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Abstract: A novel Newton-type n-point iterative method with memory is proposed for solving
nonlinear equations, which is constructed by the Hermite interpolation. The proposed iterative
method with memory reaches the order (2n + 2n−1 − 1 +

√
22n+1 + 22n−2 + 2n + 1)/2 by using n

variable parameters. The computational efficiency of the proposed method is higher than that of the
existing Newton-type methods with and without memory. To observe the stability of the proposed
method, some complex functions are considered under basins of attraction. Basins of attraction show
that the proposed method has better stability and requires a lesser number of iterations than various
well-known methods. The numerical results support the theoretical results.
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1. Introduction

Finding a solution a of nonlinear equation f (x) = 0, where f : D ⊆ R → R is a
sufficiently differentiable function in an open set D, is a difficult problem in the field
of numerical analysis. Multipoint iterative methods with high computational efficiency
were introduced by Traub [1] and Petković [2], which are very suitable for finding the
solution of nonlinear equations. The design methods for multipoint iterative method
include: the weight function method [3–5], the interpolation method [6,7], the rational
function method [8,9], the undetermined coefficient method [10], the inverse interpolation
function method [11,12] and the symbolic computation method [13]. Using these methods,
many efficient multipoint iterative methods have been proposed for solving nonlinear
equations, see [14–20] and the references therein. In those methods, the n-point iterative
method is worth studying because of its high computational efficiency. The Kung–Traub’s
method [14], Zheng’s method [15], Petković–Džunić’s method [16] and Wang–Zhang’s
method [17] are well-known derivative-free n-point iterative methods. Furthermore, some
efficient n-point Newton-type iterative methods with and without memory have been
proposed. Kung and Traub [14] proposed an optimal 2nth order Newton-type method
as follows: 

yk,1 = tk − f (tk)/ f ′(tk),
yk,j = Sj(0), j = 2, . . . , n,
tk+1 = yk,n,

(1)

where the inverse interpolating polynomial is Sj(y) such that Sj( f (tk)) = tk, S′j( f (tk)) =

1/ f ′(tk), Sj( f (yk,j)) = yk,j, (j = 2, . . . , n). Petković [18] derived the following n-point
Newton-type method:
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

φ1(t) = t− f (t)
f ′(t) ,

φ2(t) = ψ f (t),
φ3(t) = φ2(t)− f (φ2(t))

h′
(2)(φ2(t))

,

· · · ,
φn(t) = φn−1(t)− f (φn−1(t))

h′
(n−1)(φ(n−1)(t))

,

(2)

where h′i(t), (i = 2, 3, · · · , n− 1.) is the Hermite interpolation polynomial satisfying the
conditions f ′(φ0) = h′m+1(φ0), f (φj) = hm+1(φj) and (j = 0, 1, · · · , n − 1.), and ψ f (t) is
an iterative function with an optimal order of 4. Cordero et al. [19] studied the stability
of method (2) for n = 2, 3. In [20], we obtained the following one-parameter n-point
Newton-type method without memory:

tk,1 = tk,0 −
f (tk,0)

f ′(tk,0)+L f (tk,0)
,

tk,2 = tk,1 −
f (tk,1)

f [tk,1,tk,0]+ f [tk,1,tk,0,tk,0](tk,1−tk,0)
,

. . . ,

tk,n = tk,n−1 −
f (tk,n−1)

N(tk,n−1,tk,n−2,··· ,tk,1,tk,0)
,

(3)

where N(tk,n−1, tk,n−2, · · · , tk,1, tk,0) = f [tk,n−1, tk,n−2] + · · · + f [tk,n−1, tk,n−2, · · · , tk,1, tk,0,
tk,0](tk,n−1 − tk,n−2) · · · (tk,n−1 − tk,0), tk,0 = tk, and L ∈ R is a constant. By replacing
parameter L in (3) with a variable parameter Lk, method (3) can be transformed to the
following one-parameter n-point Newton-type iterative method with memory:

tk,1 = tk,0 −
f (tk,0)

f ′(tk,0)+Lk f (tk,0)
,

tk,2 = tk,1 −
f (tk,1)

f [tk,1,tk,0]+ f [tk,1,tk,0,tk,0](tk,1−tk,0)
,

. . . ,

tk,n = tk,n−1 −
f (tk,n−1)

N(tk,n−1,tk,n−2,··· ,tk,1,tk,0)
,

(4)

where N(tk,n−1, tk,n−2, · · · , tk,1, tk,0) = f [tk,n−1, tk,n−2] + · · · + f [tk,n−1, tk,n−2, · · · , tk,1, tk,0,
tk,0](tk,n−1 − tk,n−2) · · · (tk,n−1 − tk,0), tk,0 = tk, Lk = −H′′4 (yk,0)/(2 f ′(yk,0)) and H4(x) is a
Hermite’s interpolating polynomial with a degree of 4. Method (4) improved the conver-
gence order of method (3) without any additional functional evaluations, which implied
that the variable parameter can improve the computational efficiency of the Newton-type
iterative method. Thus, we concluded that the convergence order of n-point Newton-type
iterative method can be improved further by improving the number of variable parameters
in the iterative scheme.

The aims of this work are to improve the computational efficiency and convergence
order of n-point Newton-type method and produce a general n-point Newton-type iterative
method with memory for solving nonlinear equations. The paper is organized as follows: In
Section 2, we propose a general n-point Newton-type iterative method with optimal order
2n by using Hermite’s interpolation polynomial. Based on the optimal n-point Newton-
type iterative method, a general n-point Newton-type iterative method with memory is
proposed by using n variable parameters in Section 3. The convergence order of the n-point
Newton-type iterative method with memory is analyzed, which is higher than that of the
existing Newton-type iterative methods. In Section 4, the stability of the presented iterative
method is analyzed with the help of the basins of attraction. Several numerical tests are
made to confirm the theoretical results in Section 5. Conclusions are given in Section 6.
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2. The n-Parameter n-Point Newton-Type Method with Optimal Order 2n

Combining the first step of method (3) with Newton’s method [21,22], we construct
the following one-parameter Newton-type method: yk = tk −

f (tk)
L1 f (tk)+ f ′(tk)

,

tk+1 = yk −
f (yk)
f ′(yk)

,
(5)

where L1 ∈ R is a real parameter. To reduce the computational cost of method (5), we
approximate f (t) by Hermite’s interpolation polynomial H3(t). Interpolation polynomial
H3(t) is given by:

H3(t) = f (yk) + f [yk, tk](t− yk) + f [yk, tk, tk](t− yk)(t− tk) + L2(t− yk)(t− tk)
2, (6)

such that H3(tk) = f (tk), H3(yk) = f (yk), H′3(tk) = f ′(tk) and L2 ∈ R . The derivative of
H3(t) at yk is:

H′3(yk) = f [yk, tk] + f [yk, tk, tk](yk − tk) + L2(yk − tk)
2. (7)

Replacing f ′(yk) with H′3(yk) in (5), we obtain a two-parameter Newton-type method: yk = tk −
f (tk)

L1 f (tk)+ f ′(tk)
,

tk+1 = yk −
f (yk)

f [yk ,tk ]+ f [yk ,tk ,tk ](yk−tk)+L2(yk−tk)2 ,
(8)

where f [yk, tk, tk] =
f [yk ,tk ]− f ′(tk)

yk−tk
and L2 ∈ R are real parameters. Combining method (8)

with Newton’s method, we obtain the following three-step method:
yk = tk −

f (tk)
L1 f (tk)+ f ′(tk)

,

zk = yk −
f (yk)

f [yk ,tk ]+ f [yk ,tk ,tk ](yk−tk)+L2(yk−tk)2 ,

tk+1 = zk −
f (zk)
f ′(zk)

.

