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Abstract: The brain’s ability to create a unified conscious representation of an object by integrating 

information from multiple perception pathways is called perceptual binding. Binding is crucial for 

normal cognitive function. Some perceptual binding errors and disorders have been linked to 

certain neurological conditions, brain lesions, and conditions that give rise to illusory conjunctions. 

However, the mechanism of perceptual binding remains elusive. Here, I present a computational 

model of binding using two sets of coupled oscillatory processes that are assumed to occur in 

response to two different percepts. I use the model to study the dynamic behavior of coupled 

processes to characterize how these processes can modulate each other and reach a temporal 

synchrony. I identify different oscillatory dynamic regimes that depend on coupling mechanisms 

and parameter values. The model can also discriminate different combinations of initial inputs that 

are set by initial states of coupled processes. Decoding brain signals that are formed through 

perceptual binding is a challenging task, but my modeling results demonstrate how crosstalk 

between two systems of processes can possibly modulate their outputs. Therefore, my mechanistic 

model can help one gain a better understanding of how crosstalk between perception pathways can 

affect the dynamic behavior of the systems that involve perceptual binding. 

Keywords: binding problem; perceptual binding; multisensory integration; consciousness; unity of 

consciousness; perception; sensory processing; information integration; cross-modal interaction; 

split-brain 
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1. Introduction 

Perceptual binding provides a unified conscious representation of an object that is 

described by several different perceptual features such as the object’s shape, color, and 

location [1,2]. Importantly, accumulated empirical evidence suggests that binding is 

critical for normal cognitive operation. Binding disorder occurs in damaged brains when 

patients cannot perceive more than one object at a time, have dissociations between 

different perception pathways, and have problems solving a discrimination task 

according to different percepts [3,4]. ‘Split-brain’ studies report the loss of 

interhemispheric integration and the functional disengagement of the right and left 

hemispheres with respect to cognitive activities [5,6]. Specifically, the independence of the 

two visual half-fields has been reported in patients with a complete transection of the 

corpus callosum [5]. Pictures of objects seen in one half of visual field (processed in one 

hemisphere) are dissociated in perception and memory from pictures seen in the other 

half-field (processed in the other hemisphere). Moreover, illusory conjunctions are often 

referred to as examples of binding errors [7,8]. Thus, a normal cognitive operation 

requires appropriate integration of neural signals from different perception pathways. 

The concept of binding is often used to explain the integration of information across 

different sensory modalities into unified percepts [9]. Multisensory integration depends 

on the temporal relationship of the different sensory inputs and occurs only within the 
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specific time window known as the ‘temporal binding window’ [10,11]. Several studies 

have shown, for example, that binding depends on the temporal arrangement of the 

stimulus sets [12] and that the temporal binding window varies in elderly and young 

adults [13–16]. Furthermore, cross-modal perceptual interaction studies have shown that 

sensory modalities (e.g., visual perception or direction of motion perception) can be 

altered by other modalities (e.g., sound) [17–19]. Such cross-modal interactions also occur 

within a specific temporal window, ~100 ms, that is comparable with the integration 

window of polysensory neurons in the mammalian brain [17]. 

Binding is also closely connected to the philosophical problem of the ‘unity of 

consciousness’ [20,21]. Consciousness-related binding is seen as the neural mechanism 

that maps the subjective phenomenal experiences in consciousness onto corresponding 

neural processes in the brain [21]. Thus, binding is a mechanism that phenomenally 

unifies entities constructed through multiple sensory modalities. It is remarkable that our 

conscious experience is unified even when the corresponding neural pathways that 

process different phenomenal contents are distributed all around the cortex [22]. 

Building binding models could help us better understand how our brain integrates 

information from different perception pathways to provide us with a unified and coherent 

conscious experience. Several models have been proposed to explain the mechanism of 

perceptual binding, among which the most frequently discussed is based on the neuronal 

synchrony or temporal correlation hypothesis [2,23–25]. In operational architectonics, an 

operational synchrony among neuronal processes initiated in different brain regions is 

postulated to play a central role in binding spatially dispersed phenomenal features into 

a unified phenomenal object [26–28]. A temporal alignment that permits binding between 

a stimulus and ongoing spontaneous neural activity is a core assumption of the temporo-

spatial theory of consciousness [29,30]. Furthermore, an interdependence between 

information integration and consciousness has been postulated in several theories of 

consciousness [31–34]. For example, the integrated information theory identifies 

consciousness as the ability of the neuronal system to integrate information to the level at 

which information is consciously accessible [35–37]. In addition, some attempts to give a 

computational explanation of binding have been made within the framework of classical 

neural networks [2]. However, much remains to be understood about the neuronal 

processes involved in perceptual binding. Moreover, many works have been devoted to 

provide a critical evaluation of the temporal synchrony hypothesis as well as arguments 

against the existence of the binding problem in principle [38–40]. 

