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Abstract: The analysis of time series in 4D commutative hypercomplex algebras is introduced. Firstly,
generalized Segre’s quaternion (GSQ) random variables and signals are studied. Then, two concepts
of properness are suggested and statistical tests to check if a GSQ random vector is proper or not are
proposed. Further, a method to determine in which specific hypercomplex algebra is most likely to
achieve, if possible, the properness properties is given. Next, both the linear estimation and prediction
problems are studied in the GSQ domain. Finally, ARMA modeling and forecasting for proper GSQ
time series are tackled. Experimental results show the superiority of the proposed approach over its
counterpart in the Hamilton quaternion domain.
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1. Introduction

Time series theory is a very well-known statistical methodology for the analysis of
stochastic processes that has found widespread applications in signal processing, com-
munications engineering, economics, astronomy, meteorology, seismology, oceanography,
among other fields [1]. The most extensively used class of stationary process models are
the so-called autoregressive moving average (ARMA) processes. The relevance of ARMA
models stems from their power to approximate any stationary process arbitrarily well [2,3].
In addition, ARMA models can be cast in a state-space framework and also have enormous
significance in prediction problems, since they facilitate the derivation of several efficient
prediction algorithms [3].

The traditional settings for developing time series analysis have been the real and
complex numbers, while other number systems have demonstrated a high potential to
outperform them in some applications. The most paradigmatic example is the system of
Hamilton quaternions (HQs), which has proven to be of great value for the description of
3-dimensional (3D) movements, in fields such as graphic design or automated control [4,5].
Actually, HQs have become the most popular and researched system of hypercomplex
numbers [6]. In spite of its relevance, the use of this system in time series analysis is
scarce [7].

HQs belong to a more general family of algebras, named hypercomplex systems,
which extends the real and complex numbers to higher dimensions. Among them, 4D hy-
percomplex systems are of special relevance since four coordinates are usually considered
for describing the physical world [6]. Further, depending on how the product is defined,
they can be classified into two types: noncommutative and commutative systems. HQs
are of the first type, i.e., they form a normed division algebra, and this property makes
them well suited to deal with signal processing benchmark problems, such as the signal
estimation problem [8]. Though commutative hypercomplex numbers, which includes the
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generalized Segre’s quaternions (GSQs), are less well known, their interest is increasing
within the signal processing community due to their availability to extend the methodolo-
gies developed in the complex and real field to the 4D case [9–21]. These commutative
hypercomplex algebras possess zero divisors, which implies that the Euclidean norm is not
multiplicative [13]. This drawback, however, has essentially no impact on signal and image
processing applications [10].

Interestingly, a recent line of research has discovered that the HQs algebra is not
always the best option for processing 4D hypercomplex signals [22–25]. Specifically, some
investigations have revealed that properness, a structural property of the hypercomplex
signals, determines the performance of the used processing [24,25]. In all of these papers,
the analyses have been performed by comparing HQs with tessarines, and several scenarios
where the latter outperforms the former have been shown. It should be noted that tessarines
are a subset of GSQs obtained by defining a particular product. In general, hypercomplex
algebras are characterized by its product, which is usually provided by a multiplication
table (Appendix A in [6]). From an intuitive point of view, it is to be expected that more
general commutative hypercomplex algebras than tessarines can attain better performance
results. On that basis, special attention is paid to such systems in this paper.

As indicated above, properness is a crucial property of hypercomplex signals. This
property has two important effects: it determines which type of processing should be used,
and also it achieves a significant decrease in the computational complexity involved in
comparison to the real processing. Properness has been investigated in detail in the HQ
domain [26–30], and for tessarines [24,25]. To our knowledge, however, properness has not
been studied for GSQs yet.

Inspired by all the above discussed, the main objective of this paper is to present the
time series analysis in the GSQs domain while analyzing the properness properties in this
setting. Specifically, the concept of properness is introduced for GSQ signals and their
properties studied. Remarkably, two tests to experimentally check whether real data are
proper in the GSQs field are proposed and an estimate of the parameter characterizing
the product in the hypercomplex algebra is provided. Such an estimate gives the best
value of the parameter under which the properness properties could be fulfilled by the
signal of interest. It should be highlighted that, unlike the existing approaches, a specific
hypercomplex algebra is not fixed in advance in the proposed strategy, but a broad family
of commutative hypercomplex algebras is considered. So, the suggested estimate allows
us to select the particular algebra in which it is most likely to achieve, if possible, the
properness properties. A simulation example illustrates how this approach is effective.