(9)

We approximate f (t) in (9) by the following interpolation polynomial H4(t) of a degree
of four:

H4(t) = f (zk) + f [zk, yk](t− zk) + f [zk, yk, tk](t− zk)(t− yk)

+ f [zk, yk, tk, tk](t− zk)(t− yk)(t− tk) + L3(t− zk)(t− yk)(t− tk)
2. (10)

H4(t) satisfies interpolation conditions H4(tk) = f (tk), H4(yk) = f (yk), H4(zk) = f (zk)
and H′4(tk) = f ′(tk). The derivative of H4(t) at zk is:

H′4(zk) = f [zk, yk] + f [zk, yk, tk](zk − yk) + f [zk, yk, tk, tk]×

(zk − yk)(zk − tk) + L3(zk − yk)(zk − tk)
2, (11)

where L3 ∈ R. Replacing f ′(zk) with H′4(zk) in (9), we obtain the following three-parameter
method: 

yk = tk −
f (tk)

L1 f (tk)+ f ′(tk)
,

zk = yk −
f (yk)

f [yk ,tk ]+ f [yk ,tk ,tk ](yk−tk)+L2(yk−tk)2 ,

tk+1 = zk −
f (zk)

H′4(zk)
,

(12)

where H′4(zk) = f [zk, yk] + f [zk, yk, tk](zk − yk) + f [zk, yk, tk, tk](zk − yk)(zk − tk) + L3(zk −
yk)(zk − tk)

2 and Li ∈ R, (i = 1, 2, 3).
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Furthermore, we construct the following n-parameter n-point Newton-type method
without memory:

tk,1 = tk,0 −
f (tk,0)

L1 f (tk,0)+ f ′(tk,0)
,

tk,2 = tk,1 −
f (tk,1)

f [tk,1,tk,0]+ f [tk,1,tk,0,tk,0](tk,1−tk,0)+L2(tk,1−tk,0)2 ,

tk,3 = tk,2 −
f (tk,2)

H′4(tk,2)
,

· · · ,

tk,n = tk,n−1 −
f (tk,n−1)

H′n+1(tk,n−1)
,

(13)

where

H′n+1(tk,n−1) = f [tk,n−1, tk,n−2] + f [tk,n−1, tk,n−2, · · · , tk,1, tk,0, tk,0]
n

∏
j=2

(tk,n−1 − tk,n−j)

+
n

∑
j=3

{
f [tk,n−1, tk,n−2, · · · , tk,n−j]

j−1

∏
i=2

(tk,n−1 − tk,n−i)

}
+ Ln−1(tk,n−1 − tk,0)

n

∏
t=2

(tk,n−1 − tk,n−t),

tk,0 = tk and Li ∈ R, (i = 1, 2 · · · , n) . The Petković’s method (2) and Wang’s method (3)
are two special cases of method (13) for Li = 0, (i = 1, 2, · · · n) and Li = 0, (i = 2, 3, · · · n),
respectively.

Theorem 1. Let a ∈ R be a zero of a sufficiently differentiable function f : D ⊆ R → R in an
open set D. Assume that initial approximation t0 is sufficiently close to a. Then, method (8) reaches
an optimal convergence order four and satisfies the following:

ek+1 = (c2 + L1)[c2(c2 + L1)− c3 +
L2

f ′(a)
]e4

k + O(e5
k). (14)

where cn = (1/n!) f (n)(a)/ f ′(a), n ≥ 2.

Proof. Let ek = tk − a, eyk = yk − a, ezk = zk − a and cn = (1/n!) f (n)(a)/ f ′(a), n ≥ 2.
Using the Taylor expansion of f at a, we obtain:

f (tk) = f ′(a)(ek + c2e2
k + c3e3

k + c4e4
k + c5e5

k + c6e6
k + c7e7

k + c8e8
k + O(e9

k)), (15)

and

f ′(tk) = f ′(a)(1 + 2c2ek + 3c3e2
k + 4c4e3

k + 5c5e4
k + 6c6e5

k + 7c7e6
k + 8c8e7

k + O(e8
k)). (16)

According to (12), (15) and (16), we have:

eyk = (c2 + L1)e2
k + (−2c2

2 + 2c3 − 2c2L1 − L2
1)e

3
k + (4c3

2 − 7c2c3

+ 3c4 + 5c2
2L1 − 4c3L1 + 3c2L2

1 + L3
1)e

4
k + O(e5

k). (17)

Using the Taylor expansion of f (yk) at a, we obtain:

f (yk) = f ′(a)(eyk + c2ey2
k + c3ey3

k + c4ey4
k + c5ey5

k + c6ey6
k + c7ey7

k + c8ey8
k ++O(ey9

k)), (18)

and

f [yk, tk] = f ′(a)[1 + c2ek + (c2
2 + c3 + c2L1)e2

k + (−2c3
2 + 3c2c3 + c4 − 2c2

2L1 + c3L1 − c2L2
1)e

3
k

+ (4c4
2 + 2c2

3 + c5 + 5c3
2L1 + c4L1 + c2

2(−8c3 + 3L2
1) + c2(4c4 − 4c3L1 + L3

1))e
4
k ] + O(e5

k). (19)
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From (16) and (19), we obtain:

f [yk, tk, tk] =
f [yk, tk]− f ′(tk)

yk − tk

= f ′(a)(c2 + 2c3ek + (c2c3 + 3c4 + c3L1)e2
k + (−2c2

2c3 + 2c2
3

+ 4c5 + 2c4L1 − c3L2
1 + 2c2(c4 − c3L1))e3

k) + O(e4
k). (20)

Using (8) and (18)–(20), we attain:

ezk = (c2 + L1)[c2(c2 + L1) +
L2

f ′(a)
− c3]e4

k + O(e5
k). (21)

This means that the convergence order of method (8) is four. This concludes the
proof.

For method (12), we can obtain the following convergence theorem.