In this work, I present a mathematical model of binding, which is based on my 

previous model of oscillatory processes, that exhibits the dynamic behavior isomorphic to 

a specific percept [41–43]. The underlying concept of the approach has been described in 

Kraikivski, 2017 [43]. A mathematical formulation of a system of processes representing a 

percept isomorphic to the space has been elaborated in Kraikivski, 2020 [41]. The 

corresponding stochastic model to study implications of noise on the system of processes 

has been presented in Kraikivski, 2021 [42]. To study the binding mechanism, here I use 

two systems of oscillatory processes that are bound via negative feedback loops. Two 

different binding interaction wiring schemes are analyzed. I study how the sets of 

oscillatory processes modulate each other to identify different regimes of modulated 

oscillations, which are then represented in a two-parameter bifurcation diagram. 

Furthermore, I investigate how the system in these different regimes are capable of 

distinguishing different combinations of initial inputs (stimuli). I intend my dynamic 

model to help us understand how a possible mechanism of perceptual binding can be 

deduced from observable oscillating signals. 

2. Model and Methods 

Perceptual experiences of two individuals can be synchronized by the same stimulus; 

therefore, in principle, temporally correlated neuronal signals can be recorded in two non-

interacting brains. In that case, however, the temporal synchronization is not sufficient to 
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provide a unified conscious representation since the stimulus is still independently 

processed by each individual. Moreover, as discussed in the introduction, the functional 

disengagement of the right and left hemispheres with respect to cognitive activities has 

been reported in subjects with a complete transection of the corpus callosum which results 

in the loss of interhemispheric integration [5,6]. Such split-brain studies have revealed a 

lack of integration between the contents of the patient’s conscious states. Therefore, 

binding can occur only if there is a crosstalk between perception pathways that can 

interact and exchange information. Binding is thus detectable since the crosstalk between 

pathways may result in modulation and superposition of signals that can be analyzed. 

Here, I assume that direct interaction among perception pathways or corresponding 

processes is a necessary condition for binding, which can, in turn, induce temporal 

correlation, synchronization, or modulation among oscillating processes.  

I use my previous framework in which a set of oscillating processes is used to 

represent a percept [41] such as a space or a position in the space. The spatial position is 

encoded in the relationships among processes denoted as 𝑃⃗ , which is closely analogous 

to an intrinsic space as defined in the temporo-spatial theory of consciousness (TTC) 

[29,30]. The central hypothesis of TTC is that the brain constructs its own inner time and 

space in its neural activity. Closely, in my framework, the space is encoded in the system 

of processes that interact such that their dynamic relationships are isomorphic to the 

space. This framework also can be applied to represent the time which would be 

conceptually similar to the intrinsic time in TTC. 

To investigate binding, in addition to the position in space, I introduce an attribute 

associated with the position such as brightness of a source at that position, which is 

assumed to be similarly encoded in the relationships among processes denoted as 𝑄⃗ . 

Thus, to study binding, I use two closed sets of processes: 𝑃⃗ = (𝑝1, 𝑝2, 𝑥1, 𝑥2) and 𝑄⃗ =
(𝑞1, 𝑞2, 𝑦1, 𝑦2), which are described by the following system of equations: 

𝑑𝑝1

𝑑𝑡
= ε𝑝2 − 𝑝1 − 𝑥1 + 𝑓1(𝑞1, 𝑞2) 

𝑑𝑝2

𝑑𝑡
= ε𝑝1 − 𝑝2 − 𝑥2 + 𝑓2(𝑞1, 𝑞2) 

𝑑𝑥1

𝑑𝑡
= 𝑝1,

𝑑𝑥2

𝑑𝑡
= 𝑝2 

𝑑𝑞1

𝑑𝑡
= 𝛼𝑞2 − 𝑞1 − 𝑦1 + 𝑔1(𝑝1, 𝑝2) 

