
����������
�������

Citation: Kunaver, M.; Bűrmen, Á.;

Fajfar, I. Automatic Grammatical

Evolution-Based Optimization of

Matrix Factorization Algorithm.

Mathematics 2022, 10, 1139. https://

doi.org/10.3390/math10071139

Academic Editor: Frank Werner

Received: 28 February 2022

Accepted: 29 March 2022

Published: 1 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Automatic Grammatical Evolution-Based Optimization of
Matrix Factorization Algorithm
Matevž Kunaver * , Árpád Bűrmen and Iztok Fajfar

Faculty of Electrical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia;
arpad.buermen@fe.uni-lj.si (Á.B.); iztok.fajfar@fe.uni-lj.si (I.F.)
* Correspondence: matevz.kunaver@fe.uni-lj.si

Abstract: Nowadays, recommender systems are vital in lessening the information overload by
filtering out unnecessary information, thus increasing comfort and quality of life. Matrix factorization
(MF) is a well-known recommender system algorithm that offers good results but requires a certain
level of system knowledge and some effort on part of the user before use. In this article, we proposed
an improvement using grammatical evolution (GE) to automatically initialize and optimize the
algorithm and some of its settings. This enables the algorithm to produce optimal results without
requiring any prior or in-depth knowledge, thus making it possible for an average user to use the
system without going through a lengthy initialization phase. We tested the approach on several
well-known datasets. We found our results to be comparable to those of others while requiring a lot
less set-up. Finally, we also found out that our approach can detect the occurrence of over-saturation
in large datasets.

Keywords: matrix factorization; genetic programming; grammatical evolution; recommender systems;
meta-optimization

MSC: 90C27

1. Introduction

Recommender systems (RS) are computerized services offered to the user that dimin-
ish information overload by filtering out unnecessary and annoying information, thus
simplifying the process of finding interesting and/or relevant content which improves
comfort and quality of life. The output of a typical RS is a list of recommendations pro-
duced by one of the several prediction generation algorithms (e.g., word vectors [1,2],
decision trees [3], (naïve) Bayes classifiers [2,3], k-nearest neighbors [4], support vector
machines [5,6], etc.) built upon a specific user model (e.g., collaborative, content-based,
or hybrid) [7]. The first application of a recommender algorithm was recorded in the
1980s when Salton [8] published an article about a word-vector-based algorithm for text
document search. The algorithm was expanded to a wider range of content for applications
ranging from a document search [7,9–11] to e-mail filtering [12] and personalized multime-
dia item retrieval [3,4,13–15]. Nowadays, RSs are used in on-line shops such as Amazon
to recommend additional articles to the user, in video streaming services such as Netflix
to help users find something interesting to view, in advertising to limit the number of
displayed advertisements to those that meet the interests of the target audience, and even in
home appliances. The field of RSs is undergoing a new evolution in which researchers are
tackling the topics of recommendation diversity [16], contextualization [17], and general
optimization/automation of the recommendation process. It is important to note that these
mentioned aspects often counteract each other so that, for example, increased diversity
often leads to lower accuracy and vice versa [18].

Recommender systems include a large number of parameters that can (and should) be
optimized, such as the number of nearest neighbors, the number of items to recommend,

Mathematics 2022, 10, 1139. https://doi.org/10.3390/math10071139 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10071139
https://doi.org/10.3390/math10071139
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-7814-0781
https://orcid.org/0000-0002-3035-1376
https://orcid.org/0000-0003-4416-5432
https://doi.org/10.3390/math10071139
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10071139?type=check_update&version=1

Mathematics 2022, 10, 1139 2 of 22

the number of latent features, and which context fields are used, just to name a few. We
are therefore dealing with a multidimensional optimization problem which is also time
dependent, as stated in [19]. The optimization of these parameters requires a lot of manual
work by a system administrator/developer and often cannot be performed in real time as
it requires the system to go off-line until the new values are determined. For this article,
we focused on the matrix factorization (MF) algorithm [20], which is currently one of the
most widespread collaborative RS algorithms and is implemented in several software
packages and server frameworks. Despite this, the most often used approach of selecting
the best values for the algorithm parameters is still by trial and error (see, for example,
the Surprise [21] and Scikit-Learn [22] documentation, as well as articles such as [23,24]).
In addition, the MF approach is also highly sensitive to the learning rate, whose initial choice
and adaptation strategy are crucial, as stated in [25].

Evolutionary computing is emerging as one of the automatic optimization approaches
in recommender systems [26], and there have been several attempts of using genetic
algorithms on the matrix factorization (MF) algorithm [20,27–29]. Balcar [30] used the
multiple island method in order to find a better way of calculating the latent factors using
the stochastic gradient descent method. Navgaran et al. [28] had a similar idea by using
genetic algorithm to directly calculate latent factor matrices for user and items which
worked but encountered issues with scalability when dealing with larger datasets. Razaei
et al. [31], on the other hand, focused on the initialization of optimal parameters and used a
combination of multiple island and genetic algorithm to achieve this. Lara-Cabrera et al. [32]
went a step further and used Genetic Programming to evolve new latent factor calculation
strategies.

With the exception of [32], the presented approaches focus on algorithm initialization
or direct calculation of factor matrices (which introduces large chromosomes even for
relatively small datasets). They do not, however, optimize the latent feature calculation
procedure itself.

In this article, we present a novel approach that uses grammatical evolution (GE) [33]
to automatically optimize the MF algorithm. Our aim is not only to use GE for optimization
of the MF algorithm but also to do so in a black-box manner that is completely autonomous
and does not rely on any domain knowledge. The reasoning behind this approach is that we
want to create a tool for an average user who wants to use the MF algorithm but lacks any
domain/specialized knowledge of the algorithm’s settings. Our approach would therefore
enable a user to activate and correctly use modules featured on their server framework
(such as Apache). Out of existing evolutionary approaches, we selected GE because we
want to develop new equations—latent factor calculation methods. Alternatives such as
genetic algorithm or particle swarm optimization focus on parameter optimization and
cannot be easily used for the task of evolving new expressions. Genetic Programming [32]
would also be an option but is more restrictive in terms of its grammar rules. GE, on
the other hand, allows the creation of specialized functions and incorporation of expert
knowledge.

In the first experiment, we used GE for automatic optimization of the parameter
values of the MF algorithm to achieve the best possible performance. We then expanded
our experiments to use GE for modification of the latent feature update equations of
the MF algorithm to further optimize its performance. This is a classical problem of
meta-optimization, where we tune the parameters of an optimization algorithm using
another optimization algorithm. We evaluated our approach using four diverse datasets
(CoMoDa, MovieLens, Jester, and Book Crossing) featuring different sizes, saturation,
and content types.

In Section 2, we outline the original MF algorithm and n-fold cross-validation proce-
dure for evaluating the algorithm’s performance that we used in our experiments. Section 3
summarizes some basic concepts behind GE with a focus on specific settings that we imple-
mented in our work. In Section 4, we describe both used datasets and the hardware used to

Mathematics 2022, 10, 1139 3 of 22

run the experiments. Finally, we present and discuss the evolved equations and numerical
results obtained using those equations in the MF algorithm in Section 5.

2. Matrix Factorization Algorithm

Matrix factorization (MF), as presented in [19], is a collaborative filtering approach that
builds a vector of latent factors for each user or item to describe its character. The higher
the coherence between the user and item factor vectors, the more likely the item will be
recommended to the user. One of the benefits of this approach is that it can be fairly easily
modified to include additional options such as contextualization [17], diversification, or
any additional criteria.

The algorithm, however, still has some weak points. Among them, we would like to
mention the so-called cold start problem (i.e., adding new and unrated content items to the
system or adding users who did not rate a single item yet), the dimensionality problem (the
algorithm requires several passes over the whole dataset, which could become quite large
during the lifespan of the service), and the optimization problem (the algorithm contains
several parameters which must be tuned by hand before running the service).

The MF algorithm used in this research is the original singular value decomposition
(SVD) model which is one of the state-of-the-art methods in collaborative filtering [20,21,25,34].
The MF algorithm itself is based on an approach similar to the principal component analysis
because it decomposes the user-by-item sparse matrix into static biases and latent factors of
each existing user u and item i. These factors are then used to calculate the missing values
in the original matrix which, in turn, are used as predicting ratings.

