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Abstract: The point estimation problems that emerge in Bayesian predictive inference are concerned
with random quantities which depend on both observable and non-observable variables. Intuition
suggests splitting such problems into two phases, the former relying on estimation of the random pa-
rameter of the model, the latter concerning estimation of the original quantity from the distinguished
element of the statistical model obtained by plug-in of the estimated parameter in the place of the
random parameter. This paper discusses both phases within a decision theoretic framework. As a
main result, a non-standard loss function on the space of parameters, given in terms of a Wasserstein
distance, is proposed to carry out the first phase. Finally, the asymptotic efficiency of the entire
procedure is discussed.
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1. Introduction

This paper carries on a project—conceived by Eugenio Regazzini some years ago, and
partially developed in collaboration with Donato M. Cifarelli—which aims at proving why
and how some classical, frequentist algorithms from the theory of point estimation can be
justified, under some regularity assumptions, within the Bayesian framework. See [1–4].
This project was inspired, in turn, by the works and the thoughts of Bruno de Finetti about
the foundation of statistical inference, substantially based on the following principles.

1. De Finetti’s vision of statistics is grounded on the irrefutable fact that the Bayesian
standpoint—intended as the use of basic tools of probability theory and, especially,
of conditional distributions—becomes a necessity for those who intend statistical
inference as the utilization of observed data to update their original beliefs about
other quantities of interest, not yet observed. See [5,6].

2. Rigorous notions of point estimation and optimality of an estimator can be achieved
only within a decision-theoretic framework (see, e.g., [7]), at least if we admit all
estimators into competition and disregard distinguished restrictions such as unbiased-
ness or equivariance. In turn, decision theory proves to be genuinely Bayesian, thanks
to a well-known result by Abraham Wald. See [8] [Chapter 4].

3. At least from a mathematical stance, the existence of the prior distribution can be
drawn from various representation theorems which, by pertaining to the more basic
act of modeling incoming information, stand before the problem of point estimation.
The most luminous example is the celebrated de Finetti representation theorem for
exchangeable observations. See [6,9] and, for a predictive approach [10,11].

Indeed, these principles do not force the assessment of a specific prior distribution,
but just lead the statistician to take cognizance that some prior has, in any case, to exist.
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This fact agrees with de Finetti’s indication to keep the concepts of “Bayesian standpoint”
and “Bayesian techniques” as distinguished. See also [12].

Despite their robust logical coherence, orthodox Bayesian solutions to inferential
problems suffer two main drawbacks on the practical, operational side, which may limit
their use. On the one hand, it is rarely the case that a prior distribution is fully specified
due to a lack of prior information, this phenomenon even being amplified by the choice of
complex statistical models (e.g., of nonparametric type). On the other hand, the numerical
tractability of the Bayesian solutions often proves to be a serious hurdle, especially in
the presence of large datasets. For example, it suffices to mention those algorithms from
Bayesian nonparametrics that involve tools from combinatorics (like permutations or
set/integer partitions) having exponential algorithmic complexity. See, e.g., [13]. Finally,
the implicit nature of the notion of Bayesian estimator, although conceptually useful, makes
it hard to employ in practical problems, especially in combination with non-quadratic loss
functions, even if noteworthy progress has been achieved from the numerical side in the
last decade. All these issues still pervade modern statistical literature while, historically,
they have paved the way firstly to the “Fisherian revolution” and then to more recent
techniques such as empirical Bayes and objective Bayes methods. The ultimate result has
been a proliferation of many ad hoc algorithms, often of limited conceptual value, that
provide focused and operational solutions to very specific problems.

Aware of this trend, Eugenio Regazzini conceived his project with the aims of: re-
framing the algorithms of modern statistics—especially those obtained by frequentist
techniques—within the Bayesian theory as summarized in points 1–3 above, showing
whether they can be re-interpreted as good approximations of Bayesian algorithms. The
rationale is that orthodox Bayesian theory could be open to accept even non-Bayesian
solutions (hence, suboptimal ones if seen “through the glass of the prior”) as long as such
solutions prove to be more operational than the Bayesian ones and, above all, asymptoti-
cally almost efficient, in the Bayesian sense. This concept means that, for a fixed prior, the
Bayesian risk function evaluated at the non-Bayesian estimator is approximately equal
to the overall minimum of such risk function (achieved when evaluated at the Bayesian
estimator), the error of approximation going to zero as the sample size increases. Of course,
these goals can be carried out after providing quantitative estimates for the risk function,
as done, for example, in some decision-theoretic work on the empirical Bayes approach
to inference. See, e.g., the seminal work [14]. Indeed, Regazzini’s project has much in
common with the empirical Bayes theory, although the former strictly remains on the
“orthodox Bayesian main way” whilst the latter mixes Bayesian and frequentist techniques.
As to more practical results, an archetype of Regazzini’s line of reasoning can be found
in a previous statement from [15] [Section 5] which proves that the maximum likelihood
estimator (MLE)—obtained in the classical context of n i.i.d. observations, driven by a
regular parametric model—has the same Bayesian efficiency (coinciding with the mean
square error, in this case) as the Bayesian estimator up to O(1/n)-terms, provided that the
prior is smooth enough. Another example can be found in [16] where the authors, while
dealing with species sampling problems, rediscover the so-called Good–Turing estima-
tor for the probability of finding a new species (which is obtained via empirical Bayes
arguments) within the Bayesian nonparametric setting described in [17]. Other examples
are contained in [2,4]. In any case, Regazzini’s project is not only a matter of “rigorously
justifying” a given algorithm, but rather of logically conceiving an estimation problem from
the beginning to the end by quantifying coherent degrees of approximation in terms of the
Bayesian risk or, more generally, in terms of speed of shrinkage of the posterior distribution
with respect to distances on the space of probability measures, these goals being proved
uniformly with respect to an entire class of priors. Hence, this plan of action is conceptually
antipodal to that of (nowadays called) “Bayesian consistency”, i.e., to justify a Bayesian
algorithm from the point of view of classical statistics.
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1.1. Main Contributions and General Strategy

In this paper, we pursue Regazzini’s project by considering some predictive prob-
lems where the quantity Un,m to be estimated depends explicitly on new (hitherto unob-
served) variables Xn+1, . . . , Xn+m, possibly besides the original sample variables X1, . . . , Xn
and an unobservable parameter T. Thus, Un,m = un,m(Xn+1, . . . , Xn+m; X1, . . . , Xn; T).
For simplicity, we confine ourselves to the simplest case in which both (X1, . . . , Xn) and
(Xn+1, . . . , Xn+m) are segments of a whole sequence {Xi}i≥1 of exchangeable X-valued
random variables, while T is a random parameter that makes the Xi’s conditionally i.i.d.
with a common distribution depending on T, in accordance with de Finetti’s representation
theorem. From the statistical point of view, the exchangeability assumption just reveals
a supposed homogeneity between the observable quantities while, from a mathematical
point of view, it simply states that the joint distribution of any k-subset of the Xi’s depends
only on k and not on the specific k-subset, for any k ∈ N. Thus, we are setting our esti-
mation problem within an orthodox Bayesian framework where, independently of the
fact that we are able or not to precisely assess the prior distribution, such a prior has to
exist for mere mathematical reasons. This solid theoretical background provides all the
elements to logically formulate the original predictive estimation problem as the following
decision-theoretic question: find

Ûn,m = ArgminZE[LU(Un,m, Z)] , (1)

where: LU is a suitable loss function on the space U in which Un,m takes its values; Z runs
over the space of all U-valued, σ(X1, . . . , Xn)-measurable random variables; the expectation
is taken with respect to the joint distribution of (X1, . . . , Xn+m) and T. It is remarkable
that the same estimation problem would have been meaningless in classical (Fisherian)
statistics, which can solely consider the estimation of (a function of) the parameter, and not
of random quantities. Now, the solution displayed in (1) depends of course on the prior
and it is the optimal one when seen, in terms of the Bayesian risk, “with the glass of that
prior”. However, the above-mentioned difficulties about the assessment of a specific prior
can diminish the practical (but not the conceptual) value of this solution, in the sense that it
could prove to be non-operational in the case of a lack of prior information. Sometimes,
when the prior is known up to further unknown parameters, another estimation problem
is needed.

Our research is then focused on formalizing a general strategy aimed at producing,
under regularity conditions, alternative estimators U∗n,m which prove to be asymptotically
nearly optimal (as specified above), uniformly with respect to any prior in some class. More
precisely, for any fixed prior in that class, we aim at proving the validity of the asymptotic
expansions (as n→ +∞),

E
[
LU(Un,m, Ûn,m)

]
= R̂0,m +

1
n

R̂1,m + o
(

1
n

)
(2)

E
[
LU(Un,m, U∗n,m)

]
= R∗0,m +

1
n

R∗1,m + o
(

1
n

)
, (3)

along with R̂i,m = R∗i,m for i = 0, 1, where Ûn,m is the same as in (1). This is exactly the
content of Theorem 5.1 and Corollary 5.1 in [15], which deal with the case where: Un,m = T
(estimation of the parameter of the model), so that U coincides with the parameter space
Θ ⊆ R; LU is the quadratic loss function, so that the risk function coincides with the
mean square error; Ûn,m = E[T | X1, . . . , Xn] is the Bayesian estimator with respect to LU;
U∗n,m coincides with the MLE; R̂0,m = R∗0,m = 0 and R̂1,m = R∗1,m =

∫
Θ[I(θ)]

−1π(dθ), I
denoting the Fisher information of the model and π being any prior on Θ with positive
and sufficiently smooth density (with respect to the Lebesgue measure). Moving to truly
predictive problems, the main operational solutions come from the empirical Bayes theory,
which shares Equation (1) with the approach we are going to present. However, the
empirical Bayes theory very soon leaves the “Bayesian main way” by bringing some sort of
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Law of Large Numbers into the game, in order to replace the unknown quantities (usually,
the prior itself). Here, on the contrary, we pursue Regazzini’s project by proposing a new
method that remains on the Bayesian main way. It consists of the following six steps.

