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Abstract: Many real-world games contain parameters which can affect payoffs, action spaces, and
information states. For fixed values of the parameters, the game can be solved using standard
algorithms. However, in many settings agents must act without knowing the values of the parameters
that will be encountered in advance. Often the decisions must be made by a human under time and
resource constraints, and it is unrealistic to assume that a human can solve the game in real time. We
present a new framework that enables human decision makers to make fast decisions without the aid
of real-time solvers. We demonstrate applicability to a variety of situations including settings with
multiple players and imperfect information.
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1. Introduction

Strong algorithms have been developed for game classes with many elements of
complexity. For example, algorithms were recently able to defeat human professional
players in two-player [1,2] and six-player no-limit Texas hold ’em [3]. These games have
imperfect information, sequential actions, very large state spaces, and the latter has more
than two players (solving multiplayer games is more challenging than two-player zero-sum
games from a complexity-theoretic perspective). However, these algorithms all require an
extremely large amount of computational resources for offline and/or online computations
and for optimizing neural network hyperparameters. The algorithms also have a further
limitation in that they are using all these resources just to solve for one very specific version
of the game (e.g., Libratus and DeepStack assumed that all players start the hand with
200 times the big blind, and Pluribus assumed that all players start the hand with 100 times
the big blind). In real poker, the stack sizes of the players will fluctuate as players win or
lose hands, and will often differ from the starting values. While one could apply the same
algorithms for any specific starting stack and blind values, there are too many possibilities
to be able to run the algorithms on all of them.

In many real-world situations, there are some game parameters that will be encoun-
tered during gameplay that are unknown in advance (such as the stack sizes in poker).
Furthermore, often the real-time decision maker will be a human, who may not have
the ability to perform complex computations (even though such computations may have
been performed offline in advance). For example, football teams have used statistical and
game-theoretic models to decide whether or not to punt on a fourth down. In advance of
game play, algorithms can be run that solve for optimal solutions in these models, perhaps
by utilizing databases of historical play. However, in real time, the coach has only a matter
of seconds (or minutes if a timeout is used) to make the decision. The optimal decision may
depend on several factors that are not known until real time; for example, the score, how
much time is remaining, the overall strength of the two teams, etc. The coach will need to
weigh any offline algorithmic solution with newly-observed values of these parameters
to make quick real-time decisions. Similar situations are also encountered frequently in
national security. In recent years game-theoretic algorithms have been increasingly applied
to security domains. These algorithms must be applied offline with specific values of
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parameters used, which may differ from the actual values encountered in real time (e.g., an
attacker may use more resources than anticipated).

In these settings it is not sufficient to develop a successful algorithm for solving the
game for one specific value of parameters; it is also necessary to develop a procedure for a
decision maker to compute an optimal solution in real time for the newly-observed value
of the parameters. Often the decision maker is a human, who may have limited technical
expertise. It is not realistic to assume that the human decision maker can perform a complex
algorithmic computation, tune or optimize a neural network, or perform a search over a
large historical database during the seconds or minutes available to make the decision.
While it is realistic to assume that a human can perform a table lookup to implement a
previously computed strategy (even one stored in a large binary file), as described above
this strategy may not apply to the observed parameter values. In addition, it is reasonable
to assume that the human has access to a “cheat sheet” which contains a relatively small
set of general rules to be applied depending on the parameter values encountered. It is also
reasonable to assume that the decision maker can perform basic arithmetic (perhaps with
the aid of a calculator). In this paper we present a novel framework for enabling human
decision makers to act strategically in these settings.

2. Parametrized Games

We consider a setting where a decision maker must determine a strategy for a game
Gλ, which contains a vector of parameters λ drawn from some domain Λ (typically subsets
of the set of real numbers or integers). For any specific values of the parameters λ, Gλ can
be solved using standard algorithms. However, it is infeasible to solve the game in advance
for all possible parameter values (there may be infinitely many).

The parameters can affect different components of the game. They can affect the
payoffs, set of players, strategy spaces, and/or private information. Often our goal will be
to solve the game by computing a standard game-theoretic solution concept such as a Nash
equilibrium. A second goal that we will also consider is opponent exploitation—computing
a best response to perceived strategies of the opponents. The model of the opponents’
strategies is determined in real time based on observations of the opponents’ play, perhaps
utilizing a prior distribution based on historical data. In this situation, the parameters
can also affect the strategies of the opponents. In general our framework can allow for
optimizing any objective, though we will focus on the natural objectives of computing
Nash equilibrium or optimizing performance against assessments of opponents’ strategies.

Definition 1. A strategic-form game G is a tuple (N, S, u) with finite set of players N =
{1, . . . , n}, finite set of pure strategies Si for each player i ∈ N, and real-valued utility for each
player for each strategy vector (aka strategy profile), ui : ×jSj → R.

Definition 2. A payoff-parametrized strategic-form game is a tuple ({Gλ}, Λ) where for
each real-valued vector of parameters λ ∈ Λ, Gλ is a tuple (N, S, uλ) with finite set of players
N = {1, . . . , n}, finite set of pure strategies Si for each player i ∈ N, and real-valued utility for
each player for each strategy vector (aka strategy profile), uλ,i : ×jSj → R.

Definition 3. A strategy-parametrized strategic-form game is a tuple ({Gλ}, Λ) where for
each real-valued vector of parameters λ ∈ Λ, Gλ is a tuple (N, Sλ, u) with finite set of players N,
finite set of pure strategies Sλ,i for each player i ∈ N, and real-valued utility for each player for each
strategy vector (aka strategy profile), ui : ×jSλ,j → R.

We can analogously define a player-parametrized game where the set of players is
determined by λ. We can also consider games that simultaneously consider several different
types of parametrization. In general we will denote a strategic-form game that has payoff,
strategy, and/or player parametrization as a parametrized strategic-form game, ({Gλ}, Λ),
with Gλ = (λ, Nλ, Sλ, uλ) for λ ∈ Λ.
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While the strategic form can be used to model simultaneous actions, another rep-
resentation, called the extensive form, is generally preferred when modeling settings that
have sequential moves. The extensive form can also model simultaneous actions, as well
as chance events and imperfect information (i.e., situations where some information is
available to only some of the agents and not to others). Extensive-form games consist
primarily of a game tree; each non-terminal node has an associated player (possibly chance)
that makes the decision at that node, and each terminal node has associated utilities for the
players. Additionally, game states are partitioned into information sets, where the player
to act cannot distinguish among the states in the same information set. Therefore, in any
given information set, a player must choose actions with the same distribution at each state
contained in the information set. A pure strategy for player i is a mapping that selects an
action at each information set belonging to player i.

In typical imperfect-information extensive-form games, the initial move is a chance
move that assigns private information to each player (from a publicly-known distribution).
For example, this could be private cards in poker, item valuations in auctions, or resource
values in security games. Then players perform a sequence of publicly-observable actions
until a terminal node is reached. Thus, for each sequence of public actions p, each player i
selects a strategy that is dependent on their own private information, τi. Instead of viewing
this decision as a selection of separate actions at each information set that follows the action
sequence p, one can view this as a mapping that assigns an action for each possible value
of the private information τi. If the set of possible values of the private information τi is
dictated by a vector of parameters λ, then we say that the game is information-parametrized.

3. Parametric Decision Lists

Our goal for parametrized games is to develop a “cheat sheet” that allows a human
decision maker to quickly select a strategy in real time for any possible value of the
parameters λ. We propose a new structure, which we call a parametric decision list (PDL),
which contains a small set of rules that dictate which strategy should be played for every
possible parameter value in a way that can be easily understood and implemented by a
human. Similarly to a standard decision list, a parametric decision list consists of a series
of conditions, each resulting in the output of a strategy. For game Gλ, each condition
will be of the form “if fi(λ)oi0”, where fi is a vector-valued function of the parameters
λ, and oi is vector of comparison operators from the set {<,≤,>,≥,=, 6=}. For example
if λ = (λ1, λ2), fi = (4λ1 + 2λ2, 3λ1 − 5λ2), oi = (≥,<), then the condition would
correspond to “if 4λ1 + 2λ2 ≥ 0 and 3λ1 − 5λ2 < 0.” If the condition is satisfied, then
(mixed) strategy si is output. We can view the initial condition as corresponding to an “If”
statement, subsequent conditions as “Else if,” and the final condition as “Else”.

Definition 4. A parametric decision list L for Gλ is a tuple L = (F, O, S), where F = ( fi) is a
sequence of functions fi : R|λ| → Rw, O = (oi) is a sequence of vectors of primitive comparison
operators oi with |O| = |F|, with w = |oi|, and S = (si) is a sequence of |F|+ 1 (mixed) strategies.

