in the literature [2] has poor direc-

tion information, and some contour information of the image would be lost. The Contour-

let transform, Curvelet transform, and DTCWT transform used in the literature [14,15,18] 

have direction selectivity, which improves the image contour information significantly; 

however, the Curvelet transform in the literature [15] has better performance for the sin-

gular characteristics of the image curve and at the same time has better performance in 

filtering and denoising, so it is more robust in resisting filtering attacks. In summary, the 

proposed algorithm is more robust under common attacks. 
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Figure 17. Comparison of the robustness of different algorithms under geometric attacks: (a) rota-

tion; (b) scaling; (c) left translation; (d) right translation; (e) up translation; (f) down translation; (g) 

X-axis cropping; and (h) Y-axis cropping. 

For geometric attacks, compared with the literature [2,14,15,18], the proposed algo-

rithm has a greater degree of enhancement, especially in rotation attacks, translation at-

tacks, and cropping attacks. Figure 17 demonstrates that for rotation attacks at different 

angles, the proposed algorithm consistently achieves higher NC values than the literature 

[2,14,15,18]. When rotating 20% clockwise, the algorithm in this paper still maintains the 

NC value of around 0.95, and the NC values of other documents are lower than 0.9; even 

the NC values of the literature [14,15] are only about 0.65, which is less robust. For trans-

lational attacks, the NC values of other algorithms have a rapid downward trend, while 

the algorithm in this paper changes slowly, and the minimum NC value is greater than 

0.92. For cropping at different positions, for small parts of cropping, the NC values of the 

five algorithms can be equal, but when the cropping part is larger, the NC value of the 

algorithm in this paper is improved, compared to the literature [2,14,15,18], around 5%-

15%. 

Because the literature [2] uses chunk singular values to construct image features, the 

chunk singular values are more sensitive to pixel position and easier to change. The algo-

rithm in the literature [14,15,18] uses the DCT means for constructing the feature matrix; 

when rotating and cropping attacks, the image means can be significantly influenced. The 

DWT transformation, Contourlet transformation, and Curvelet transformation used in the 

literature [2,14,15] do not have translation invariance and so have poor robustness in ge-

ometric attacks. The DTCWT used in this algorithm has direction selectivity and transla-

tion invariance, while MDCT and Hessenberg decomposition have energy concentration 

solidity and rotation invariance. Additionally, the maximum value of each sub-block de-

composition is directly used to construct the feature vector of the image, which can di-

rectly reflect the changes in the image. Therefore, even if it is geometrically attacked, the 

changes in the maximum value are relatively small, and it can better resist geometrical 

attacks. 

All in all, compared with the literature [2,14,15,18], the algorithm in this paper has 

higher stability, especially in the solution of problems that have no resistance to geometric 

attacks. The proposed algorithm shows great resistance to geometric attacks and excellent 

robustness. 
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5. Conclusions 

In this paper, we propose a robust, zero-watermarking algorithm based on DTCWT-

MDCT-Hessenberg for medical images, which solves the information security problems 

during the process of medical image storing and transmitting. The algorithm uses the di-

rection selectivity, translation invariance of DTCWT, the stability of energy concentration 

of DCT, and the rotation invariance of Hessenberg decomposition to solve the problem of 

poor robustness of traditional zero-watermarking algorithms against geometric attacks. 

The algorithm does not require watermarking of original medical images. Extraction re-

alizes the requirement of zero-watermarking and ensures the reliability of doctor’s diag-

nosis. Meanwhile, combining cryptographic algorithms and third-party concepts, encryp-

tion of the watermarking with a chaotic sequence of initial value sensitivity enhances the 

algorithm’s security. Experimental results demonstrate that the algorithm in this paper 

has high computational efficiency, exhibits good robustness under common attacks and 

geometric attacks, and has high practical value in the protection of medical images. 
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