Step 1. Reformulate problem (1) into another (orthodox Bayesian) estimation problem
about T, the random parameter of the model. Roughly speaking, start from the following
de Finetti representation:

P[X1 ∈ A1, . . . , Xk ∈ Ak | T = θ] = µ⊗k (A1 × . . .× Ak | θ) :=
k

∏
i=1

µ(Ai | θ) , (4)

valid for all k ∈ N, Borel sets A1, . . . , Ak, θ ∈ Θ, and some probability kernel µ(·|·), which
coincides with the statistical model for the single observation. Then, consider the following
estimation problem: find

T̂n,m = ArgminWE
[
LΘ,(X1,...,Xn)(T, W)

]
, (5)

where: LΘ,(X1,...,Xn) is a suitable loss function on Θ; W runs over the space of all Θ-valued,
σ(X1, . . . , Xn)-measurable random variables; the expectation is taken with respect to the
joint distribution of (X1, . . . , Xn) and T. The explicit definition of LΘ,(X1,...,Xn) is given in
terms of a Wasserstein distance, as follows:

LΘ,(x1,...,xn)(θ, τ) = inf
Γ

∫
U2
LU(u, v)Γ(dudv), (6)

where Γ runs over the Fréchet class of all probability measures on U2 with marginals
γθ,(x1,...,xn) and γτ,(x1,...,xn), respectively, and γθ,(x1,...,xn) stands for the pull-back measure
µ⊗m(·|θ) ◦ un,m(·; x1, . . . , xn; θ)−1 on U.

Step 2. After getting the estimator T̂n,m from (5), consider estimators U∗n,m that satisfy
the following approximated version of problem (1): find

U∗n,m = ArgminZ

∫
Xm
LU
(

un,m(y1, . . . , ym; X1, . . . , Xn; T̂n,m), Z
)

µ⊗m(dy1 . . . dym | T̂n,m), (7)

where Z runs over the space of all U-valued, σ(X1, . . . , Xn)-measurable random variables.
Step 3. For the estimators Ûn,m and U∗n,m that solve (1) and (7) respectively, prove

that (2) and (3) hold along with R̂i,m = R∗i,m for i = 0, 1. This entails the asymptotic almost
efficiency of U∗n,m, which it is still a prior-dependent estimator. In any case, this step is
crucial to show that the loss function LΘ,(x1,...,xn) given in (6) is “Bayesianly well-conceived”,
that is, in harmony with the original aim displayed in (1).

Step 4. Identities (2) and (3) provides conditions on the statistical model µ(·|·) that
possibly allows the existence of some prior-free estimator T̃n,m of T which turns out to be
asymptotically almost efficient, with respect to the same risk function as that displayed on
the right-hand side of (5). More precisely, this fact consists of proving the validity of the
following identities (as n→ +∞)

E
[
LΘ,(X1,...,Xn)(T, T̂n,m)

]
= ρ̂0,m +

1
n

ρ̂1,m + o
(

1
n

)
(8)

E
[
LΘ,(X1,...,Xn)(T, T̃n,m)

]
= ρ̃0,m +

1
n

ρ̃1,m + o
(

1
n

)
, (9)

along with ρ̂i,m = ρ̃i,m for i = 0, 1, where T̂n,m is the same as in (5), for all prior distributions
in a given class.

Step 5. After getting estimators T̃n,m as in Step 4, consider the prior-free estimators
Ũn,m satisfying the analogous minimization problem as in (7), with T̂n,m replaced by T̃n,m.
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Step 6. For any estimator Ũn,m found as in Step 5, prove the validity of the following
identity (as n→ +∞):

E
[
LU(Un,m, Ũn,m)

]
= R̃0,m +

1
n

R̃1,m + o
(

1
n

)
, (10)

along with R̂i,m = R̃i,m for i = 0, 1, where the R̂i,m’s are the same as in (2), for all prior
distributions in the same class as specified in Step 4. This last step shows why and how
the frequentist (i.e., prior-free) estimator Ũn,m can be used, within the orthodox Bayesian
framework, as a good approximation of the Bayesian estimator Ûn,m. This is particularly
remarkable at least in two cases that do not exclude each other: when the estimator T̃n,m
obtained from Step 4 is much simpler and numerically manageable than T̂n,m; when prior
information is sufficient to characterize only a class of priors, but not a specific element of it.

This plan of action obeys the following principles:

(A) The loss functionLΘ,(x1,...,xn) on Θ is harmoniously coordinated with the original choice
of the loss function LU on U. This principle is much aligned with de Finetti’s thought
(see [18]), since it remarks on the more concrete nature of the space U compared with
the space Θ which is, in principle, only a set of labels. Hence, it is much more reasonable
to firstly metrize the space U and then the space Θ accordingly (as in (6)), rather than
directly metrize Θ—even without taking account of the original predictive aim.

(B) The Bayesian risk function associated with both U∗n,m and Ũn,m can be bounded from
above by the sum of two quantities: the former taking account of the error in estimating
T, the latter reflecting the fact that we are estimating both U∗n,m and Ũn,m from an
“estimated distribution”.

The former principle, whose formalization constitutes the main novelty of this work, is
concerned with the geometrical structure of the space of the parameters Θ. This is what we
call a relativistic principle in point estimation theory: the goal of estimating a random quan-
tity that depends on the observations (possibly besides the parameter) yields a modification
of the geometry of Θ, to be now thought of as a curved space according to a non-trivial
geometry. Of course, this modified geometry entails a coordinated notion of mean square
error, now referred to the Riemannian geodesic distance. The term relativistic principle just
hints at the original main principle of General Relativity Theory according to which the
presence of a massive body modifies the geometry of the physical surrounding space, by
means of the well-known Einstein tensor equations. These equations formalize a sort of
compatibility between the physical and the geometric structures of the space. Thus, the
identities (43) and (44), as stated in Section 3 to properly characterize the (Riemannian) met-
ric on Θ, we will call compatibility equations. Actually, the idea of metrizing the parameter
space Θ in a non standard way is well-known since the pioneering paper [19] by Radhakr-
ishna Rao, and has received so much attention in the statistical literature to give birth to
a fertile branch called Information Geometry. See, e.g., [20]. In particular, the concepts of
efficiency, unbiasedness, Cramér–Rao lower bounds, Rao–Blackwell and Lehmann–Scheffé
theorems are by far best-understood in this non-standard (i.e., non-Euclidean) setting.
See [21]. In any case, to the best of our knowledge, this is the first work which connects the
use of a non-standard geometric setting on Θ with predictive estimation problems—even
if some hints can be drawn from [22]. In our opinion, the lack of awareness about the
aforesaid relativistic principle, combined with an abuse of the quadratic loss function on
Θ, has produced a lot of actually sub-efficient algorithms, most of which focused on the
estimation of certain probabilities, or of nonparametric objects. In these cases, the efficiency
of the ensuing estimators is created artificially through a misuse of the quadratic loss, and
it proves to be drastically downsized whenever these estimators are evaluated by means of
other, more concrete loss functions which take account (as in (6)) of the natural geometry
of the spaces of really observable quantities. To get an idea of this phenomenon, see the
discussion about Robbins’ estimators in Section 4.4 below.
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1.2. Organization of the Paper

We conclude the introduction by summarizing the main results of the paper, which
are threefold. The first block of results, including Theorem 1, Proposition 1 and Lemma 1
in Section 2.2, concerns some refinement of de Finetti’s Law of Large Numbers for the
log-likelihood process. The second block of theoretical results, developed in Section 3,
contains:

(i) Proposition 2, which shows how to bound from above the Bayesian risk of any
estimator of Un,m by using the Wasserstein distance;

(ii) Proposition 3, which explains how to use the Laplace method of the approximation of
integrals to get asymptotic expansions of the Bayesian risk functions;

(iii) the formulation of the compatibility Equations (43) and (44);
(iv) the proof of the “asymptotic almost efficiency” of the estimator U∗n,m obtained in Step

2, via verification of identities (2) and (3);
(v) the successful completion of Step 6, that is, the proof of the “asymptotic almost

efficiency” of estimators Ũn,m obtained in Step 5, via verification of identity (10).

The last block of results, contained in Section 4, consists of explicit verifications of
the compatibility equations for some simple statistical models (Sections 4.1–4.3), and
also the adaptation of our plan of action to the same Poisson-mixture model used by
Herbert Robbins in [23] to illustrate his empirical Bayes approach to predictive inference
(Section 4.4). Finally, all the proofs of the theoretical results are deferred to Section 5, while
some conclusions and future developments are hinted at in Section 6.

2. Technical Preliminaries

We begin by rigorously fixing the mathematical setting, split into two subsections. The
former will contain a very general framework which will serve to give a precise meaning
to the questions presented in the Introduction and to state in full generality one of the
main results, that is, Proposition 2 in Section 3. In fact, this statement will include some
inequalities that, by carrying out the goal described in point (B) of the Introduction will
constitute the starting point for all the results presented in Section 3. The second subsection
will deal with a simplification of the original setting—essentially based on additional
regularity conditions for the spaces U and Θ and for the statistical model µ(·|·)—aimed at
introducing the novel compatibility equations without too many technicalities.

2.1. The General Framework

Let (X, X ) and (Θ, T ) be standard Borel spaces called sample space (for any single
observation) and parameter space, respectively. Consider a sequence {Xi}i≥1 of X-valued
random variables (r.v.’s, from now on) along with another Θ-valued r.v. T, all the Xi’s and T
being defined on a suitable probability space (Ω, F ,P). Assume that (4) holds for all k ∈ N,
A1, . . . , Ak ∈ X and θ ∈ Θ with some given probability kernel µ(·|·) : X ×Θ → [0, 1],
called statistical model (for any single observation). The validity of (4) entails that the Xi’s
are exchangeable and that

P[X1 ∈ A1, . . . , Xk ∈ Ak] =
∫

Θ
µ⊗k (A1 × . . .× Ak | θ)π(dθ) =: αk(A1 × . . .× Ak) (11)

holds for all k ∈ N and A1, . . . , Ak ∈ X with some given probability measure (p.m.) π on
(Θ, T ) called prior distribution. Identity (11) uniquely characterizes the p.m. αk on (Xk, X k)
for any k ∈ N, this p.m. being called law of k-observations, where Xk (X k, respectively)
denotes the k-fold cartesian product (σ-algebra product, respectively) of k copies of X (X ,
respectively). Moreover, let

πk(B | x1, . . . , xk) := P[T ∈ B | X1 = x1, . . . , Xk = xk]

βk(A | x1, . . . , xk) := P[Xk+1 ∈ A | X1 = x1, . . . , Xk = xk]
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be two probability kernels, with πk(·|·) : T ×Xk → [0, 1] and βk(·|·) : X ×Xk → [0, 1],
defined as respective solutions of the following disintegration problems

P[X1 ∈ A1, . . . , Xk ∈ Ak, T ∈ B] =
∫

A1×...×Ak

πk(B | x1, . . . , xk)αk(dx1 . . . dxk)

P[X1 ∈ A1, . . . , Xk ∈ Ak, Xk+1 ∈ A] =
∫

A1×...×Ak

βk(A | x1, . . . , xk)αk(dx1 . . . dxk)

for any k ∈ N, A1, . . . , Ak, A ∈ X and B ∈ T . The probability kernels πk(·|·) and βk(·|·)
are called posterior distribution and predictive distribution, respectively.