The linear estimation problem is also tackled. Although GSQ numbers are not a
normed algebra and thus, the classical projection theorem cannot be applied to obtain the
optimum linear estimate, we exploit its metric space feature to prove the existence and
uniqueness of the projection and an extension of the innovations algorithm for proper
GSQ signals is devised. As could be expected, the proposed algorithms attain a notable
reduction in the computational burden. Finally, ARMA modeling for proper GSQ time
series is introduced. For that, we first investigate an extension of the Yule–Walker equations
and then, the prediction problem is addressed. The particular structure of the ARMA
models allows us to improve the innovations algorithm giving rise to a more efficient
prediction method. The steady-state properties of the suggested predictor are also studied.
To conclude, the superiority in terms of performance of our proposal in comparison with
its counterpart in the HQ domain is numerically analyzed.

The rest of this paper is organized as follows. Section 2 presents both the GSQ random
variables and signals. Then, Section 3 introduces the concepts of properness in the GSQs
domain and provides the statistical inference methods for testing the properness as well as
estimating the associated parameter that characterizes the product in the hypercomplex
algebra. This section ends with a simulation example. The linear estimation problem for
GSQ random variables and the prediction problem for GSQ random signals are analyzed in
Section 4. Section 5 focuses on the analysis of time series in the GSQs setting. It deals with
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the problems of modeling and forecasting time series data. A final example is included to
show the efficiency of the proposed strategy. To improve the readability of the manuscript,
all proofs have been deferred to Appendices B–F.

Notation

We designate matrices with boldface uppercase letters, column vectors with lowercase
letters, and scalar quantities with lightface lowercase letters. Moreover, the symbols Z, R,
C, and S represent the set of integer, real, complex, and GSQ numbers, respectively. In
this regard, A ∈ Rp×q (respectively, A ∈ Sp×q) indicates that A is a real (respectively, a
GSQ) matrix of dimension p× q. Similarly r ∈ Rp (respectively, r ∈ Sp) means that r is
a p-dimensional real (respectively, a GSQ) vector. In particular, 0p×q represents the zero
matrix of dimension p× q , and Ip is the identity matrix of dimension p. In addition, Aij
denotes the ij element of the matrix A and diag(·) stands for a diagonal (or block diagonal)
matrix with entries (or block entries) specified in the operator argument.

Furthermore, superscript “T” represents the transpose. “⊗”stands for the Kronecker
product. E[·] represents the expectation operator. R{·} denotes the real part of a GSQ, and
|z| is either the complex modulus if z ∈ C or the absolute value if z ∈ R. Finally, δnl denotes
the Kronecker delta function.

Unless otherwise stated, all random variables are assumed to have a zero-mean
throughout this paper.

A list of symbols that are used in the paper is given in Table 1.

Table 1. List of symbols.

Symbol Meaning

xr(t) Real vector formed with the components of x ∈ Sp

x̄(t) Augmented GSQ signal vector formed by x ∈ Sp and its conjugations
Γa(t, s) Correlation function of a real random signal vector a(t) ∈ Rp

Γab(t, s) Correlation function of the real random signal vectors a(t) ∈ Rp and b(t) ∈ Rq

Γν
x(α, t, s) E[x(t)xH3−2ν(s)], for x ∈ Sp, ν = 1, 2

Γν
xy(α, t, s) E[x(t)yH3−2ν(s)], for x ∈ Sp, y ∈ Sq, and ν = 1, 2

Γ3
x(α, t, s) E[x(t)xHα(s)], for x ∈ Sp

Γ3
xy(α, t, s) E[x(t)yHα(s)], for x ∈ Sp and y ∈ Sq

Γ̂x Sample autocorrelation matrix of a random vector x
Cα Set of the random vectors {x1, . . . , xm}, with xi ∈ Sp, i = 1, . . . , m
C̄α Set of the augmented random vectors {x̄1, . . . , x̄m}, with x̄i ∈ S4p, i = 1, . . . , m
GCα

Set of all finite linear combinations of elements of Cα

GC̄α
Set of all finite linear combinations of elements of C̄α

ŷSWL SWL estimator of y respect to Cα

ŷSα Sα estimator of y respect to Cα

ŷQSL QSL estimator of y respect to Cα

εSWL SWL estimation error associated to ŷSWL

εSα Sα estimation error associated to ŷSα
εQSL QSL estimation error associated to ŷQSL

2. Generalized Segre’s Quaternion Random Variables

This section establishes the basic concepts and properties of interest in the GSQ domain.
For that, we first introduce the GSQ random variables and then the GSQ random signals
are considered.

A random variable x ∈ S can be defined as x = a + ib + jc + kd where a, b, c, d ∈ R are
random variables and the imaginary units (i, j, k) satisfy the following multiplication rules:

ij = k, jk = i, ki = αj, i2 = k2 = α, j2 = 1 (1)
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where α is a nonzero real number.
As is well-known, the form in which the product is defined is an essential feature

of hypercomplex numbers. The product defined in (1) is commutative, associative, and
distributive over addition; however, these algebras have divisors of zero. In contrast
to GSQs, the product in the HQs is defined in such a way that the algebra becomes
noncommutative and does not have divisors of zero [6]. Further, two special algebras
in GSQs are of interest: for α > 0, S is called the hyperbolic quaternions system and for
α < 0, S is the elliptic quaternions system [6]. In particular, if α = −1 then, S is named the
tessarine numbers.