Theorem 2. Let a ∈ R be a zero of a sufficiently differentiable function f : D ⊆ R → R in an
open set D. Assume that initial approximation t0 is sufficiently close to a. Then, method (12) arrives
the optimal order eight and satisfies the following error equation:

ek+1 = (c2 + L1)
2[c2(c2 + L1)− c3 +

L2

f ′(a)
]{c2[c2(c2 + L1)− c3 +

L2

f ′(a)
] + c4 −

L3

f ′(a)
}e8

k + O(e9
k), (22)

where cn = (1/n!) f (n)(a)/ f ′(a), n ≥ 2.

Proof. Let ek = tk − a, eyk = yk − a, ezk = zk − a and cn = (1/n!) f (n)(a)/ f ′(a), n ≥ 2.
Using the Taylor expansion of f (zk) at a, we obtain:

f (zk) = f ′(a)(ezk + c2ez2
k + c3ez3

k + c4ez4
k + c5ez5

k + O(ez6
k)), (23)

f [zk, yk] = f ′(a) + c2 f ′(a)(c2 + L1)e2
k − c2 f ′(a)(2c2

2 − 2c3 + 2c2L1 + L2
1)e

3
k

+(5c4
2 f ′(a) + 7c3

2 f ′(a)L1 + c3 f ′(a)L2
1 + c2

2(−7c3 f ′(a) + 4 f ′(a)L2
1

+ L2) + c2(3c4 f ′(a) + L1(−3c3 f ′(a) + f ′(a)L2
1 + L2)))e4

k + O(e5
k). (24)

From (19) and (24), we obtain:

f [zk, yk, tk] =
f [zk, yk]− f [yk, tk]

zk − tk

= f ′(a)(c2 + c3ek + (c2c3 + c4 + c3L1)e2
k + (−2c2

2c3

+ 2c2
3 + c5 + c4L1 − c3L2

1 + c2(c4 − 2c3L1))e3
k) + O(e4

k). (25)

Using (20) and (25), we have

f [zk, yk, tk, tk] =
f [zk, yk, tk]− f [yk, tk, tk]

zk − tk

= f ′(a)(c3 + 2c4ek + (c2c4 + 3c5 + c4L1)e2
k + (−2c2

2c4 + 2c3c4

+ 4c6 + 2c5L1 − c4L2
1 + 2c2(c5 − c4L1))e3

k) + O(e4
k). (26)

Therefore, from (12), (25) and (26), we obtain:

ek+1 = (c2 + L1)
2[c2(c2 + L1)− c3 +

L2

f ′(a)
]
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× {c2[c2(c2 + L1)− c3 +
L2

f ′(a)
] + c4 −

L3

f ′(a)
}e8

k + O(e9
k). (27)

This means that method (12) arrives at the optimal order eight. This concludes the
proof.

According to the above study, we can obtain the following convergence theorem.

Theorem 3. Let a ∈ R be a zero of a sufficiently differentiable function f : D ⊆ R → R in an
open set D. Assume that initial approximation t0 is sufficiently close to a. Then, the n-parameter
n-point Newton-type iterative scheme (13) without memory reaches the optimal order 2n and its
error relation is

ek+1 = ek,n = tk,n − α = qnek,0

n−1

∏
i=0

ek,i = qnqn−1q2
n−2 · · · q2n−2

1 q2n−1

0 e2n

k + O(e2n+1
k ), (28)

where ek,j = tk,j − a, (j = 0, 1, 2, · · · , n), ek = ek,0 = tk,0 − a, q0 = 1, q1 = c2 + L1 and
qn = cnqn−1 + (−1)n−1cn+1 + (−1)n Ln

f ′(a) , n = 2, 3, · · · .

Proof. Induction method is used to prove this Theorem. Form Theorem 1, we know that
the Theorem is valid for n = 2 and n = 3. Suppose that Equation (28) is true for n = N − 1,
then we have the error relation

ek,N−1 = tk,N−1 − a = qN−1ek,0

N−2

∏
i=0

ek,i

= qN−1qN−2q2
N−3 · · · q2N−3

1 q2N−2

0 e2N−1

k + O(e2N−1+1
k ). (29)

Noting that ek,0ek,0ek,1ek,2 · · · ek,N−1 = O(e1+1+2+22+···+2N−1

k ) = O(e2N

k ) and taking
n = N, we obtain:

ek+1 = ek,N = tk,N − a = ek,N−1 −
f [tk,N−1, a]ek,N−1

H′N(tk,N−1)
= ek,N−1

(
H′N(tk,N−1)− f [tk,N−1, a]

H′N(tk,N−1)

)
= ek,N−1( f [tk,N−1, tk,N−2] + f [tk,N−1, tk,N−2, tk,N−3](tk,N−1 − tk,N−2) + · · ·

+ f [tk,N−1, tk,N−2, · · · , tk,1, tk,0, tk,0](tk,N−1 − tk,N−2)(tk,N−1 − tk,N−3) · · · (tk,N−1 − tk,0)

+(−1)N LN−1ek,N−2ek,N−3 · · · e2
k,0 − f [tk,N−1, a])[ f ′(a) + O(ek)]

−1

= ek,N−1{ f [tk,N−2, tk,N−1, a]ek,N−2 + f [tk,N−1, tk,N−2, tk,N−3]ek,N−1

− f [tk,N−1, tk,N−2, tk,N−3]ek,N−2 + · · ·+ (−1)N−1 f [tk,N−1, tk,N−2, · · · , tk,1, tk,0, tk,0]

×ek,N−2ek,N−3 · · · ek,0 + (−1)N LN−1ek,N−2ek,N−3 · · · e2
k,0}
[

f ′(a) + O(ek)
]−1

= ek,N−1{ f [tk,N−1, tk,N−2, tk,N−3]ek,N−1 + (−1)N−1 f [tk,N−1, tk,N−2, · · · , tk,1, tk,0, tk,0, a]

×ek,N−2ek,N−3 · · · e2
k,0 + (−1)N LN−1ek,N−2ek,N−3 · · · e2

k,0 + O(e2N−1+1
k )}

[
f ′(a) + O(ek)

]−1

= ek,N−1[c2qN−1ek,0

N−2

∏
i=0

ek,i + (−1)N−1cN+1ek,0

N−2

∏
i=0

ek,i + (−1)N LN−1

f ′(a)
ek,0

N−2

∏
i=0

ek,i + O(e2N−1+1
k )]

= ek,0

N−1

∏
i=0

ek,i[c2qN−1 + (−1)N−1cN+1 + (−1)N LN−1

f ′(a)
] + O(e2N+1

k )

= qNek,0

N−1

∏
i=0

ek,i + O(e2N+1
k ). (30)
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Hence, we obtain:

ek+1 = ek,n = tk,n − a = qnek,0

n−1

∏
i=0

ek,i = qnqn−1q2
n−2 · · · q2n−2

1 q2n−1

0 e2n

k + O(e2n+1
k ). (31)

The proof is completed.