2.1. An Overview of a Basic Matrix Factorization Approach

In a matrix factorization model, users and items are represented as vectors of latent
features in a joint f -dimensional latent factor space. Specifically, item i is represented by
vector qi ∈ R f and user u is represented by vector pu ∈ R f . Individual elements of these
vectors express either how much of a specific factor the item possesses or how interested
the user is in a specific factor. Although there is no clear explanation to these features (i.e.,
one cannot directly interpret them as genres, actors, or other metadata), it has been shown
that these vectors can be used in MF to predict the user’s interest in items they have not yet
rated. This is achieved by calculating the dot product of the selected user’s feature vector
pu and the feature vector of the potentially interesting item qu, as shown in (1). The result
of this calculation is the predicted rating r̂ui which serves as a measure of whether or not
this item should be presented to the user.

r̂ui = qT
i pu. (1)

The most intriguing challenge of the MF algorithm is the calculation of the factor
vectors qi and pu which is usually accomplished by using a regularized model to avoid
overfitting [20]. A system learns the factor vectors through the minimization of the regular-
ized square error on the training set of known ratings:

min
q,p ∑

u,i∈κ

(rui − r̂ui)
2 + λ(‖ qi ‖2 + ‖ pu ‖2), (2)

with κ representing the training set (i.e., the set of user/item pairs for which rating rui
is known). Because the system uses the calculated latent factor values to predict future,
unknown ratings, the system must avoid overfitting to the observed data. This is accom-
plished by regularizing the calculated factors using the constant λ, whose value is usually
determined via cross-validation.

2.2. Biases

In reality, Equation (1) does not completely explain the observed variations in rating
values. A great deal of these variations are contributed by effects independent of any

Mathematics 2022, 10, 1139 4 of 22

user/item interaction. These contributions are called biases because they model inclinations
of some users to give better/worse ratings than others or tendencies of some items to
receive higher/lower ratings than others. Put differently, biases measure how much a
certain user or item deviates from the average. Apart from the user (bu) and item (bi) biases,
the overall average rating (µ) is also considered as a part of a rating:

r̂ui = µ + bi + bu + qT
i pu. (3)

With the addition of biases and the average rating, the regularized square error (2)
expands into

min
q,p,b

∑
u,i∈κ

(rui − µ− bi − bu − qT
i pu)

2 + λ(‖ qi ‖2 + ‖ pu ‖2 +b2
u + b2

i). (4)

2.3. The Algorithm

The system calculates latent factor vectors by minimizing Equation (4). For our
research, we used the stochastic gradient descent algorithm as it is one of the more often
used approaches for this task. The parameter values used for the baseline evaluation
were the same as presented in [17], and we summarized them in Table 1. The initial value
assigned to all the latent factors was 0.03 for the CoMoDa dataset [35] and random values
between 0.01 and 0.09 for the others.

Table 1. The parameter values used in our baseline gradient descent algorithm.

Parameter Value

N (number of iterations) 100
f (number of latent factors) 7

γp 0.03
γq 0.03
λ 0.3

(pk
u)initial 0.03 or random

(qk
i)initial 0.03 or random

The minimization procedure is depicted in Algorithm 1 and can be summarized as
follows. The algorithm begins by initializing latent factor vectors pu and qi with default
values (0.03) for all users and items. These values—together with the constant biases and
the overall average rating—are then used to calculate the prediction error for each observed
rating in the dataset:

eui = rui − µ− bi − bu − qT
i pu. (5)

The crucial part of this procedure is the computation of new user/item latent factor
values. We compute a new kth latent factor value pk

u of user u and a new kth latent factor
value qk

i of item i as follows:

pk
u ← pk

u + γp(euiqk
i − λpk

u), (6)

qk
i ← qk

i + γq(eui pk
u − λqk

i), (7)

where γp and γq determine learning rates for users and items, respectively, and λ controls
the regularization.

Mathematics 2022, 10, 1139 5 of 22

The computation of Equations (5)–(7) is carried out for all observed ratings and is
repeated until a certain stopping criterion is met, as outlined in Algorithm 1.

Algorithm 1 Stochastic gradient descent

1: Initialize user and item latent factor vectors pu and qi
2: Calculate constant biases bu and bi and the overall average rating µ
3: for k← 1 to f do
4: for each observed rating rui do
5: Compute the prediction error eui (5)
6: for iter ← 1 to N do
7: Compute new factor values pk

u (6) and qk
i (7)

8: end for
9: end for

10: end for

2.4. Optimization Task

As already mentioned, the original MF algorithm still suffers from a few weaknesses.
In our research, we focused on the problem of algorithm initialization and optimization
during its lifetime. As seen in (6) and (7), we needed to optimize several parameter values
for the algorithm to work properly: learning rates γp and γq, regularization factor λ,
and initial latent feature values that are used during the first iteration. Apart from that,
the optimal values of these parameters change as the dataset matures through time and the
users provide more and more ratings.

Despite the widespread use of the MF algorithm and its implementation in several
frameworks, an efficient methodology to automatically determine the values of the algo-
rithm’s parameters is still missing. During our initial work with the MF algorithm [17], we
spent a lot of time comparing RMSE plots and CSV values in order to determine the initial
parameter values. The listed articles [21–24] show that this is still the usual practice with
this algorithm.

The main goal of our research was to use GE to achieve the same (or possibly better)
RMSE performance as the original (hand-tuned) MF algorithm without manually setting
any of its parameters. This way, we would be able to build an automatic recommender
service yielding the best algorithm performance without any need of human intervention.

2.5. Evaluation of Algorithm’s Performance

The selection of the evaluation metric for MF depends on whether we look at the
algorithm as a regression model or as a pure RS problem. With a regression model, we
focus on fitting all the values and do not discern between “good” and “bad” values (i.e.,
ratings above and below a certain value). An RS model, on the other hand, is focused
on classification accuracy which is interpreted as the number of correctly recommended
items. Such an item has both ratings (predicted and true) above the selected threshold
value, for example, above 4 in a system with rating on a scale from 1 to 5. Such a metric is
therefore more forgiving because it does not care if the predicted rating is different from
the actual rating by a large factor as long as both of them end up in the same category
(above/below the threshold value). Typical examples of regression metrics include mean-
squared error, root-mean-squared error (RMSE), and R-squared, while classification metrics
include precision, recall, f-measure, ROC-curve, and intra-list diversity.

Because our focus was on optimizing the MF algorithm, we chose the regression aspect
and wanted to match all the existing ratings as closely as possible. We used the RMSE
measure in combination with n-fold cross-validation as this combination is most often used
in the RS research community [36–41], providing us with a lot of benchmark values with
which to compare.

In addition, we also verified our findings using the Wilcoxon ranked sum test with
significance level α = 0.05. All of our experiments resulted in a p-value that was lower

Mathematics 2022, 10, 1139 6 of 22

than the selected significance level, which confirms that our experiments were statistically
significant. A summary of our statistical testing is given in Table 2.

Table 2. Statistical testing results for significance value of α = 0.05.

Dataset p-Value

CoMoDa 5× 10−6

MovieLens 100k 0.004
Jester 0.002

Book-Crossing 0.005

2.5.1. RMSE

RMSE is one of the established measures in regression models and is calculated using
the following equation:

RMSE =

√
∑u,i∈κ(rui − r̂ui)2

|κ| , (8)

where rui is the actual rating of user u for item i and r̂ui is the system’s predicted rating.
|κ| is the cardinality of the training set (i.e., the number of known user ratings).

The RMSE values from experiments of other research groups on the datasets used in
this article are summarized in Table 3.

Table 3. RMSE values from the literature.

Dataset RMSE Reference

CoMoDa 1.27 [42]

MovieLens 100k 0.98 [39]
1.00 [40]
1.00 [30]
1.20 [43]
0.93 [32]
0.96 [41]

Jester 5.30 [44]
4.50 [41]

Book-Crossing 1.94 [45]
1.95 [45]
1.92 [45]

2.5.2. Overfitting and Cross-Validation

Overfitting is one of the greatest nemeses of RS algorithms because it tends to fit the
existing data perfectly instead of predicting missing (future) data, which is what RSs are
meant for. All algorithms must therefore either include a special safety mechanism or be
trained using additional techniques such as cross-validation.

The original MF algorithm used in this research uses a safety mechanism in the form of
regularization parameter λ whose value had to be set manually. The value of the parameter
was set in a way that achieved the best performance on the test set and thus reduced the
amount of overfitting. It is important to note that the optimal value of the regularization
parameter changes depending on the dataset as well as with time (i.e., with additional
ratings added to the system).

Regularization alone is however not enough to avoid overfitting, especially when its
value is subject to automated optimization which could reduce it to zero, thus producing
maximum fitting to the existing data. In order to avoid overfitting, we used cross-validation
in our experiments. n-fold cross-validation is one of the gold standard tests for RS assess-

Mathematics 2022, 10, 1139 7 of 22

ment. The test aims to reduce the chance of overfitting the training data by going over the
dataset multiple times while rearranging the data before each pass. The dataset is split into
n equal parts. During each pass over the dataset, one of the parts is used as the test set
for evaluation while the remaining n− 1 parts represent the training set that is used for
training (calculating) the system’s parameters. The final quality of the system is calculated
as the average RMSE of n, thus performed tests.

