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Abstract: The objective of this manuscript is to develop, for the first time, a mathematical model
for the prediction of buckling, postbuckling, and nonlinear bending of imperfect bio-inspired heli-
coidal composite beams with nonlinear rotation angle. The equilibrium nonlinear integrodifferential
equations of imperfect (curved) helicoidal composite beams are derived from the Euler–Bernoulli
kinematic assumption. The differential integral quadrature method (DIQM) and Newton-iterative
method are employed to evaluate the response of imperfect helicoidal composite beams. Follow-
ing the validation of the proposed model, numerical studies are performed to quantify the effect
of rotation angle, imperfection amplitude, and foundation stiffness on postbuckling and bending
behaviors of helicoidal composite beams. The perfect beam buckles through a pitchfork bifurcation.
However, the imperfect beam snaps through the buckling type. The critical buckling load increases
with the increasing value of elastic foundation constants. However, the nonlinear foundation constant
has no effect in the case of perfect beams. The present model can be exploited in the analysis of
bio-inspired structure, which has a failure similar to a metal and low interlaminar shear stress, and is
used extensively in numerous engineering applications.

Keywords: helicoidal composite beams; bio-inspired structure; buckling and postbuckling; nonlinear
bending response; curved structure; numerical solutions
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1. Introduction

The bodies of animals and plants are naturally designed in helicoidal arrangement
to resist and protect them from enemies. This arrangement provides their bodies with
excellent mechanical properties, which inspires researchers and scientists to design a man-
made composite structure in the same way. Helicoidal structure, known as “Bouligand
structure”, is one of the exceptional and predominant arrangements noted in exoskeletons
of the arthropod, crustaceans, sapidus, and insects. The helicoidal structures are portrayed
by gradually changing the rotation angle of each lamina in the bulk unit [1]. In the case of
helicoidal arrangement, the discontinuity of in-plane shear properties gradually decreases.
Therefore, the debonding resistance, toughness, strength, and damage tolerance can be
improved and designed [2]. Liu et al. [3] illustrated that the delamination resistance in-
creases by decreasing the inter-ply angles in helicoidal laminates. Therefore, the helicoidal
composite laminated (COL) structure has been exploited for numerous anti-impact applica-
tions, such as tanks, warcraft, warship, and blades of turbine [4]. Moreover, they may be
used as alternatives for classical orthotropic laminated structures, which are used in many
mechanical, military, civil, aerospace, and aeronautics industries [5].
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Cheng et al. [1] and Shang et al. [6] examined the response of bio-inspired helicoidal
composite beams with different orientation angles under the transverse point load. Grunen-
felder et al. [7] and Jiang et al. [4] experimentally analyzed the impact resistance of helicoidal
composite panels. Ginzburg et al. [8] explored the damage tolerance of helicoidal composite
panels due to the low velocity impact and proved that they have the ability to sustain a
transverse load up to 73%, which is more than the cross-ply scheme. Yang et al. [9] experi-
mentally and numerically studied the multiscale finite element model, low-velocity impact
response, and energy absorption capacity of bio-inspired CFRP laminates. Golewski [10]
developed a special construction and material conditions to decrease the drawbacks of
vibrations on concrete structures. Gul and Aydogdu [11] studied mechanical behaviors
of Timoshenko nanobeams using the doublet mechanics theory. Yang et al. [12] and Yin
et al. [13] presented a theoretical analysis to investigate the crack-driving force and toughen-
ing mechanism of bio-inspired helical structures. Lyratzakis et al. [14] reduced the induced
vibrations due to the high-speed train on adjacent reinforced concrete buildings using
single or double expanded polystyrene geofoam-filled trenches.