𝑑𝑞2

𝑑𝑡
= 𝛼𝑞1 − 𝑞2 − 𝑦2 + 𝑔2(𝑝1, 𝑝2) 

𝑑𝑦1

𝑑𝑡
= 𝑞1,

𝑑𝑦2

𝑑𝑡
= 𝑞2 

(1) 

where 𝜀 and 𝛼 are parameters describing the mutual interactions between p-processes 

and between q-processes correspondingly, see Figure 1a,b. The 𝑓1(𝑞1, 𝑞2), 𝑓1(𝑞1, 𝑞2) and 

𝑔1(𝑝1, 𝑝2) , 𝑔1(𝑝1, 𝑝2)  functions describe the binding between the 𝑃⃗  and 𝑄⃗  sets of 

processes. Generally, a function that depends on a difference between oscillating variables 

can be used to achieve a synchronization of two oscillators [44] (pp. 123–136). Two 

oscillators that communicate the phase to one another can be drawn into synchrony over 

time. In System (1), I assume that the interaction among processes is realized via negative 

feedback loops (see Figure 1a,b that show two possible coupling mechanisms between the 

𝑃⃗  and 𝑄⃗  sets of processes). Mathematically, I consider the following two interaction 

schemes: (a) 𝑓1(𝑞1, 𝑞2) = 𝑞1 , 𝑓2(𝑞1, 𝑞2) = 𝑞2 , 𝑔1(𝑝1, 𝑝2) = −𝑝1 , 𝑔2(𝑝1, 𝑝2) = −𝑝2 , where 

this formulation corresponds to the mechanism shown in Figure 1a,b 𝑓1(𝑞1, 𝑞2) = 𝑞1 − 𝑞2, 

𝑓2(𝑞1, 𝑞2) = 𝑞2 − 𝑞1 , 𝑔1(𝑝1, 𝑝2) = 𝑝2 − 𝑝1 , 𝑔2(𝑝1, 𝑝2) = 𝑝1 − 𝑝2  is according to the 

mechanism shown in Figure 1b. 
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Figure 1. Two different influence schemes for processes described by the system of Equations (1). 

(a) Binding between 𝑃⃗  and 𝑄⃗  sets of processes is gained through interaction of 𝑝1 with 𝑞1 and 𝑝2 

with 𝑞2 processes. In neural systems such specific winning links can be established via training in 

response to different combinations of input stimuli. Here, negative feedback loops are used to 

realize connections between 𝑝1 and 𝑞1 as well as between 𝑝2 and 𝑞2. (b) Binding between 𝑃⃗  and 

𝑄⃗  sets of processes in which all 𝑝1, 𝑝2, 𝑞1, 𝑞2 processes are mutually interconnected via negative 

feedback loops. Arrow-headed lines represent a positive influence and bar-headed lines represent 

a negative influence. The dot-headed lines represent positive or negative influence depending on 

the sign of the α and ε parameters. 

I assume that the 𝑃⃗  and 𝑄⃗  processes occur in response to two different percepts. For 

example, the state of (𝑝1 , 𝑝2 ) can represent the processes in response to the specific 

position selected by attention, which is indicated by a blue circle in Figure 2, and the state 

of (𝑞1, 𝑞2) can represent the processes in response to the presence or absence of a light 

stimulus at the selected location (shown by a star sign or black dot in Figure 2). Hence, I 

distinguish the position of a spot that can be either dark or bright by focusing our attention 

either on the bright spot (e.g., case (i) in Figure 2) or on the dark spot (e.g., case (ii) in 

Figure 2). Therefore, my model represents perceptual binding occurring for two percepts 

that include the position in space and an attribute that is assigned to each position. The 

position selection is represented by the 𝑝1 and 𝑝2 processes. The initial value for the 𝑝1 

or 𝑝2 variable is set to 1 if the corresponding position is selected or to zero otherwise (see 

Figure 2). Similarly, the initial value for the process 𝑞1 or 𝑞2 is set to 1 if a light stimulus 

is present, otherwise the initial value for 𝑞1 or 𝑞2 is set to zero. All corresponding initial 

values for 𝑝1, 𝑝2, 𝑞1, 𝑞2 processes for cases (i)–(viii) are shown in Figure 2. Simulation 

results of these cases are provided in the Results section of this manuscript.  
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Figure 2. Seven different combinations of two distinct types of inputs representing percepts and the 

corresponding initial values of (𝑝1, 𝑝2) and (𝑞1, 𝑞2) processes. Each combination consists of two 

possible positions and the presence/absence of a light stimulus at these positions. The presence of a 

light stimulus at a position is indicated by the star sign and the absence of light is indicated by the 

black dot. A specific position is assumed to be selected by attention, which is indicated by the blue 

circle. For example, for case (i), the focus is on the bright spot, while for case (ii), the focus is on the 

dark spot. 