3. Grammatical Evolution

The first and the most important step when using GE is defining a suitable gram-
mar by using the Backus–Naur form (BNF). This also defines the search space and the
complexity of our task. Once the grammar is selected, the second step is to choose the
evolution parameters such as the population size and the type and probability of crossover
and mutation.

3.1. The Grammar

Because we want to control the initialization process and avoid forming invalid
individuals due to infinite mapping of the chromosome, we need three different sections of
our grammar: recursive, non-recursive, and normal [46]. The recursive grammar includes
rules that never produce a non-terminal. Instead, they result in direct or indirect recursion.
The non-recursive grammar, on the other hand, never leads to the same derivation rule and
thus avoids recursion. We then control the depth of a derivation tree by alternating between
non-recursive and recursive grammar. Using recursive grammar will result in tree growth,
while switching to non-recursive stops this growth. The last of the grammars—normal—is
the combination of the recursive and non-recursive grammar and can therefore produce
trees of varying depth.

The following derivation rules constitute our non-recursive grammar:

<expr > : : = <const > | <var >
<const > : : = <sign ><n>. <n><n>
<sign > : : = + | −
<n> : : = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<var > : : = pk

u | qk
i | eui

This is the recursive grammar:

<expr > : : = <expr > <binOper> <expr > | <unOper> <expr >
<binOper> : : = + | − | ∗ | /
<unOper> : : = log() |

√

The normal grammar is the combination of the above two grammars where both
derivation rules for an expression are merged into a single one:

<expr > : : = <expr > <binOper> <expr > |
<unOper> <expr > |
<const > | <var >

3.2. Initialization

In GE, the genotype consists of a sequence of codons which are represented by eight-bit
integers. We used this codon sequence to synthesize the derivation tree (i.e., the phenotype)
based on the selected start symbol. Each codon was then used to select the next derivation
rule from the grammar. The start symbol determined the first rule, while the remaining
rules were selected based on whatever symbols appear in the derivation tree until all the
branches end in a terminal rule. Because the range of possible codon values is usually
larger than the number of available rules for the current symbol, we used a modus operator
to map the codon value to the range of the number of rules for that symbol. This also means
that we seldom used the complete codon sequence in the genotype. Either we produced
a complete tree before using all the codons or we ran out of codons and used wrapping

Mathematics 2022, 10, 1139 8 of 22

to complete the tree (i.e., we simply carried on with mapping using the same string of
codons again).

In order to overcome the problem of starting genotype strings failing to map to finite
phenotypes [33], we used the sensible initialization technique proposed in [46]. This
technique enables the use of a monitored selection of rules from either a non-recursive
or recursive grammar. This method mimics the original ramped half-and-half method
described in [47]. The ramped half-and-half method results in a population half of the trees
having individual leafs of the same depth, while the other half have leafs with arbitrary
depths no deeper than the specified maximum depth.

Such simple procedures often result in improved performance because they allow us
to potentially avoid the pitfall of having all individuals start close to a localized extreme.
In such a case, the algorithm could become stuck there or spend a lot of time (genera-
tions) to find the true optimal value. In our previous experiments [42,48,49], using the
sensible initialization proved to be sufficient. Should this fail, however, one could also
consider additional techniques such as Cluster-Based Population Initialization proposed by
Poikolainen et al. [50].

3.3. Generating Individuals from Chromosomes—An Example

Each of the individuals begins as a single chromosome from which an update equation
is derived and used in our GE enhanced MF algorithm (see Algorithm 2). In most of our
experiments, the chromosome produces an equation that is used to calculate the values
of user/item latent factors. To help understand our approach, let us look at an example
and assume that we have the chromosome {14, 126, 200, 20, 75, 12, 215, 178, 48, 88, 78, 240,
137, 160, 190, 98, 247, 11} and use the start symbol from Section 5.2 (in fact, we will derive
the two equations from Equation (9)). The first symbol in the start symbol is <expr> and,
using our grammar from Section 3.1, we perform the following modulo operation:

(rule number) =
(codon integer value) mod
(number of rules for the current non-terminal)

As our start symbol has four possible rules (we use the normal grammar), the codon
value of 15 selects the third production rule (i.e., 14 mod 4 = 2), hence choosing the constant
(<const>). The next four codons are then used to derive the constant value which, according
to the grammar, consists of a sign and three digits. The second equation (i.e., the right
equation in Equation (9)) is derived from the remaining codons. The whole mapping
process is summarized in Table 4. The first two columns list the codons and the symbols
that are being used for the derivation, while the second two columns give the results of
the modulo operations and selected terminals/non-terminals using the corresponding
production rule on non-terminals from the second row.

The result of this procedure is Equation (9) which was then used as part of our further
experiments (see Section 5.3 for further details).

Table 4. Using the chromosome {14, 126, 200, 20, 75, 12, 215, 178, 48, 88, 78, 240, 137, 160, 190, 98, 247, 11}
to create Equation (9).

Number of Rules/Codon Non-Terminal Resulting Rule Selected

14 <expr> 4/2 <const>
126 <sign> 2/0 +
200 <n> 10/0 0
20 <n> 10/0 0
75 <n> 10/5 5
12 <expr> 4/0 <expr><binOper><expr>

Mathematics 2022, 10, 1139 9 of 22

Table 4. Cont.

Number of Rules/Codon Non-Terminal Resulting Rule Selected

215 <expr> 4/3 <var>
178 <var> 3/1 qk

i
48 <binOper> 4/0 +
88 <expr> 4/0 <expr><binOper><expr>
78 <expr> 4/2 <const>
240 <sign> 2/0 +
137 <n> 10/7 7
160 <n> 10/0 0
190 <n> 10/0 0
98 <binOper> 4/2 *
247 <expr> 4/3 <var>
11 <var> 3/2 eui

3.4. Optimizing MF—Evaluating Individuals

For each of the experiments, the just described derivation procedure is used to com-
pose code representing Equations (6) and (7) within Algorithm 2. Thus, the obtained
algorithm represents an individual in the population whose fitness we evaluated according
to standard 10-fold cross-validation: First, the algorithm was run on a train set to obtain
user and item latent factor values. Second, RMSE is computed using those factor values on
a test set. The procedure was repeated for all ten folds and the final fitness of an individual
is the average of the obtained ten RMSEs.

Algorithm 2 GE enhanced stochastic gradient descent

Initialize user and item latent factor vectors pu and qi
2: Calculate constant biases bu and bi and the overall average rating µ

for k← 1 to f do
4: for each observed rating rui do

Compute the prediction error eui (5)
6: for iter ← 1 to N do

Compute new factor values using functions from the individual’s chromo-
some

8: end for
end for

10: end for

In cases where the individual’s chromosome would result in an unfeasible solution
(e.g., division by zero or too large latent factor values), we immediately mark the individual
for deletion by setting its fitness function to an extremely large value even before the
evaluation of the individual starts. With this approach, we quickly trimmed the population
of unwanted individuals and start searching within the feasible solution set after the first
few generations.

3.5. Crossover and Mutation

The original one-point crossover which was proposed by O’Neil et al. [33] has a de-
structive effect on the information contained by the parents. This occurs because changing
the position in the genotype string results in a completely different phenotype.

For our experiments, we decided to use the LHS replacement crossover [51] instead
because it does not ruin the information contained in the parents’ phenotype. This is a two-
point crossover where only the first crossover point is randomly selected. The crossover
point in the second parent is then limited so that the selected codon expands the same type
of non-terminal as the selected codon of the first parent. Both crossover points therefore
feature codons that expand the expressions starting at the first crossover points.

Mathematics 2022, 10, 1139 10 of 22

The LHS replacement crossover has many similarities with the crossover proposed
in [47] but also has some additional advantages. It is not limited by closure and maintains
the advantages of using BNF grammar.

Mutation can result in the same destructive effect when not properly controlled.
Byrne [52] called this a structural mutation. For our experiment, we created a mutation
operator that works in a similar manner as the LHS replacement crossover. It mutates a
randomly selected codon and reinterprets the remaining codons.

As proposed by [47], we set the probability of crossover and mutation to a relatively
small value. This method is easy to implement and reduces the amount of situations
where only a single terminal is mutated or two terminals are exchanged by a crossover
operation. Although there is not much evidence for or against this practice, it has been
demonstrated that changing node selection to favor larger subtrees can noticeably improve
GE performance on basic standard problems [53].

3.6. Evolution Settings

Table 5 shows the parameters in our experiment. In order to control bloat, we limited
the maximal tree depth [54] and the count of nodes of individuals by penalizing those that
overstepped either of the two limits. This penalty was performed by raising the fitness
values of such individuals to infinity.

Table 5. Summary of parameters used for our grammatical evolution run.