The geometries of beam, plate, and shell are not completely flat, but have small im-
perfections and curvatures [15]. Lacarbonara et al. [16] explored the two modes that are
activated around a veering of frequencies, which result from the nonlinear stretching of im-
perfect beams. Emam [17], Emam and Nayfeh [18], Gupta et al. [19], and Gunda et al. [20]
derived analytical solutions for postbuckling and vibration behaviors of COL beams with
and without imperfections. Li and Qiao [21] studied nonlinear pre- and postbuckling
behaviors of imperfect anisotropic composite beams by employing the Newton-iterative
method and Galerkin method. Emam and Eltaher [22] introduced a mathematical model
to predict the hygrothermal influence on buckling and postbuckling behaviors of com-
posite imperfect beams. Emam et al. [23] studied postbuckling and vibration behaviors
of imperfect multilayer nonlocal nanobeams under the pre-stress compressive load. Mo-
hamed et al. [24] established a numerical model to analyze the nonlinear free and forced
steady state vibrations of imperfect beams using DIQM. Guo et al. [25] exploited a do-
main decomposition to investigate the static and dynamic response of COL curved beams
with elastic boundary conditions. Eltaher et al. [15] presented the influence of curved
periodic and nonperiodic profiles of beams on the buckling, postbuckling, and dynamic
response using DIQM. Wang et al. [26] and Yang et al. [27] introduced a mathematical
model to predict buckling and postbuckling behaviors of composite beams reinforced with
graphene platelets under electrical force. Mohamed et al. [28,29] exploited DIQM and the
energy-equivalent method to study buckling and postbuckling behaviors of higher order
carbon nanotubes. Eltaher et al. [30,31] studied nonlinear buckling, postbuckling, and
vibration behaviors of imperfect carbon nanotubes (CNTs) modeled as a beam structure
using analytical and numerical methods. Song et al. [32] presented a comparison between
the matched-interface-boundary method and its interpolation for vibrations of stepped
structures. Emam and Lacarbonara [33] developed a general formulation to investigate
nonlinear buckling and postbuckling behaviors of curved beams, including the extensibility
and shear deformability of the structure. Boutahar et al. [34] studied bending vibratory
behaviors of FG beams using the refined beam theory. Zhang et al. [35] exploited a new
method of curvature constrained interpolation in static and buckling behaviors of straight
and strong curved thin beams. Almitani et al. [36] developed exact solutions for nonlinear
bending, buckling, and postbuckling behaviors of imperfect helicoidal composite beams.
Karamanli and Vo [37] studied vibrations of curved zigzag nanobeams using the doublet
mechanics theory and finite element procedure.

Although many bio-inspired structures under an impact load have been studied ex-
perimentally, very limited research has been performed to present the mechanical bending,
buckling, and postbuckling response of curved bio-inspired composite beams. Therefore,
this paper aims to comprehensively cover this topic. The rest of the article is organized as
follows. Section 2 presents the constitutive equations, material distribution, geometrical
configuration, and problem formulation. Section 3 illustrates the numerical solution proce-



Mathematics 2022, 10, 1084 3 of 20

dure for static bending and buckling response using the differential integral quadrature
method. Section 4 discusses the numerical studies and parametric analyses, while Section 5
introduces the main conclusions and novel points derived from the parametric studies.

2. Problem Formulation

A laminated composite beam with NL uniform layers, total thickness h, length L, and
width b are presented in the analysis. With respect to the classical beam theory, the axial (U)
and lateral displacements (W) of a generic point at (x̂, 0, ẑ) can be written as follows [24]:

U(x̂, ẑ, t̂) = û(x̂, t̂)− ẑ
[

∂ŵ(x̂, t̂)
∂x̂

− dŵ0(x̂)
dx̂

]
(1)

W(x̂, ẑ, t̂) = ŵ(x̂, t̂) (2)

where û and ŵ are the axial and lateral mid-plane displacements, and ŵ0 is the initial rise.
The normal strain due to deformation is given by

εx = ε0 − ẑκ0 (3)

where ε0 is the normal strain and κ0 is the curvature of the mid-plane, which are defined
as follows [29,38]:

ε0 =
∂û
∂x̂

+
1
2

(∂ŵ
(
x̂, t̂
)

∂

)2

−
(

dŵ0(x̂)
dx̂

)2
 (4)

κ0 =
∂2ŵ

(
x̂, t̂
)

∂x̂2 − d2ŵ0(x̂)
dx̂2 (5)

The force (N) and moment (M) resultants can be defined as follows [17]:

N = b(A11ε0 + B11κ0) (6)

M = b(B11ε0 + D11κ0) (7)

The laminated axial, coupling, and bending stiffness are Aij, Bij, and Dij, respectively,
which can be described by

(
Aij, Bij, Dij

)
=

h
2∫

− h
2

Qij

[
1, ẑ, ẑ2

]
dẑ, (i, j = 1, 2, 6) (8)

where the reduced-transformed stiffness of a single orthotropic lamina Qij is defined as
follows [17]: [

Qij

]
= T−1[Qij

] 1 0 0
0 1 0
0 0 2

T

 1 0 0
0 1 0
0 0 2

−1

(9)

The transformed matrix T is defined as follows [39]:

T =

 cos2(θ) sin2(θ) sin(2θ)
sin2(θ) cos2(θ) − sin(2θ)
− 1

2 sin(2θ) 1
2 sin(2θ) cos(2θ)

 (10)

where θ is the angle of fibers at kth lamina. The plane reduced stiffness Qij can be evaluated
by [17]

Q11 =
E1

1− ν12ν21
, Q12 =

ν12E2

1− ν12ν21
, Q22 =

E2

1− ν12ν21
, Q66 = G12 (11)
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where E1, E2, ν12, and G12 are four independent material constants. The equations of
motion of helicoidal COL beams can be represented by [15]

m
∂2û
∂t̂2 + µ̂0

∂û
∂t̂
− ∂N

∂x̂
= F̂u (12)

m
∂2ŵ
∂t̂2 + µ̂1

∂ŵ
∂t̂
− ∂2M

∂x̂2 − N
∂2ŵ
∂x̂2 = F̂w (13)

where m is the mass per unit length, F̂ is the axial load, F̂w is the transverse load, µ̂0 and µ̂1
are the axial and transverse damping coefficients, respectively. As the in-plane iner-
tia and damping are insignificant on the transverse deflection, they can be neglected.
Equations (12) and (13) can be reduced into one equation as follows:

m
∂2ŵ(x̂,t̂)