We define the depth of parametric decision list L to equal the number of strategies,
|S| = |F|+ 1. The first |F| strategies correspond to when each of the |F| conditions are met,
and the final strategy corresponds to the default case when none are met (aka, the “else”
condition). The width of L is equal to w, the length of the vectors oi. Each function outputs
a w-dimensional vector fi. Then each component j is compared to 0 using operator oij. If
all conditions of the operators are met, then the list dictates following strategy si.

We say that parametrized game Gλ with objective function gλ is (d, w, ε)-implementable
if there exists a parametric decision list L with depth at most d and width at most w that
achieves an objective value gλ(sL) ≥ g∗λ − ε for all λ ∈ Λ for the strategy sL determined
by L, where g∗λ is the optimal value of the objective gλ for Gλ. The two primary objective
functions we will be considering are the exploitability of a strategy in a two-player zero-sum
game, which is defined as the difference between the game value and payoff of the strategy



Mathematics 2022, 10, 1147 4 of 23

against a best response to it, and performance of a strategy against a specific strategy (or
distribution of strategies) for the opponents.

4. Parameter Sampling

A second approach for generating a set of rules for a human decision-maker would be
to repeatedly sample values for parameters λi and compute the optimal strategy si in the
parametrized game Gλi using standard approaches. Then when game Gλ∗ is encountered in
real time, we output the solution si corresponding to the value of i that minimizes d(λi, λ∗),
where d is an appropriate distance metric. This sampling can be done uniformly at random
over a suitably-chosen domain, or according to a more informative prior distribution if one
is available. Assuming that the number of sampled games is relatively small and it is not
too difficult to compute the distance function, this can potentially be another approach for
human decision-making in parametrized games.

Theorem 1 shows that as the number of samples grows large, this approach produces
an optimal strategy if the payoffs are continuous functions of the parameters. The analysis
is for the minimum exploitability metric in two-player zero-sum games, though similar
analysis can also apply for other objectives. For simplicity we assume that the parameter λ is
one-dimensional and use the absolute value for the distance function, though an analogous
result can be shown for the multi-dimensional case using an arbitrary distance metric.

Lemma 1. Suppose all payoffs of G′′ are within ε of the payoffs of G′. Let s′ be a strategy profile in
G′. Then |uG′

i (s′i, s′−i)− uG′′
i (s′i, s′−i)| ≤ ε.

Proof. The utility against s′−i equals the sum of the utilities against each of the opponent’s
pure strategies s−i multiplied by the weight that s′−i places on s−i. Since each of the utilities
in G′′ is within ε of the utilities in G′, the weighted sums must be within ε of each other.

Lemma 2. Suppose all payoffs of G′′ are within ε of the payoffs of G′. Let s′i be a strategy for player
i of G′, let s∗−i be a nemesis strategy against s′i in G′, and let s∗∗−i be a nemesis strategy against s′i in
G′′. Then |uG′

i (s′i, s∗−i)− uG′′
i (s′i, s∗∗−i)| ≤ ε.

Proof. Suppose that uG′
i (s′i, s∗−i) > uG′′

i (s′i, s∗∗−i) + ε. By Lemma 1,

uG′
i (s′i, s∗∗−i) ≤ uG′′

i (s′i, s∗∗−i) + ε < uG′
i (s′i, s∗−i),

which contradicts the fact that s∗i is a nemesis strategy against s′i in G′. We obtain a similar
contradiction if

uG′′
i (s′i, s∗∗−i) > uG′

i (s′i, s∗−i) + ε.

So we conclude that |uG′
i (s′i, s∗−i)− uG′′

i (s′i, s∗∗−i)| ≤ ε.

Lemma 3. Suppose all payoffs of G′′ are within ε of the payoffs of G′. Let v′i be the game value of
G′ to player i and v′′i be the value of G′′. Then |v′i − v′′i | ≤ ε.

Proof. Let s′i be a Nash equilibrium strategy profile in G′. Then ui(s′i, s′−i) = v′i. Let s∗∗−i
be a nemesis against s′i in G′′. By Lemma 2, |uG′

i (s′i, s′−i) − uG′′
i (s′i, s∗∗−i)| ≤ ε. So |v′i −

uG′′
i (s′i, s∗∗−i)| ≤ ε. So v′i ≤ uG′′

i (s′i, s∗∗−i) + ε. We know that uG′′
i (s′i, s∗∗−i) ≤ v′′i . So v′i ≤ v′′i + ε.

Similar reasoning shows that v′′i ≤ v′i + ε. So |v′i − v′′i | ≤ ε.

Lemma 4. Suppose s′ is a Nash equilibrium of G′, and all payoffs of G′′ are within ε of the payoffs
of G′. Then the exploitability of s′ in G′′ is at most 2ε.
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Proof. Let s′ be a Nash equilibrium of G′, and s∗∗−i be a nemesis strategy to s′ in G′′. Let v′i
denote the value of G′ and v′′i denote the value of G′′. The exploitability of s′i in G′′ equals
v′′i − uG′′

i (s′i, s∗∗−i). By the triangle inequality and Lemmas 1 and 3,

|v′′i − uG′′
i (s′i, s∗∗−i)|

≤ |v′′i − v′i|+ |v′i − uG′
i (s′i, s′−i)|+ |uG′

i (s′i, s′−i)− uG′′
i (s′i, s∗∗−i)|

≤ ε + 0 + ε = 2ε.

Denote u(s, λ) as fs(λ). Without loss of generality suppose λ ∈ [0, 1] and that we
repeatedly sample λi from U(0, 1) and compute optimal strategy s∗i in the game Gλi . Then
when we encounter λ∗ in real time, calculate i∗ = arg mini |λ∗ − λi|, and play s∗i∗ . Suppose
the game has n = 2 players, has m actions per player, is zero sum, and that we take t
samples. Let εt denote the exploitability of s∗i∗ in Gλ∗ .

Theorem 1. If fs is continuous in λ for all s ∈ S, then limt→∞ E[εt] = 0.

Proof. Let ε > 0 be arbitrary, and set ε′ = ε
3 . From continuity of fs, there exists δs > 0

such that | fs(λ) − fs(λ′)| < ε′ for all λ′ such that |λ′ − λ| < δs. Let δ = mins∈S δs. Let

T =
ln( ε

6−2ε )
ln(1−2δ)

, and let t ≥ T be arbitrary.
Suppose that λ∗ is the actual value of λ encountered. The probability that at least one

of the sampled values λi satisfies |λi − λ∗| ≤ δ equals 1− (1− 2δ)t. If this occurs, then
εt = 2ε′ = 2ε

3 by Lemma 4. Otherwise, the exploitability is at most 2 (since we assume all
payoffs are in [0,1]). So

E[εt] ≤
2ε

3
(
1− (1− 2δ)t)+ 2(1− 2δ)t

=
2ε

3
+

(6− 2ε)(1− 2δ)t

3

≤ 2ε

3
+

(6− 2ε)(1− 2δ)T

3

=
2ε

3
+

(6− 2ε)
(

ε
6−2ε

)
3

=
2ε

3
+

ε

3
= ε.

Theorem 2. Suppose that we have t samples λi producing exploitability εt. Then Gλ is (t, t, εt)-
implementable using the minimum exploitability objective.

Proof. We can construct parametric decision list L as follows. First, we construct the
function f1 : Λ → Rk. The first component of f1 is |λ− λ2| − |λ− λ1| with operation o11
≤. So in other words, this corresponds to the condition |λ− λ2| − |λ− λ1| ≤ 0. The ith
component of f1 is |λ− λi| − |λ− λ1|, with o1i also ≤ . For the strategy, we set si = s∗i .
These conditions put together tell us to play strategy si if |λ− λ1| ≤ |λ− λi| for all i > 1.

In general the ith component of f j is |λ− λi| − |λ− λj|, with oji ≤ and sj = s∗j . We can
omit the final set of conditions for ft since it is implied by the first t− 1 sets of conditions
all failing, and output st = s∗t as the default strategy at depth t. The constructed parametric
decision list L has depth and width t, and produces a strategy with exploitability of εt.
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5. Comparison of Approaches in 2 × 2 Games

In general it may be challenging to construct a small parametric decision list that
achieves an approximately optimal value of the objective function. Similarly, for the sam-
pling approach we may require a large number of samples to obtain a small approximation
error. The sampling approach could be improved by first sampling as many values for the
parameters as possible, then clustering the games generated (e.g., using k-means) into k
clusters. We then implement the strategy corresponding to the parameter values from the
cluster mean with smallest distance from the parameters we encounter in real time. This
approach would require an effective distance metric between parameter vectors that can be
efficiently computed, while such a metric is not required for the parametric decision list
approach. Furthermore, it may be challenging to determine the optimal value of k, and
there is no guarantee that this approach with k clusters will produce small error.