3. A General n-Point Newton-Type Multipoint Iterative Method with Memory

Theorem 3 shows that the n-parameter n-point method (13) without memory reaches

the optimal order 2n. Taking L1 = −c2 and Li = f (i+1)(a)
(i+1)! , (i = 2, 3, · · · , n) in (13), the

convergence order of method (13) can be improved. In this section, we replace the constant
parameters Li, (i = 1, 2, · · · , n) of method (13) with the variable parameters Lk,i and obtain
a new n-parameter n-point method with memory. Variable parameters Lk,i are constructed
by the iterative sequences from current and previous iterations and satisfy the conditions

limk→∞Lk,1 = −c2 = − f ′′(a)
2 f ′(a) and limk→∞Lk,i = f (i+1)(a)

(i+1)! . To get the maximal order of
convergence of the n-parameter n-point Newton-type method, we design the following
variable parameters Lk,i, (i = 1, · · · , n) by using Hermite’s interpolation polynomial

Lk,1 = −
H′′n+2(tk,0)

2 f ′(tk,0)
, (32)

and

Lk,i+1 =
H(i+2)

n+i+2(tk,i)

(i + 2)!
, (0 ≤ i ≤ n), (33)

where
Hn+2(t) = Hn+2(t : tk,0, tk,0, tk−1,n−1, · · · , tk−1,0, tk−1,0),

and

Hn+i+2(t) = Hn+i+2(t : tk,i, tk,i−1, · · · , tk,1, tk,0, tk,0, tk−1,n−1, · · · , tk−1,0, tk−1,0).

Replacing the constant parameter Li with variable parameter Lk,i in (13), we obtain: a
general n-parameter n-point method with memory as follows:

tk,1 = tk,0 −
f (tk,0)

Lk,1 f (tk,0)+ f ′(tk,0)
,

tk,2 = tk,1 −
f (tk,1)

f [tk,1,tk,0]+ f [tk,1,tk,0,tk,0](tk,1−tk,0)+Lk,2(tk,1−tk,0)2 ,

· · · ,

tk,n = tk,n−1 −
f (tk,n−1)

H′n(tk,n−1)
,

(34)

where Lk,i, (i = 1, · · · , n) are the variable parameters constructed by (32)–(33) and H′n(tk,n−1)

= f [tk,n−1, tk,n−2] +
n
∑

j=3
{ f
[
tk,n−1, tk,n−2, · · · , tk,n−j

] j−1
∏
i=2

(tk,n−1 − tk,n−i)} + (tk,n−1 − tk,0)

Lk,n−1
n
∏

t=2
(tk,n−1 − tk,n−t) + f [tk,n−1, tk,n−2, · · · , tk,1, tk,0, tk,0]

n
∏
j=2

(tk,n−1 − tk,n−j), (n ≥ 2).

From (14), (22) and (28), the error relations of method (34) can be obtained

ek,1 = (c2 + Lk,1)e2
k + O(e3

k), (35)

ek,2 = (c2 + Lk,1)[c2(c2 + Lk,1)− c3 +
Lk,2

f ′(a)
]e4

k + O(e5
k), (36)
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and

ek,j = tk,j − a = qk,jek,0

j−1

∏
i=0

ek,i = qk,jqk,j−1q2
k,j−2 · · · q

2j−2

k,1 q2j−1

k,0 e2j

k + O(e2j+1
k ), 2 ≤ j ≤ n, (37)

where ek,j = tk,j − a, (j = 0, 1, 2, · · · , n), ek = ek,0 = tk,0 − a, qk,0 = 1, qk,1 = c2 + Lk,1,

qk,n = (−1)n−1cn+1 + (−1)n Lk,n
f ′(a) + c2qk,n−1, (n ≥ 2).

The above consideration leads to the following Lemma.

Lemma 1. Let Hn+i+2(t), (i = 0, 1, 2, · · · , n) be the Hermite interpolation polynomial of degree
n + i + 2 satisfying Hn+i+2(tk,l) = f (tk,l), (l = 0, 1, · · · , i), Hn+i+2(tk−1,n−j) = f (tk−1,n−j),
(j = 1, · · · , n), H′n+i+2(tk,0) = f ′(tk,0) and H′n+i+2(tk−1,0) = f ′(tk−1,0). Let f (t) and its deriva-
tive f (n+i+2) be continuous in interval D. Nodes tk,i, · · · , tk,1, tk,0, tk,0, tk−1,n−1, · · · , tk−1,1, tk−1,0,
tk−1,0 are contained in interval D, which are sufficiently close to the simple zero a of f (t). Define the
error ek,l = tk,l − a and assume that the condition ek,l = O(ek−1,n · · · ek−1,0ek−1,0), (0 ≤ l ≤ n)
holds. Then

H(i+2)
n+i+2(tk,i) ∼ (i + 2)! f ′(a)

[
ci+2 − (−1)n+1cn+i+3ek−1,0

n

∏
j=1

ek−1,n−j

]
, (0 ≤ i ≤ n). (38)

Proof. The error relation of the Hermite’s interpolation polynomial Hn+i+2(t) is given by

f (t)− Hn+i+2(t) =
f (n+i+3)(η)

(n + i + 3)!
[(t− tk,0)

i

∏
l=0

(t− tk,l)][(t− tk−1,0)
n

∏
j=1

(t− tk−1,n−j)], η ∈ D. (39)

Differentiating (39) at t, we obtain:

f (i+2)(t)− H(i+2)
n+i+2(t) =

1
(n + i + 3)!

{[(t− tk,0)
i

∏
l=0

(t− tk,l)][(t− tk−1,0)
n

∏
j=1

(t− tk−1,n−j)]

× di+2

dti+2 [ f (n+i+3)(η)] +
i+1

∑
m=1

Cm
i+2[(t− tk,0)

i

∏
l=0

(t− tk,l)(t− tk−1,0)
n

∏
j=1

(t− tk−1,n−j)]
(m)

× di+2−m

dti+2−m [ f (n+i+3)(η)] + [(t− tk,0)
i

∏
l=0

(t− tk,l)(t− tk−1,0)
n
∏
j=1

(t− tk−1,n−j)]
(i+2) f (n+i+3)(η)}, (40)

and

f (i+2)(t)− H(i+2)
n+i+2(t) =

1
(n + i + 3)!