∂t̂2 + µ̂
∂ŵ(x̂,t̂)

∂t̂ + b
(

D11 −
B2

11
A11

)(
∂4ŵ(x̂,t̂)

∂x̂4 − ∂4ŵ0(x̂)
dx̂4

)
+

(
P̂− k̂s +

b
L B11

(
∂ŵ(L,t̂)

∂x̂ − ∂ŵ(0,t̂)
∂x̂ − ∂ŵ(L)

dx̂ + ∂ŵ(0)
dx̂

)
− b

2L A11

l∫
0

[(
∂ŵ(x̂,t̂)

∂x̂

)2
−
(

∂ŵ0(x̂)
dx̂

)2
]

dx̂

)
∂2ŵ(x̂,t̂)

∂x̂2 + k̂Lŵ(x̂, t̂) + k̂NL
(
ŵ
(
x̂, t̂
))3

= q̂(x̂) + F̂cos(Ω̂t̂)

(14)

where P̂ is the axial imposed force, k̂s is the elastic shear stiffness of the foundation, k̂L and
k̂NL are the linear and nonlinear elastic foundation constants, respectively. Moreover, q̂ and
F̂ are the distributed transverse and axial loads along the beam length, and Ω is the forced
frequency defining the following quantities:

x =
x̂
L

, w =
ŵ
r

, w0 =
ŵ0

r
, r =

√
I
A

, t = t̂

√√√√√ b
(

D11 −
B2

11
A11

)
mL4 (15)

The nondimensional governing equation is as follows:

..
w + µ

.
w + wiv +

(
P− ks + γ(w′(1, t)− w′(0, t)− w′0(1) + w′0(0))− 1

2 α
1∫

0

(
w′2 − w′0

2
)

dx

)
w′′ + kLw

+kNLw3 − wiv
0 = q(x) + Fcos(Ωt)

(16)

where

α = A11r2(
D11−

B2
11

A11

) , γ = B11r(
D11−

B2
11

A11

) , Ω = Ω̂
√

mL4

b
(

D11−
B2

11
A11

) , µ = µ̂L2√
mb
(

D11−
B2

11
A11

) ,

q(x) = q̂(x̂)L4

rb
(

D11−
B2

11
A11

) , P = P̂L2

b
(

D11−
B2

11
A11

) , F = F̂L4

rb
(

D11−
B2

11
A11

) , ks =
k̂s L2

b
(

D11−
B2

11
A11

) ,

kL = k̂L L4

b
(

D11−
B2

11
A11

) , kNL = k̂NLr2L4

b
(

D11−
B2

11
A11

)
(17)

Herein, the buckling and bending problems are studied. The static equilibrium equa-
tion can be acquired by dropping the time dependent terms in Equation (16). The result is
as follows [24]:

wiv +

P− ks + γ
(
w′(1)− w′(0)− w′0(1) + w′0(0)

)
− 1

2
α

1∫
0

(
w′2 − w′0

2
)

dx

w′′ + kLw + kNLw3 − wiv
0 = q(x). (18)
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During fabrication or due to heating and cooling processes, the structure may exhibit
an initial curved shape as a form of imperfection. Therefore, the initial imperfection can
supposedly have the following form, which is accompanied by the first buckling mode
as follows:

w0(x) = A0sin(πx) S-S (19)

w0(x) = A0 sin2(πx) C−C (20)

where A0 is the amplitude of initial curvature. The boundary conditions in dimensionless
form for S-S and C-C beams, respectively are as follows:

w = 0 & w′′ = 0 at x = 0, 1 (21)

w = 0 & w′ = 0 at x = 0, 1 (22)

3. Numerical Solution Based on DIQM
3.1. Numerical Technique

To define the mesh grid points, the shifted Chebyshev–Gauss–Lobatto grid points are
used as follows [15]:

xi =
1
2

(
1− cos

(
(i− 1)π

N − 1

))
, i = 1, 2, N. (23)

where N is the number of grid points. According to the DIQM, the first-order derivative of
a continuous function y(x) is as follows:

dy(x)
dx

∣∣∣∣
x=xi

=
N

∑
j=1
Cijy

(
xj
)
, i = 1, 2, · · ·N (24)

Weighting coefficients can be evaluated as follows [40]:

Cij =


P(xi)

(xi−xj)P(xj)
i 6= j i, j = 1, 2, . . . N

−
N
∑

j=1,i 6=j
Cij i = j, i = 1, 2, . . . N

(25)

where

P(xi) =
N
Π

j=1,j 6=i

(
xi − xj

)
(26)