In this section we compare the two approaches for the problem of computing Nash
equilibrium strategies (i.e., using the objective of minimizing exploitability) in two-player
zero-sum strategic-form games with two pure strategies per player. We can represent
a two-player 2× 2 game as a matrix M depicted in Equation (1), where the parameters
correspond to the payoffs of the row and column players. For general-sum games we can
view this game as having 8 parameters (a–h), while for zero-sum games there are 4, since
b = −a, d = −c, f = −e, h = −g. While we can easily solve a specific game given the
payoff parameters, we seek to construct a small set of rules that allow a human to easily
obtain a solution for arbitrary parameter values.

M =

[
(a, b) (c, d)
(e, f ) (g, h)

]
(1)

We first explore the sampling approach. We generated 100,000 2× 2 2-player zero-sum
games with payoffs for the row player chosen uniformly at random in [−1, 1]. We then
used the first k games from this set as training data, for various values of k. For each value
of k, we generated 10,000 new test games with uniform random payoffs. For each test
game, we determine which of the k training games is “closest.” For the distance metric, we
use the L2-norm over vectors for the values (a, c, e, g). We then compute the exploitability
of the previously-computed equilibrium strategies from the closest training game in the
new test game. The average exploitability over the 10,000 games is plotted as a function
of k in Figure 1. From the figure we can see that as the number of training games gets
large the average exploitability approaches zero, as expected. Surprisingly, training on
just the first two games actually produces a very small average exploitability of 0.0129,
while training on all 100,000 produces exploitability 0.0077. The exploitability for 3 training
games is significantly higher than that for 2, and jumps up sharply to a peak of 0.159 for
20 training games before descending towards zero. This erratic behavior shows that, on the
one hand, the L2 distance metric has limitations for this problem and does not lead average
exploitability to decrease monotonically with number of training games as we may expect.
However, it also shows that it may be possible to generate a very small sample of training
games (just 2) that produces a very low average exploitability.

As it turns out, there actually exists a small parametric decision list (PDL) that com-
putes an exact Nash equilibrium for 2× 2 two-player general-sum strategic-form games
(we can view zero-sum games as a special case). This is depicted below, using the notation
for the parameters from Equation (1). We actually output equilibrium strategies for both
players 1 and 2 in our PDL, though in practice we would only need to specify the strategy
for the one player we are interested in. The final condition outputs a mixed strategy for
both players, where the row player plays his strategies with probability p and 1− p while
the column player plays his strategies with probability q and 1− q. This PDL provides a
(4, 2, 0) implementation of the problem of computing a Nash equilibrium in this game class.
A proof of correctness is in Appendix A.

• If a ≥ e and b ≥ d then (1,1).
• Else if c ≥ g and d ≥ b then (1,2).
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• Else if e ≥ a and f ≥ h then (2,1).
• Else if g ≥ c and h ≥ f then (2,2).

• Else ((p, 1− p), (q, 1− q)) for p = h− f
b− f+h−d , q = g−c

a−c+g−e .

Figure 1. Exploitability vs. number of training games for two-player zero-sum games with uniform-
random payoffs in [−1,1], with results averaged over 10,000 test games for each number of train-
ing games.

6. Parametrized Game Examples

In this section we present several examples of realistic games that depict various forms
of our model. In Section 6.1, we present a game we call Simplified Final Jeopardy, which
is a simplified two-player variant of the problem of determining how much to wager in
final jeopardy (we can view it as the three-player version in which the third player has
$0). The three-player version is played for large amounts of money on the popular game
show. We will assume that the player balances are fixed. Our model has two parameters
which denote assessments of the probabilities that each player will answer correctly. We
can assume that the assessments are based on observations of play throughout the game,
as well as the category. These parameters affect the payoffs of the players. So the game
exemplifies payoff parametrization. This game is two-player zero-sum, and we use the
Nash equilibrium approximation/minimum exploitability objective.

In Section 6.2 we consider a generalization of a simplified poker game that has been
widely studied. Kuhn poker was one of the first games studied by game theorists [4].
More recently, it has received significant attention in the artificial intelligence community
as a tractable test problem for equilibrium-finding [5–10] and opponent-exploitation [11]
algorithms. In the standard version, there are two players, each dealt one card from a
three-card deck. We consider a variant in which the deck has n cards. (Previously a version
with a 13-card deck has been studied [12].) The cards represent private information to
the players, and therefore the game exemplifies information parametrization, though no
strategy or payoff parametrization.

Finally in Section 6.3, we study a game model based on the game show Weakest Link.
In the Weakest Link game show, eight contestants answer a series of trivia questions to
accumulate a “bank” of money, with one contestant (the “weakest link”) voted off at each
round. When there are two contestants remaining, they face off for a series of five questions
each, with the winner receiving the entire amount that was banked. In theory the champion
could win “up to a million dollars”, though in practice the total bank ends up being in the
$50k–100k range. When three contestants remain, the players face an interesting strategic
decision of deciding whom to vote for. Our model has five parameters: the total amount
in the bank, assessments of the probability of winning against each opponent in the final
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round, and assessments of voting strategies of the opposing players (the probabilities
that they will vote for each player). Thus, this is a three-player game using the opponent
exploitation metric with strategy parametrization over the opponents’ strategies as well as
payoff parametrization.

These three games exemplify several of the different types of parametrization we
have discussed: payoff, strategy, information, and opponent strategy. They exemplify
the main objectives we have considered: minimizing exploitability for two-player zero-
sum games, and maximizing opponent exploitation in multiplayer games. They also
exemplify several different game classes (two-player zero-sum, imperfect-information, and
multiplayer). These are simplified models of real popular games that are frequently played
for large amounts of money. The purpose of these examples is to demonstrate the realistic
applicability of the new concepts and frameworks we have presented.

In each of the games human players must make their decision under extreme time
pressure in real time without any computational assistance (though of course they can
prepare a strategy in advance). While the optimal strategy can be computed easily in
advance for fixed values of the parameters, the players must be prepared to face any
possible values for the parameters. It turns out that for the games we consider we are able
to construct parametric decision lists with small width and depth that exactly solve the
problem based on the derivation of closed-form solutions. While in general larger games
will clearly often not have closed-form solutions, the new concepts and frameworks can
still be applied, though they may require the development of new focused algorithms.

For each of the games we consider, we present the rules, as well as a small PDL
that exactly optimizes the objective. Full derivations and additional analysis are in
Appendices A–D.

6.1. Final Jeopardy

In the simplified final jeopardy game, two players each have an amount Xi and must
select a non-negative amount wi ≤ Xi to wager. We will assume that X1 = 5, X2 = 3,
and the wi must be non-negative integers. The player who finishes with a higher amount
wins and obtains payoff 1, while the losing player obtains payoff 0 (we can then subtract
0.5 from each payoff to make the game zero sum). If there is a tie, then we assume each
player obtains payoff 0.5. Finally, there are parameters pi that denote the probability that
the players expect player i to correctly answer the question. We assume that these values
are correct and are common knowledge.

For specific fixed values of the parameters p1, p2, the game is a two-player zero-sum
strategic-form game, and can be solved easily using standard algorithms. But such an
approach is not helpful for a human player who must be prepared to be able to quickly con-
struct his strategy in real time for any possible values of the parameters. The parametrized
game is a 6× 4 strategic-form game where the payoffs are functions of the parameters,
and it is not obvious how to compute equilibrium strategies for all possible parameter
values. As it turns out, we can construct the following small PDL which determines exact
equilibrium strategies for all values of the parameters for player 1 (a derivation is provided
in Appendix B).

• If p2 = 0 wager 0.
• Else if p1 = 0 wager 0.
• Else if p1 = 1 wager 2.
• Else if p2 ≥ 1

2 wager 2.

• Otherwise wager 1 with probability x =
(1−p1)(1−2p2)

1−p1+p1 p2
and wager 2 with probability 1− x.

The PDL for player 2 is the following:

• If p2 = 0 wager 0.
• Else if p1 = 0 wager 3.
• Else if p1 = 1 wager 0.
• Else if p1 ≥ 1

2 and p2 ≥ 1
2 wager 2.

• Else if p2 ≥ 1
2 wager 3.
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• Otherwise wager 0 with probability y =
p1 p2

1+p1 p2−p1
and wager 3 with probability 1− y.

6.2. Generalized Kuhn Poker

The rules of three-card Kuhn poker are as follows:

• Two players: A and B
• Both players ante $1
• Deck containing three cards: 1, 2, and 3
• Each player is dealt one card uniformly at random
• Player A acts first and can either bet $1 or check

– If A bets, player B can call or fold

* If A bets and B calls, then whoever has the higher card wins the $4 pot
* If A bets and B folds, then A wins the entire $3 pot

– If A checks, B can bet $1 or check.

* If A checks and B bets, then A can call or fold.