{(t− tk,0)
i

∏
l=0

(t− tk,l)(t− tk−1,0)
n

∏
j=1

(t− tk−1,n−j)

× di+2

dti+2 [ f (n+i+3)(η)] +
i+1

∑
m=1

Cm
i+2[(t− tk,0)

i

∏
l=0

(t− tk,l)(t− tk−1,0)
n

∏
j=1

(t− tk−1,n−j)]
(m)

× di+2−m

dti+2−m [ f (n+i+3)(η)] + (i + 2)![(t− tk−1,0)
n
∏
j=1

(t− tk−1.n−j) + Pn+1(t)] f (n+i+3)(η)}, η ∈ D, (41)

where Pn+1(t) is a polynomial of degree n + 1. Taylor’s series of f (t) and its derivatives
f (i)(t) at the points tk,i about zero a is

f ′(tk,i) = [1 + 2c2ek,i + 3c3e2
k,i + O(e3

k,i)] f ′(a), (42)

f (i+2)(tk,i) = [(i + 2)!ci+2 + (i + 3)!ci+3ek,i + O(e2
k,i)] f ′(a), (43)
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and
f (n+i+3)(η) = [(n + i + 3)!cn+i+3 + (n + i + 4)!cn+i+4eη + O(e2

η)] f ′(a), (44)

where tk,i ∈ D, η ∈ D and eη = η − a.
Taking t = tk,i in (41) and using (44), we obtain:

H(i+2)
n+i+2(tk,i) ∼ f (i+2)(tk,i)− (i + 2)!

f (n+i+3)(η)

(n + i + 3)!
[Pn+1(tk,i) + (tk,i − tk−1,0)

n

∏
j=1

(tk,i − tk−1,n−j)]

∼ (i + 2)! f ′(a)[ci+2 − (−1)n+1cn+i+3ek−1,0
n
∏
j=1

ek−1,n−j]. (45)

The proof is completed.

From (33) and (45), we obtain:

Lk,i+1 =
H(i+2)

n+i+2(tk,i)

(i + 2)!
∼ f ′(a)[ci+2 − (−1)n+1cn+i+3ek−1,0

n

∏
j=1

ek−1,n−j], (46)

and

ci+2 −
Lk,i+1

f ′(a)
∼ (−1)n+1cn+i+3ek−1,0

n

∏
j=1

ek−1,n−j. (47)

If sequence {tn} converges to the zero a with order r, we can get

ek+1 = ek+1,0 = ek,n ∼ Qk,ner
k,0, (48)

where ek,n = tk,n − a, and Qk,n is the asymptotic error constant. Suppose sequence {tk,j}
has the convergence order rj, we obtain:

ek,j ∼ Qk,je
rj
k,0, 1 ≤ j ≤ n− 1, (49)

and

ci+2 −
Lk,i+1

f ′(a)
∼ (−1)n+1cn+i+3ek−1,0

n

∏
j=1

ek−1,n−j

∼(−1)n+1cn+i+3er0+r0+r1+···+rn−1
k−1,0

n

∏
j=1

Qk−1,n−j

∼ Tk,i+1eR
k−1,0, (50)

where r0 = 1, R = r0 +
n−1
∑

i=0
ri and Tk,i+1 = (−1)n+1cn+i+3

n
∏
j=1

Qk−1,n−j.

From (32) and (35), we obtain:

qk,1 = c2 + Lk,1 ∼ Tk,1eR
k−1,0, (51)

where Tk,1 = (−1)n+1cn+3
n
∏
j=1

Qk−1,n−j.

ek,1 ∼ qk,1e2
k,0 ∼ Tk,1e2

k,0eR
k−1,0. (52)

Lemma 2. Let a ∈ I be a simple zero of a sufficiently differentiable function f , then the qk,j in (37)
such that

qk,j ∼ Mk,jeR
k−1,0, (2 ≤ j ≤ n), (53)
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where r0 = 1, R = r0 +
n−1
∑

i=0
ri, Tk,i = (−1)n+1cn+i+2

n
∏
j=1

Qk−1,n−j and Mk,j =
j

∑
i=1

(−1)i−1

cj−i
2 Tk,i.

Proof. We proof the lemma by induction. Using (50)–(51) and taking j = 2 in (37), we
obtain:

ek,2 ∼ qk,2ek,1e2
k,0

∼ {c2qk,1 − c3 +
Lk,2

f ′(a)
}ek,1e2

k,0

∼ (c2Tk,1 − Tk,2)ek,1e2
k,0eR

k−1,0. (54)

Let Mk,2 = c2Tk,1 − Tk,2 in (54), we obtain:

ek,2 ∼ qk,2ek,1e2
k,0 ∼ Mk,2ek,1e2

k,0eR
k−1,0, (55)

and
qk,2 ∼ Mk,2eR

k−1,0. (56)

Using (50) and (51) and taking j = 3 in (37), we get

ek,3 ∼ qk,3ek,2ek,1e2
k,0

∼ {c2qk,2 + c4 −
Lk,2

f ′(a)
}ek,2ek,1e2

k,0

∼ (c2(c2Tk,1 − Tk,2) + Tk,3)ek,2ek,1e2
k,0eR

k−1,0. (57)

Let Mk,3 = c2(c2Tk,1 − Tk,2) + Tk,3, we obtain:

ek,3 ∼ qk,3ek,2ek,1e2
k,0

∼ MK,3ek,2ek,1e2
k,0eR

k−1,0, (58)

and
qk,3∼ Mk,3eR

k−1,0. (59)

Assume that (53) holds for j = n− 1, we obtain

qk,n−1 ∼ Mk,n−1eR
k−1,0. (60)

Using (50) and (51) and taking j = n in (37), we get

ek,n ∼ qk,nek,0

n−1

∏
j=0

ek,i

∼ {c2qk,n−1 + (−1)n−1cn+1 + (−1)n Lk,n−1

f ′(a)
}ek,0

n−1

∏
j=0

ek,i

∼ (Tk,n + c2Mk,n−1)ek,0

n−1

∏
j=0

ek,ieR
k−1,0

∼ Mk,nek,0
n−1
∏
j=0

ek,ieR
k−1,0, (61)

and
qk,n ∼ Mk,neR

k−1,0. (62)
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The proof is completed.

According to the Lemma 1 and Lemma 2, we obtain: the convergence theorem as
follows:

Theorem 4. If t0 is sufficiently close to a simple zero a of the sufficiently differentiable function
f (t) and the variable parameters Lk,1 and Lk,i, (2 ≤ i ≤ n) of method (34) are calculated by (32)
and (33), respectively. Then, the n-parameter n-point Newton-type iterative method (34) with
memory reaches order (2n + 2n−1 − 1 +

√
22n+1 + 22n−2 + 2n + 1)/2.

Proof. From (48) and (49), we obtain:

ek+1 = ek,n ∼ Qk,n(Qk−1,ner
k−1,0)

r ∼ Qk,nQr
k−1,ner2

k−1,0, ek,n = xk,n − a, (63)

ek,j ∼ Qk,j(Qk−1,ner
k−1,0)

rj ∼ Qk,jQ
rj
k−1,ne

rrj
k−1,0, 1 ≤ j ≤ n− 1. (64)

Using (37) and (49), we arrive at:

ek,j = tk,j − a ∼ qk,jek,0

j−1

∏
i=0

ek,i

∼ qk,je2
k,0

j−1

∏
i=1

(Qk,ie
ri
k,0)

∼ qk,jSk,je
2+r1+r2+···rj−1
k,0

∼ Mk,jeR
k−1,0Sk,je

2+r1+r2+···rj−1
k,0

∼ Mk,jeR
k−1,0Sk,jQ

2+r1+r2+···rj−1
k−1,n e

r(2+r1+r2+···rj−1)

k−1,0

∼ Mk,jSk,jQ
2+r1+r2+···rj−1
k−1,n e

R+r(2+r1+r2+···rj−1)

k−1,0 , (65)

where Sk,j =
j−1
∏
i=1

Qk,i, 2 ≤ j ≤ n.