Let (U, dU) be a Polish metric space and, for fixed n, m ∈ N, let un,m : Xm×Xn×Θ→ U
be a measurable map. Let Un,m := un,m(Xn+1, . . . , Xn+m; X1, . . . , Xn; T) be the random
quantity to be estimated with respect to the loss function LU(u, v) := d2

U(u, v). Now, recall
the notion of barycenter (also known as Fréchet mean) of a given p.m.. Let (S, dS) be a Polish
metric space, endowed with its Borel σ-algebra B(S). Given a p.m. µ on (S, B(S)), define

BaryS[µ; dS] := Argminy∈S

∫
S

d2
S(x, y)µ(dx)

provided that µ has finite second moment (µ ∈ P2(S, dS), in symbols) and that at least
one minimum point exists. See [24–26] for results on existence, uniqueness and some
characterizations of barycenters. Then, put

ρn,m(C | x1, . . . , xn) := P[Un,m ∈ C | X1 = x1, . . . , Xn = xn],

meaning that ρn,m(·|·) : B(U)×Xn → [0, 1] is a probability kernel that solves the disinte-
gration problem

P[X1 ∈ A1, . . . , Xn ∈ An, Un,m ∈ C] =
∫

A1×...×An
ρn,m(C | x1, . . . , xn)αk(dx1 . . . dxk)

for any A1, . . . , An ∈ X and C ∈ B(U). If E[d2
U(Un,m, u0)] < +∞ for some u0 ∈ U and

BaryU[ρn,m(· | x1, . . . , xn); dU] exists uniquely for αn-almost all (x1, . . . , xn), then

Ûn,m = BaryU[ρn,m(· | X1, . . . , Xn); dU] (12)

solves the minimization problem (1). To give an analogous formalization to the minimiza-
tion problem (7), define

γθ,(x1,...,xn)(C) := µ⊗m
(
{(y1, . . . , ym) ∈ Xm | un,m(y1, . . . , ym; x1, . . . , xn; θ) ∈ C}

∣∣∣ θ
)

for any θ ∈ Θ, (x1, . . . , xn) ∈ Xn and C ∈ B(U). Again, if γθ,(x1,...,xn) ∈ P2(U, dU) and
BaryU[γθ,(x1,...,xn)(·); dU] exists uniquely for any θ ∈ Θ and αn-almost all (x1, . . . , xn), then

U∗n,m = BaryU[γT̂n,m ,(X1,...,Xn)
; dU] (13)

solves the minimization problem (7). By the way, notice that a combination of de Finetti’s
representation theorem with basic properties of conditional distributions entails that

ρn,m(C | x1, . . . , xn) =
∫

Θ
γθ,(x1,...,xn)(C)πn(dθ | x1, . . . , xn) (14)

for αn-almost all (x1, . . . , xn). It remains to formalize the minimization problem (5). If
γθ,(x1,...,xn), γτ,(x1,...,xn) ∈ P2(U, dU), then the loss function in (6) satisfies

LΘ,(x1,...,xn)(θ, τ) =W2
U

(
γθ,(x1,...,xn); γτ,(x1,...,xn)

)
,
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where WU denotes the 2-Wasserstein distance on P2(U, dU). See [27] [Chapters 6–7]
for more information on the Wasserstein distance. Therefore, if πn(· | x1, . . . , xn) ∈
P2(Θ,L1/2

Θ,(x1,...,xn)
) and BaryΘ[πn(· | x1, . . . , xn);L1/2

Θ,(x1,...,xn)
] exists uniquely for αn-almost

all (x1, . . . , xn), then

T̂n,m = BaryΘ

[
πn(· | X1, . . . , Xn);L1/2

Θ,(X1,...,Xn)

]
(15)

solves the minimization problem (5).
To conclude, it remains to formalize the definition of various Bayesian risk func-

tions, that will appear in the formulation of the main results. For any estimator U†
n,m =

u†
n,m(X1, . . . , Xn) of Un,m, obtained with a measurable u†

n,m : Xn → U, put

RU[U†
n,m] := E

[
LU(Un,m, U†

n,m)
]

=
∫

Θ

∫
Xn+m

LU
(

un,m(y; x; θ), u†
n,m(x)

)
µ⊗n+m(dydx | θ)π(dθ)

=
∫
Xn

∫
Θ

∫
Xm
LU
(

un,m(y; x; θ), u†
n,m(x)

)
µ⊗m(dy | θ)πn(dθ | x)αn(dx) (16)

provided that the integrals are finite. Here and throughout, the bold symbols x, y are just
short-hands to denote the vectors (x1, . . . , xn) and (y1, . . . , ym), respectively. Analogously, for
any estimator T†

n,m = t†
n,m(X1, . . . , Xn) of T, obtained with a measurable t†

n,m : Xn → Θ, put

RΘ[T†
n,m] := E

[
LΘ,(X1,...,Xn)(T, T†

n,m)
]

=
∫

Θ

∫
Xn
LΘ,x

(
θ, t†

n,m(x)
)

µ⊗n(dx | θ)π(dθ)

=
∫
Xn

∫
Θ
LΘ,x

(
θ, t†

n,m(x)
)

πn(dθ | x)αn(dx) (17)

provided that the integrals are finite.

2.2. The Simplified Framework

Start by assuming that U = R and LU(u, v) = |u− v|2. Then, restrict the attention to
those predictive problems in which the quantity to be estimated depends only on the new
observations Xn+1, . . . , Xn+m and on the random parameter T, but not on the observable
variables X1, . . . , Xn. This restriction is actually non-conceptual, and it is made only to
diminish the mathematical complexity of the ensuing asymptotic expansions (valid as
n → +∞), having this way fewer sources of dependence from the variable n. Thus,
the quantity to be estimated has the form um(Xn+1, . . . , Xn+m; T) for some measurable
um : Xm ×Θ→ R. From now on, it will be assumed that

E
[
(um(Xn+1, . . . , Xn+m; T))2

]
< +∞ . (18)

Whence, for the Bayesian estimator Ûn,m in (12) existence and uniqueness are well-
known: its explicit form is given by Ûn,m = ûn,m(X1, . . . , Xn) with

ûn,m(x1, . . . , xn) = E[um(Xn+1, . . . , Xn+m; T) | X1 = x1, . . . , Xn = xn]

=
∫

Θ

∫
Xm

um(y1, . . . , ym; θ)µ⊗m(dy1 . . . dym | θ)πn(dθ | x1, . . . , xn),
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which is finite for αn-almost all (x1, . . . , xn). The risk function RU evaluated at Ûn,m achieves
its overall minimum value and, from (16), it takes the form:

RU[Ûn,m] =
∫
Xn

{∫
Θ
v(θ)πn(dθ | x) +

∫
Θ
[m(θ)]2πn(dθ | x)

−
(∫

Θ
m(θ)πn(dθ | x)

)2
}

αn(dx), (19)

with

m(θ) :=
∫
Xm

um(y1, . . . , ym; θ)µ⊗m(dy1 . . . dym | θ)

v(θ) :=
∫
Xm

[um(y1, . . . , ym; θ)−m(θ)]2µ⊗m(dy1 . . . dym | θ)

thanks to the well-known “Law of Total Variance”. See, e.g., [28] [Problem 34.10(b)]. As
to the issue of estimating T, the first remarkable simplification induced by the above
assumptions is that the p.m. γθ,(x1,...,xn) is independent of (x1, . . . , xn). Whence,

∆(θ, τ) := [LΘ,(x1,...,xn)(θ, τ)]1/2 =WU
(

γθ,(x1,...,xn); γτ,(x1,...,xn)

)
, (20)

is, in turn, independent of (x1, . . . , xn) and defines a distance on Θ provided that

γθ,(x1,...,xn) = γτ,(x1,...,xn)

entails θ = τ. Thus, for any estimator T†
n,m = t†

n,m(X1, . . . , Xn) of T, obtained with a
measurable t†

n,m : Xn → Θ, (17) becomes

RΘ[T†
n,m] =

∫
Xn

∫
Θ
[∆(θ, t†

n,m(x))]
2πn(dθ | x)αn(dx) . (21)

The last simplifications concern the basic object of the inference, i.e., the statistical
model µ(·|·) and the prior π. First, assume that Θ = (a, b) ⊆ R and that π has a density
p (with respect to the Lebesgue measure). Even if this one-dimensionality assumption
can seem a drastic simplification, it is again of a non-conceptual nature, and it is made
to diminish the mathematical complexity of the ensuing statements. In fact, one of the
goals of this work is to provide a Riamannian-like characterization of the metric space
(Θ, ∆), and this is particularly simple in such a one-dimensional setting. The following
arguments should be quite easily reproduced at least in a finite-dimensional setting (i.e.,
when Θ ⊆ Rd) by using basic tools of Riemannian geometry, such as local expansions of
the geodesic distance. See, e.g., [29] [Chapter 5]. As to the statistical model µ(·|·), consider
the following:

Assumption 1. µ(·|·) is dominated by some σ-finite measure χ on (X, X ) with a (distinguished
version of the) density f (·|θ) that satisfies:

(i) f (x| θ) > 0 for all x ∈ X and θ ∈ Θ;
(ii) for any fixed x ∈ X, θ 7→ f (x| θ) belongs to C4(Θ);
(iii) there exists a separable Hilbert space H for which log f (x| ·) ∈ H for all x ∈ X, and such

that, for any open Θ′ whose closure is compact in Θ (Θ′ b Θ, in symbols), the restriction
operatorsRΘ′ : h 7→ h|Θ′ are continuous fromH to C0(Θ′);

(iv)
∫
X | log f (x| θ)|2µ(dx | θ) < +∞ for π-a.e. θ, and the Kullback-Leibler divergence

K(t ‖ θ) :=
∫
X

(
log f (x| t)
log f (x| θ)

)
µ(dx | t) (22)

is well-defined.
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A canonical choice for the Hilbert space H is in the form of a weighted Sobolev space
Hr(Θ; π) for some r ≥ 1. See, e.g., [30,31] for definition and further properties of weighted
Sobolev spaces, such as embedding theorems. By the way, it is worth remarking that such
assumptions are made to easily state the following results. It is plausible they could be
relaxed in future works.