From Equation (24), the first-order derivative of a function can be written in a matrix
form as follows:

Y = C(1) y (27)

where C(1) =
[
Cij
]
, and vector y = [y(x1) y(x2) . . . y(xN)]

T and its first derivative vector
are Y = [Y(x1) Y(x2) . . . Y(xN)]

T . The higher order matrices can be obtained using the
matrix multiplication as follows [24]:

C(n) = C(1)C(n−1), n > 1 (28)

The definite integral of a continuous function y(x) over the domain can be obtained
as follows:

dy
dx

= Y(x) (29)

Then
1∫

0

Y(x)dx ∼=
N

∑
k=1

([K]Nk − [K]1k)Y(xk) =
N

∑
k=1
SkY(xk) = SY (30)
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where K is the pseudo-inverse of matrix C(1) and the row vector S = [S1,S2, . . . SN ].
Additional explanations regarding the DIQM and its conversions are comprehensively
presented by Equations (19) and (30).

3.2. Buckling Problem

To compute the critical buckling load and postbuckling configuration, the external
transverse load q should be set to zero. Therefore, one obtains

wiv +

P− ks + γ
(
w′(1)− w′(0)− w′0(1) + w′0(0)

)
− 1

2
α

1∫
0

(
w′2 − w′0

2
)

dx

w′′ + kLw + kNLw3 = wiv
0 (31)

Equation (31) can be written as follows:

wiv +
[
P− ks + γ

(
w′(1)− w′(0)− w′0(1) + w′0(0)

)
− Γ

]
w′′ + kLw + kNLw3 = wiv

0 (32)

where

Γ =
1
2

α

1∫
0

(
w′2 − w′0

2
)

dx (33)

As known, Equation (32) is a nonlinear nonhomogeneous fourth-order ordinary dif-
ferential equation, whose exact solution is not available. Therefore, DIQM is employed to
discretize Equation (33) as follows:(

C(4) +
[

P− ks − Γ + γ
(
C(1)N1 [w− w0]

)]
C(2) + kL IN

)
w + kNLw◦3 = C(4)w0 (34)

Γ =
1
2

αS
[(
C(1)w

)◦2
−
(
C(1)w0

)◦2]
(35)

where IN is N × N identity matrix, C(1)N1 is a row matrix whose elements are the difference
between the last row and the first row of matrix C(1), ◦ stands for the matrix Hadamard
product, and the column vector w is defined as follows:

wT = [w1, w2, . . . ., wN ] (36)

where wi = w(xi). The initial shape of imperfection w0(x) is discretized as the known
vector as wT

0 = [w0(x1), w0(x2), . . . , w0(xN) ].
The corresponding boundary conditions in Equation (21) can be discretized in the

same manner. The system of nonlinear algebraic Equation (36) can be written as follows:

F (w, P) = 0 (37)

Notably, the discretized boundary conditions are appropriately substituted in the
nonlinear algebraic system of Equation (37). The critical buckling load and postbuckling
configuration are computed numerically using the Newton-iterative method. The solution
of the linearized form of Equation (34) is used as the initial value for Newton’s method.

3.3. Bending Problem

For the static bending problem, the external axial load P is set to zero and the following
equilibrium equation is obtained:

wiv −

ks − γ
(
w′(1)− w′(0)− w′0(1) + w′0(0)

)
+

1
2

α

1∫
0

(
w′2 − w′0

2
)

dx

w′′ + kLw + kNLw3 − wiv
0 = q(x) (38)

The applied transverse load q(x) can be expressed as follows:
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q(x) = q0δ
(
x− xp

)
Point load

q(x) = q0 iformly distributed load
(39)

where q0 is the intensity of the load, δ(.) is the Dirac delta function, and xp is the application
position of the point load.

It is difficult to analytically solve the nonlinear equation described in Equation (38).
Therefore, the numerical DIQM is used to solve it.

In the case of point load, Equation (38) is as follows:

wiv −
(

ks − γ(w′(1)− w′(0)− w′0(1) + w′0(0)) +
1
2 α

1∫
0

(
w′2 − w′0

2
)

dx

)
w′′ + kLw + kNLw3 − wiv

0

= q0δ
(
x− xp

) (40)

It is well-known that the Dirac delta function has the following properties:

δ
(
x− xp

)
= 0, if x 6= xp, 1 < p < N (41)

and
∞∫
−∞

δ
(
x− xp

)
dx = 1 (42)

To use the properties of the Dirac delta function, Equation (40) is integrated over the
domain [41] as follows:

1∫
0

wiv −

ks − γ
(
w′(1)− w′(0)− w′0(1) + w′0(0)

)
+

1
2

α

1∫
0

(
w′2 − w′0

2
)

dx

w′′ + kLw + kNLw3 − wiv
0

dx = q0 (43)

The left-hand side of Equation (43) is integrated numerically using the integral operator
defined in Equation (30), as follows:

N
∑

i=1
Si

[
wiv(xi)−

(
ks − γ(w′(1)− w′(0)− w′0(1) + w′0(0)) +

1
2 α

1∫
0

(
[w′(xi)]

2 − [w′0(xi)]
2
)

dx

)
w′′ (xi)

+kLw(xi) + kNL[w(xi)]
3 − wiv

0 (xi)
]
= q0

(44)

Using Equation (41), Equation (44) can be simplified to the following:

wiv(xi)−
(

ks − γ(w′(1)− w′(0)− w′0(1) + w′0(0)) +
1
2 α

1∫
0

(
[w′(xi)]

2 − [w′0(xi)]
2
)

dx

)
w′′ (xi)

+kLw(xi) + kNL[w(xi)]
3 − wiv

0 (xi) =

{ q0
Sp

i f i = p
0 i f i 6= p

(45)

Discretizing Equation (45) by DIQM, the results in the matrix form are as follows:(
C(4) −

[
ks − γ

(
C(1)N1 [w− w0]

)
+

1
2

αS
[(
C(1)w

)◦2
−
(
C(1)w0

)◦2]]
C(2) + kL IN

)
w + kNLw◦3 − C(4)w0 = Fq (46)

where

Fq =

{ q0
Sp

i f i = p
0 i f i 6= p

(47)
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Using the uniform load rather than the point load in Equation (40), the function Fq can
be computed as follows:

Fq =


q0
q0
...

q0


N×1

(48)

4. Numerical Results

In this section, the numerical results for buckling and nonlinear bending behaviors
of perfect and imperfect helicoidal composite beams embedded on elastic foundations are
investigated. First, a comparison is carried out to show the validity of the present model.
Second, parametric studies are presented to illustrate the significance of helicoidal rotation
angle, imperfection amplitude, and elastic foundation constants on buckling, postbuckling,
and bending behaviors of helicoidal composite beams.

4.1. Validation

To verify the accuracy of the present method, the numerical results for nonlinear buck-
ling and postbuckling configurations of composite beams obtained by the present model are
compared with those in the literature. Herein, the critical buckling load and postbuckling
configuration of perfect and imperfect composite beams are compared with the analytical
solutions presented by Emam and Nayfeh [18] and Emam [17]. For comparison purposes,
the beam with six layers has the following bulk and material properties:

E1 = 155 Gpa, E2 = 12.1 Gpa, G12 = 4.4 Gpa, ν = 0.248, ρ = 1560 kg/m3

h = 1 mm, b = 10 mm, L = 250 h

The following layups have been considered [18]: Unidirectional laminate ([0/0/0]s),
[0/90/90]s laminate, [90/90/0]s laminate, and cross-ply laminate ([90/90/90]s).

In Table 1, the first three buckling loads of S-S and C-C perfect composite beams with
different layups are tabulated and compared with those reported [18]. Moreover, Table 2
presents a comparison of the first buckling load of C-C imperfect composite beams for
different laminates. The load–deflection response associated with postbuckling behaviors
of C-C perfect and imperfect composite beams for different layups are compared with those
obtained by [17], as shown in Figure 1. The excellent agreement with Refs. [17,18] can be
observed, which confirm the validity of the present beam model and solution methodology.

Table 1. Validation of the first three buckling loads for different laminates of S-S and C-C perfect
composite beams.

B. Cs Laminate Pcr1 Pcr2 Pcr3

S-S

Unidirectional Present 20.49561 81.98239 184.46030
Ref. [18] 20.49559 81.98235 184.46029

[0/90/90]s
Present 14.89690 59.58758 134.07201
Ref. [18] 14.89689 59.58755 134.07200

[90/90/0]s
Present 2.29982 9.19927 20.69834
Ref. [18] 2.29982 9.19926 20.69834

[90/90/90]s
Present 1.59998 6.39992 14.39980
Ref. [18] 1.59998 6.39991 14.39980

C-C

Unidirectional Present 81.98239 167.71528 327.92943
Ref. [18] 81.98235 167.71539 327.92940

[0/90/90]s
Present 59.58758 121.90116 238.35024
Ref. [18] 59.58755 121.90124 238.35021

[90/90/0]s
Present 9.19927 18.81938 36.79705
Ref. [18] 9.19926 18.81939 36.79705

[90/90/90]s
Present 6.39992 13.09261 25.59965
Ref. [18] 6.39991 13.09262 25.59965
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Table 2. Validation of the first buckling load for different laminates of C-C imperfect composite beams.