Objective Find update Equations (6) and (7) to be used in
Algorithm 2 to obtain the minimum RMSEa

Initial chromosome length 300
Grammar primitives eui, pk

u , qk
i , +, −, ∗, /, √ , log()

Grammar See Section 3.1
Initial population Ramped half-and-half as presented in [47].
Population size 50
Fitness An average RMSE value obtained from 10-fold

cross-validation
Crossover probability 20%
Mutation probability 10%
Probability of mutation/crossover
occurring at a terminal

10 %

Derivation tree depth limit 12
Max num of nodes 280
Termination After 50 or 150 generationsa

See text for details.

Each following generation was created performing three steps. First, we created
duplicates of a randomly selected 10% of individuals from the current population and
mutated them. We then selected 20% of the current individuals to act as parents in crossover
operations. This selection was performed using the tournament selection [55] with the
tournament size of two. Tournament selection chooses fitter individuals with higher
probability and disregards how much better they are. This impacts fitness values to create
constant pressure on the population. We determined the two above percentages based on
previous experience and some preliminary experiments. In the last phase, we substituted
the worst 30% of individuals in the population with the offspring obtained in the previous
two steps (i.e., mutated copies (10%) and the crossover offspring (20%)).

Using a maximum depth of 12 in our individually generated trees and assuming that
a number is terminal, we can estimate the size of the search space to be in the range of 10 to
the power of 18 (4 at depth level one, 361 at depth level two, 4272 at depth level three, and
so on). With our number of generations (150), population size (50), and elite individual size
(10%), we can calculate that we only need to evaluate 6755 individuals to find our solution.

Mathematics 2022, 10, 1139 11 of 22

Considering the total search space size, this is a very low number of evaluations to perform.
We can also assume that methods such as Exhaustive Search would have serious issues in
such a large space.

4. Datasets and Hardware

We used four different datasets to evaluate our approach. Each of the datasets featured
different characteristics (different sparsity, item types, rating range, etc.), thus representing a
different challenge. The different dataset sizes also demanded the use of different hardware
sets to produce our results.

4.1. Dataset Characteristics

The summary of main characteristics of the four datasets is given in Table 6. We first
used the LDOS CoMoDa dataset [35], which we already used in our previous work [17].
In order to obtain a more realistic picture of the merit of our approach, we also used three
considerably larger and different (regarding the type of items and ratings) datasets—the
MovieLens 100k dataset [56], the Book-Crossing dataset [57], and the Jester dataset [58].

Table 6. Datasets overview.

Dataset
Value CoMoDa MovieLens Book-Crossing Jester

Users 232 5627 278,858 24,983
Items 3141 3084 271,379 100

Ratings 5639 100,000 1,149,780 641,850
Ratings type 1–5 1–5 1–10 −10–10

Average rating 3.8 3.6 7.6 1.2
Ratings/user 2 16 6 26
Ratings/item 23 9 2 6419

4.1.1. LDOS CoMoDa

The collection of data for the LDOS CoMoDa began in 2009 as part of our work
on contextualizing the original matrix factorization algorithm [17]. The collection was
performed via a simple web page which at first offered only a rating interface through which
volunteers could provide feedback about any movies that they watched. The web page
was later enriched with metadata from The Movie Database (TMDb) and recommendations
generated by three different algorithms (MF, collaborative, and content-based). It should
be noted that the specialty of this dataset lies in the fact that most of the ratings also contain
context data about the rating—when and where the user watched the movie, with whom,
what was their emotional state, and so on.

4.1.2. MovieLens

The MovieLens dataset is a part of a web-based MovieLens RS, the successor of the
EachMovie site which was closed in 1997. As with CoMoDa, the dataset contains ratings
given to movies by users using the same rating scale (1 to 5) over a longer period of time.
The dataset is offered in several forms (Small, Full, Synthetic), of which we chose the 100k
MovieLens dataset.

4.1.3. Book-Crossing Dataset

This dataset contains ratings related to books which share some similarity to movie
ratings (i.e., genres, authors) but are at the same time distinct enough to warrant different
RS settings. The ratings collected in this dataset present four weeks’ worth of ratings from
the Book-Crossing community [57]. The dataset is the largest dataset used in our research
(more than one million ratings) and also features a different range of ratings (from 1 to 10).

Mathematics 2022, 10, 1139 12 of 22

4.1.4. Jester

The Jester dataset [58] consists of ratings given by users to jokes. The dataset represents
several additional problems such as a wider rating range (−10 to 10), negative rating values,
and smaller steps between ratings because users rate items by sliding a slider instead of
selecting a discrete number of stars. Out of the three datasets offered, we selected the
jester-data-3 dataset.

4.2. The Hardware

We ran the experiments with the CoMoDa dataset on a personal computer with Intel
Xeon 3.3 GHz processor, 16 Gb of RAM, 1 Tb hard disk, and Windows 10 Enterprise
OS. The algorithm was developed in Python 2.7 using the Anaconda installation and
Spyder IDE.

For the experiments with the larger MovieLens dataset, we used a computer grid con-
sisting of 3 2.66 GHz Core i5 (4 cores per CPU) machines running customized Debian Linux
OS. In addition, we introduced several additional Python optimizations such as implement-
ing parts of code in Cython which enables the compilation of GE created programs into
C and their use as imported libraries. This approach was crucial with the Book-Crossing
and Jester datasets as it enabled us to evaluate several generations of programs per hour
despite the datasets huge size.

5. Results

In this section, we present the results of our work using the four databases listed in
Table 3. The CoMoDa dataset is covered in Sections 5.1 and 5.2. On this dataset, we first
optimized only the learning rates and regularization factors (as real constants) from latent
factors update equations (Equations (6) and (7)). After that, in Section 5.2, we also evolved
the complete latent factors update equations. Armed with these preliminary results—and
the convergence results presented in Section 5.3—we then moved to the three much larger
datasets (MovieLens, Book-Crossing, and Jester) in the last three subsections of this section.
As the reader will learn, one of the most important findings of our work shows how GE
detects when the static biases prevail over the information stored in latent factors, which is
a phenomenon commonly observed in large datasets.

5.1. Automatic MF Algorithm Initialization

In the first part of the experiment, we only optimized the real parameters used in
the original MF algorithm outlined in Algorithm 2. Specifically, we optimized parameters
γp and γq representing the user and item learning rates and the regularization parameter
γ. By doing this, we used GE as a tool that can automatically select the values that
work best without requiring any input from the operator, thus avoiding problems arising
from the selection of the wrong values at the start (as stated in [25]). It can be argued
that this approach does not use the full available power of GE, as it is “demoted” to
the level of genetic algorithm (i.e., it only searches for the best possible set of constants
in a given equation). Although this is partially true, we wanted to determine the best
baseline value with which to compete in the following experiments and our GE method
was flexible enough to be used in such a way. Otherwise, we would have used any other
genetic algorithm which would most likely produce the same results but require additional
complications in our existing framework.

In order to constrain GE to act only on parameter values of the algorithm, we used the
following start symbol in our grammar:

pk
u ← pk

u + <const > (euiqk
i − <const > pk

u)

qk
i ← qk

i + <const > (eui pk
u − <const > qk

i)

Because we only wished to optimize certain parameters of the algorithm, 50 genera-
tions were enough for the evolution of an acceptable solution. Table 7 shows the results
of 10 evolution runs ordered by the RMSE score of the best obtained programs. Note that

Mathematics 2022, 10, 1139 13 of 22

there is a slight change from the original equation, because the evolution produced two
different values for the regularization factor λ, denoted by λp and λq for user and item
regularization factor, respectively.

Table 7. Best programs obtained from 10 evolution runs of 50 generations using the CoMoDa dataset.

Program Parameters
RMSE

λp γp λq γq

1.271 0.01 0.02 0.07 0.01
1.271 0.01 0.02 0.02 0.01
1.271 0.01 0.02 0.01 0.01
1.271 0.01 0.01 0.07 0.01
1.271 0.01 0.01 0.07 0.01
1.273 0.03 0.02 0.04 0.01
1.274 0.04 0.01 0.02 0.01
1.274 0.01 0.03 0.03 0.01
1.274 0.02 0.01 0.04 0.02
1.273 0.02 0.01 0.07 0.02

As shown, all our programs exhibit better RMSE than the baseline algorithm using
default settings from Table 1, which shows a RMSE score of 1.278. The average RMSE of our
ten genetically evolved programs is 1.272 with a standard deviation of 0.001. In addition,
a two-tailed p-value of 5× 10−6 obtained by the Wilcoxon rank-sum test confirms that our
results are significantly better than the result obtained from the baseline algorithm.

A final remark can also be made by comparing the RMSE values when increasing the
number of iterations, as seen in Figure 1. We can see that the original baseline first drops
rapidly but jumps back to a higher value after a maximum dip around the 100-th iteration.
The optimized baseline, on the other hand, shows a constant reduction in the RMSE value
without any jumps (except after every 100 iterations when we introduce an additional
latent feature). This shows that even though we believed to have found the best possible
settings in our previous work [17], we set the learning rate too high which prevented us
from finding the current minimum possible RMSE value. The new algorithm, on the other
hand, detected this issue and adjusted the values accordingly.