System (1) consists of a system of linear differential equations that has a solution that 

can be, in principle, expressed in algebraic form. However, eight eigenvalues and 

eigenvectors cannot be written in a concise form to fit into this text and be easily analyzed. 

Therefore, here, I present numerical solutions obtained for different initial conditions and 

parameter values that produce distinct numerical results. XPP/XPPAUT software 

(http://www.math.pitt.edu/~bard/xpp/xpp.html, accessed on 12 January 2022) was used 

to solve System (1) and compute two-parameter bifurcation diagrams. XPP codes that 

were used to produce all results presented in this work are provided in Appendix A. since 

System (1) is linear, I do not perform a global sensitivity analysis that is a common tool to 

analyze nonlinear systems to determine the variations in the model outputs depending 

on the variations in inputs [45,46]. Nevertheless, the dynamic behavior of System (1) has 

been already shown to be robust against the noise [42].  

3. Results 

First, I analyze System (1) by considering the interaction scheme shown in Figure 1a. 

I explore solutions of System (1) for different values of 𝜀 and 𝛼 parameters to identify 

distinct dynamic regimes that the system of coupled processes can exhibit. Thus, 𝜀 and 

𝛼  serve as bifurcation parameters of the system. As shown in Figure 3, the dynamic 

behavior of the 𝑃⃗  and 𝑄⃗  processes depends on 𝜀  and 𝛼  parameter values. The 

feedback loops connecting the two sets of processes induce a complex mutual modulation 

among the interacting processes. Consequently, variations in amplitude, frequency, and 

temporal relationships among processes depending on parameter values are observed. 

Similar amplitude modulation or distortion is commonly observed for two coupled 

oscillators when the coupling is not strong enough to bring the phases of two oscillators 

into synchrony over time [44] (pp. 123–136). Closely, the strong amplitude modulation in 

System (1) occurs when one parameter, either 𝜀 or 𝛼, is much smaller than the other (see 

Figure 3e,f). Therefore, amplitude distortion is likely to be observed in a system that is 

composed of two interacting subsystems such that one subsystem is described by weak 

internal coupling parameters and the other is described by strong internal coupling 

parameters. Interestingly, I also observe small amplitude variations when both 𝜀 and 𝛼 

have values close to −1. These variations also occur due to interactions between the 𝑃⃗  and 

𝑄⃗  processes. When the 𝑃⃗  and 𝑄⃗  processes are decoupled, the amplitude variations 

disappear. Thus, the amplitude distortion in experimentally recorded signals could 

indicate binding. 
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Figure 3. Oscillatory behavior observed in the dynamic system of coupled processes. Oscillations of 

(𝑝1, 𝑝2) and (𝑞1, 𝑞2) processes are obtained using the following parameter values: (a) ε = 1, α = −1.5; 

(b) ε = −1.8, α = 0.25; (c,d) ε = −0.1, α = −1.9, where the (𝑝1, 𝑝2) and (𝑞1, 𝑞2) processes are shown on 

separate figure panels for better visualization; (e) ε = 1.99, α = 0.01, note that shortly after the starting 

values the (𝑝1, 𝑝2) and (𝑞1, 𝑞2) processes begin and continue to overlap over time; (f) ε = −0.01, α = 

−1.99. All simulations are obtained using the same initial conditions: (𝑝1, 𝑝2, 𝑞1, 𝑞2) = (1, 0, 1, 0) that 

corresponds to case (i) in Figure 2, and (𝑥1, 𝑥2, 𝑦1, 𝑦2) = (0, 0, 0, 0).  

Here, I only present periodic solutions with sustained oscillations; however, the 

system also exhibits damped oscillations and unstable sources or oscillations with 

growing amplitude as well. The periodic solutions of System (1) with sustained 

oscillations are found for the following ranges of parameters:  

𝛼 = −
𝜀 + 2

𝜀 + 1
    for − 2 < 𝜀 ≤ −√2 and 0 < 𝜀 ≤ √2 

𝛼 =
𝜀 − 2

𝜀 − 1
    for − √2 ≤ 𝜀 < 0 and √2 ≤ 𝜀 < 2 

𝛼 = −𝜀 − 2    for − 2 < 𝜀 < 0  

𝛼 = −𝜀 + 2    for 0 < 𝜀 < 2. 