According to (48) and (53), we have:

ek,1 ∼ qk,1e2
k,0 ∼ Tk,1eR

k−1,0(Qk−1,ner
k−1,0)

2

∼ Tk,1Q2
k−1,ne2r+R

k−1,0. (66)

Comparing the exponents of error ek−1,0 in pairs of ((64), (66)) for j = 1, ((63), (65)) for
j = n and ((64), (65)) for 2 ≤ j ≤ .n− 1, we obtain:

r2 = r(2 + r1 + r2 + · · ·+ rn−1) + R = rR + R,
rrn−1 = r(2 + r1 + r2 + · · ·+ rn−2) + R,
rrj = r(2 + r1 + r2 + · · ·+ rj−1) + R, (j = 2, · · · , n− 2),
rr1 = R + 2r.

(67)

According to (67), we obtain:

r2

1 + r
= R = 2 + r1 + r2 + · · · rn−1, (68)

rj = 2j−1r1, (j = 2, · · · , n− 1), (69)

r = 2rn−1, (70)
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r1 = 2 +
r

1 + r
. (71)

From (68) and (71), we obtain:

r2 − (2n + 2n−1 − 1)r− 2n = 0. (72)

The solution of the equation (72) is (2n + 2n−1 − 1 +
√

22n+1 + 22n−2 + 2n + 1)/2.
Thus, the n-parameter n-point Newton-type method with memory has the convergence
order (2n + 2n−1 − 1 +

√
22n+1 + 22n−2 + 2n + 1)/2.

Remark 1. According to Theorem 4, we conclude that the maximal order of n-parameter n-point
Newton-type iterative method (34) with memory is (2n + 2n−1− 1+

√
22n+1 + 22n−2 + 2n + 1)/2.

The variable parameters Lk,i of method (34) can be designed by simple interpolation polynomial,
but this will decrease the order of convergence of method (34). Therefore, we do not discuss
the low-order interpolation polynomial in this paper. For n = 2, the order of method (34)
with memory is r = (5 +

√
41)/2 ≈ 5.701. For n = 3, the order of (34) with memory is

r = (11 +
√

153)/2 ≈ 11.684.

4. Basins of Attraction

The basins of attraction can be applied to analyze the stability of the multipoint
iterative method [23–32], which will help us to select the iterative schemes whose behaviors
are better qualitatively. Figures 1–5 show the basins of attraction of different methods. Our
methods (13) (n = 3) and (34) (n = 2, 3) are compared with methods (2) (n = 3), (3) (n = 3) ,
(4) (n = 3), (73) and (76) for solving complex equations zn − 1 = 0, (n = 2, 3, 4, 5, 6). The
field D = [−5.0, 5.0]× [−5.0, 5.0] ∈ C is divided into a grid of 500× 500 in Figures 1–5. The
initial point z0 will be painted with black after 25 iterations. If the sequence generated by
the iterative method reaches a zero of the polynomial , the initial point z0 will be painted
in a color previously selected for this zero. In the same basin of attraction, the number of
iterations needed to achieve the solution is shown in darker or brighter colors (the less
iterations, the brighter the color). The tolerance is |z− z∗| < 10−3 in programs. Tables 1–5
show the average number of iterations(ANI) and the percentage of points (POP) which
guarantee the convergence to the roots of complex equations zn − 1 = 0,(n = 2, 3, 4, 5, 6).

Table 1. Numerical results of different methods for z2 − 1 = 0.

Methods (2) (3) (4) (13) (n = 3) (73) (76) (34) (n = 2) (34) (n = 3)

POP 99.80 % 100% 100% 100% 99.80% 96.02% 100% 100%

ANI 2.2781 2.2415 1.1430 2.2233 3.4107 11.401 1.8806 1.1371

Table 2. Numerical results of different methods for z3 − 1 = 0.

Methods (2) (3) (4) (13) (n = 3) (73) (76) (34) (n = 2) (34) (n = 3)

POP 100 % 99.99% 100% 100% 99.62% 77.53% 100% 100%

ANI 2.6354 2.6416 1.3591 2.6386 4.4523 15.669 2.1994 1.3430

Table 3. Numerical results of different methods for z4 − 1 = 0.

Methods (2) (3) (4) (13) (n = 3) (73) (76) (34) (n = 2) (34) (n = 3)

POP 99.60 % 100% 100% 100% 97.10% 63.42% 100% 100%

ANI 3.5018 3.4208 2.1952 3.4200 6.3275 18.667 2.5931 1.9959
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Figure 1. Dynamical planes for z2 − 1 = 0.
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Mathematics 2022, 10, 1144 15 of 22

-5 -4 -3 -2 -1 0 1 2 3 4 5

5

4

3

2

1

0

-1

-2

-3

-4

(a) Method (2)

-5 -4 -3 -2 -1 0 1 2 3 4 5

5

4

3

2

1

0

-1

-2

-3

-4

-

(b) Method (3)

-5 -4 -3 -2 -1 0 1 2 3 4 5

5

4

3

2

1

0

-1

-2

-3

-4

-5

(c) Method (4)

-5 -4 -3 -2 -1 0 1 2 3 4 5

5

4

3

2

1

0

-1

-2

-3

-4

-

(d) Method (13) (n = 3)

-5 -4 -3 -2 -1 0 1 2 3 4 5

5

4

3

2

1

0

-1

-2

-3

-4

-

(e) Method (73)

-5 -4 -3 -2 -1 0 1 2 3 4 5

5

4

3

2

1

0

-1

-2

-3

-4

-5

(f) Method (76)

-5 -4 -3 -2 -1 0 1 2 3 4 5

5

4

3

2

1

0

-1

-2

-3

-4

(g) Method (34) (n = 2)

-5 -4 -3 -2 -1 0 1 2 3 4 5

5

4

3

2

1

0

-1

-2

-3

-4

(h) Method (34) (n = 3)

Figure 3. Dynamical planes for z4 − 1 = 0.