In this regularity setting, introduce the sequence {Hn}n≥1, where Hn : Ω → H
represents the (normalized) log-likelihood process, that is

Hn :=
1
n
`n(·; X1, . . . , Xn) :=

1
n

n

∑
i=1

log f (Xi| ·) =
∫
X

log f (ξ| ·)e(X1,...,Xn)
n (dξ) (23)

the symbol e(X1,...,Xn)
n standing for the empirical measure based on (X1, . . . , Xn), i.e.,

e
(X1,...,Xn)
n :=

1
n

n

∑
i=1

δXi .

For completeness, any notation like `n(·; X1, . . . , Xn) is just a short-hand to denote the
entire function θ 7→ `n(θ; X1, . . . , Xn). First of all, observe that Hn is a sufficient statistics in
both classical and Bayesian sense. See [11]. Then, a version of de Finetti’s Law of Large
Numbers (see [9,32]) for the log-likelihood process can be stated as follows:

Theorem 1. Under Assumption 1, define the followingH-valued r.v.

H :=
∫
X

log f (z| ·)µ(dz | T) = −K(T ‖ ·) +
∫
X

log f (z| T)µ(dz | T)

along with νn(D) := P[Hn ∈ D] and ν(D) := P[H ∈ D], for any D ∈ B(H). Then, it
holds that

Hn
L2
−→ H (24)

which, in turn, yields that νn ⇒ ν, where⇒ denotes weak convergence of p.m.’s on (H, B(H)).

Then, to carry out the objectives mentioned in the Introduction, a quantitative refine-
ment of the thesis νn ⇒ ν is needed, as stated in the following proposition.

Proposition 1. Let C2
b(H) denote the space of bounded, C2 functionals onH. Besides Assumption 1,

suppose there exists a function Γ(·; µ, π) : H → R such that

1
2
E
[
Hess[Ψ]H ⊗CovT [log f (Xi| ·)]

]
= E[Ψ(H)Γ(H; µ, π)] (25)

holds for all functional Ψ ∈ C2
b(H), where Hess[Ψ]h denotes the Hessian of Ψ at h ∈ H, ⊗ is the

tensor product between quadratic forms (operators) and Covt[log f (Xi| ·)] stands for the covariance
operator of theH-valued r.v.’s log f (Xi| ·) with respect to the p.m. µ(· | t). Then,∫

H
Ψ(h)νn(dh) =

∫
H

Ψ(h)ν(dh) +
1
n

∫
H

Ψ(h)Γ(h; µ, π)ν(dh) + o
(

1
n

)
(26)

holds as n→ +∞ for all continuous Ψ : H → R for which the above integrals are convergent.

For further information on second-order differentiability in Hilbert/Banach spaces,
see [33,34]. By the way, the above identity (26) is a quantitative strengthening of de Finetti’s
theorem similar to the identities stated in Theorem 1.1 of [8] [Chapter 6], valid in a finite-
dimensional setting. Later on, we will resort to uniform versions of (26), meaning that the
o( 1

n )-term is uniformly bounded with respect to h. However, such a kind of results—much
more in the spirit of the Central Limit Theorem—are very difficult to prove and, to the best
of the author’s knowledge, there are no known results in infinite-dimension. Examples in
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finite-dimensional settings are given in [35,36], which prove Berry–Esseen like inequalities
in the very specific context of Bernoulli r.v.s. See also [37]. Anyway, since one merit of [35]
is to show how to use the classical Central Limit Theorem to prove an expansion as in (26),
one could hope to follow that very same line of reasoning by resorting to some version of
the central limit theorem for Banach spaces, such as that stated in [38]. Research on this
is ongoing.

Now, to make the above Proposition 1 a bit more concrete, it is worth noticing the case
in which f (·|θ) is in exponential form. In fact, in this case, the identity (26) can be rewritten
in a simpler form, condensed in the following statement.

Lemma 1. Besides Assumption 1, suppose that f (x | θ) = exp{θS(x) − M(θ)}, with some
measurable S : X → R and M(θ) := log

(∫
X eθS(x)χ(dx)

)
∈ R for all θ ∈ Θ. Then, (26)

holds with
ν(D) := P

[(
θ 7→ θM′(T)−M(θ)

)
∈ D

]
and

Γ
(
(θ 7→ θM′(t)−M(θ)); µ, π

)
=

M′′(t)
p(t)

d2

dy2

[
M′′(V(y))p(V(y))V′(y)

]∣∣y=M′(t)
,

where V(M′(t)) = t for any t ∈ Θ.

To conclude this subsection, consider the expressions (19)–(21) and notice that they de-
pend explicitly on the posterior distribution πn(· | x1, . . . , xn). Now, thanks to Assumption 1,
the mapping t 7→ δt can be seen as defined on Θ and taking values in the dual space H∗,
with Riesz representative ht ∈ H. More formally, for any h ∈ H and t ∈ Θ, it holds that
h(t) = H〈h, δt〉H∗ = 〈h, ht〉, where 〈·, ·〉 stands for the scalar product onH while H〈·, ·〉H∗
denotes the pairing betweenH andH∗. In this notation, the posterior distribution can be
rewritten in exponential form as:

πn(B | X1, . . . , Xn) =

∫
B exp{n〈Hn, hθ〉}π(dθ)∫
Θ exp{n〈Hn, hθ〉}π(dθ)

= π∗n(B | Hn) (27)

for any B ∈ T , the probability kernel π∗n(·|·) : T ×H → [0, 1] being defined by

π∗n(B | h) :=

∫
B exp{n〈h, hθ〉}π(dθ)∫
Θ exp{n〈h, hθ〉}π(dθ)

. (28)

This is particularly interesting because it shows that the posterior distribution can
always be thought of, in the presence of a dominated statistical model characterized by
strictly positive, smooth densities, as an element of an exponential family, even if the
original statistical model µ(·|·) is not in exponential form. By utilizing the kernel π∗n in
combination with the p.m. νn, the following re-writings of (19)–(21) are valid:

RU[Ûn,m] =
∫
H

{∫
Θ
v(θ)π∗n(dθ | h) +

∫
Θ
[m(θ)]2π∗n(dθ | h)

−
(∫

Θ
m(θ)π∗n(dθ | h)

)2
}

νn(dh) (29)

RΘ[T†
n,m] =

∫
H

∫
Θ
[∆(θ,T†

n,m(h))]
2π∗n(dθ | h)νn(dh), (30)

where the mapping T†
n,m is such that T†

n,m(Hn) = t†
n,m(X1, . . . , Xn) holds P-a.s.
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3. Main Results

The first result establishes a relationship between the Bayesian risk functions RU and
RΘ defined in (16) and (17), respectively. Due to the central role of this relationship, it will
be formulated within the general framework described in Section 2.1.

Proposition 2. Consider any estimator U†
n,m = u†

n,m(X1, . . . , Xn) of Un,m and any estimator
T†

n,m = t†
n,m(X1, . . . , Xn) of T such that E[d2

U(U
†
n,m, u0)] < +∞ holds for some u0 ∈ U along

with E
[
LΘ,(X1,...,Xn)(T

†
n,m, t0)

]
< +∞ for some t0 ∈ Θ. Then, it holds

RU[U†
n,m] ≤ RΘ[T†

n,m] +E

[∫
U

d2
U(U

†
n,m, u)γT†

n,m ,(X1,...,Xn)
(du)

]
+ 2E

[
L1/2

Θ,(X1,...,Xn)
(T, T†

n,m)

(∫
U

d2
U(U

†
n,m, u)γT†

n,m ,(X1,...,Xn)
(du)

)1/2
]

. (31)

In particular, if the Bayesian risk function RΘ is optimized by choosing T†
n,m = T̂n,m, where

T̂n,m is as in (15), and U†
n,m is chosen equal to U∗n,m, where U∗n,m is as in (13), then (31) becomes

RU[U∗n,m] ≤ RΘ[T̂n,m] +E

[∫
U

d2
U(U

∗
n,m, u)γT̂n,m ,(X1,...,Xn)

(du)
]

+ 2E

[
L1/2

Θ,(X1,...,Xn)
(T, T̂n,m)

(∫
U

d2
U(U

∗
n,m, u)γT̂n,m ,(X1,...,Xn)

(du)
)1/2

]

= inf
T†

n,m

RΘ[T†
n,m] +E

[
inf

U†
n,m

∫
U

d2
U(U

†
n,m, u)γT̂n,m ,(X1,...,Xn)

(du)

]

+ 2E

[
L1/2

Θ,(X1,...,Xn)
(T, T̂n,m)

(∫
U

d2
U(U

∗
n,m, u)γT̂n,m ,(X1,...,Xn)

(du)
)1/2

]
. (32)

As an immediate remark, notice that the last member of (32) is obtained by first
optimizing the risk RΘ with respect to the choice of T†

n,m and then, after getting T̂n,m, the
term E

[ ∫
U d2

U(U
†
n,m, u)γT̂n,m ,(X1,...,Xn)

(du)
]

is optimized with respect to the choice of U†
n,m.