(2) 

The corresponding two-parameter bifurcation diagram is shown in Figure 4. The 

diagram is obtained numerically as explained in the Methods section and agrees with the 

analytical solutions described by the System of Equation (2). The parameter ranges 
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marked as (i) and (iii) in Figure 4 correspond to the first equation in System (2); the regions 

marked as (iv) and (vi) in Figure 4 correspond to the second equation in System (2); the 

line marked as (ii) in Figure 4 corresponds to the third equation in System (2) and the line 

labeled with (v) in Figure 4 corresponds to the last equation in System (2). Oscillations are 

observed with varying amplitudes for parameter values along the (ii) and (v) lines shown 

in Figure 4. Figure 3c,d, and f provide examples of oscillations obtained using parameter 

values from region (ii) and Figure 3e shows simulations obtained using parameter values 

from region (v). Oscillations produced using parameter values from regions (i) and (iii) 

are shown in Figure 3a and Figure 3b, respectively. Oscillations for parameter values 

taken in regions (iv) and (vi) have constant amplitude similar to those shown in Figure 

3a,b but 𝑝1 and 𝑞1 oscillate in phase with 𝑝2 and 𝑞2, respectively (not shown). Overall, 

System (1) combined with the interaction scheme shown in Figure 1a produces a diverse 

repertoire of periodic solutions with sustained oscillations that depend on the system’s 

parameters.  

 

Figure 4. Two-parameter bifurcation diagram for the interaction scheme shown in Figure 1a. 

Oscillations occur for ε and α parameter values along solid curves marked as (i)–(v). To demonstrate 

agreement between numerical and analytical solutions, the dotted curves are drawn by plotting the 

following functions: α = −(ε + 2)/(ε + 1) and α = (ε − 2)/(ε − 1), which overlap with solid curves (iii), 

(i) and (iv), (vi) obtained numerically in corresponding regions. 

Next, I fix the ε and α parameter values and investigate the solutions of System (1) 

depending on the different initial conditions that are shown in Figure 2. ε and α parameter 

values are taken from region (ii), shown in Figure 4, which are also described by the third 

equation in System (2). For these parameter values, the system of processes exhibits 

sustained oscillations for both interaction schemes shown in Figure 1a,b. Thus, we can 

compare how different interaction schemes perform in solving a discrimination task by 

differentiating inputs shown in Figure 2. 

Six conditions (i)–(vi) shown in Figure 2 produce distinct dynamic relationships 

among 𝑝1, 𝑝2, 𝑞1, 𝑞2 processes (see Figure 5). However, two conditions (vii) and (viii), 

shown in Figure 2, produce the same dynamic relationships among processes as obtained 

for the (v) and (vi) conditions, respectively. Therefore, the system can discriminate (i)–(vi) 

initial inputs but cannot discriminate (vii) and (viii) from (v) and (vi) inputs. The latter 

means that the position in space that is homogeneously bright is identical to the same 
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position in space that is homogeneously dark. Perhaps, these inputs can be discriminated 

if more complex interactions representing binding or a system with more states and 

hierarchical levels of binding interactions between these states are used. 

 

Figure 5. The change in dynamic relationships among 𝑝1, 𝑝2, 𝑞1, 𝑞2 processes depend on initial 

conditions. Six initial conditions (i)–(vi) shown in Figure 2 are used to produce these simulation 

results. These conditions induce distinct dynamic relationships among processes and, thereby, can 

be discriminated by the system. The initial conditions are indicated in the figures as two pairs of 

digits corresponding to initial values of (𝑝1, 𝑝2; 𝑞1, 𝑞2) shown in parenthesis at the upper left corner 

of each figure panel. All simulations are obtained using the interaction scheme shown in Figure 1a 

and the following parameter values: ε = −1, α = −1. 