0 100 200 300 400 500 600 700
Iterations

1.2740

1.2745

1.2750

1.2755

1.2760

1.2765

1.2770

1.2775

RM
SE

Baseline
Optimized Parameters

Figure 1. A comparison of the convergence of the baseline MF algorithm on the CoMoDa dataset
using the original parameters from [17] (blue) and GE optimized parameters (orange).

Although a 0.41% decrease in RMSE does not seem to be a very significant improve-
ment, we should note that the GE enhanced MF algorithm achieved this level of perfor-

Mathematics 2022, 10, 1139 14 of 22

mance without any manual tuning beyond the initial grammar settings. Compared to the
amount of time we had to spend during our previous work for manual determination
of the appropriate parameter values, this represents a significant reduction in the time
which a practitioner has to spend tinkering with settings to obtain the first results. One
should also note that an evaluation of 150 generations takes less time than setting parameter
ranges manually.

5.2. Evolving New Latent Factors Update Equations

After a successful application of GE to a simple real parameter optimization, we now
wanted to evolve a complete replacement for Equations (6) and (7). For that purpose, we
used the following start symbol for the grammar:

pk
u = <expr >

qk
i = <expr >

Using this symbol, we can either evolve a complex equation (as seen in most of the
item latent factor equations in Table 8) or a simple constant value. Note that during the
evolution, we still used the values from Table 1 for evaluation of each single program in
the population.

This time, we let the evolution run for 150 generations, using the CoMoDa dataset
again. Table 8 shows the ten best resulting equations for user and item latent factor
calculation in addition to their RMSE score. Note that the actual equations produced by the
evolution were quite hieroglyphic and the versions shown are mathematically equivalent
equations simplified by hand. All 10 produced equations performed not only better than
the hand-optimized baseline algorithm but also better than the GE optimized baseline
version from the first part of the experiment. Compared to the average value of 1.272
that we were able to achieve using only a parameter optimization, we now obtained an
average RMSE value of 1.204 with a standard deviation of 0.031. It was to be expected
that the dispersion would now be greater as GE was given more freedom as to how to
build the latent factors update expressions. A p-value of 5× 10−6 signifies that the results
are significantly better than those obtained from the optimized baseline RMSE in the first
part of the experiment. What is even more important, this time, we managed to obtain a
program (i.e., the best program in Table 8) whose performance is more than 10% better than
that of a baseline algorithm.

Table 8. Best programs obtained from 10 evolution runs of 150 generations on the CoMoDa dataset.

RMSE User Latent Factor Equation Item Latent Factor Equation

1.148 pk
u = 0.02 qk

i = 10 eui
1.176 pk

u = 0.05 qk
i = qk

i + 2 eui − 0.17
1.176 pk

u = 0.05 qk
i = qk

i + 9 eui − 0.04
1.178 pk

u = 0.05 qk
i = 0.75 qk

i + 2 eui
1.199 pk

u = pk
u qk

i = eui/0.08− 0.09
1.218 pk

u = 0.07 qk
i = 3 eui + 0.05

1.221 pk
u = 0.07 qk

i = 2 eui + 0.05
1.221 pk

u = 0.07 qk
i = 2 eui + 0.25

1.236 pk
u = 0.08 qk

i = eui
1.257 pk

u = 0.05 qk
i = qk

i + 7 eui

It is quite interesting to compare the evolved equations from Table 8 with those of
the original algorithm (i.e., Equations (6) and (7)). We noticed that the evolved equations
fixated latent factor values of a user. There seems to be one exception (i.e., the fifth row of
the table), but as the equation simply copies a factor value to the next iteration, this value
retains its initial value and can therefore be considered constant as well. The right column
of Table 8 contains equations for calculating latent factor values of an item. After a closer

Mathematics 2022, 10, 1139 15 of 22

inspection of the equations, we can observe that they are all very similar to Equation (7),
only with quite a large learning rate γq and very small or even zero normalization constant
λ. For example, in the first row of the table, we have γq = 500 and λ = 0.002, and in
the last row, we have γq = 140 and λ = 0. In more than half of the equations, there is
an additional constant factor whose interpretation is somehow ambiguous; it could be a
kind of combination of a static bias and regularization. In summary, it is clear that GE
diminished or sometimes even removed the regularization factor and greatly increased the
learning rate in order to achieve the best possible result. Apart from that, it assigned the
same constant value to all user latent factors. This could in turn signify that we are starting
to experience the so-called bias-variance trade-off [59], where static biases take over a major
part of contribution to variations in rating values.

5.3. Convergence Analysis

We have so far succeeded to evolve MF update equations that produced significantly
better RMSE values than the original hand-optimized algorithm. During the second part of
our experiment, we observed a notable increase in learning rate which made us believe that
we do not actually need 100 iterations to reach the final values for the user and item factors.
We generated the plot of the RMSE value as a function of iteration number to observe how
the algorithm converges toward the final values.

The blue line in Figure 1 shows how the RMSE value changed during a run of a
baseline MF algorithm using the original parameter values from Table 1, and the orange
line shows the algorithm convergence using the optimized parameter values from the first
row of Table 7. The noticeable jumps in the curves that happen every 100 iterations are a
consequence of adding an additional latent factor into the calculation every 100 iterations
as shown in the baseline algorithm.

We can observe that the unoptimized algorithm results in quite curious behavior.
The smallest RMSE value is reached after only 65 iterations, but then it rapidly increases to
a value even greater than the initial guess. The RMSE value stays larger than the initial one,
even after adding additional factors and letting the MF algorithm run for 100 iterations
for each one of the added factors. Conversely, using the GE optimized version of the MF
algorithm, we obtain a curve whose RMSE score fell steadily toward the final, much better
RMSE score.

Figure 2 shows how the RMSE value converges when we used the following equations
as the update equations:

pk
u = 0.05 qk

i = qk
i + 7 eui (9)

pk
u = 0.05 qk

i = 0.75 qk
i + 2 eui (10)

The equations are taken from the last and fourth row of Table 8, respectively. The most
obvious difference from Figure 1 is a much more rapid convergence, which was to be
expected as the learning rates are several orders of magnitude larger (this can be seen by
rewriting Equations (10) and (9) back into the forms of (6) and (7), respectively). It seems
that a learning rate of 40 and a regularization factor of 0.00625 (Equation (10)) are quite
appropriate values as seen in Figure 2. However, the figure also shows how a learning rate
of 140 (Equation (9)) already causes overshoots. At the same time, it seems that an absence
of regularization produces overfitting which manifests itself as an increase in the RMSE
values when the last two latent factors are added.

Mathematics 2022, 10, 1139 16 of 22

0 100 200 300 400 500 600 700
Iterations

1.16

1.18

1.20

1.22

1.24

1.26

1.28

RM
SE

Optimized parameters
Program 9
Program 10

Figure 2. Convergence of the RMSE value using Equations (9) (orange) and (10) (green) compared to
the results obtained with optimized parameters 5.1 (blue) using the CoMoDa dataset.

Either way, the algorithm converged in just a few iterations each time a new latent
factor was added, indicating that much less than 100 iterations are actually needed. Thus,
we reran all of the evolved programs on the same dataset, this time only using 20 iterations
for each of the latent factors. We obtained exactly the same RMSE scores as we did with
100 iterations, which means that the calculation is now at least five times faster. This
speedup is very important, especially when dealing with huge datasets that usually reside
behind recommender systems. The results obtained by (9) and (10) using only 20 iterations
are shown in Figure 3.

0 20 40 60 80 100 120 140
Iterations

1.16

1.18

1.20

1.22

1.24

1.26

1.28

RM
SE

Optimized parameters
Program 9
Program 10

Figure 3. Convergence of the RMSE value using the same equations as in Figure 2 but only 20 iterations.

5.4. MovieLens Dataset

In the next experiment, we wanted to evolve the update equations using a much larger
dataset. We selected the MovieLens 100k dataset for the task while using the same starting
symbol as in Section 5.2.

Because we switched to a different dataset, we first had to rerun our original baseline
algorithm in order to obtain a new baseline RMSE, which now has a value of 1.033. Then,
we ran over 20 evolutions, each of 150 generations. Table 9 shows the five best (and
unique, as some RMSE values were repeated over several runs) evolved equations and

Mathematics 2022, 10, 1139 17 of 22

their corresponding RMSE values. In summary, we achieved an average RMSE value of
1.031 and a standard deviation of 0.001 (with a minimum value of 1.029 and a maximum
value of 1.032). We again used the Wilcoxon ranked sum test to confirm (with a p-value of
0.004) that our numbers significantly differ from the baseline value.

Table 9. MovieLens optimization results.