Of course, it can be argued about the convenience of this procedure—and it is actually
due—even if, in most problems, it seems that the strategy proposed in Proposition 2 proves
indeed to be the simplest and the most feasible one, above all if computational issues are
taken into account. In fact, the absolute best theoretical strategy—consisting of optimizing
the right-hand side of (31) jointly with respect to the choice of (U†

n,m, T†
n,m)—turns out to be

very often too complex and onerous to carry out. Therefore, it seems reasonable to quantify,
at least approximately, how far the strategy of Proposition 2 is from absolute optimality, in
terms of efficiency. Finally, the additional term

2E

[
L1/2

Θ,(X1,...,Xn)
(T, T̂n,m)

(∫
U

d2
U(U

∗
n,m, u)γT̂n,m ,(X1,...,Xn)

(du)
)1/2

]
(33)

will be reconsidered in next statement, within the simplified setting of Section 2.2. Indeed,
by arguing asymptotically, it will be shown that it is essentially negligible, proving in this
way a sort of “Pythagorean inequality”.

Henceforth, to make the above remark effective, we will formulate the subsequent
results within the simplified setting introduced in Section 2.2. Indeed, Steps 1–3 mentioned
in the Introduction are worthy of being reconsidered in light of Proposition 2. On the one
hand, Steps 1 and 2 boil down to checking the existence and uniqueness of the barycenters
appearing in (15) and (13), for instance by using the results contained in [24–26]. On the
other hand, Step 3 hinges on the validity of (2) and (3), which are somewhat related to
inequality (32). More precisely, (2) will be proved directly by resorting to identity (29),
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while (3) will be obtained by estimating the right-hand side of (32). Here is a precise
statement.

Proposition 3. Besides Assumptions 1 and (18), suppose that p > 0 and p ∈ C1(Θ), m, v ∈
C2(Θ), ∆2 ∈ C2(Θ2), and κt is any element of H ∩ C3(Θ) with a unique minimum point at
t ∈ Θ. Then, it holds

∫
Θ

{
v(θ) + [m(θ)]2

}
π∗n(dθ | − κt)−

(∫
Θ
m(θ)π∗n(dθ | − κt)

)2

= v(t) +
1

nκ
′′
t (t)

{
[m
′
(t)]2 +

1
2
v
′′
(t) + v

′
(t)

[
p
′
(t)

p(t)
− 1

2
κ
′′′
t (t)

κ
′′
t (t)

]}
+ o
(

1
n

)
(34)∫

Θ
∆2(θ, τ)π∗n(dθ | − κt)

= ∆2(t, τ) +
1

nκ
′′
t (t)

{
1
2

∂2

∂θ2 ∆2(θ, τ)∣∣θ=t
+

∂

∂θ
∆2(θ, τ)∣∣θ=t

[
p
′
(t)

p(t)
− 1

2
κ
′′′
t (t)

κ
′′
t (t)

]}
+ o
(

1
n

)
(35)

as n→ +∞, for any τ ∈ Θ.

Here, it is worth noticing that the asymptotic expansions derived in the above propo-
sition are obtained by means of the Laplace method, as first proposed in [39]. See
also [40] [Chapter 20]. At this stage, we face the problem of optimizing the left-hand side
of (35) with respect to τ. Since the explicit expression of ∆2(t, τ) will be hardly known in
closed form, a reasonable strategy considers, for fixed t ∈ Θ, the optimization of the right-
hand side of (35) with respect to τ, disregarding the remainder term o(1/n). If ∆2 ∈ C3(Θ2),
this attempt leads to considering the equation

∂

∂τ

[
∆2(t, τ) +

1
nκ
′′
t (t)

{
1
2

∂2

∂θ2 ∆2(θ, τ)∣∣θ=t
+

∂

∂θ
∆2(θ, τ)∣∣θ=t

[
p
′
(t)

p(t)
− 1

2
κ
′′′
t (t)

κ
′′
t (t)

]}]
= 0 (36)

and, since
∂

∂τ
∆2(t, τ)∣∣τ=t

= 0 , (37)

we have that any solution of (36) is of the form τ̂n = t + εn, with some εn that goes to zero
as n→ +∞. For completeness, the validity of (37) could be obtained by using the explicit
expression of the Wasserstein distance due to Dall’Aglio. See [41].

If ∆2 ∈ C4(Θ2), we can plug the expression of τ̂n into (35), and expand further the
right-hand side. Exploiting that

∆2(t, τ̂n) =
1
2

∂2

∂τ2 ∆2(t, τ)∣∣τ=t
· ε2

n + o(ε2
n)

∂

∂t
∆2(t, τ̂n) =

∂

∂τ

[
∂

∂t
∆2(t, τ)

]∣∣τ=t
· εn +

1
2

∂2

∂τ2

[
∂

∂t
∆2(t, τ)

]∣∣τ=t
· ε2

n + o(ε2
n)

∂2

∂t2 ∆2(t, τ̂n) =
∂2

∂t2 ∆2(t, τ)∣∣τ=t
+

∂

∂τ

[
∂2

∂t2 ∆2(t, τ)

]∣∣τ=t
· εn

+
1
2

∂2

∂τ2

[
∂2

∂t2 ∆2(t, τ)

]∣∣τ=t
· ε2

n + o(ε2
n),
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we get ∫
Θ

∆2(θ, τ̂n)π
∗
n(dθ | − κt)

=
1
2

∂2

∂τ2 ∆2(t, τ)∣∣τ=t
· ε2

n +
1

nκ
′′
t (t)

{
1
2

∂2

∂t2 ∆2(t, τ)∣∣τ=t
+

1
2

∂

∂τ

[
∂2

∂t2 ∆2(t, τ)

]∣∣τ=t
· εn

+
1
4

∂2

∂τ2

[
∂2

∂t2 ∆2(t, τ)

]∣∣τ=t
· ε2

n +

[
p
′
(t)

p(t)
− 1

2
κ
′′′
t (t)

κ
′′
t (t)

]
· ∂

∂τ

[
∂

∂t
∆2(t, τ)

]∣∣τ=t
· εn

+
1
2

[
p
′
(t)

p(t)
− 1

2
κ
′′′
t (t)

κ
′′
t (t)

]
· ∂2

∂τ2

[
∂

∂t
∆2(t, τ)

]∣∣τ=t
· ε2

n

}
+ o(ε2

n) + o
(

1
n

)
. (38)

The right-hand side of this expression has the form

a · ε2
n +

1
n

[
A · ε2

n + B · εn + C
]
+ o(ε2

n) + o
(

1
n

)
,

so that the choice

εn = − B
2na

(
1 +

A
na

)
+ o
(

1
n2

)
= − B

2na
+ o
(

1
n

)
optimizes its expression. Whence,

τ̂n = t− 1
nκ
′′
t (t)

(
∂2

∂τ2 ∆2(t, τ)∣∣τ=t

)−1

·
{

1
2

∂

∂τ

[
∂2

∂t2 ∆2(t, τ)

]∣∣τ=t

+

[
p
′
(t)

p(t)
− 1

2
κ
′′′
t (t)

κ
′′
t (t)

]
· ∂

∂τ

[
∂

∂t
∆2(t, τ)

]∣∣τ=t

}
+ o
(

1
n

)
(39)

and consequently

∫
Θ

∆2(θ, τ̂n)π
∗
n(dθ | − κt) =

1
2nκ

′′
t (t)

∂2

∂t2 ∆2(t, τ)∣∣τ=t
+ o
(

1
n

)
. (40)

A first consequence of these computations is that the (Bayesian) estimator T̂n,m in (15)
has the same form as (39) with t and κt replaced by the MLE, denoted by θ̂n, and −Hn,
respectively. Of course, this fact has some relevance only in the case that θ̂n exists and is
unique. Moreover, coming back to (32), it is worth noticing that

inf
U†

n,m

∫
U

∣∣U†
n,m − u

∣∣2γτ̂n(du) = v(τ̂n) = v(t) + v
′
(t)εn + o

(
1
n

)
, (41)

where we have dropped the dependence on (X1, . . . , Xn) in the expression of γτ̂n , in agree-
ment with the simplified setting of Section 2.2 we are following. The last preliminary remark
is about the additional term (33) that appears in the last member of (32). In fact, exploiting
from the beginning that U = R and LU(u, v) = |u− v|2, we find that it reduces to

2E
[ ∫

Θ

∫
Xm

(
um(y, θ)− um(y, T̂n,m)

)(
um(y, T̂n,m)−m(T̂n,m)

)
×

× µ⊗m(dy | θ)πn(dθ | X1, . . . , Xn)
]

(42)

by which we notice that it also involves “covariance terms”. The way is now paved to state
the following
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Theorem 2. Besides Assumptions 1 and (18), suppose that m, v ∈ C2(Θ) and ∆2 ∈ C4(Θ2).
Then, the identities

∂2

∂τ2 ∆2(t, τ)∣∣τ=t
= − ∂

∂τ

[
∂

∂t
∆2(t, τ)

]∣∣τ=t
(43)

1
2
v
′′
(t) + [m

′
(t)]2 =

1
2

∂2

∂t2 ∆2(t, τ)∣∣τ=t

− 1
2

(
∂2

∂τ2 ∆2(t, τ)∣∣τ=t

)−1
∂

∂τ

[
∂2

∂t2 ∆2(t, τ)

]∣∣τ=t
v
′
(t) (44)

entail that ∫
Θ

{
v(θ) + [m(θ)]2

}
π∗n(dθ | − κt)−

(∫
Θ
m(θ)π∗n(dθ | − κt)

)2

=
∫

Θ
∆2(θ, τ̂n)π

∗
n(dθ | − κt) + v(t) + v

′
(t)εn + o

(
1
n

)
(45)

for any t ∈ Θ, any κt inH∩C3(Θ) with a unique minimum point at t ∈ Θ, and any p > 0 with
p ∈ C1(Θ), provided that the term in (42) is of o( 1

n )-type. Thus, if either

(A1) (26) holds uniformly with respect to some class F of continuous functionals Ψ : H → R, in
the sense that

sup
Ψ∈F

∣∣∣∣∫H Ψ(h)νn(dh) =
∫
H

Ψ(h)ν(dh) +
1
n

∫
H

Ψ(h)Γ(h; µ, π)ν(dh)
∣∣∣∣ = o

(
1
n

)

(A2) both the functionals h 7→
∫

Θ{v(θ) + [m(θ)]2}π∗n(dθ | h) −
(∫

Θ m(θ)π∗n(dθ | h)
)2 and

h 7→ infT†
n,m

∫
Θ[∆(θ,T†

n,m(h))]2π∗n(dθ | h) belong to F, for all n ∈ N
or

(B1) (34) and (40) hold uniformly for all κt belonging to a given subset D ofH
(B2) νn(D) = 1 for all n ∈ N
then (2)–(3) are in force with

R̂0,m = R∗0,m =
∫

Θ
v(t)π(dt) (46)

R̂1,m = R∗1,m =
∫

Θ

1
κ
′′
t (t)

{
[m
′
(t)]2 +

1
2
v
′′
(t) + v

′
(t)

[
p
′
(t)

p(t)
− 1

2
κ
′′′
t (t)

κ
′′
t (t)

]}
π(dt)

+
∫

Θ
v(t)Γ(κt; µ, π)π(dt), (47)

where κt(θ) := K(t || θ), for any p > 0 with p ∈ C1(Θ).