Mathematics 2022, 10, 1144 16 of 22

-5 -4 -3 -2 -1 0 1 2 3 4 5

5

4

3

2

1

0

-1

-2

-3

-4

(a) Method (2)

-5 -4 -3 -2 -1 0 1 2 3 4 5

5

4

3

2

1

0

-1

-2

-3

-4

-

(b) Method (3)

-5 -4 -3 -2 -1 0 1 2 3 4 5

5

4

3

2

1

0

-1

-2

-3

-4

-5

(c) Method (4)

-5 -4 -3 -2 -1 0 1 2 3 4 5

5

4

3

2

1

0

-1

-2

-3

-4

-

(d) Method (13) (n = 3)

-5 -4 -3 -2 -1 0 1 2 3 4 5

5

4

3

2

1

0

-1

-2

-3

-4

-

(e) Method (73)

-5 -4 -3 -2 -1 0 1 2 3 4 5

5

4

3

2

1

0

-1

-2

-3

-4

-

(f) Method (76)

-5 -4 -3 -2 -1 0 1 2 3 4 5

5

4

3

2

1

0

-1

-2

-3

-4

-

(g) Method (34) (n = 2)

-5 -4 -3 -2 -1 0 1 2 3 4 5

5

4

3

2

1

0

-1

-2

-3

-4

-5

(h) Method (34) (n = 3)

Figure 4. Dynamical planes for z5 − 1 = 0.



Mathematics 2022, 10, 1144 17 of 22

-5 -4 -3 -2 -1 0 1 2 3 4 5

5

4

3

2

1

0

-1

-2

-3

-4

-

(a) Method (2)

-5 -4 -3 -2 -1 0 1 2 3 4 5

5

4

3

2

1

0

-1

-2

-3

-4

(b) Method (3)

-5 -4 -3 -2 -1 0 1 2 3 4 5

5

4

3

2

1

0

-1

-2

-3

-4

(c) Method (4)

-5 -4 -3 -2 -1 0 1 2 3 4 5

5

4

3

2

1

0

-1

-2

-3

-4

(d) Method (13) (n = 3)

-5 -4 -3 -2 -1 0 1 2 3 4 5

5

4

3

2

1

0

-1

-2

-3

-4

-5

(e) Method (73)

-5 -4 -3 -2 -1 0 1 2 3 4 5

5

4

3

2

1

0

-1

-2

-3

-4

-5

(f) Method (76)

-5 -4 -3 -2 -1 0 1 2 3 4 5

5

4

3

2

1

0

-1

-2

-3

-4

-

(g) Method (34) (n = 2)

-5 -4 -3 -2 -1 0 1 2 3 4 5

5

4

3

2

1

0

-1

-2

-3

-4

-5

(h) Method (34) (n = 3)

Figure 5. Dynamical planes for z6 − 1 = 0.



Mathematics 2022, 10, 1144 18 of 22

Table 4. Numerical results of different methods for z5 − 1 = 0.

Methods (2) (3) (4) (13) (n = 3) (73) (76) (34) (n = 2) (34) (n = 3)

POP 99.83 % 98.34% 99.98% 98.35% 95.75% 61.57% 99.99% 100%

ANI 4.2132 4.3115 3.5273 4.3119 6.9659 19.920 2.7746 2.2169

Table 5. Numerical results of different methods for z6 − 1 = 0.

Methods (2) (3) (4) (13) (n = 3) (73) (76) (34) (n = 2) (34) (n = 3)

POP 99.60 % 99.98% 98.09% 99.98% 94.27% 53.35% 99.92% 99.99%

ANI 4.6530 4.5337 5.1056 4.5347 7.8804 21.428 3.3563 2.4707

Figures 1–5 show that iterative methods without memory (2), (3) and (13) have similar
convergence behavior. The black areas of basins of attraction for methods (73) and (76)
are larger than in other methods. This implies that the convergence behavior of iterative
methods with memory (73) and (76) are poor. The basins of attraction for method (34) with
memory are brighter than the other methods with and without memory. This means that
iterative method (34) requires a lesser number of iterations than other methods. Tables 1–5
show that, compared with other methods, our method (34) (n = 3) has the highest percentage
of points which guarantee the convergence to the roots of complex equations and requires
less number of iterations than various well-known methods. Thus, our method (34) (n = 3)
has good stability for solving simple nonlinear equations.

5. Numerical Examples

The general n-parameter n-point Newton-type methods (13) and (34) are compared
with Petković’s two-step Newton-type method with memory [12] (73), Wang’s Newton-
type method with memory [33] (76), Petković’s n-point Newton-type method (2) without
memory and Wang’s n-point Newton-type methods (3) and (4) for solving nonlinear
functions.

Petković’s two-step Newton-type iterative method with memory is calculated as
follows [12]: {

yk =φ(yk−1) f (tk)
2 + M(tk),

tk+1 =φ(yk) f (tk)
2 + M(tk),

(73)

where

M(tk) = tk −
f (tk)

f ′(tk)
, (74)

φ(t) =
(

t− tk
f (t)− f (tk)

− 1
f ′(tk)

)
1

f (t)− f (tk)
. (75)

Wang’s Newton-type iterative method with memory is calculated as follows [33]:

zk =tk −
f (tk)

f ′(tk)
,

yk =tk −
(zk − tk)

1− Lk(zk − tk)
,

tk+1 =yk −
f (yk) f ′(tk)

f [tk, yk]2
,

(76)

where Lk =
tk−zk−1

(zk−tk−1)(tk−tk−1)
.
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Iterative methods are applied to solve the following nonlinear equations:

f1(t) = cos(t) + t2 − tet = 0, a ≈ 0.63915409633200758, t0 = 0.5,
f2(t) = t4 + log(t)− 5 = 0, a ≈ 1.4658939193282127, t0 = 1.6,
f3(t) = − sin(t) + 9t2 − 1 = 0, a ≈ 0.3918469070026, t0 = 0.3.
f4(t) = t− π − t3sin(t) = 0, a ≈ 3.1415926535898, t0 = 2.9.

The initial parameters L = L1 = 0.01 and Lk,i = 0.01, (i = 0, 1, 2) are used in the the
iterative methods (3), (4), (13), (34) (73) and (76). Tables 6–9 show the absolute error |tk − a|
for the first four steps and the approximate computational order of convergence(ACOC)[34]:

R =
ln(|tn+1 − tn|/|tn − tn−1|)

ln(|tn − tn−1|/|tn−1 − tn−2|)
. (77)

Table 6. Numerical results for f1(t).