· If A checks, B bets, and A calls, then whoever has the higher card wins
the $4 pot

· If A checks, B bets, and A folds, B wins the $3 pot

* If A and B check, then whoever has the higher card wins the $2 pot

An analysis of the equilibria is provided in Appendix C. The equilibrium strategies
contain some elements of deceptive behavior, as is present in larger variants of poker.
For example, player A sometimes checks with a 3 as a trap or slowplay, and both players
sometimes bet with a 1 as a bluff.

Generalized Kuhn poker has the same rules as standard Kuhn poker except that the
deck contains n cards instead of 3. We will denote the game with n cards by Gn. As it turns
out, we can represent equilibrium strategies for both players in Gn by the following PDL,
which is derived in Appendix C.

1. Player A’s strategy in the first round:

• A always bets if x ≤ b n−1
9 c

• If n 6= 1 mod 9, then A bets with x = d n−1
9 e with probability n−1

9 − b
n−1

9 c
• A always checks if d n−1

9 e < x < b 2n+4
3 c

• A always bets if x ≥ d 2n+4
3 e

• If n 6= 1 mod 3, then A bets with x = b 2n+4
3 c with probability d 2n+4

3 e −
2n+4

3

2. Player B’s strategy facing a bet:

• B always calls if y ≥ d n−1
3 e

• If n 6= 1 mod 3, then B calls with y = b n−1
3 c with probability d n−1

3 e −
n−1

3
• B always folds if y < b n−1

3 c
3. Player B’s strategy facing a check:

• B always bets if y ≤ b n−1
6 c

• If n 6= 1 mod 6, then B bets with y = d n−1
6 e with probability n−1

6 − b
n−1

6 c
• B always checks if d n−1

6 e < y < b n+3
2 c

• B always bets if y ≥ d n+3
2 e

• If n 6= 1 mod 2, then B bets with y = b n+3
2 c with probability d n+3

2 e −
n+3

2

4. Player A’s strategy after A checks and B bets:

• A always calls if x ≥ d n+5
3 e

• If n 6= 1 mod 3, then A calls with x = b n+5
3 c with probability d n+5

3 e −
n+5

3
• A always folds otherwise
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6.3. Weakest Link

Our final example game is a model for the final voting round (three players remain)
in the show Weakest Link. Suppose that the total amount of money to be awarded to the
winner is W > 0 (the loser gets $0). Suppose that if you are head-to-head against opponent
1 you will win with probability p1, and against opponent 2 you will win with probability
p2. Assume that player 2 is stronger than player 1, so that p1 > p2. Finally, assume that
player 1 will vote for you with probability y1 (and therefore will vote for player 2 with
probability 1-y1), and that player 2 will vote for you with probability y2. We will assume
that clearly no player will vote for themselves. See Appendix D for further details.

If there is a three-way tie, we will assume that each player is voted out with probability
1/3. (In reality, the “statistically strongest link” from the previous round gets to cast a tie-
breaking vote, but we will ignore this aspect of the problem to simplify the analysis.) Under
this assumption, our expected payoff in the case of a tie equals 1/3(W ∗ p1) + 1/3(W ∗
p2) + 1/3 ∗ 0 = W(p1 + p2)/3.

Using this game model, our analysis (provided in Appendix D) shows that we should
vote for player 1 if the following condition is met (and otherwise should vote for player 2):

2y1 p2 + y2 p2 + 3y1y2 p1 ≥ 2y2 p1 + y1 p1 + 3y1y2 p2.

This constitutes an optimal depth 1 PDL for the objective. If p2 ≤ p1
2 , then it is always

optimal to vote for player 2 (the stronger player) regardless of your beliefs of the strategies
taken by the other players.

7. Related Research

The current state of the art for creating strong game-theoretic strategies is to train an
algorithm on a supercomputer for a significant period of time for one specific value of
the game parameters. For example, strong agents were recently developed for two-player
no-limit Texas hold ’em assuming that both players start with 200 times the big blind [1,2].
The strategies are typically stored in a large binary file and looked up during runtime. In
real poker the values of the stack sizes relative to the blinds often change, and can be viewed
as parameters. The standard approach would require performing a massive computation
for each possible value of the parameters, which is intractable. Human poker players must
devise a strategy for any possible combination of stack sizes. So for the realistic version of
poker and many other games, which are naturally modeled as parametrized games, the
standard existing approaches are inadequate.

There has recently been some recent work exploring the construction of human-
understandable strategy rules in the parametrized setting. One paper showed that equi-
librium strategies for endgames in two-player limit Texas hold ’em conform to one of
three qualitative models, which enabled improved equilibrium computation algorithms [6].
Recent work in other imperfect-information poker games has applied machine learning
algorithms (decision trees and regression) to compute human-understandable rules for
fundamental situations: when a player should make a very large or small bet, and when a
player should call a bet by the opponent [13,14]. The former can be viewed as a special case
of the current work, and the latter computes a single general “rule of thumb” while the
approach in this paper constructs a full strategy for a human player for all possible values
of the game parameters.

There has also been some recent study of theoretical properties of certain classes of
parametrized games in game theory literature [15,16].

8. Conclusions

We presented a new framework that enables human decision makers to make fast
decisions without the aid of real-time solvers. In many settings it is unrealistic to assume
that a human strategic player can perform complex computations in real time in a matter
of minutes or seconds. Many real-world settings also contain parameters whose values
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are unknown until runtime, and it is infeasible to solve for all possible parameter values
using the standard existing game-solving approaches. If a concise parametric decision
list can be constructed for a given game and objective, then a human can quickly execute
the corresponding strategy for any value of the parameters encountered. We presented
several examples of realistic scenarios that demonstrate applicability to a variety of situa-
tions including settings with multiple players and imperfect information, and to different
objectives such as minimizing exploitability and maximizing exploitation of opponents.

While we have constructed optimal PDLs analytically for several example games, this
may not be possible in general. In the future we plan to explore algorithms for computing
small PDLs that achieve low objective error. Such algorithms are needed to achieve large-
scale applicability of the new framework. Given the similarities to decision trees and
decision lists, algorithms for computing those models may be useful for PDLs [17]. We
would also like to perform experiments on human subjects to determine the practical
usefulness of the PDL representation for human strategic decision-making in realistic
complex games.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Uniform Random 2 × 2 Two-Player Strategic-Form Games

Consider the game defined by matrix M in Equation (A1). If the top-left cell is a
pure-strategy equilibrium, then we must have a ≥ e and b ≥ d. The analysis is identical
for the other pure strategy profiles. Next, suppose there is a Nash equilibrium where one
player has support of size 2 and the other player has support of size 1. Without loss of
generality, suppose the column player’s strategy has support of size 1 (Left) and the row
player’s strategy has support of size 2 (suppose it puts probability p on Top and 1− p on
Bottom). Player 1 must be indifferent between his two strategies, so a = e. Player 2 cannot
prefer R to L, so

pb + (1− b) f ≥ pd + (1− b)h.

If b < d and f < h, then we would have

pb + (1− b) f < pd + (1− b)h,

which produces a contradiction. So we must have b ≥ d or f ≥ h. If b ≥ d, then (T, L)
is a pure-strategy equilibrium, and if f ≥ h then (B, L) is a pure-strategy equilibrium.
So the existence of a Nash equilibrium with support size 1 for one player and 2 for the
other player implies the existence of a pure-strategy Nash equilibrium. Therefore, if no
pure-strategy Nash equilibrium exists, then there must be a Nash equilibrium where both
players’ strategies have support size 2. In this case it can be shown straightforwardly
that the row player plays T with probability h− f

b− f+h−d and column player plays L with

probability g−c
a−c+g−e . This produces the PDL given below.

M =

[
(a, b) (c, d)
(e, f ) (g, h)

]
(A1)

• If a ≥ e and b ≥ d then (1,1).
• Else if c ≥ g and d ≥ b then (1,2).
• Else if e ≥ a and f ≥ h then (2,1).
• Else if g ≥ c and h ≥ f then (2,2).

• Else ((p, 1− p), (q, 1− q)) for p = h− f
b− f+h−d , q = g−c

a−c+g−e .
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Appendix B. Simplified Two-Player Final Jeopardy

In the two-player Final Jeopardy game, players have an amount Xi and each player
must select a non-negative amount wi ≤ Xi to wager, where Xi and wi are non-negative
integers. The player who finishes with a higher amount wins and obtains payoff 1, while the
losing player obtains payoff 0 (we can then subtract 0.5 from each payoff to make the game
zero sum). If there is a tie, then we assume each player obtains payoff 0.5. Finally, there
are parameters pi that denote the probability that the players expect player i to correctly
answer the question. We assume that these values are correct and are common knowledge.

In the simplified version we consider, the values X1 = 5, X2 = 3 are fixed. For specific
fixed values of the parameters p1, p2, the game is two-player zero-sum strategic form game,
and can be solved easily using standard algorithms. But such an approach is not helpful
for a human player who must be prepared to be able to quickly construct his strategy in
real time for any possible values of p1 and p2.