As announced in the Introduction, here we have minted the term compatibility equations
to refer to identities (43) and (44). They actually constitute two “compatibility conditions”
that involve only the statistical model, without any mention to the prior. The dependence
on the quantity to be estimated is indeed hidden in the expression of ∆2. More deeply, these
equations can be viewed as a check on the compatibility between the original estimation
problem (1) and the fact that we have metrized the space of the parameters Θ as in (20).
Actually, they could have a more general value if interpreted as relations aimed at char-
acterizing ∆2, rather than imposing that this distance is given in terms of the Wasserstein
distance as in (20). However, for a distance that is characterized differently from (20), an
analogous of inequality (32) should be checked in terms of this new distance on Θ. As to
the concrete check of the compatibility equations, we notice that the former identity (43) is
generally valid as a consequence of the representation formula or the Wasserstein distance
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due to Dall’Aglio (see [41]), as long as the exchange between derivatives and integrals is
allowed. For the other identity (44), we have instead collected in Section 4 some examples
of simple statistical models for which its verification proves to be quite simple. Finally, the
issue of extending these equations in a higher dimension, including the infinite dimension,
is deferred to Section 6.

Apropos of the other assumptions, the verification that the term in (42) is of o( 1
n )-type

is generally straightforward. For instance, such a term is even equal to zero if um is inde-
pendent of θ. As to the two groups of assumptions which are needed to prove (46) and (47),
the latter block, formed by (B1) and (B2), is certainly easier to check. However, (B1) and
(B2) can prove to be rather strong since they require the existence of the MLE for any n ∈ N.
On the other hand, checking (A1) and (A2) is generally harder since it constitutes a strong
reinforcement of de Finetti’s Law of Large Number for the log-likelihood process, similar
in its conception to those stated in [35,36]. Moreover, the check of (A2) is more or less
equivalent to prove a uniform regularity of the mapping h 7→ π∗n(dθ | h), as a map from
H into the space of p.m.’s on (Θ, T ) metrized with a Wasserstein distance. This theory
is presented and developed in [42,43]. In any case, these lines of research deserve further
investigations, to be deferred to a forthcoming paper.

Finally, we consider Steps 4–6 mentioned in the Introduction, in light of the previous
results. In fact, the compatibility Equations (43) and (44) suggest two new compatibility
conditions, which are necessary to get (10) along with R̂i,m = R̃i,m for i = 0, 1. A formal
statement reads as follows.

Theorem 3. Besides Assumptions 1 and (18), suppose that m, v ∈ C2(Θ), ∆2 ∈ C4(Θ2). Assume
also that either (A1) and (A2) or (B1) and (B2) of Theorem 2 are in force. Then, any solution τ̂n of
the following equations:

v(θ̂n) = v(τ̂n) + ∆2(τ̂n, θ̂n) + o
(

1
n

)
(48)

v
′
(θ̂n) =

∂

∂t
∆2(τ̂n, t)∣∣t=θ̂n

+ o
(

1
n

)
(49)

1
2
v
′′
(θ̂n) + [m

′
(θ̂n)]

2 =
1
2

∂2

∂t2 ∆2(τ̂n, t)∣∣t=θ̂n
+ o
(

1
n

)
, (50)

where θ̂n stands for the MLE, yields a prior-free estimator T̂n,m and, through Step 5, another
prior-free estimator Ũn,m that satisfies (10) along with R̂i,m = R̃i,m for i = 0, 1, where R̂0,m and
R̂1,m are as in (46) and (47), respectively, provided that the term in (42) is of o( 1

n )-type.

The derivation of new prior free-estimators via this procedure represents a novel line
of research that we would like to pursue in forthcoming works.

4. Applications and Examples

This section is split into four subsections, and has two main purposes. In fact,
Sections 4.1–4.3 just contain explicit examples of very simple statistical models for which
the compatibility equations are satisfied. These models are the one-dimensional Gaus-
sian, the exponential and the Pareto model. Section 4.4 has a different nature, since it is
devoted to a more concrete application of our approach to the original Poisson-mixture
setting used by Herbert Robbins to introduce his own approach to empirical Bayes theory.
Finally, Section 4.5 carries on the discussion initiated in Section 4.4 by showing a concrete
application relative to one year of claims data for an automobile insurance company.

4.1. The Gaussian Model

Here, we have X = Θ = R and

µ(A | θ) =
∫

A

1√
2πσ2

exp{− 1
2σ2 (x− θ)2}dx (A ∈ B(R))
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for some known σ2 > 0. For simplicity, we put m = 1 and u1(y, θ) = y, which is tantamount
to saying that the original predictive aim was focused on the estimation of Xn+1. In this
setting, it is very straightforward to check that m(θ) = θ and v(θ) = σ2. Moreover,
in view of well-know computations on the Wasserstein distance (see [44,45]), it is also
straightforward to check that ∆2(θ, τ) = |θ − τ|2. Therefore, (43) becomes 2 = 2, while (44)
reduces to 1 = 1. Finally, it is also possible to check the validity of (48)–(50) with the
simplest choice τ̂n = θ̂n.

The case of constant mean and unknown variance will not be dealt with here because
its treatment is substantially included in the following subsection. Apropos of the mul-
tidimensional variant of this model, very important in many statistical applications, we
just mention the interesting paper [46] which paves the way, mathematically speaking,
to write down the multidimensional analogous of the compatibility equations in a full
Riemannian context.

4.2. The Exponential Model

Here, we have X = Θ = (0, ∞) and

µ(A | θ) =
∫

A
θe−θxdx (A ∈ B(0,+∞)) .

Again, for simplicity, we put m = 1 and u1(y, θ) = y, which is tantamount to saying
that the original predictive aim was focused on the estimation of Xn+1. In this setting, it is
very straightforward to check that m(θ) = 1/θ and v(θ) = 1/θ2. Moreover, by resorting to
Dall’Aglio representation of the Wasserstein distance (see [41]), it is also straightforward
to check that ∆2(θ, τ) = 2|1/θ − 1/τ|2. Although very simple, this is a very interesting
example of non-Euclidean distance on Θ = (0, ∞). As to the validity of the compatibility
equations, we easily see that (43) yields 4/t4 = 4/t4, while (44) becomes:

3
t4 +

(
1
t2

)2
=

1
2
· 4

t4 −
1
2

(
8
t5

)
·
(

4
t4

)−1
·
(
− 2

t3

)
.

4.3. The Pareto Model

Here, we have X = Θ = (0, ∞) and

µ(A | θ) =
∫

A∩(θ,+∞)

αθα

xα+1 dx (A ∈ B(0,+∞))

for some known α > 2. Again, for simplicity, we put m = 1 and u1(y, θ) = y, which is
tantamount to saying that the original predictive aim was focused on the estimation of Xn+1.
In this setting, it is very straightforward to check that m(θ) = α

α−1 θ and v(θ) = α
(α−2)(α−1)2 θ2.

Moreover, by resorting to the Dall’Aglio representation of the Wasserstein distance (see [41]),
it is also straightforward to check that ∆2(θ, τ) = α

α−2 |θ− τ|2. Of course, this is not a regular
model since the support of µ(·|θ) varies with θ. Anyway, it is interesting to notice that
the compatibility equations are still also valid in this case. Therefore, the analysis of such
non-regular models should motivate further investigations about their intrinsic value.

4.4. Robbins Approach to Empirical BAYES

In his seminal paper [23], Herbert Robbins introduced the following model to present
his own approach to empirical Bayes theory. The problem that he considers is inspired by
car insurance data analysis, and it is only slightly different from a “standard” predictive
problem. We start by putting X = N2

0 and U = N0, and considering exchangeable random
variables Xi’s with Xi = (ξi, ηi). The practical meaning is that ξi represents the number of
accidents experienced by the i-th customer in the past year, while ηi represents the number
of accidents that the same i-th customer will experience in the current year. Then, Robbins
(in his own notation) attaches to each customer a random parameter, say λi > 0 to the i-th
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customer, which represents the rate of a Poisson distribution for that customer. Moreover,
he considers the λi’s as i.i.d. and, conditionally on the λi’s, the Xi’s become independent,
and in addition ξi and ηi become i.i.d. with distribution Poi(λi), for all i ∈ N. Robbins calls
G the common distribution of the λi’s and interpret it as a “prior distribution”. However,
if we strictly follow the Bayesian main way, we should call this distribution θ to avoid
confusion, and just realize that we have, this way, defined the statistical model, that is

µ({(k, h)} | θ) =
∫ +∞

0

e−zzk

k!
e−zzh

h!
θ(dz) ((k, h) ∈ N2

0) . (51)

Thus, the actual prior (Bayesianly speaking) is some p.m. π on the space of all p.m.’s
on ((0,+∞), B(0,+∞)), while the random parameter T considered in the present paper is
some random probability measure. Here, the objective—actually very practical and intuitively
logic—is to estimate η1 on the basis of the sample (ξ1, . . . , ξn). Thus, our Un,m coincides
with η1 and the loss function is just, as usual, the quadratic loss. Throughout his paper,
Robbins works under the conditioning to T = θ (that his under a fixed prior, in his own
terminology). Hence, his “theoretical estimator” reads