RMSE User Latent Factor Equation Item Latent Factor Equation

1.029 pk
u = 0.05 qk

i = 0.14
1.031 pk

u = 0.04 qk
i = 0.12

1.032 pk
u = 0.02 qk

i =
√

0.0006/pk
u

1.032 pk
u = eui − 0.1 qk

i = 0.02
1.032 pk

u = 0.04 qk
i = 0.08

The most striking difference from the previous experiment is the fact that now all but
one of the latent factors are in fact constants. Note that the third item latent factor in Table 9
is actually a constant because pk

u is a constant. This is a sign that a bias-variance trade-off as
described in [59] has occurred. Because the MovieLens dataset contains a lot more ratings
than the CoMoDa dataset, the information contained in the static biases becomes more
prominent. This in turn means that there is almost no reason to calculate the remaining
variance, which was automatically detected by GE. Using fixed latent factors also means
that the algorithm can be completed within a single iteration, which is a huge improvement
in the case of a very large dataset. More likely, the occurrence of constant factors will
be used as a detection of over-saturation—when the equations produced by GE become
constants, the operator knows that they must either introduce a time-dependent calculation
of biases [19] or otherwise modify the algorithm (e.g., introduce new biases [17]).

5.5. Book-Crossing Dataset

In this experiment, we used the Book-Crossing dataset which is larger than the Movie-
Lens dataset by a factor of 10. In addition, it features a different range of ratings (from
1 to 10 instead of 1 to 5) and covers a different type of item, namely books. Again, we
first calculated the baseline RMSE which was now 1.981. We ran 20 evolutions of 150 gen-
erations each. Table 10 shows the five best evolved equations and their corresponding
RMSE values. In summary, we achieved an average RMSE value of 1.971 and a standard
deviation of 0.007 (with a minimum value of 1.964 and a maximum value of 1.980). We
again used the Wilcoxon ranked sum test to confirm (with a p-value of 0.002) that our
numbers significantly differ from the baseline value.

Table 10. Book-Crossing optimization results.

RMSE User Latent Factor Equation Item Latent Factor Equation

1.952 pk
u = 0.03 qk

i = eui
1.964 pk

u = 0.06− 0.08 ∗ pk
u qk

i = eui
1.965 pk

u = 0.07 qk
i = 0.07 + eui

1.965 pk
u = 0.02 qk

i = eui
1.967 pk

u = 0.05 qk
i = eui

By observing the results, we can see a similar pattern as in the previous experiment—
where one set of latent factors (pk

u) is set to a static value, while the other changes its value
during each iteration according to the current error value of eui. Because the dataset bears
some similarities to the previous (MovieLens) in terms of saturation and ratios (ratings per
user and per items), this was somehow expected.

Mathematics 2022, 10, 1139 18 of 22

5.6. Jester Dataset

In the last experiment, we used the Jester dataset. Again, we first calculated the
baseline RMSE which was now 5.801. One should note that the number differs from those
presented in Table 3 due to the fact that both cited articles ([41,44]) used a slightly different
version of the dataset (either an expanded version or a filtered version). Although this
means that we cannot directly compare our results, we can still see that we are in the same
value range.

We ran 20 evolutions of 150 generations each. Table 11 shows the five best evolved
equations and their corresponding RMSE values. In summary, we achieved an average
RMSE value of 5.800 and a standard deviation of 0.0002 (with a minimum value of 5.800
and a maximum value of 5.801). We again used the Wilcoxon ranked sum test to confirm
(with a p-value of 0.005) that our numbers significantly differ from the baseline value.

Table 11. Jester optimization results.

RMSE User Latent Factor Equation Item Latent Factor Equation

5.801 pk
u = eui qk

i = 0.03
5.800 pk

u = 2 ∗ eui − 7.28 qk
i = 0.03

5.800 pk
u = 2 ∗ eui + 0.48 ∗ pk

u + 5.309 qk
i = 0.04

5.801 pk
u = (5 ∗ pk

u − 6.97) ∗ qk
u+(7 ∗ pk

u − 6.35) ∗ eui qk
i = 0.02

5.801 pk
u = eui − 1.045 qk

i = 0.05

Observing this last set of results, we find some similarities with the previous two
experiments. One set of latent factors is again set to a static value. An interesting twist,
however, is the fact that in this experiment the static value is assigned to the item latent
factors (qk

i) instead of the user latent factors. Upon reviewing the dataset characteristics,
we can see that this further confirms the bias-variance trade-off. This is due to the fact
that in this dataset the ratio of ratings per item is a hundred times larger than the ratio of
ratings per user. The item’s biases therefore carry a lot more weight and thus reduce the
importance of its latent factors. Once again, the GE approach detected this and adjusted
the equations accordingly.

5.7. Result Summary

Table 12 shows a condensed version of our results. It can be seen that we managed to
match or improve the performance of the MF algorithm on all four datasets. All the results
were also tested using the Wilcoxon rank-sum test and, for each case, the test statistic was
lower than the selected significance value of α = 0.05 which confirms that our results were
significantly different (better) than those of the baseline approach.

Table 12. Result summary.

Dataset
Value CoMoDa MovieLens Book-Crossing Jester

best RMSE 1.148 1.029 1.95 5.8
average RMSE 1.204 1.031 1.97 5.8

st. dev. of RMSE 0.031 0.001 0.007 0.0002
p-value (for α = 0.05) 5× 10−6 0.004 0.002 0.005
Comparable RMSE 1.27 [42] 0.98 [39] 1.94 [45] 5.3 [44]

1.00 [30] 1.95 [45] 4.5 [41]

6. Conclusions

We used GE to successfully optimize the latent factors update equations of the MF
algorithm on four diverse datasets. The approach works in an autonomous way which

Mathematics 2022, 10, 1139 19 of 22

requires only the information about the range of ratings (e.g., 1 to 5, −10 to 10, etc.) and no
additional domain knowledge. Such an approach is therefore friendly to any non-expert
user who wants to use the MF algorithm on their database and does not have the knowledge
and resources for a lengthy optimization study.

In the first part of the research, we limited the optimization process only to the
parameter values, which already produced statistically significantly better RMSE values
using 10-fold validation. After using the GE’s full potential to produce latent factor update
equations, we observed an even better increase in the algorithm’s accuracy. Apart from
even better RMSE values, this modification accelerated the basic MF algorithm for more
than five times.

We then switched to three larger datasets that contained different item types and
repeated our experiments. The results showed that GE almost exclusively assigned constant
values to either user or item latent factors. It is outstanding how GE is able to gradually
change—depending on the dataset size—the nature of the update equations from the
classical stochastic gradient descent form, through a modified form where user latent
factors are constants, to a form where both latent factors are constants. This way, GE adapts
to the degree of a bias-variance trade-off present in a dataset and is able to dynamically
warn about over-saturation.

A great potential of the usage of GE to support a MF-factorization-based recommender
system lies in the fact that GE can be used as a black box to aid or even replace an ad-
ministrator in initial as well as on-the-fly adjustments of a recommender system. Apart
from that, GE can be used to generate warnings when the system becomes over-saturated
and requires an administrator’s intervention. We believe that our results make a valuable
contribution to the emerging field of employing evolutionary computing techniques in the
development of recommender systems [26].

The presented approach therefore offers a nice quality-of-life upgrade to the existing
MF algorithm but still has a few kinks that need to be ironed out. Although we are able
to consistently optimize the algorithm and fit it to the selected dataset, the approach does
require a lot of computational resources and time. This is not necessarily a drawback
because we do not require real-time optimization but only need to run the algorithm once
in a while to find the optimal settings.

For our future applications, we therefore plan to improve the algorithm’s performance
by introducing parallel processing and to export parts of the code to C using the Cython
library. In addition, we will also experiment with expanding the scope of our algorithm to
optimizing the MF algorithm parameters as well (the number of iterations and latent factor,
for example). We believe that this could lead to further improvements and potentially
even speed up the MF method itself (by realizing that we need fewer iterations/factors,
for example). It would also be interesting to test if we can apply our algorithm to other
versions of the MF algorithm (graph-based, non-negative, etc.) and if we can apply our
strategy to a completely different recommender system as well.

Author Contributions: Conceptualization, I.F.; Methodology, M.K. and Á.B.; Software, M.K.; Super-
vision, Á.B.; Writing—original draft, M.K.; Writing—review & editing, I.F. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors acknowledge the financial support from the Slovenian Research
Agency (research core funding No. P2-0246 ICT4QoL—Information and Communications Technolo-
gies for Quality of Life).

Conflicts of Interest: The authors declare no conflict of interest.

Mathematics 2022, 10, 1139 20 of 22

References
1. Ahanger, G.; Little, T.D.C. Data semantics for improving retrieval performance of digital news video systems. IEEE Trans. Knowl.