• If player 1 wagers 0 and player 2 wagers 0, then player 1 wins with probability 1. So
player 1’s expected payoff is 1− 0.5 = 0.5. (Note that we are counting a win as having
payoff 0.5, a loss as having payoff -0.5, and tie as having payoff 0, so that the game is
zero sum.)

• If player 1 wagers 0 and player 2 wagers 1, then player 1 also wins with probability 1.
So player 1’s expected payoff is 1− 0.5 = 0.5.

• If player 1 wagers 0 and player 2 wagers 2, then player 1 wins with probability 1− p2,
and the players tie with probability p2. So player 1’s expected payoff is 1− p2 + 0.5p2−
0.5 = 0.5− 0.5p2.

• If player 1 wagers 0 and player 2 wagers 3, then player 1 wins with probability 1− p2,
and player 2 wins with probability p2. So player 1’s expected payoff is 1− p2 − 0.5 =
0.5− p2.

• If player 1 wagers 1 and player 2 wagers 0, then player 1 wins with probability 1. So
player 1’s expected payoff is 1− 0.5 = 0.5.

• If player 1 wagers 1 and player 2 wagers 1, then player 1 wins with probability
p1 + (1− p1)(1− p2), and the players tie with probability (1− p1)p2. So player 1’s
expected payoff is

p1 +(1− p1)(1− p2)+ 0.5(1− p1)p2− 0.5 = p1 + 1− p1− p2 + p1 p2 + 0.5p2− 0.5p1 p2− 0.5 = 0.5p1 p2− 0.5p2 + 0.5.

• If player 1 wagers 1 and player 2 wagers 2, then player 1 wins with probability
p1 + (1− p1)(1− p2), and player 2 wins with probability (1− p1)p2. So player 1’s
expected payoff is

p1 + (1− p1)(1− p2)− 0.5 = p1 + 1− p1 − p2 − 0.5 = 0.5− p2.

• If player 1 wagers 1 and player 2 wagers 3, then player 1 wins with probability 1− p2,
player 2 wins with probability (1− p1)p2, and the players tie with probability p1 p2.
So player 1’s expected payoff is

1− p2 + 0.5p1 p2 − 0.5 = 0.5 + 0.5p1 p2 − p2.

• If player 1 wagers 2 and player 2 wagers 0, then player 1 wins with probability p1,
and the players tie with probability 1− p1. So player 1’s expected payoff is

p1 + 0.5(1− p1)− 0.5 = p1 + 0.5− 0.5p1 − 0.5 = 0.5p1.

• If player 1 wagers 2 and player 2 wagers 1, then player 1 wins with probability
p1 + (1− p1)(1− p2), and player 2 wins with probability (1− p1)p2. So player 1’s
expected payoff is

p1 + (1− p1)(1− p2)− 0.5 = p1 + 1− p1 − p2 + p1 p2 − 0.5 = 0.5− p2 + p1 p2.
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• If player 1 wagers 2 and player 2 wagers 2, then player 1 wins with probability
p1 + (1− p1)(1− p2), and player 2 wins with probability (1− p1)p2. So player 1’s
expected payoff is

p1 + (1− p1)(1− p2)− 0.5 = p1 + 1− p1 − p2 + p1 p2 − 0.5 = 0.5− p2 + p1 p2.

• If player 1 wagers 2 and player 2 wagers 3, then player 1 wins with probability
p1 + (1− p1)(1− p2), and player 2 wins with probability (1− p1)p2. So player 1’s
expected payoff is

p1 + (1− p1)(1− p2)− 0.5 = p1 + 1− p1 − p2 + p1 p2 − 0.5 = 0.5− p2 + p1 p2.

• If player 1 wagers 3 and player 2 wagers 0, then player 1 wins with probability p1,
and player 2 wins with probability 1− p1. So player 1’s expected payoff is p1 − 0.5.

• If player 1 wagers 3 and player 2 wagers 1, then player 1 wins with probability
p1, player 2 wins with probability (1− p1)p2, and the players tie with probability
(1− p1)(1− p2). So player 1’s expected payoff is

p1 + 0.5(1− p1)(1− p2)− 0.5 = p1 + 0.5− 0.5p1 − 0.5p2 + 0.5p1 p2 − 0.5 = 0.5p1 p2 + 0.5p1 − 0.5p2.

• If player 1 wagers 3 and player 2 wagers 2, then player 1 wins with probability
p1 + (1− p1)(1− p2), and player 2 wins with probability (1− p1)p2. So player 1’s
expected payoff is

p1 + (1− p1)(1− p2)− 0.5 = p1 + 1− p1 − p2 + p1 p2 − 0.5 = 0.5− p2 + p1 p2.

• If player 1 wagers 3 and player 2 wagers 3, then player 1 wins with probability
p1 + (1− p1)(1− p2), and player 2 wins with probability (1− p1)p2. So player 1’s
expected payoff is

p1 + (1− p1)(1− p2)− 0.5 = p1 + 1− p1 − p2 + p1 p2 − 0.5 = 0.5− p2 + p1 p2.

• If player 1 wagers 4 and player 2 wagers 0, then player 1 wins with probability p1,
and player 2 wins with probability 1− p1. So player 1’s expected payoff is p1 − 0.5.

• If player 1 wagers 4 and player 2 wagers 1, then player 1 wins with probability p1,
and player 2 wins with probability 1− p1. So player 1’s expected payoff is p1 − 0.5.

• If player 1 wagers 4 and player 2 wagers 2, then player 1 wins with probability
p1, player 2 wins with probability (1− p1)p2, and the players tie with probability
(1− p1)(1− p2). So player 1’s expected payoff is

p1 + 0.5(1− p1)(1− p2)− 0.5 = p1 + 0.5− 0.5p1 − 0.5p2 + 0.5p1 p2 − 0.5 = 0.5p1 p2 + 0.5p1 − 0.5p2.

• If player 1 wagers 4 and player 2 wagers 3, then player 1 wins with probability
p1 + (1− p1)(1− p2), and player 2 wins with probability (1− p1)p2. So player 1’s
expected payoff is

p1 + (1− p1)(1− p2)− 0.5 = p1 + 1− p1 − p2 + p1 p2 − 0.5 = 0.5− p2 + p1 p2.

• If player 1 wagers 5 and player 2 wagers 0, then player 1 wins with probability p1,
and player 2 wins with probability 1− p1. So player 1’s expected payoff is p1 − 0.5.

• If player 1 wagers 5 and player 2 wagers 1, then player 1 wins with probability p1,
and player 2 wins with probability 1− p1. So player 1’s expected payoff is p1 − 0.5.

• If player 1 wagers 5 and player 2 wagers 2, then player 1 wins with probability p1,
and player 2 wins with probability 1− p1. So player 1’s expected payoff is p1 − 0.5.
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• If player 1 wagers 5 and player 2 wagers 3, then player 1 wins with probability
p1, player 2 wins with probability (1− p1)p2, and the players tie with probability
(1− p1)(1− p2). So player 1’s expected payoff is

p1 + 0.5(1− p1)(1− p2)− 0.5 = p1 + 0.5− 0.5p1 − 0.5p2 + 0.5p1 p2 − 0.5 = 0.5p1 p2 + 0.5p1 − 0.5p2.

The game corresponds to the following payoff matrix, where the payoffs are for player
1 (we assume that player 1 is the row player and player 2 is the column player).

0.5 0.5 0.5− 0.5p2 0.5− p2
0.5 0.5p1 p2 − 0.5p2 + 0.5 0.5− p2 0.5 + 0.5p1 p2 − p2

0.5p1 0.5− p2 + p1 p2 0.5− p2 + p1 p2 0.5− p2 + p1 p2
p1 − 0.5 0.5p1 p2 + 0.5p1 − 0.5p2 0.5− p2 + p1 p2 0.5− p2 + p1 p2
p1 − 0.5 p1 − 0.5 0.5p1 p2 + 0.5p1 − 0.5p2 0.5− p2 + p1 p2
p1 − 0.5 p1 − 0.5 p1 − 0.5 0.5p1 p2 + 0.5p1 − 0.5p2

 (A2)

The payoff matrix for player 2 is the following (it is the same matrix with all pay-
offs negated):

−0.5 −0.5 −0.5 + 0.5p2 −0.5 + p2
−0.5 −0.5p1 p2 + 0.5p2 − 0.5 −0.5 + p2 −0.5− 0.5p1 p2 + p2
−0.5p1 −0.5 + p2 − p1 p2 −0.5 + p2 − p1 p2 −0.5 + p2 − p1 p2
−p1 + 0.5 −0.5p1 p2 − 0.5p1 + 0.5p2 −0.5 + p2 − p1 p2 −0.5 + p2 − p1 p2
−p1 + 0.5 −p1 + 0.5 −0.5p1 p2 − 0.5p1 + 0.5p2 −0.5 + p2 − p1 p2
−p1 + 0.5 −p1 + 0.5 −p1 + 0.5 −0.5p1 p2 − 0.5p1 + 0.5p2

 (A3)

• (0,0) is a Nash equilibrium if p2 = 0.
• Else (0,3) is a Nash equilibrium if p1 = 0.
• Else (2,0) is a Nash equilibrium if p1 = 1.
• Else (2,2) is a Nash equilibrium if p1 ≥ 1

2 , p2 ≥ 1
2 .