Eθ [η1 | (ξ1, . . . , ξn)] = Eθ [η1 | ξ1] = (ξ1 + 1)
pθ(ξ1 + 1)

pθ(ξ1)
, (52)

where pθ(k) := µ({k} ×N0 | θ). To get rid of the unobservable θ, Robbins exploits that
θ = Eθ [ξ1] = ∑+∞

k=0 kpθ(k) to bring the Strong Law of Large Numbers into the game.
Indeed, since

p̂(k) :=
1
n

n

∑
i=1
1{ξi = k} Pθ−a.s.−→ pθ(k)

holds for any θ, then it could be worth considering the (prior-free) estimator:

Ũn,m = (ξ1 + 1)
p̂(ξ1 + 1)

p̂(ξ1)
. (53)

At this stage, if we want to maintain the Bayesian main way, we should make three
basic considerations. First, given the statistical model (51), independently of the estimation
problem, the assumption of exchangeability of the Xi’s entails the existence of some prior
distribution π, by de Finetti’s representation theorem. Second, given the quadratic loss
function on U, the best (i.e., the most efficient) estimator is given by:

Ûn,m := E[η1 | (ξ1, . . . , ξn)],

where the expectation E depends of course on the prior π. Third, if we consider the above
estimator as useless, because of an effective ignorance about the prior π, we are justified to
consider the above Ũn,m as a possible approximation of Ûn,m, in the sense expressed by the
joint validity of (2) and (10), with R̂i,m = R̃i,m for i = 0, 1, uniformly with respect to a whole
(possible very large) class of priors π. Unfortunately, it is not the case. Or rather, we could
actually achieve this goal, in the presence of distinguished choices of π. Therefore, if there
is ignorance on π, we can only consider the Robbins estimator as efficient “at zero-level”,
and not also “at O( 1

n )-level”. If we follow the approach presented in this paper, the natural
choice for an estimator is given by:

U∗n,m = (ξ1 + 1)

∫ +∞

0

(
e−zzξ1+1

(ξ1 + 1)!

)
T̂n,m(dz)∫ +∞

0

(
e−zzξ1

ξ1!

)
T̂n,m(dz)

, (54)
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where the estimator T̂n,m belongs to the effective space of the parameters Θ, that is the
space of all p.m.’s on ((0,+∞), B(0,+∞)), and is identified as:

T̂n,m = Argminτ

∫
Θ
W2

2
(
µξ1,θ , µξ1,τ

)
πn(dθ | ξ1, . . . , ξn), (55)

with

µk,θ(A) :=

∫
A

(
e−zzk

k!

)
θ(dz)

∫ +∞

0

(
e−zzk

k!

)
θ(dz)

(A ∈ B(0,+∞)) .

The proof of the fact that our estimator is more efficient than Robbins estimator—at
least asymptotically and uniformly with respect to a whole class of priors—will be given
in a forthcoming paper. Indeed, such a proof will constitute only a first step towards a
complete vindication of our approach. The crowing achievement of the project would be
represented by the production of some prior-free approximation of T̂n,m that could lead,
through (54), to an efficient estimator Ũn,m up to the “O( 1

n )-level”. Research on this is
ongoing.

4.5. An Example of Real Data Analysis

This subsection represents a continuation of the analysis of Robbins’ approach to
empirical Bayes theory, hinting at some concrete applications. We display below a Table 1
from [47] which is relative to one year of claims data for a European automobile insurance
company. The original source of the data is the actuarial work [48].

Table 1. Table reporting, in the second line, the exact counts of claimed accidents. Third and fourth
lines display estimated numbers of accidents.

Claims 0 1 2 3 4 5 6 7

Counts 7840 1317 239 42 14 4 4 1

Robbins estimator 0.168 0.363 0.527 1.33 1.43 6.00 1.25 0

Gamma MLE 0.164 0.398 0.633 0.87 1.10 1.34 1.57 0

Here, a population of 9461 automobile insurance policy holders is considered. Out
of these, 7840 made no claims during the year; 1317 made a single claim; 239 made two
claims each and so forth, continuing to the one person who made seven claims. The
insurance company is concerned about the claims each policy holder will make in the next
year. The third and the fourth lines provide estimations of such numbers by following
the original Robbins method (based on (53)) and another compound model discussed
in Section 6.1 of [47], respectively. In particular, the Robbins estimator predicts that the
7840 policy holders that made no claims during the year will contribute to an amount of
7840× 0.168 ≈ 1317 accidents, and so on. Analogously, the compound model predicts that
the same 7840 policy holders will contribute to an amount of 7840× 0.164 ≈ 1286 accidents,
and so on. Moreover, it is worth noticing that the original Robbins estimator suffers
the lack of certain regularity properties, such as monotonicity, so that various smoothed
versions of it have been provided by other authors. See [49]. See also [50] [Chapter 5] for a
comprehensive treatment.

Here, we seize the opportunity to give the reader a taste of our approach, as explained
in Section 4.4. A detailed treatment would prove, in any case, too complex to be thor-
oughly developed in this paper, due to the significant amount of numerical techniques
which are necessary to carry out our strategy. Indeed, the big issue is concerned with
the implementation of the infinite-dimensional minimization problem (55), which is still
under investigation. However, we can simplify the treatment by restricting the attention
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on prior distributions π that put the total unitary mass, for example, on the set E of expo-
nential distributions, so that θ(dz) = βe−βzdz for z > 0 and some hyper-parameter β > 0.
Thus, given some hyper-prior ζ on the hyper-parameter β, we can easily see that (55) boils
down to a simple, one-dimensional minimization problem. Its solution T̂n,m is provided by
the distribution

β̂ne−β̂nzdz

with β̂n coinciding with the harmonic mean of the posterior distribution of the hyper-
parameter β. On the basis of the theory developed in the paper, this solution will prove
asymptotically nearly optimal uniformly with respect to the (narrow) class of prior distri-
butions that put the total unitary mass on E . Whence, the estimator U∗n,m in (54) assumes
the form

U∗n,m =
ξ1 + 1
β̂n + 1

.

This last estimator is, of course, not prior-free, because β̂n depends on the prior ζ.
However, to get a quick result, we can approximate β̂n by means of the Laplace methods
again yielding

ξ1 + 1
β̂n + 1

≈ (ξ1 + 1)
Sn

Sn + n
:= Ũn,m,

where Sn represents the total amount of accidents. Since n = 9461 and Sn = 2028 in the
dataset under consideration, we provide the following new Table 2,

Table 2. Table reporting, in the second line, the exact counts of claimed accidents. Third line displays
estimated numbers of accidents.

Claims 0 1 2 3 4 5 6 7

Counts 7840 1317 239 42 14 4 4 1

Estimator Ũn,m 0.176 0.353 0.53 0.706 0.882 1.06 1.23 1.41

which is indeed comparable with the previous one. To give an idea, the Robbins estimator
predicts 2019 total accidents for the next year, while the estimator Ũn,m above predicts 2033
total accidents for the next year.

In any case, a thorough analysis of this specific example deserves more attention, and
will be developed in a forthcoming new paper.

5. Proofs

Gathered here are the proofs of the results stated in the main body of the paper.

5.1. Theorem 1

First, by following the same line of reasoning as in [32], conclude that the sequence
{Hn}n≥1 is a Cauchy sequence in L2(Ω;H) := {W : Ω → H | E[‖W‖2

H] < +∞}. Thus,

by completeness, there exists a random element H∗ in L2(Ω;H) such that Hn
L2
−→ H∗.

Now, exploit the continuous embeddingH ⊂ C0(Θ). By de Finetti’s Strong Law of Large
Numbers (see [9]), Hn(θ) converges P-a.s. to −K(T ‖ θ) +

∫
X log f (z| T)µ(dz | T) = H(θ),

for any fixed θ ∈ Θ. Since H ∈ H by Assumption 1, then H = H∗ as elements ofH. At this
stage the conclusion that νn ⇒ ν follows by the standard implication that L2-convergence
implies convergence in distribution, which is still true for random elements taking values
in a separable Hilbert space. See [51].

5.2. Proposition 1

Start by considering a functional Ψ in C2
b(H). Notice that∫

H
Ψ(h)νn(dh) = E[Ψ(Hn)]
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and then expand the term Ψ(Hn − H + H) by the Taylor formula (see [33,34]) to get

Ψ(Hn) = Ψ(H) + 〈∇Ψ(H), Hn − H〉+ 1
2
〈Hess[Ψ]H(Hn − H), Hn − H〉+ o(‖Hn − H‖2) .

Observe that H is σ(T)-measurable while, by de Finetti’s representation theorem, the
distribution of Hn − H, given T, coincides with the distribution of a sum of n i.i.d. random
elements. Whence, the tower property of the conditional expectation entails:

E[Ψ(Hn)] = E[Ψ(H)] +
1

2n
E[Hess[Ψ]H ⊗CovT [log f (Xi| ·)]] + o

(
1
n

)
since E[Hn − H | T] = 0 and, then,

E[〈∇Ψ(H), Hn − H〉 | T] = 〈∇Ψ(H),E[Hn − H | T]〉 = 0

the expression E[Hn − H | T] being intended as a Bochner integral. Thus, the main iden-
tity (26) follows immediately from (25), for any Ψ ∈ C2

b(H). Once (26) is established
for regular Ψ’s, one can extend its validity to more general continuous Ψ’s by standard
approximation arguments.

5.3. Lemma 1

First, observe that:

−K(T ‖ θ) +
∫
X

log f (z| T)µ(dz | T) = θM
′
(T)−M(θ) .

Notice also that:∫
H

Ψ(h)νn(dh) = E

[
Ψ

(
θ 7→ θ

n

n

∑
i=1

S(Xi)−M(θ)

)]
.

Then, repeat the same arguments as in the previous proof, getting∫
H

Ψ(h)νn(dh) =
∫
H

Ψ(h)ν(dh)

+
1

2n

∫
Θ

[
d2

dx2 Ψ(θ 7→ xθ −M(θ))

]∣∣x=M′(t)
M
′′
(t)p(t)dt + o

(
1
n

)
.