Data Eng. 2001, 13, 352–360. [CrossRef]
2. Uchyigit, G.; Clark, K. An Agent Based Electronic Program Guide. In Proceedings of the 2nd Workshop on Personalization in

Future TV, Malaga, Spain, 28 May 2002; pp. 52–61.
3. Kurapati, K.; Gutta, S.; Schaffer, D.; Martino, J.; Zimmerman, J. A multi-agent TV recommender. In Proceedings of the UM 2001

workshop Personalization in Future TV, Sonthofen, Germany, 13–17 July 2001.
4. Bezerra, B.; de Carvalho, F.; Ramalho, G.; Zucker, J. Speeding up recommender systems with meta-prototypes. In Brazilian

Symposium on Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 2002; pp. 521–528.
5. Yuan, J.L.; Yu, Y.; Xiao, X.; Li, X.Y. SVM Based Classification Mapping for User Navigation. Int. J. Distrib. Sens. Netw. 2009,

5, 32–32. [CrossRef]
6. Pogačnik, M. Uporabniku Prilagojeno Iskanje Multimedijskih Vsebin. Ph.D. Thesis, University of Ljubljana, Ljubljana,

Slovenia, 2004.
7. Hand, D.J.; Mannila, H.; Smyth, P. Principles of Data Mining; MIT Press: Cambridge, MA, USA, 2001.
8. Salton, G.; McGill, M.J. Introduction to Modern Information Retrieval; McGraw-Hill, Inc.: New York, NY, USA, 1986.
9. Barry Crabtree, I.; Soltysiak, S.J. Identifying and tracking changing interests. Int. J. Digit. Libr. 1998, 2, 38–53. [CrossRef]
10. Mirkovic, J.; Cvetkovic, D.; Tomca, N.; Cveticanin, S.; Slijepcevic, S.; Obradovic, V.; Mrkic, M.; Cakulev, I.; Kraus, L.; Milutinovic,

V. Genetic algorithms for intelligent internet search: A survey and a package for experimenting with various locality types.
IEEE TCCA Newsl. 1999, 118–119. Available online: https://scholar.google.co.jp/scholar?q=Genetic+algorithms+for+intelligent+
internet+search:+A+survey+and+a+++package+for+experimenting+with+various+locality+types&hl=zh-CN&as_sdt=0&as_
vis=1&oi=scholart (accessed on 1 February 2022).

11. Mladenic, D. Text-learning and related intelligent agents: A survey. IEEE Intell. Syst. 1999, 14, 44–54. [CrossRef]
12. Malone, T.; Grant, K.; Turbak, F.; Brobst, S.; Cohen, M. Intelligent Information Sharing Systems. Commun. ACM 1987, 30, 390–402.

[CrossRef]
13. Buczak, A.L.; Zimmerman, J.; Kurapati, K. Personalization: Improving Ease-of-Use, trust and Accuracy of a TV Show Recom-

mender. In Proceedings of the 2nd Workshop on Personalization in Future TV, Malaga, Spain, 28 May 2002.
14. Difino, A.; Negro, B.; Chiarotto, A. A Multi-Agent System for a Personalized Electronic Programme Guide. In Proceedings of the

2nd Workshop on Personalization in Future TV, Malaga, Spain, 28 May 2002.
15. Guna, J.; Stojmenova, E.; Kos, A.; Pogačnik, M. The TV-WEB project—Combining internet and television—Lessons learnt from

the user experience studies. Multimed. Tools Appl. 2017, 76, 20377–20408. [CrossRef]
16. Kunaver, M.; Požrl, T. Diversity in Recommender Systems A Survey. Knowl. Based Syst. 2017, 123, 154–162. [CrossRef]
17. Odic, A.; Tkalcic, M.; Tasic, J.F.; Kosir, A. Predicting and Detecting the Relevant Contextual Information in a Movie-Recommender

System. Interact. Comput. 2013, 25, 74–90. [CrossRef]
18. Rodriguez, M.; Posse, C.; Zhang, E. Multiple Objective Optimization in Recommender Systems. In Proceedings of the Sixth

ACM Conference on Recommender Systems, RecSys’12, Dublin, Ireland, 9–13 September 2021; ACM: New York, NY, USA, 2012;
pp. 11–18. [CrossRef]

19. Koren, Y. Collaborative Filtering with Temporal Dynamics. Commun. ACM 2010, 53, 89–97. [CrossRef]
20. Koren, Y.; Bell, R.; Volinsky, C. Matrix Factorization Techniques for Recommender Systems. Computer 2009, 42, 30–37. [CrossRef]
21. Hug, N. Surprise, a Python Library for Recommender Systems. 2017. Available online: http://surpriselib.com (accessed on 1

Mar 2022).
22. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;

et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
23. Mnih, A.; Salakhutdinov, R.R. Probabilistic matrix factorization. In Advances in Neural Information Processing Systems; The MIT

Press: Cambridge, MA, USA, 2008; pp. 1257–1264.
24. Rosenthal, E. Explicit Matrix Factorization: ALS, SGD, and All That Jazz. 2017. Available online: https://blog.insightdatascience.

com/explicit-matrix-factorization-als-sgd-and-all-that-jazz-b00e4d9b21ea (accessed on 19 March 2018).
25. Yu, H.F.; Hsieh, C.J.; Si, S.; Dhillon, I.S. Parallel matrix factorization for recommender systems. Knowl. Inf. Syst. 2014, 41, 793–819.

[CrossRef]
26. Horváth, T.; Carvalho, A.C. Evolutionary Computing in Recommender Systems: A Review of Recent Research. Nat. Comput.

2017, 16, 441–462. [CrossRef]
27. Salehi, M.; Kmalabadi, I.N. A Hybrid Attribute-based Recommender System for E-learning Material Recommendation. IERI

Procedia 2012, 2, 565–570. [CrossRef]
28. Zandi Navgaran, D.; Moradi, P.; Akhlaghian, F. Evolutionary based matrix factorization method for collaborative filtering

systems. In Proceedings of the 2013 21st Iranian Conference on Electrical Engineering (ICEE), Mashhad, Iran, 14–16 May 2013;
pp. 1–5.

29. Hu, L.; Cao, J.; Xu, G.; Cao, L.; Gu, Z.; Zhu, C. Personalized Recommendation via Cross-domain Triadic Factorization. In
Proceedings of the 22nd International Conference on World Wide Web, WWW’13, Rio de Janeiro, Brazil, 13–17 May 2013; ACM:
New York, NY, USA, 2013; pp. 595–606. [CrossRef]

http://doi.org/10.1109/69.929894
http://dx.doi.org/10.1080/15501320802523955
http://dx.doi.org/10.1007/s007990050035
https://scholar.google.co.jp/scholar?q=Genetic+algorithms+for+intelligent+internet+search:+A+survey+and+a+++package+for+experimenting+with+various+locality+types&hl=zh-CN&as_sdt=0&as_vis=1&oi=scholart
https://scholar.google.co.jp/scholar?q=Genetic+algorithms+for+intelligent+internet+search:+A+survey+and+a+++package+for+experimenting+with+various+locality+types&hl=zh-CN&as_sdt=0&as_vis=1&oi=scholart
https://scholar.google.co.jp/scholar?q=Genetic+algorithms+for+intelligent+internet+search:+A+survey+and+a+++package+for+experimenting+with+various+locality+types&hl=zh-CN&as_sdt=0&as_vis=1&oi=scholart
http://dx.doi.org/10.1109/5254.784084
http://dx.doi.org/10.1145/22899.22903
http://dx.doi.org/10.1007/s11042-016-3243-3
http://dx.doi.org/10.1016/j.knosys.2017.02.009
http://dx.doi.org/10.1093/iwc/iws003
http://dx.doi.org/10.1145/2365952.2365961
http://dx.doi.org/10.1145/1721654.1721677
http://dx.doi.org/10.1109/MC.2009.263
http://surpriselib.com
https://blog.insightdatascience.com/explicit-matrix-factorization-als-sgd-and-all-that-jazz-b00e4d9b21ea
https://blog.insightdatascience.com/explicit-matrix-factorization-als-sgd-and-all-that-jazz-b00e4d9b21ea
http://dx.doi.org/10.1007/s10115-013-0682-2
http://dx.doi.org/10.1007/s11047-016-9540-y
http://dx.doi.org/10.1016/j.ieri.2012.06.135
http://dx.doi.org/10.1145/2488388.2488441

Mathematics 2022, 10, 1139 21 of 22

30. Balcar, S. Preference Learning by Matrix Factorization on Island Models. In Proceedings of the 18th Conference Information
Technologies—Applications and Theory (ITAT 2018), Hotel Plejsy, Slovakia, 21–25 September 2018; Volume 2203, pp. 146–151.