• Else (2,3) is a Nash equilibrium if p1 < 1
2 , p2 ≥ 1

2 .

• Else P1 wagers 1 with probability x = (1−p1)(1−2p2)
1−p1+p1 p2

and wagers 2 with probability

1− x, and P2 wagers 0 with probability y = p1 p2
1+p1 p2−p1

and 3 with probability 1− y is

a Nash equilibrium if p2 < 1
2 .

Expected payoff for player 1 against this strategy is:

0.5y + (1− y)(0.5 + 0.5p1 p2 − p2)

= 0.5y + 0.5 + 0.5p1 p2 − p2 − 0.5y− 0.5yp1 p2 + yp2

= 0.5 + 0.5p1 p2 − p2 − 0.5yp1 p2 + yp2

= 0.5 + 0.5p1 p2 − p2 + y(p2 − 0.5p1 p2)

= 0.5 + 0.5p1 p2 − p2 +
p1 p2(p2 − 0.5p1 p2)

1 + p1 p2 − p1

=
(0.5 + 0.5p1 p2 − p2)(1 + p1 p2 − p1) + p1 p2(p2 − 0.5p1 p2)

1 + p1 p2 − p1

=
0.5 + 0.5p1 p2 − 0.5p1 + 0.5p1 p2 + 0.5p2

1 p2
2 − 0.5p2

1 p2 − p2 − p1 p2
2 + p1 p2 + p1 p2

2 − 0.5p2
1 p2

2
1 + p1 p2 − p1

=
0.5 + 2p1 p2 − 0.5p1 − 0.5p2

1 p2 − p2

1 + p1 p2 − p1
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Expected payoff for player 1 wagering 0 against this strategy:

0.5y + (1− y)(0.5− p2) = 0.5y + 0.5− p2 + 0.5y + yp2 = 0.5− p2 + y(1 + p2)

Suppose this exceeds the payoff of playing the above strategy. Then

0.5− p2 + y(1 + p2) > 0.5 + 0.5p1 p2 − p2 + y(p2 − 0.5p1 p2)

y + yp2 > 0.5p1 p2 + yp2 − 0.5p1 p2
2

y > 0.5p1 p2 − 0.5p1 p2
2

p1 p2

1 + p1 p2 − p1
> 0.5p1 p2 − 0.5p1 p2

2

p1 p2 > (0.5p1 p2 − 0.5p1 p2
2)(1 + p1 p2 − p1)

p1 p2 > 0.5p1 p2 + 0.5p2
1 p2

2 − 0.5p2
1 p2 − 0.5p1 p2

2 − 0.5p2
1 p3

2 + 0.5p2
1 p2

2

0 > −0.5p1 p2 + p2
1 p2

2 − 0.5p2
1 p2 − 0.5p1 p2

2 − 0.5p2
1 p3

2

0 > p1 p2 + 2p2
1 p2

2 − p2
1 p2 − p1 p2

2 − p2
1 p3

2

0 > 1 + 2p1 p2 − p1 − p2 − p2
2

which always false for p2 < 1
2 .

Expected payoff for player 1 wagering 3 against this strategy:

y(p1 − 0.5) + (1− y)(0.5− p2 + p1 p2)

= yp1 − 0.5y + 0.5− p2 + p1 p2 − 0.5y + yp2 − yp1 p2

= yp1 − y + 0.5− p2 + p1 p2 + yp2 − yp1 p2

= 0.5− p2 + p1 p2 + y(p1 − 1 + p2 − p1 p2)

Suppose this exceeds the payoff of playing the above strategy. Then

0.5− p2 + p1 p2 + y(p1 − 1 + p2 − p1 p2) > 0.5 + 0.5p1 p2 − p2 + y(p2 − 0.5p1 p2)

0.5p1 p2 + y(p1 − 1− 0.5p1 p2) > 0

0.5p1 p2 +
p1 p2(p1 − 1− 0.5p1 p2)

1 + p1 p2 − p1
> 0

0.5p1 p2(1 + p1 p2 − p1) + p1 p2(p1 − 1− 0.5p1 p2) > 0

0.5p1 p2 + 0.5p2
1 p2

2 − 0.5p2
1 p2 + p2

1 p2 − p1 p2 − 0.5p2
1 p2

2 > 0

−0.5p1 p2 + 0.5p2
1 p2 > 0

−0.5 + 0.5p1 > 0

p1 > 1

which is a contradiction.
Expected payoff for player 1 wagering 4 against this strategy is identical to the expected

payoff of wagering 3, so the same argument will apply.
Expected payoff for player 1 wagering 5 against this strategy:

y(p1 − 0.5) + (1− y)(−0.5p1 p2 − 0.5p1 + 0.5p2)

= yp1 − 0.5y− 0.5p1 p2 − 0.5p1 + 0.5p2 + 0.5yp1 p2 + 0.5yp1 − 0.5yp2

= 1.5yp1 − 0.5y− 0.5p1 p2 − 0.5p1 + 0.5p2 + 0.5yp1 p2 − 0.5yp2
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= −0.5p1 p2 − 0.5p1 + y(1.5p1 − 0.5 + 0.5p1 p2 − 0.5p2)

Suppose this exceeds the payoff of playing the above strategy. Then

= −0.5p1 p2 − 0.5p1 + y(1.5p1 − 0.5 + 0.5p1 p2 − 0.5p2) > 0.5 + 0.5p1 p2 − p2 + y(p2 − 0.5p1 p2)

−0.5− p1 p2 − 0.5p1 + p2 + y(1.5p1 − 0.5 + p1 p2 − 1.5p2) > 0

−0.5− p1 p2 − 0.5p1 + p2 +
p1 p2(1.5p1 − 0.5 + p1 p2 − 1.5p2)

1 + p1 p2 − p1
> 0

(−0.5− p1 p2 − 0.5p1 + p2)(1 + p1 p2 − p1) + p1 p2(1.5p1 − 0.5 + p1 p2 − 1.5p2) > 0

−0.5− p1 p2 − 0.5p1 + p2 − 0.5p1 p2 − p2
1 p2

2 − 0.5p2
1 p2 + p1 p2

2 + 0.5p1 + p2
1 p2 + 0.5p2

1 − p1 p2 + 1.5p2
1 p2 − 0.5p1 p2 + p2

1 p2
2 − 1.5p1 p2

2 > 0

−0.5− 3p1 p2 + p2 + 2p2
1 p2 − 0.5p1 p2

2 + 0.5p2
1 > 0

Derivative with respect to p2 and setting to 0 gives

p2 =
1− 3p1 + 2p2

1
p1

For this to be between 0 and 1
2 , we must have 0.35 ≤ p1 ≤ 0.5.

−0.5− 3p1
1− 3p1 + 2p2

1
p1

+
1− 3p1 + 2p2

1
p1

+ 2p2
1

1− 3p1 + 2p2
1

p1
− 0.5p1

(
1− 3p1 + 2p2

1
p1

)2

+ 0.5p2
1 > 0

−0.5p1 − 3p1(1− 3p1 + 2p2
1) + (1− 3p1 + 2p2

1) + 2p2
1(1− 3p1 + 2p2

1)− 0.5(1− 3p1 + 2p2
1)

2 + 0.5p3
1 > 0

−0.5p1 − 3p1 + 9p2
1 − 6p3

1 + 1− 3p1 + 2p2
1 + 2p2

1 − 6p3
1 + 4p4

1 − 0.5(1 + 9p2
1 + 4p4

1 − 6p1 + 4p2
1 − 12p3

1) + 0.5p3
1 > 0

−0.5p1 − 3p1 + 9p2
1 − 6p3

1 + 1− 3p1 + 2p2
1 + 2p2

1 − 6p3
1 + 4p4

1 − 0.5− 4.5p2
1 − 2p4

1 + 3p1 − 2p2
1 + 6p3

1 + 0.5p3
1 > 0

0.5− 3.5p1 + 6.5p2
1 − 5.5p3

1 + 2p4
1 > 0

The LHS is always negative for 0.35 ≤ p1 ≤ 0.5. So we have a contradiction, and we
have shown that player 1 can’t profitably deviate.