For standard exponential families, the function M′ is ono-to-one, with inverse function
V. Whence, by indicating the range of M′ as Cod(M′),

∫
Θ

[
d2

dx2 Ψ(θ 7→ xθ −M(θ))

]∣∣x=M′(t)
M
′′
(t)p(t)dt

=
∫

Cod(M′)

[
d2

dx2 Ψ(θ 7→ xθ −M(θ))

]
M
′′
(V(x))p(V(x))V

′
(x)dx

=
∫

Cod(M′)
Ψ(θ 7→ xθ −M(θ))

[
d2

dx2 [M
′′
(V(x))p(V(x))V

′
(x)]

]
dx,

where, for the last identity, a double integration-by-parts has been used. Finally, changing
the variable according to x = M

′
(t) leads to the desired result.
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5.4. Proposition 2

A disintegration argument shows that

RU[U†
n,m] =

∫
Xn

∫
Θ×Xm

LU
(

un,m(y; x; θ), u†
n,m(x)

)
×

×P[(Xn+1, . . . , Xn+m) ∈ dy, T ∈ dθ | (X1, . . . , Xn) = x]αn(dx)

=
∫
Xn

∫
Θ×Xm

LU
(

un,m(y; x; θ), u†
n,m(x)

)
µ⊗m(dy | θ)πn(dθ | x)αn(dx)

=
∫
Xn

∫
Θ
W2

U

(
γθ,x; δu†

n,m(x)

)
πn(dθ | x)αn(dx) .

Then, use the triangular inequality for the Wasserstein distance to obtain:

WU
(

γθ,x; δu†
n,m(x)

)
≤ WU

(
γθ,x; γτ,x

)
+WU

(
γτ,x; δu†

n,m(x)

)
for any τ ∈ Θ. Take the square of both side and observe that:

WU
(

γτ,x; δu†
n,m(x)

)
=
∫
U

d2
U(u, u†

n,m(x))γτ,x(du) .

Now, (31) is proved by letting τ = T†
n,m after noticing that the latter summand in the

above right-hand side is independent of θ.
Finally, (32) is obtained by first optimizing the risk RΘ with respect to the choice of T†

n,m
and then, after getting T̂n,m, the term E

[ ∫
U d2

U(U
†
n,m, u)γT̂n,m ,(X1,...,Xn)

(du)
]

is optimized
with respect to the choice of U†

n,m.

5.5. Proposition 3

Preliminarily, use Theorem 1 in [52] [Section II.1] to prove that:

∫
Θ

ϕ(θ)e−κt(θ)dθ =
2
√

π√
n

e−κt(t)
[

c0 +
c2

2n
+ o
(

1
n

)]
holds for any ϕ ∈ C2(Θ) such that ϕ(t) 6= 0, where

c0 :=
b0

2a1/2
0

c2 :=

{
b2

2
− 3a1b1

a0
+ [5a2

1 − 4a0a2]
3b0

16a2
0

}
× 1

a3/2
0

,

with a0 := 1
2 κ
′′
t (t), a1 := 1

3! κ
′′′
t (t), a2 := 1

4! κ
′′′′
t (t), b0 = ϕ(t), b1 = ϕ

′
(t) and b2 = 1

2 ϕ
′′
(t).

Moreover, from that very same theorem, it holds that:∫
Θ

ϕ(θ)e−κt(θ)dθ =
√

πe−κt(t)
[

c1

n3/2 + o
(

1
n3/2

)]
for any ϕ ∈ C2(Θ) with a zero of order 1 at t, where

c1 :=
[

b∗1
2
−

a1b∗0
2a0

]
1
a0

with b∗0 := ϕ
′
(t) and b∗1 := 1

2 ϕ
′′
(t). At this stage, application of this formulas gives:

∫
Θ
m(θ)π∗n(dθ | − κt) = m(t) +

1
na0

[
1
4
m
′′
(t) +

1
2
m
′
(t)

p′(t)
p(t)

− 3
4

a1

a0
m
′
(t)
]
+ o
(

1
n

)
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and ∫
Θ
m2(θ)π∗n(dθ | − κt) = m2(t) +

1
na0

[
1
2
(m
′
(t))2 +

1
2
m
′′
(t)m(t)

+m
′
(t)m(t)

p′(t)
p(t)

− 3
2

a1

a0
m
′
(t)m(t)

]
+ o
(

1
n

)
.

Then, in addition,∫
Θ
[v(θ)− v(t)]π∗n(dθ | − κt) =

1
na0

[
1
4
v
′′
(t) +

1
2
v
′
(t)

p′(t)
p(t)

− 3
4

a1

a0
v
′
(t)
]
+ o
(

1
n

)
and ∫

Θ
∆2(θ, τ)π∗n(dθ | − κt) = ∆2(t, τ)

+
1

na0

[
1
2

∂

∂θ
∆2(θ, τ)∣∣θ=t

p
′
(t)

p(t)

+
1
2

∂2

∂θ2 ∆2(θ, τ)∣∣θ=t
− 3

4
a1

a0

∂

∂θ
∆2(θ, τ)∣∣θ=t

]
+ o
(

1
n

)
completing the proof just by mere substitutions.

5.6. Theorem 2

The core of the proof hinges on the identity (45). Now, the asymptotic expansion of
its left-hand side is provided by (34), while the analogous expansion for right-hand side
follows from a combination of (40) with (41). It is now straightforward to notice that the
validity of (43) and (44) entails (45). At this stage, the validity of (46) and (47) for R̂0,m
and R̂1,m follows directly by substitution. As to the same identities for R∗0,m and R∗1,m, the
argument rests on the combination of (3) with (32), exploiting the fact that the additional
term (33) is of o(1/n)-type. Thus, the asymptotic expansion of the left-hand side of (3) is
given in terms of integrals with respect to ν of the sum of the two left-hand sides of (40)
and (41), respectively. Resorting once again to (45), one gets the desired identities for R∗0,m
and R∗1,m by substitution.

5.7. Theorem 3

The core is the proof of (10), with the same expressions (46) and (47) also for R̃0,m and
R̃1,m, respectively. As in the proof of Theorem 2, the left-hand side of (10) is analyzed by
resorting to inequality (32), exploiting the fact that the ensuing additional term, similar to
that in (33), is of o(1/n)-type. Now, the argument is very similar to that of the preceding
proof, with the variant that now the expansion (35) is not optimized in τ, but it is just
evaluated at τ = τ̂n. The conclusion reduces once again to a matter of substituting the
expressions (48)–(50) into the two expansions (35) and (41).

6. Conclusions and Future Developments

This paper should be seen as a pioneering work in the field of predictive prob-
lems, whose main aim is to show how the practical construction of efficient estima-
tors of random quantities (that depend on future and/or past observations) entails non-
standard metrizations of the parameter space Θ. This is the essence of the compatibility
Equations (43) and (44). Of course, all the lines of research proposed in this paper deserve
much more attention, in order to produce new results of wider validity.

The first issue deals with the extension of the compatibility equations to higher dimen-
sions, including the infinite dimension. For finite dimensions, this is only a technical fact.
Indeed, the question relies on extending the asymptotic expansion given in Proposition 3
from dimension 1 to dimension d > 1. This is done in [39] as far as the Bayesian setting,
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and in [53,54] for a general mathematical setting. See also [55] [Section 2.2]. For the infinite
dimension, the mathematical literature is rather scant. Some interesting results on asymp-
totic expansions of Laplace type for separable Hilbert spaces with Gaussian measure are
contained in [56]. Finally, the topic is still in its early stage as far as metric measure spaces
(i.e., the full nonparametric setting) are concerned. See [57,58].

Another mathematical tool that proves to be critical to our study is the Wasserstein
distance. As explained in specific monographs like [27,59], the Wasserstein distance has sev-
eral connections with other fields of mathematical analysis, such as optimal transportation
and the theory of PDEs. Actually, the achievement of some estimators within our theory
(like the one in (55)) is tightly connected with some optimization issues in transport theory.
In this respect, an interesting mathematical area to explore is represented by the theory of
Wasserstein barycenters and the ensuing numerical algorithms. See [60]. Research on this
is ongoing.

Then, all the extensions of de Finetti’s Law of Large Numbers for the log-likelihood
process, stated in Theorem 1, Proposition 1 and Lemma 1 in Section 2.2, are worth being
reconsidered, independently of their use for the purposes of this paper. As to possible
extensions, the first hint is concerned with the analysis of dominated, parametric non-
regular models, as those considered in [61–63]. Here, in fact, we never used the properties
of the MLE as the root of the gradient of the log-likelihood, so that the asymptotic results
contained in the quoted works should be enough to extend our statements. Subsequently,
it would be also very interesting to consider dominated models which are parametrized by
infinite-dimensional objects, where typically the MLE does not exist. See, e.g., the recent
book [64] for plenty of examples.

As to more statistical objectives, it would be interesting to further deepen the connec-
tion between our approach and some relevant achievements obtained within the empirical
Bayes theory, such as those contained in [22,23,65–68]. See also the book [69] for plenty
of applications. In particular, the discussion contained in Section 4.4 about the original
Poisson-mixture setting considered by Herbert Robbins deserves more attention.

A very fertile area of the application of predictive inference is that of species sampling
problems. The pioneering works on this topic can be identified with the works [66,67,70].
Nowadays, the Bayesian approach (especially of nonparametric type) has received much
attention, and has produced noteworthy new results in this field. See [17,71–73] and
also [55,74,75] for novel asymptotic results. Indeed, it would be interesting to investigate
whether it is possible to derive, within the approach of this paper, both asymptotic results
and new estimators, hopefully more competitive than the existing ones.

Another prolific field of application is that of density estimation, aimed at solving
clustering and/or classification problems. See [76] for a Bayesian perspective. Here, there
is an additional technical difficulty due to the fact that the parameter is an element of some
infinite-dimensional manifold, so that the characterization of any metric on Θ will prove
mathematically more complex.

A last mention is devoted to predictive problems with “compressed data”. This kind
of research comes directly from computer science, where the complexity of the observed
data make the available sample essentially useless for statistical inference purposes. For
this reason, many algorithms have been conceived to compress the information in order
to make it useful in some sense. See, e.g., [77]. Here, the Bayesian approach is in its early
stage (see [78]), and the results of this paper can provide a valuable contribution.
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