Solving and analyzing System (1) for the second interaction scheme shown in Figure 

1b, I also identified ε and α parameter values for which the periodic solutions with 

sustained oscillations are obtained. A two-parameter bifurcation diagram that 

summarizes parameter ranges with periodic solutions is shown in Figure 6. Oscillations 

for parameter values along the solid line in Figure 6 are qualitatively similar to those that 

are shown in Figure 5 and obtained for the same range of parameters: α = − ε − 2 for −2 < 

ε < 0, however, the frequency of oscillations is higher (see Figure S1 in the Supplementary 

Materials). Also, System (1) combined with the interaction scheme in Figure 1b performs 

equally well to that of the scheme shown in Figure 1a on the task to discriminate different 

inputs that are shown in Figure 2. However, comparing two-parameter bifurcation 

diagrams in Figures 4 and 6, the diagram in Figure 4 shows significantly more parameter 

ranges where the system exhibits sustained oscillations. Therefore, despite the fact that 

the interaction scheme in Figure 1b has more interactions than the interaction scheme 

shown in Figure 1a, the latter, simpler interaction scheme produces a more diverse 

dynamic behavior of the system. Thus, the more comprehensive interaction network that 

integrates information from many network nodes does not necessarily result in a more 

diverse dynamic repertoire.  
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Figure 6. Two-parameter bifurcation diagram for the interaction scheme shown in Figure 1b. The 

solid line, α = − ε − 2 for −2 < ε < 0, shows the parameter values where both 𝑃⃗ = (𝑝1, 𝑝2, 𝑥1, 𝑥2) and 

𝑄⃗ = (𝑞1, 𝑞2, 𝑦1, 𝑦2)  oscillate and the relationships between 𝑝1  and 𝑝2  and 𝑞1  and 𝑞2  are 

maintained over time. For these parameter values, 𝑃⃗  and 𝑄⃗  oscillate out of phase and with varying 

amplitudes. Dashed lines show the parameter values where oscillations exist but either the 

relationships between p-processes or q-processes are no longer maintained (diagonal dashed lines), 

or only one set of processes oscillate while another set of processes does not exhibit oscillatory 

dynamics (vertical and horizontal dashed lines). Dotted lines show parameter ranges where 

oscillations exist only if either 𝑃⃗  or 𝑄⃗  starts with zero initial conditions and, thus, only p-processes 

or q-processes oscillate, which is equivalent to the situation when 𝑃⃗  and 𝑄⃗  are decoupled and 

independent. At the point (α = 1, ε = 1), both p-processes and q-processes oscillate in phase with 

constant amplitudes. 

4. Discussion 

Mechanistic modeling has become a very popular tool that allows one to not simply 

describe the system components but to also analyze, understand, and explain the dynamic 

behavior of the system. This mechanistic approach has been successfully applied to 

modelling nerve action potential [47], neurodynamics in the olfactory system [48], 

dynamics of ecological networks [49], molecular signaling pathways [50], and complex 

molecular mechanisms determining cell fate [44,51–54]. However, building mechanistic 

models of consciousness is undoubtedly one of the most challenging tasks. By using my 

previous dynamic modeling framework to describe a percept [41–43], here, I developed a 

dynamic mechanistic model of perceptual binding. 

The perceptual binding concept is compatible with the Integrated Information and 

Temporo-Spatial theories of consciousness as well as with some classical neural network 

models [2,25,29–32]. However, as put forward by von der Malsburg, for example, the 

classical neural network models interpret a brain state as a static vector ignoring the fact 

that recorded neural signals are not constant over any fixed time scale [2]. By contrast, in 

my model, the states are encoded in the dynamical processes that continuously alternate, 

yet their specific relationships that encode information are maintained over time. This 

continuous realization of specific relationships among processes in the system is an 

important concept in my modeling framework. The main assumption of my approach is 

that consciousness is a dynamical process, not a capacity, memory, or information, as 

elaborated by James, 1904 [55]. 



Mathematics 2022, 10, 1135 10 of 13 
 

 

My dynamic approach is comparable to Freeman’s framework developed to describe 

population neurodynamics in the olfactory system [48]. His system of ordinary 

differential equations constructed in conformance with the anatomical and physiological 

properties of the olfactory system has been successful in explaining electrophysiological 

recordings of impulse responses. Different oscillations have been observed including 

complex and highly dimensional oscillations with varying amplitudes and a pattern that 

repeats itself (see Figure 6 on page 301 in Ref. [48]). While my simulation results may not 

be directly comparable with the dynamic behavior of neuronal systems or with 

electroencephalographic brain recordings, my model provides a qualitative 

representation of how binding can influence and change neural oscillations. Although, I 

analyzed a simple system in which the space is represented by two points described by 

the (𝑝1, 𝑝2) processes and each point was characterized only by two states (𝑞1, 𝑞2), the 

system can be scaled to n-points each with m-states (n, m > 2) as shown in Kraikivski, 

2020, 2021 [41,42]. However, the application of sets with many states to investigate 

binding would only complicate the analysis and interpretation of results.  