Method |t1− a| |t2− a| |t3− a| |t4− a| ACOC

(2) n = 2 0.51126 × 10−4 0.97721 × 10−18 0.13043 × 10−72 0.41401 × 10−292 4.0000003

(3) n = 2 0.54528 × 10−4 0.13358 × 10−17 0.48098 × 10−72 0.80864 × 10−290 4.0000000

(13) n = 2 0.52925 × 10−4 0.11597 × 10−17 0.26735 × 10−72 0.75510 × 10−291 4.0000000

(73) 0.44088 × 10−5 0.64006 × 10−25 0.44087 × 10−115 0.32433 × 10−526 4.5599449

(76) 0.27347 × 10−3 0.29224 × 10−16 0.13268 × 10−70 0.60206 × 10−301 4.2386945

(34) n = 2 0.52925 × 10−4 0.21668 × 10−27 0.48274 × 10−159 0.86928 × 10−910 5.7024880

(2) n = 3 0.40835 × 10−8 0.24321 × 10−68 0.38502 × 10−550 8.0008692

(3) n = 3 0.45332 × 10−8 0.61330 × 10−68 0.68830 × 10−547 8.0000000

(13) n = 3 0.44026 × 10−8 0.47630 × 10−68 0.89387 × 10−548 8.0000000

(4) n = 3 0.45332 × 10−8 0.14236 × 10−85 0.62560 × 10−861 10.004219

(34) n = 3 0.44026 × 10−8 0.29405 × 10−104 0.86439 × 10−1222 11.619740

Table 7. Numerical results for f2(t).

Method |t1− a| |t2− a| |t3− a| |t4− a| ACOC

(2) n = 2 0.11793 × 10−3 0.84626 × 10−16 0.22447 × 10−64 0.11110 × 10−258 4.0000000

(3) n = 2 0.12130 × 10−3 0.97704 × 10−16 0.41138 × 10−64 0.12928 × 10−257 4.0000000

(13) n = 2 0.12145 × 10−3 0.98370 × 10−16 0.42339 × 10−64 0.14529 × 10−257 4.0000000

(73) 0.62678 × 10−5 0.88468 × 10−24 0.18867 × 10−109 0.41780 × 10−500 4.5599373

(76) 0.31113 × 10−3 0.69098 × 10−15 0.29916 × 10−64 0.23336 × 10−273 4.2360780

(34) n = 2 0.12145 × 10−3 0.42142 × 10−24 0.33957 × 10−142 0.70177 × 10−815 5.6961912

(2) n = 3 0.15535 × 10−7 0.72017 × 10−63 0.15361 × 10−505 8.0000000

(3) n = 3 0.16390 × 10−7 0.11729 × 10−62 0.80666 × 10−504 8.0000000

(13) n = 3 0.16405 × 10−7 0.11831 × 10−62 0.86592 × 10−504 8.0000000

(4) n = 3 0.16390 × 10−7 0.46896 × 10−79 0.17682 × 10−794 9.9998487

(34) n = 3 0.16405 × 10−7 0.65259 × 10−95 0.93155 × 10−1120 11.725876
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Table 8. Numerical results for f3(t).

Method |t1− a| |t2− a| |t3− a| |t4− a| ACOC

(2) n = 2 0.42633 × 10−3 0.10988 × 10−12 0.48611 × 10−51 0.18620 × 10−204 4.0000000

(3) n = 2 0.43209 × 10−3 0.11749 × 10−12 0.64401 × 10−51 0.58130 × 10−204 4.0000000

(13) n = 2 0.43241 × 10−3 0.11792 × 10−12 0.65398 × 10−51 0.61858 × 10−204 4.0000000

(73) 0.59903 × 10−4 0.25674 × 10−18 0 .13907 × 10−83 0.35294 × 10−381 4.5597146

(76) 0.10103 × 10−2 0.69855 × 10−12 0.23785 × 10−50 0.22107 × 10−213 4.2381255

(34) n = 2 0.43241 × 10−3 0.48374 × 10−19 0.18668 × 10−114 0.20222 × 10−656 5.6801734

(2) n = 3 0.27207 × 10−6 0.50023 × 10−51 0.65317 × 10−409 8.0000000

(3) n = 3 0.27947 × 10−6 0.63668 × 10−51 0.46203 × 10−408 8.0000000

(13) n = 3 0.27977 × 10−6 0.64293 × 10−51 0.50004 × 10−408 8.0000000

(4)n=3 0.27947 × 10−6 0.14545 × 10−67 0.21179 × 10−680 10.000013

(34) n = 3 0.27977 × 10−6 0.19008 × 10−76 0.75443 × 10−913 11.920006

Table 9. Numerical results for f4(t).

Method |t1− a| |t2− a| |t3− a| |t4− a| ACOC

(2) n = 2 0.45791 × 10−2 0.29033 × 10−9 0.47507 × 10−38 0.34058 × 10−153 4.0000000

(3) n = 2 0.46989 × 10−2 0.32946 × 10−9 0.80651 × 10−38 0.28961 × 10−152 4.0000000

(13) n = 2 0.47013 × 10−2 0.33026 × 10−9 0.81472 × 10−38 0.30172 × 10−152 4.0000000

(73) 0.21843 × 10−2 0.71702 × 10−12 0.63014 × 10−55 0.30506 × 10−251 4.5595182

(76) 0.13208 × 10−1 0.35938 × 10−8 0.23138 × 10−35 0.10762 × 10−150 4.2415301

(34) n = 2 0.47013 × 10−2 0.78035 × 10−14 0.22231 × 10−82 0.33152 × 10−472 5.6871333

(2) n = 3 0.16926 × 10−4 0.22742 × 10−38 0.24157 × 10−309 8.0000000

(3) n = 3 0.17852 × 10−4 0.36590 × 10−38 0.11400 × 10−307 8.0000000

(13) n = 3 0.17864 × 10−4 0.36802 × 10−38 0.11943 × 10−307 7.9999986

(4) n = 3 0.17852 × 10−4 0.56501 × 10−49 0.55091 × 10−494 10.115357

(34) n = 3 0.17864 × 10−4 0.38690 × 10−57 0.18244 × 10−682 11.873804

Tables 6–9 show that the numerical results coincide with the theory developed in
this paper. Our n-parameter n-point Newton-type method (34) has higher convergence
order and computational accuracy than the existing Newton-type methods. Method (34)
greatly improves the convergence order of method (13) by using n variable parameters.
The variable parameters Lk,i in method (34) are designed by using iteration sequences
from current and previous iterations, which do not increase the computational cost of
the iterative method. This implies that our method (34) with memory posses a very high
computational efficiency.

6. Conclusions

In order to improve the convergence order of Newton-type multipoint iterative
method, a general n-parameter n-point Newton-type iterative method with memory is
designed in this paper. Firstly, an n-parameter n-point Newton-type multipoint method (13)
with optimal order 2n is proposed. Based on method (13), a general n-parameter n-point
Newton-type multipoint iterative method (34) with n variable parameters is proposed for
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solving nonlinear equations. The maximal order of method (34) is superior to the existing
Newton-type iterative methods with and without memory. The basins of attraction show
that the proposed method (34) has the highest percentage of points, which guarantees the
convergence to the roots of complex equations. The ANI of the proposed method (34) is less
than that of other methods in Tables 6 to 9. This implies that the proposed method (34) has
good stability. The numerical results shows that the proposed method (34) greatly improves
the computational efficiency and convergence order of the Newton-type iterative method.
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