Laminate A0 = 0.5 A0 = 1 A0 = 2 A0 = 4

Unidirectional
Present 119.43563 138.34523 159.09092 154.93696
Ref. [17] 119.43561 138.34522 159.09091 154.93693

[0/90/90]s
Present 81.88054 93.78445 109.10775 119.14004
Ref. [17] 81.88053 93.78445 109.10775 119.14002

[90/90/0]s
Present 15.26321 17.63418 17.82487 3.83562
Ref. [17] 15.26321 17.63418 17.82487 3.83561

[90/90/90]s
Present 9.32368 10.79985 12.41936 12.09508
Ref. [17] 9.32368 10.79985 12.41936 12.09508
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4.2. Parametric Studies

In this study, the material properties of Jiang et al. [4] are used, as presented in Table 3.
Here, it is assumed that L = 100h. Table 4 presents the specifications of the selected layup
configurations. Unidirectional and quasi-isotropic laminates are used as references.

Table 3. Material and bulk properties.

Material Properties Bulk Properties

E1(Gpa) E2(Gpa) G12(Gpa) ν12 h (mm) b (mm)

110 7.8 40 0.32 4 4

Table 4. Specifications of the selected layup configurations.

Designation NL Stacking Sequence Description

UD 20 [0/0 . . . / 0] Unidirectional
QI 20 [45/− 45/0/90 ]4s Quasi isotropic-symmetric

Helicoidal recursive rotation angle [θ0/θ1 · · · /θi ]s = [θi−1 + (i− 1)δθ ]s, θ0 = 0, 2 ≤ i ≤ NL
2

HR1 20 [0/1/3/6/10/15/21/28/36/45 ]s Helicoidal recursive δθ = 1
HR2 20 [0/2/6/12/20/30/42/56/72/90 ]s Helicoidal recursive δθ = 2
HR3 20 [0/3/9/18/30/45/63/84/108/135 ]s Helicoidal recursive δθ = 3

Helicoidal exponential rotation angle [θ0/θ1 . . . /θi]2s =
[
δi

θ

]
2s

, 1 ≤ i ≤ NL
4

HE1 20 [2/4/8/16/32 ]2s Helicoidal exponential δθ = 2
HE2 20 [2.5/6.3/15.6/39/97.7 ]2s Helicoidal exponential δθ = 2.5
HE3 20 [3/9/27/81/243 ]2s Helicoidal exponential δθ = 3

4.2.1. Buckling Analysis

Table 5 tabulates the critical buckling load of S-S and C-C perfect and imperfect
composite beams with different layup specifications and various values of imperfection
amplitude. As concluded in the case of imperfection amplitude A0 ≤ 3, the smallest
buckling load is observed in the case of HE3 configuration, and the highest buckling load
is observed in the case of UD configuration, which has the largest buckling stiffness due
to the ability of UD to resist an axial load that is aligned with its orientation (i.e., A and D
stiffness have the largest values in the case of UD and smallest values in the case of HE3).
The lamination schemes can be arranged in descending order, according to the buckling
stiffness, as follows: UD, HR1, HE1, HR2, HR3, HE2, QI, and HE3, respectively. In the case
of A0 = 4, the optimum configuration that can sustain the largest buckling load is HR3.
However, the UD has a null load solution and QI has a negative buckling load.

Table 5. Critical buckling load (N ) of perfect and imperfect composite beams for different layups
(ks = kL = kNL = 0, L = 100h).

UD QI HR1 HR2 HR3 HE1 HE2 HE3

(a) S-S
A0 = 0 145.81310 120.72637 144.09638 138.83241 132.22192 142.24365 127.06791 115.41052
A0 = 1 282.95747 234.85871 277.94718 263.02879 250.01282 275.55741 243.78870 220.66353
A0 = 2 275.56948 226.61496 276.10620 273.03692 260.52639 269.97792 245.86962 224.49128
A0 = 4 0 −12.32620 31.78741 100.08881 101.18586 9.45740 49.73027 56.57246

(b) C-C
A0 = 0 583.25210 482.90523 576.38524 555.32939 528.88744 568.97431 508.27138 461.64186
A0 = 1 984.23755 817.92713 964.35848 907.93767 862.66569 957.75002 844.26936 763.39956
A0 = 2 1131.8299 939.4344 1111.7890 1052.1152 1000.0508 1102.2291 975.1543 882.6541
A0 = 4 1102.2771 906.4596 1104.4242 1092.1477 1042.1058 1079.9117 983.4782 897.9644
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Variations of the critical buckling load with the dimensionless imperfection amplitude
at different layup specifications are presented in Figure 2. As compared with the UD layup,
the HR and HE layups with small rotation angles can improve the critical buckling load.
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Figure 3 displays the influence of elastic foundation constants on the critical buckling
load of S-S and C-C perfect and imperfect helicoidal composite beams with layup sequences
HR1 and HE1. It can be observed that an increase in both shear and linear foundation
constants leads to an increase in the buckling load of perfect and imperfect helicoidal
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composite beams. On the other hand, an increase in the nonlinear foundation constants
leads to an increase in the buckling load of imperfect beams and has no effect on the
buckling load of perfect beams. Furthermore, it can be interpreted that the effect of shear
parameter on the buckling load is more prominent than the effect of linear and nonlinear
foundation constants.
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Mathematics 2022, 10, 1084 13 of 20