Expected payoff for player 2 against the strategy of player 1:

−0.5p1 + x(0.5p1 − 0.5)

=
−0.5− 2p1 p2 + 0.5p1 + 0.5p2

1 p2 + p2

1 + p1 p2 − p1

Expected payoff for player 2 wagering 1 against this strategy:

x(−0.5p1 p2 + 0.5p2 − 0.5) + (1− x)(−0.5 + p2 − p1 p2)

= −0.5xp1 p2 + 0.5xp2 − 0.5x− 0.5 + p2 − p1 p2 + 0.5x− xp2 + xp1 p2

= 0.5xp1 p2 − 0.5xp2 − 0.5 + p2 − p1 p2

= −0.5 + p2 − p1 p2 + x(0.5p1 p2 − 0.5p2)

Suppose this exceeds the payoff of playing the above strategy. Then

= −0.5 + p2 − p1 p2 + x(0.5p1 p2 − 0.5p2) > −0.5p1 + x(0.5p1 − 0.5)

−0.5 + p2 − p1 p2 + 0.5p1 + x(0.5p1 p2 − 0.5p2 − 0.5p1 + 0.5) > 0

(−0.5 + p2 − p1 p2 + 0.5p1)(1− p1 + p1 p2) + (1− p1)(1− 2p2)(0.5p1 p2 − 0.5p2 − 0.5p1 + 0.5) > 0

−0.5 + 0.5p1 − 0.5p1 p2 + p2 − p1 p2 + p1 p2
2 − p1 p2 + p2

1 p2 − p2
1 p2

2 + 0.5p1 − 0.5p2
1 + 0.5p2

1 p2

+0.5p1 p2 − 0.5p2 − 0.5p1 + 0.5− 0.5p2
1 p2 + 0.5p1 p2 + 0.5p2

1 − 0.5p1 − p1 p2
2 + p2

2 + p1 p2 − p2 > 0
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−0.5p1 p2 − 0.5p2 + p2
1 p2 − p2

1 p2
2 + p2

2 > 0

−0.5p1 − 0.5 + p2
1 − p2

1 p2 + p2 > 0

This is never true for p2 < 1
2 . So we have a contradiction.

Expected payoff for player 2 wagering 2 against this strategy:

x(−0.5 + p2) + (1− x)(−0.5 + p2 − p1 p2)

= −0.5x + xp2 − 0.5 + p2 − p1 p2 + 0.5x− xp2 + xp1 p2

= −0.5 + p2 − p1 p2 + xp1 p2

Suppose this exceeds the payoff of playing the above strategy. Then

(−0.5 + p2 − p1 p2)(1− p1 + p1 p2) + p1 p2(1− p1)(1− 2p2) > 0

−0.5 + p2 − p1 p2 + 0.5p1 − p1 p2 + p2
1 p2 − 0.5p1 p2 + p1 p2

2 − p2
1 p2

2 + p1 p2 − p2
1 p2 − 2p1 p2

2 + 2p2
1 p2

2 > 0

−0.5 + p2 − 1.5p1 p2 + 0.5p1 − p1 p2
2 + p2

1 p2
2 > 0

Taking derivative wrt p2 and setting to 0 gives

p2 =
2− 3p1

4p1 − 4p2
1

To obtain 0 < p2 < 1
2 , we must have 0.5 < p1 < 2

3 .

−0.5 +
2− 3p1

4p1 − 4p2
1
− 1.5p1

2− 3p1

4p1 − 4p2
1
+ 0.5p1 − p1

(
2− 3p1

4p1 − 4p2
1

)2

+ p2
1

(
2− 3p1

4p1 − 4p2
1

)2

> 0

−0.5(4p1 − 4p2
1)

2 + (2− 3p1)(4p1 − 4p2
1)− 1.5p1(2− 3p1)(4p1 − 4p2

1) + 0.5p1(4p1 − 4p2
1)

2 − p1(2− 3p1)
2 + p2

1(2− 3p1)
2 > 0

−0.5p1(4− 4p1)
2 + (2− 3p1)(4− 4p1)− 1.5p1(2− 3p1)(4− 4p1) + 0.5p2

1(4− 4p1)
2 − (2− 3p1)

2 + p1(2− 3p1)
2 > 0

−8p1 + 16p2
1− 8p3

1 + 8− 8p1− 12p1 + 12p2
1− 12p1 + 12p2

1 + 18p2
1− 18p3

1 + 8p2
1− 16p3

1 + 8p4
1− 4+ 12p1− 9p2

1 + 4p1− 12p2
1 + 9p3

1 > 0

8x4 − 33x3 + 45x2 − 24x + 4 > 0

The LHS is always negative for 0.5 < p1 < 2
3 . So we have a contradiction, and we

have shown that player 2 can’t profitably deviate.

Appendix C. Generalized Kuhn Poker

Kuhn poker was one of the first games studied by game theorists and was developed
by Harold Kuhn in 1950 [4]. More recently, it has received significant attention in the
artificial intelligence community as a tractable test problem for equilibrium-finding [5–10]
and opponent-exploitation [11] algorithms. In the standard version, there are two players,
each dealt one card from a three-card deck. We consider a variant in which the deck has n
cards. (Previously a version with a 13-card deck has been studied [12]).

Appendix C.1. Three Card Kuhn Poker

• Two players: A and B
• Both players ante $1
• Deck containing three cards: 1, 2, and 3
• Each player is dealt one card uniformly at random
• Player A acts first and can either bet $1 or check

– If A bets, player B can call or fold

* If A bets and B calls, then whoever has the higher card wins the $4 pot
* If A bets and B folds, then A wins the entire $3 pot

– If A checks, B can bet $1 or check.
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* If A checks and B bets, then A can call or fold.

· If A checks, B bets, and A calls, then whoever has the higher card wins
the $4 pot

· If A checks, B bets, and A folds, then B wins the $3 pot

* If A checks and B checks, then whoever has the higher card wins the $2 pot

It is known that for any 0 ≤ α ≤ 1 the following strategy profile is an equilibrium (and
that these are all the equilibria) [4].

• A bets with a 1 in the first round with probability α
3

• A always checks with a 2 in the first round
• A bets with a 3 in the first round with probability α
• If A bets in the first round, then:

– B always folds with a 1
– B calls with a 2 with probability 1

3
– B always calls with a 3

• If A checks in the first round, then:

– B bets with a 1 with probability 1
3

– B always checks with a 2
– B always bets with a 3

• If A checks and B bets, then:

– A always folds with a 1
– A calls with a 2 with probability α

3 + 1
3

– A always calls with a 3

Several immediate observations can be made from the equilibria of three-card Kuhn
poker.

• There are infinitely many equilibria
• There are no pure strategy equilibria
• Equilibrium strategies contain some elements of deceptive behavior. For example,

player A sometimes checks with a 3 as a trap or slowplay, and both players sometimes
bet with a 1 as a bluff.

Generalized Kuhn poker (GKP) has the same rules as standard Kuhn poker except
that the deck contains n cards instead of 3. We will denote the game with n cards by Gn.
Unlike the n = 3 case, no closed-form solution has previously been derived for general n.
We compute the solution to this game for the first time and present it below.

Appendix C.2. Solution to Generalized Kuhn Poker

• Player A’s strategy in the first round:

– A always bets if x ≤ b n−1
9 c

– If n 6= 1 mod 9, then A bets with x = d n−1
9 e with probability n−1

9 − b
n−1

9 c
– A always checks if d n−1

9 e < x < b 2n+4
3 c

– A always bets if x ≥ d 2n+4
3 e

– If n 6= 1 mod 3, then A bets with x = b 2n+4
3 c with probability d 2n+4

3 e −
2n+4

3

• Player B’s strategy facing a bet:

– B always calls if y ≥ d n−1
3 e

– If n 6= 1 mod 3, then B calls with y = b n−1
3 c with probability d n−1

3 e −
n−1

3
– B always folds if y < b n−1

3 c
• Player B’s strategy facing a check:

– B always bets if y ≤ b n−1
6 c

– If n 6= 1 mod 6, then B bets with y = d n−1
6 e with probability n−1

6 − b
n−1

6 c
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– B always checks if d n−1
6 e < y < b n+3

2 c
– B always bets if y ≥ d n+3

2 e
– If n 6= 1 mod 2, then B bets with y = b n+3

2 c with probability d n+3
2 e −

n+3
2

• Player A’s strategy after A checks and B bets:

– A always calls if x ≥ d n+5
3 e

– If n 6= 1 mod 3, then A calls with x = b n+5
3 c with probability d n+5

3 e −
n+5

3
– A always folds otherwise

Appendix C.3. Proof of Correctness

• B is facing a bet from A.
Note that for all n ≥ 3, we have⌈

n− 1
9

⌉
≤
⌊

n− 1
3

⌋
≤
⌈

n− 1
3

⌉
≤
⌊

2n + 4
3

⌋
– B is dealt y ≥ d n−1

3 e
A is bluffing with probability (

n−1
9

)
(

n−1
9

)
+
(

n−1
3

) =
1
4

.