I analyzed a system of two sets of processes representing two different percepts and 

found that the system exhibits different dynamic behavior depending on initial conditions 

(see Figure 5) and is capable of distinguishing different combinations of initial inputs 

shown in Figure 2. Therefore, my approach can be an alternative to classical neural 

networks that fail to solve a discrimination task in Frank Rosenblatt’s example with four 

neurons where two neurons learn to recognize the object shape and the other two indicate 

the position of objects [2,56]. The output reads of such a four-neuron classical network 

include two shapes (e.g., square, triangle) and two positions (left, right), however, 

whether a specific shape is on the left side or on the right side remains indistinguishable.  

I investigated two interaction schemes (see Figure 1a,b) describing binding between 

the sets of processes. For both wiring schemes, different dynamic oscillatory regimes were 

identified. Remarkably, despite the comprehensive level of interactions among processes 

and, therefore, a higher level of information integration, the interaction scheme shown in 

Figure 1b does not result in overly complex dynamic behavior, as opposed to the 

interaction scheme in Figure 1a, which produces a more diverse repertoire of oscillating 

regimes (see Figures 3, 4, and 6). This result appears to be opposite to what would be 

expected in Integrated Information Theory, which identifies consciousness with the 

ability of the system to integrate information. 

In conclusion, my mechanistic model can help one gain a better understanding of 

how binding can affect the dynamic behavior of the systems that involve perceptual 

binding. Although, the real neural oscillatory signals differ from oscillations shown in 

Figures 3 and 5, the qualitative conclusions derived in this work can be applied to 

understand the dynamic outcomes recorded in real neural systems. For example, my 

results suggest that amplitude modulation or distortion detected in experimentally 

recorded signals can be used to detect binding and reveal some properties of interacting 

subsystems. Furthermore, binding cannot be merely the result of synchronization of 

signals or temporal correlation that can spontaneously occur or be set in two non-

interacting systems. Binding may only occur when processes interact, resulting in 

modulation and superposition of signals. Some approach limitations and the discussion 

of how the results can be compared to electroencephalograms (EEG) and functional 

magnetic resonance imaging (fMRI) recordings has been discussed in Kraikivski, 2020 

[41]. 

Supplementary Materials: The following supporting information can be downloaded at: 

www.mdpi.com/article/10.3390/math10071135/s1. Figure S1: Dynamic relationships among 

processes depending on the initial conditions. Simulations are obtained using the interaction 

scheme shown in Figure 1b and the following parameter values: ε = −1, α = −1. 
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Appendix A 

The XPPAUT code A was used to simulate results in Figures 3–5. 

# code A 

init p1=1, p2=0, x1=0, x2=0, q1=1, q2=0, y1=0, y2=0 

par eps=-1.0, alpha=-1.0 

 

p1’=eps*p2-p1-x1+q1 

x1’=p1 

p2’=eps*p1-p2-x2+q2 

x2’=p2 

q1’=alpha*q2-q1-y1-p1 

y1’=q1 

q2’=alpha*q1-q2-y2-p2 

y2’=q2 

 

@ dt=.025, total=100, xplot=t,yplot=p1 

@ xmin=0,xmax=100,ymin=-1,ymax=1 

done 

The XPPAUT code B was used to simulate results in Figure 6 and Figure S1 in the 

Supplementary Materials. 

# code B 

 

init p1=1, p2=0, x1=0, x2=0, q1=1, q2=0, y1=0, y2=0 

par eps=-1.0, alpha=-1.0 

 

p1’=eps*p2-p1-x1+q1-q2 

x1’=p1 

p2’=eps*p1-p2-x2-q1+q2 

x2’=p2 

q1’=alpha*q2-q1-y1-p1+p2 

y1’=q1 

q2’=alpha*q1-q2-y2+p1-p2 

y2’=q2 

 

 

@ dt=.025, total=100, xplot=t,yplot=p1 

@ xmin=0,xmax=100,ymin=-1,ymax=1 

done 
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