Figure 4 demonstrates the nonlinear response in prebuckling and postbuckling states
of helicoidal composite beams with layup sequence HR1 for various values of imperfection
amplitude. The solid lines indicate stable paths, while the dotted lines indicate unstable
ones. As opposed to the perfect beams, which show a pitchfork bifurcation, the buckling of
imperfect beams exhibits a snap-through behavior. For the perfect beam, a zero equilibrium
path is observed in the prebuckling region (P < Pcr). Herein, Pcr is the bifurcation point.
At critical buckling load Pcr, the beam loses its stability, and two symmetrical nonzero
stable paths emerge. In snap-through buckling, at each value of the applied axial load
P, the composite beam has a nonzero solution. In addition to the primary solution, two
secondary solutions appear at P = Pcr. Herein, Pcr represents the turning point connecting
the secondary solutions.
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In Figure 5, the load–deflection curves associated with the postbuckling response of
S-S and C-C perfect helicoidal composite beams are displayed. It can be observed that the
rotation angle of helicoidal composite beams has a great influence on the postbuckling
response. For smaller values of axial load, the maximum deflection of HE1 and HE2 is
smaller than the maximum deflection of HR1 and HR3, respectively. However, as the axial
load increases, this trend is reversed.

Figures 6 and 7 present the load–deflection curves of imperfect helicoidal composite
beams in the prebuckling and postbuckling domains of S-S and C-C boundary conditions,
respectively. It can be observed that the rotation angle of helicoidal composite beams has a
great influence on the buckling response.
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4.2.2. Bending Analysis

Herein, the dimensionless load parameter q0 is defined as follows:

q0 =
q̂0L4

rb
(

D11 −
B2

11
A11

) for uniform load and (49)

q0 =
q̂0L3

rb
(

D11 −
B2

11
A11

) for point load

Tables 6 and 7 present the value of imposed force amplitude in the case of uniform and
point loads that provide the maximum definite deflection at different layup configurations
without elastic foundation effects. It can be observed that to impose the definite deflection
(wmax = 0.1 mm) for all of the configurations, the UD and HR1 need higher loads than the
other configurations. This indicates that the rigidity of UD and HR1 is higher as compared
with the other configurations for both C-C and S-S supports. However, HE3 and HR1 are
more flexible than the other configurations, which indicates that a small load can be applied
to deflect the beam by 0.1 mm. For the same configuration and imposed deflection, the
rigidity of C-C beam is higher than the S-S beam by around five times.

Table 6. Uniform load q̂0(N/m) applied to perfect composite beams for different layups and maxi-
mum deflection value (kL = ks = kNL = 0 ).

UD QI HR1 HR2 HR3 HE1 HE2 HE3

(a) wmax = 0.1 mm
S-S 0.7106 0.5884 0.7023 0.6761 0.6439 0.6932 0.6193 0.5620
C-C 3.5484 2.9379 3.5066 3.3785 3.2176 3.4615 3.0922 2.8085

(b) wmax = 0.3 mm
S-S 2.1639 1.7925 2.1358 2.0517 1.9535 2.1099 1.8815 1.7081
C-C 10.6814 8.8437 10.5524 10.1576 9.6740 10.4188 9.3026 8.4492

Table 7. Point load parameter q̂0(N) applied to perfect composite beams for different layups and
maximum deflection value (kL = ks = kNL = 0 ).

UD QI HR1 HR2 HR3 HE1 HE2 HE3

(a) wmax = 0.1 mm
S-S 0.1776 0.1471 0.1755 0.1690 0.1610 0.1732 0.1547 0.1405
C-C 0.7097 0.5876 0.7013 0.6757 0.6435 0.6923 0.6184 0.5617

(b) wmax = 0.3 mm
S-S 0.5406 0.4477 0.5336 0.5127 0.4881 0.5271 0.4700 0.4267
C-C 2.1367 1.7691 2.1107 2.0324 1.9356 2.0844 1.8613 1.6902

In Figures 8 and 9, the load–deflection curves associated with the nonlinear bending
response of S-S and C-C perfect and imperfect composite beams under the uniform lateral
load with different layups are displayed. It can be observed that the rotation angle of
helicoidal composite beams and the imperfection amplitude lead to a change in the trend
of load–deflection response. In the case of perfect beams, the maximum deflection of HR1
is higher than the maximum deflection of HE1, and the maximum deflection of HR3 is
higher than the maximum deflection of HE3. The reverse occurs for imperfect beams. These
observations are valid for S-S and C-C boundary conditions.



Mathematics 2022, 10, 1084 16 of 20

Mathematics 2022, 10, x FOR PEER REVIEW 16 of 21 
 

 

loads than the other configurations. This indicates that the rigidity of UD and HR1 is 

higher as compared with the other configurations for both C-C and S-S supports. How-

ever, HE3 and HR1 are more flexible than the other configurations, which indicates that a 

small load can be applied to deflect the beam by 0.1 mm. For the same configuration and 

imposed deflection, the rigidity of C-C beam is higher than the S-S beam by around five 

times. 