B wins the pot whenever A is bluffing, and either wins or loses when A is value
betting. Therefore, his expected payoff of calling is at least

1
4
· $3− 3

4
· $1 = $0.

Since his expected payoff of folding would be $0, calling is a best response.
– B is dealt y = b n−1

3 c
The analysis of the previous case shows that B will obtain an expected payoff
of $0 by both calling and folding, and is therefore indifferent between the two
actions.

– B is dealt y < b n−1
3 c

Now B loses whenever A is value betting, and either wins or loses when A
is bluffing. So his expected payoff of calling is at most $0, and folding is a
best response.

• A checked in the first round and is facing a bet from B. Note that for all n ≥ 3, we have⌈
n− 1

6

⌉
≤
⌊

n− 1
3

⌋
≤
⌈

n− 1
3

⌉
≤
⌊

n + 3
2

⌋
– A is dealt x ≥ d n−1

3 e
B is bluffing with probability (

n−1
6

)
(

n−1
6

)
+
(

n−1
2

) =
1
4

.

A wins the pot whenever B is bluffing, and either wins or loses when B is value
betting. Therefore, his expected payoff of calling is at least

1
4
· $3− 3

4
· $1 = $0.

Since his expected payoff of folding would be $0, calling is a best response.
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– A is dealt x = b n−1
3 c

The analysis of Case Appendix C.3 shows that A will obtain an expected payoff
of $0 by both calling and folding, and is therefore indifferent between the two
actions.

– A is dealt x < b n−1
3 c

Now A loses whenever B is value betting, and either wins or loses when B is
bluffing. So his expected payoff of calling is at most $0, and folding is a best
response.

Proof of optimality can be shown similarly for the other cases, which we omit
for brevity.

Appendix D. Weakest Link

In the Weakest Link game show, eight contestants answer a series of trivia questions
to accumulate a “bank” of money, with one contestant (the “weakest link”) voted off at
each round. When there are two contestants remaining, they face off for a series of five
questions each, with the winner receiving the entire amount that was banked. In theory the
champion could win “up to a million dollars”, but in practice the total bank ends up being
in the 40k–80k range.

For the first several rounds, it makes a lot of sense to vote for players who are actually
the “weakest”, since they will be less likely to answer questions correctly and contribute
to increasing the amount in the bank throughout the game. But in the final voting round
(when three contestants remain), it becomes pretty clear that you should actually vote off
the “strongest” player so that you can go up against a weaker opponent in the final round.

However, this analysis for the final voting round makes several assumptions, which
may not hold in practice. First, it assumes that it is clear to you, and to the other players,
who the strongest player remaining actually is (and if it is you, then you are screwed). This
may be difficult to assess over the relatively small sample of questions each player is given
during the game. For example, player A may have correctly answered more questions than
player B, but A might have also received easier questions. Furthermore, while it may be
evident to you that player A is the strongest contestant, it may not be obvious to player B.
If B incorrectly perceives you to be stronger than A and votes for you, while A votes for B,
then it is clearly optimal for you to vote for B despite the fact that B is weaker than A.

A second issue is that, regardless of whether the opponents’ perceptions of abilities are
correct, they may not understand that they actually want to eliminate the strongest player
as opposed to the weakest player in the final voting round. While it seems obvious that
one wants to go head-to-head against the weaker remaining opponent, often I see players
voting for the clearly weaker remaining opponent. In the interview of the final contestant
eliminated, often their explanation makes it clear that they are not aware of the fact that
players would prefer to vote off the strongest player in the last round.

Considering these additional factors, it may actually be optimal under certain circum-
stances to vote for the weaker remaining contestant, as opposed to the “obviously optimal
strategy” of voting for the strongest one (I already gave one example above).

To construct our model, suppose that the total amount of money in the bank to be
awarded to the winner is W > 0 (the loser gets $0). Suppose that if you are head-to-head
against opponent 1 you will win with probability p1, and against opponent 2 you will win
with probability p2. Assume that player 2 is stronger than player 1, so that p1 > p2. Finally,
assume that player 1 will vote for you with probability y1 (and therefore will vote for player
2 with probability 1-y1), and that player 2 will vote for you with probability y2. We will
assume that obviously no player will vote for themselves.

If there is a three-way tie, we will assume that each player is voted out with probability
1/3. (In reality, the “statistically strongest link” from the previous round gets to cast a
tie-breaking vote, which is obviously very relevant, but for simplicity I will ignore this
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aspect of the problem to simplify the analysis). So under this assumption, our expected
payoff in the case of a tie equals:

1
3
(W ∗ p1) +

1
3
(W ∗ p2) +

1
3
∗ 0 =

W(p1 + p2)

3

Given this model and assumptions, we now compute your optimal voting strategy.
Observe that if both players vote for you, then your vote is irrelevant, since you will be
eliminated regardless. So the only relevant cases to consider are when P1 votes for you and
P2 votes for P1, and when P2 votes for you and P1 votes for P2.

• P1 votes for you, P2 votes for P1:
If you vote for P1, you will go head-to-head against P2 and obtain expected pay-
off p2W.
If you vote for P2, it will be a three-way tie and you will obtain expected payoff
W(p1+p2)

3 , which was calculated above.
• P2 votes for you, P1 votes for P2:

If you vote for P2, you will go head-to-head against P1 and obtain expected payoff
p1W.
If you vote for P1, it will be a tie and you obtain W(p1+p2)

3 .

Assuming we are in either Case 1 or Case 2 (since the other cases are irrelevant, as
showed above), the probability that we are in case 1 is y1(1− y2), and the probability we are
in case 2 is y2(1− y1). We need to normalize these so they sum to 1, so the real probability
we are in case 1 is:

y1(1− y2)

y1(1− y2) + y2(1− y1)
,

and the probability we are in case 2 is:

y2(1− y1)

y1(1− y2) + y2(1− y1)

Putting this all together, our expected payoff of voting for player 1 is:

y1(1− y2)

y1(1− y2) + y2(1− y1)
∗ (W ∗ p2) +

y2(1− y1)

y1(1− y2) + y2(1− y1)
∗ W(p1 + p2)

3

=
y1(1− y2) ∗ (W ∗ p2) + y2(1− y1) ∗ W(p1+p2)

3
y1(1− y2) + y2(1− y1)

Similarly, our expected payoff of voting for player 2 is:

y1(1− y2)

y1(1− y2) + y2(1− y1)
∗ W(p1 + p2)

3
+

y2(1− y1)

y1(1− y2) + y2(1− y1)
∗ (W ∗ p2)

=
y1(1− y2) ∗ W(p1+p2)

3 + y2(1− y1) ∗ (W ∗ p1)

y1(1− y2) + y2(1− y1)

So we should vote for player 1 if

y1(1− y2) ∗ (W ∗ p2) + y2(1− y1) ∗ W(p1+p2)
3

y1(1− y2) + y2(1− y1)
≥

y1(1− y2) ∗ W(p1+p2)
3 + y2(1− y1) ∗ (W ∗ p1)

y1(1− y2) + y2(1− y1)

We can multiply both sides by the denominator to eliminate it and obtain an equivalent
condition:

y1(1− y2) ∗ (W ∗ p2) + y2(1− y1) ∗
W(p1 + p2)

3
≥ y1(1− y2) ∗

W(p1 + p2)

3
+ y2(1− y1) ∗ (W ∗ p1)
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If we multiply through and expand both sides, we obtain:

y1W p2 − y1y2W p2 +
y2W p1

3
+

y2W p2

3
− y1y2W p1

3
− y1y2W p2

3

≥ y1W p1

3
+

y1W p2

3
− y1y2W p1

3
− y1y2W p2

3
+ y2W p1 − y1y2W p1

We can simplify this to obtain:

y1W p2 − y1y2W p2 +
y2W p1

3
+

y2W p2

3
≥ y1W p1

3
+

y1W p2

3
+ y2W p1 − y1y2W p1

Multiplying both sides by 3:

3y1W p2 − 3y1y2W p2 + y2W p1 + y2W p2 ≥ y1W p1 + y1W p2 + 3y2W p1 − 3y1y2W p1

Simplifying further:

2y1W p2 + y2W p2 + 3y1y2W p1 ≥ 2y2W p1 + y1W p1 + 3y1y2W p2

Dividing all terms by W, we see that we should vote for player 1 iff:

2y1 p2 + y2 p2 + 3y1y2 p1 ≥ 2y2 p1 + y1 p1 + 3y1y2 p2

One immediate observation is that the optimal strategy does not depend on W.
We can further show that if p2 ≤ p1

2 , then it is always optimal to vote for player 2 (the
stronger player) regardless of the beliefs of the strategies taken by the other players. For
brevity we omit the proof of this result.
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