31. Rezaei, M.; Boostani, R. Using the genetic algorithm to enhance nonnegative matrix factorization initialization. Expert Syst. 2014,
31, 213–219. [CrossRef]

32. Lara-Cabrera, R.; Gonzalez-Prieto, Á.; Ortega, F.; Bobadilla, J. Evolving Matrix-Factorization-Based Collaborative Filtering Using
Genetic Programming. Appl. Sci. 2020, 10, 675. [CrossRef]

33. O’Neil, M.; Ryan, C. Grammatical Evolution. In Grammatical Evolution: Evolutionary Automatic Programming in an Arbitrary
Language; Springer: Boston, MA, USA, 2003; pp. 33–47. [CrossRef]

34. Bokde, D.K.; Girase, S.; Mukhopadhyay, D. An Approach to a University Recommendation by Multi-criteria Collaborative
Filtering and Dimensionality Reduction Techniques. In Proceedings of the 2015 IEEE International Symposium on Nanoelectronic
and Information Systems, Indore, India, 21–23 December 2015; pp. 231–236. [CrossRef]

35. Košir, A.; Odić, A.; Kunaver, M.; Tkalčič, M.; Tasič, J.F. Database for contextual personalization. Elektroteh. Vestn. 2011, 78, 270–274.
36. Breese, J.S.; Heckerman, D.; Kadie, C. Empirical analysis of predictive algorithms for collaborative filtering. In Proceedings of

the Fourteenth Conference on Uncertainty in Artificial Intelligence, Madison Wisconsin, 24–26 July 1998; Morgan Kaufmann
Publishers Inc.: Burlington, MA, USA, 1998; pp. 43–52.

37. Herlocker, J.L.; Konstan, J.A.; Borchers, A.; Riedl, J. An Algorithmic Framework for Performing Collaborative Filtering. In
Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval,
SIGIR’99, Berkeley, CA, USA, 15–19 August 1999; ACM: New York, NY, USA, 1999; pp. 230–237. [CrossRef]

38. Shardanand, U.; Maes, P. Social information filtering: Algorithms for automating ‘word of mouth’. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, Denver, CO, USA, 7–11 May 1995; ACM Press/Addison-Wesley
Publishing Co., Ltd.: Boston, MA, USA, 1995; pp. 210–217.

39. Bao, Z.; Xia, H. Movie Rating Estimation and Recommendation, CS229 Project; Stanford University: Stanford, CA, USA, 2012; pp. 1–4.
40. Chandrashekhar, H.; Bhasker, B. Personalized recommender system using entropy based collaborative filtering technique.

J. Electron. Commer. Res. 2011, 12, 214.
41. Ranjbar, M.; Moradi, P.; Azami, M.; Jalili, M. An imputation-based matrix factorization method for improving accuracy of

collaborative filtering systems. Eng. Appl. Artif. Intell. 2015, 46, 58–66. [CrossRef]
42. Kunaver, M.; Fajfar, I. Grammatical Evolution in a Matrix Factorization Recommender System. In Proceedings of the International

Conference on Artificial Intelligence and Soft Computing, Zakopane, Poland, 12–16 June 2016; Rutkowski, L., Korytkowski,
M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; Volume 9692,
pp. 392–400. [CrossRef]

43. Chen, H.H. Weighted-SVD: Matrix Factorization with Weights on the Latent Factors. arXiv 2017, arXiv:1710.00482.
44. Yu, T.; Mengshoel, O.J.; Jude, A.; Feller, E.; Forgeat, J.; Radia, N. Incremental learning for matrix factorization in recommender

systems. In Proceedings of the 2016 IEEE International Conference on Big Data (Big Data), Washington, DC, USA, 5–8 December
2016; pp. 1056–1063.

45. Tashkandi, A.; Wiese, L.; Baum, M. Comparative Evaluation for Recommender Systems for Book Recommendations. In BTW
(Workshops); Mitschang, B., Ritter, N., Schwarz, H., Klettke, M., Thor, A., Kopp, O., Wieland, M., Eds.; Hair Styling & Makeup Servi:
Hong Kong,China, 2017; Volume P-266, pp. 291–300. Available online: https://www.broadwayteachinggroup.com/about-btw
(accessed on 1 February 2021).

46. Ryan, C.; Azad, R.M.A. Sensible Initialisation in Chorus. In Proceedings of the European Conference on Genetic Programming,
Essex, UK, 14–16 April 2003; Ryan, C., Soule, T., Keijzer, M., Tsang, E.P.K., Poli, R., Costa, E., Eds.; Springer: Berlin/Heidelberg,
Germany, 2003; Volume 2610, pp. 394–403. [CrossRef]

47. Koza, J. Genetic Programming: On the Programming of Computers by Means of Natural Selection; The MIT Press: Cambridge, MA,
USA, 1992.

48. Kunaver, M.; Žic, M.; Fajfar, I.; Tuma, T.; Bűrmen, Á.; Subotić, V.; Rojec, Ž. Synthesizing Electrically Equivalent Circuits for Use in
Electrochemical Impedance Spectroscopy through Grammatical Evolution. Processes 2021, 9, 1859. [CrossRef]

49. Kunaver, M. Grammatical evolution-based analog circuit synthesis. Inf. MIDEM 2019, 49, 229–240.
50. Poikolainen, I.; Neri, F.; Caraffini, F. Cluster-Based Population Initialization for differential evolution frameworks. Inf. Sci. 2015,

297, 216–235. [CrossRef]
51. Harper, R.; Blair, A. A Structure Preserving Crossover In Grammatical Evolution. In Proceedings of the 2005 IEEE Congress on

Evolutionary Computation, Edinburgh, UK, 2–5 September 2005; Volume 3, pp. 2537–2544.
52. Byrne, J.; O’Neill, M.; Brabazon, A. Structural and Nodal Mutation in Grammatical Evolution. In Proceedings of the 11th Annual

Conference on Genetic and Evolutionary Computation, GECCO’09, Montreal, QC, Canada, 8–12 July 2009; ACM: New York, NY,
USA, 2009; pp. 1881–1882. [CrossRef]

53. Helmuth, T.; Spector, L.; Martin, B. Size-based Tournaments for Node Selection. In Proceedings of the 13th Annual Conference
Companion on Genetic and Evolutionary Computation GECCO’11, Dublin, Ireland, 12–16 July 2011; pp. 799–802.

54. Luke, S.; Panait, L. A Comparison of Bloat Control Methods for Genetic Programming. Evol. Comput. 2006, 14, 309–344.
[CrossRef]

55. Poli, R.; Langdon, W.; McPhee, N. A Field Guide to Genetic Programming; Lulu Enterprises UK Ltd.: Cardiff , Glamorgan, UK, 2008.
56. GroupLens. MovieLens. 2017. Available online: https://grouplens.org/blog/2017/07/ (accessed on 19 March 2018).

http://dx.doi.org/10.1111/exsy.12031
http://dx.doi.org/10.3390/app10020675
http://dx.doi.org/10.1007/978-1-4615-0447-4_4
http://dx.doi.org/10.1109/iNIS.2015.36
http://dx.doi.org/10.1145/312624.312682
http://dx.doi.org/10.1016/j.engappai.2015.08.010
http://dx.doi.org/10.1007/978-3-319-39378-0_34
https://www.broadwayteachinggroup.com/about-btw
http://dx.doi.org/10.1007/3-540-36599-0_37
http://dx.doi.org/10.3390/pr9111859
http://dx.doi.org/10.1016/j.ins.2014.11.026
http://dx.doi.org/10.1145/1569901.1570215
http://dx.doi.org/10.1162/evco.2006.14.3.309
https://grouplens.org/blog/2017/07/

Mathematics 2022, 10, 1139 22 of 22

57. Ziegler, C.N.; McNee, S.M.; Konstan, J.A.; Lausen, G. Improving recommendation lists through topic diversification. In
Proceedings of the 14th International Conference on World Wide Web (WWW), Seoul, Korea, 7–11 April 2005.

58. Goldberg, K.; Roeder, T.; Gupta, D.; Perkins, C. Eigentaste: A Constant Time Collaborative Filtering Algorithm. Inf. Retr. 2001,
4, 133–151. [CrossRef]

59. Aggarwal, C.C. Recommender Systems—The Textbook; Springer:Berlin/Heidelberg, Germany, 2016; pp. 1–498.

http://dx.doi.org/10.1023/A:1011419012209

	Introduction
	Matrix Factorization Algorithm
	An Overview of a Basic Matrix Factorization Approach
	Biases
	The Algorithm
	Optimization Task
	Evaluation of Algorithm's Performance
	RMSE
	Overfitting and Cross-Validation

	Grammatical Evolution
	The Grammar
	Initialization
	Generating Individuals from Chromosomes—An Example
	Optimizing MF—Evaluating Individuals
	Crossover and Mutation
	Evolution Settings

	Datasets and Hardware
	Dataset Characteristics
	LDOS CoMoDa
	MovieLens
	Book-Crossing Dataset
	Jester

	The Hardware

	Results
	Automatic MF Algorithm Initialization
	Evolving New Latent Factors Update Equations
	Convergence Analysis
	MovieLens Dataset
	Book-Crossing Dataset
	Jester Dataset
	Result Summary

	Conclusions
	References