Table 6. Uniform load 𝑞̂0(N/m) applied to perfect composite beams for different layups and max-

imum deflection value (𝑘𝐿 = 𝑘𝑠 = 𝑘𝑁𝐿 = 0). 

 UD QI HR1 HR2 HR3 HE1 HE2 HE3 

(a) 𝑤𝑚𝑎𝑥 = 0.1 mm 

S-S 0.7106 0.5884 0.7023 0.6761 0.6439 0.6932 0.6193 0.5620 

C-C 3.5484 2.9379 3.5066 3.3785 3.2176 3.4615 3.0922 2.8085 

(b) 𝑤𝑚𝑎𝑥 = 0.3 mm 

S-S 2.1639 1.7925 2.1358 2.0517 1.9535 2.1099 1.8815 1.7081 

C-C 10.6814 8.8437 10.5524 10.1576 9.6740   10.4188 9.3026 8.4492 

Table 7. Point load parameter 𝑞̂0(𝑁) applied to perfect composite beams for different layups and 

maximum deflection value (𝑘𝐿 = 𝑘𝑠 = 𝑘𝑁𝐿 = 0). 

 UD QI HR1 HR2 HR3 HE1 HE2 HE3 

(a) 𝑤𝑚𝑎𝑥 = 0.1 mm 

S-S 0.1776 0.1471 0.1755 0.1690 0.1610 0.1732 0.1547 0.1405 

C-C 0.7097 0.5876 0.7013 0.6757 0.6435 0.6923 0.6184 0.5617 

(b) 𝑤𝑚𝑎𝑥 = 0.3 mm 

S-S 0.5406 0.4477 0.5336 0.5127 0.4881 0.5271 0.4700 0.4267 

C-C 2.1367 1.7691 2.1107 2.0324 1.9356 2.0844 1.8613 1.6902 
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These observations are valid for S-S and C-C boundary conditions. 
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Figure 8. Load–deflection bending response of S-S perfect and imperfect composite beams with
different layups (kL = kNl = ks = 0, L = 100h) for (a) Perfect beam; (b) Imperfect beam.
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Figure 9. Load–deflection nonlinear bending response of C-C perfect and imperfect composite beams
with different layups (kL = kNl = ks = 0, L = 100h) for (a) Perfect beam; (b) Imperfect beam.

The effect of elastic foundations on the nonlinear bending curves of helicoidal compos-
ite beams subjected to the point load with layup specification HR1 are studied in Figure 10.
It can be observed that at a given applied lateral load, the maximum deflection becomes
smaller as the elastic foundation coefficients increase. Comparing the effects of elastic foun-
dations on different boundary conditions shows that the influence of elastic foundation
coefficients is more effective on S-S helicoidal composite beams.
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Figure 10. Effect of elastic foundations on the nonlinear bending response of S-S and C-C per-
fect and imperfect helicoidal composite beams with layup sequence HR1

(
xp = 0.5, L = 100h

)
.

(a) kNl = ks = 0; (b) kL = ks = 0; (c) kL = kNL = 0.



Mathematics 2022, 10, 1084 18 of 20

5. Concluding Remarks

This study presents a numerical analysis for the buckling, postbuckling, and nonlinear
bending response of helicoidal composite perfect and imperfect beams. Herein, S-S and
C-C boundary conditions are considered. Verification studies indicate that the DIQM is
an accurate method for the analysis of buckling and postbuckling behaviors of imperfect
beams. Several numerical results are presented to study the influence of helicoidal rotation
angle, amplitude of initial imperfection, and elastic foundation coefficients on nonlinear
bending, buckling, and postbuckling behaviors of composite beams. From the numerical
results, the main conclusions are summarized as follows:

• For large values of imperfection amplitude, HR and HE layups enhanced the critical
buckling load.

• The perfect beam buckles through a pitchfork bifurcation. However, the imperfect
beam snaps through the buckling type.

• The rotation angle of helicoidal composite beams reversed the trend of postbuckling response.
• In the case of A0 = 4, the optimum configuration that can sustain the largest buck-

ling load is HR3. However, the UD has a null load solution and QI has a negative
buckling load.

• An increase in the nonlinear foundation constant leads to an increase in the buckling
load of imperfect beams and has no effect on the buckling load of perfect beams.

• The rigidity of UD and HR1 is higher than the other configurations for both C-C and
S-S supports. However, HE3 and HR1 are more flexible than the other configurations.

• For the same configuration and imposed deflection, the rigidity of C-C beam is higher
than the S-S beam by around five times.

• The proposed model can be used in the design and analysis of aerospace, naval,
vehicles, and biomedical structures, which are manufactured from specific, high-
strength, composite laminated perfect and curved beams.
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