The real vector of x ∈ S is defined by xr = [a, b, c, d]T. Moreover, we define the
following auxiliary GSQ random variables:

xα = a + i
b
α
+ jc + k

d
α

xi = a + ib− jc− kd

xj = a− ib + jc− kd xk = a− ib− jc + kd

The triplet (xi, xj, xk) are the so-called principal conjugations and obey the follow-
ing properties.

Property 1. Let x, y ∈ S be random variables, then

1. (xη)η = x, η = i, j, k
2. (xη1)η2 = xη3 , η1, η2, η3 = i, j, k, η1 6= η2 6= η3
3. xηyη = (xy)η , η = i, j, k

Consider the vector random variables x ∈ Sp and y ∈ Sq. We define the following functions:

Γ1
xy(α) = E[xyT]

Γ2
xy(α) = E[xyjT]

Γ3
xy(α) = E[xyTα]

(2)

where y = [y1, . . . , yq]T, yj = [yj
1, . . . , yj

q]
T, and yα = [y1α, . . . , yqα]T; however, for reasons

that will become clear, they are denoted by Γ1
xy(α) , E[xyH1 ], Γ2

xy(α) , E[xyH−1 ], and
Γ3

xy(α) , E[xyHα ]. Likewise, we denote Γν
xx(α) , Γν

x(α), ν = 1, 2, 3.
Now, we extend some of the above concepts to the case of random signals. Consider a

random signal vector x(t) = [x1(t), . . . , xp(t)]T ∈ Sp, t ∈ Z, where xi(t) = ai(t) + ibi(t) +
jci(t) + kdi(t), i = 1, . . . , p, with ai(t), bi(t), ci(t), and di(t) real random signals. The real
vectors associated to x(t) is denoted by

xr(t) = [aT(t), bT(t), cT(t), dT(t)]T, t ∈ Z (3)

where a(t) = [a1(t), . . . , ap(t)]T, b(t) = [b1(t), . . . , bp(t)]T, c(t) = [c1(t), . . . , cp(t)]T, and
d(t) = [d1(t), . . . , dp(t)]T.

In a similar way to (2), we define the following functions for the random signal vectors
x(t) ∈ Sp and y(t) ∈ Sq:

Γν
x(α, t, s) = E[x(t)xH3−2ν(s)], Γν

xy(α, t, s) = E[x(t)yH3−2ν(s)], ν = 1, 2

Γ3
x(α, t, s) = E[x(t)xHα(s)], Γ3

xy(α, t, s) = E[x(t)yHα(s)]

It is easy to check, for α 6= 0, that

Γν
xy(α, t, s) = Γ

νH3−2ν
yx (α, s, t), ∀t, s ∈ Z, ν = 1, 2 (4)
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We define the augmented vector of x(t) as

x̄(t) = [xT(t), xiT(t), xjT(t), xkT(t)]T, t ∈ Z (5)

with xη(t) = [xη
1 (t), . . . , xη

p(t)]T, for η = i, j, k. The following relationship between the
augmented vector and the real vector xr(t) given in (3) can be established

x̄(t) = Tpxr(t) (6)

where Tp = B ⊗ Ip with

B =


1 i j k
1 i −j −k
1 −i j −k
1 −i −j k


Moreover, from Property 1, the next result can be stated.

Property 2.

Γν
x̄(α, t, s) =


Γν

x(α, t, s) Γν
xxi(α, t, s) Γν

xxj(α, t, s) Γν
xxk(α, t, s)

Γνi
xxi(α, t, s) Γνi

x (α, t, s) Γνi
xxk(α, t, s) Γνi

xxj(α, t, s)
Γ

νj
xxj(α, t, s) Γ

νj
xxk(α, t, s) Γ

νj
x (α, t, s) Γ

νj
xxi(α, t, s)

Γνk
xxk(α, t, s) Γνk

xxj(α, t, s) Γνk
xxi(α, t, s) Γνk

x (α, t, s)

 (7)

for α 6= 0, t, s ∈ Z and ν = 1, 2, 3. The functions Γν
x(α, t, s), Γν

xxi(α, t, s), Γν
xxj(α, t, s) and

Γν
xxk(α, t, s), ν = 1, 2, 3, are obtained in Table A1 (see Appendix A) in function of the correlation

functions (denoted by Γ) of the components of the real vector (3).

3. Properness Conditions

This section is devoted to analyze the concepts of properness for GSQ random signals.
After introducing the notion of properness, a characterization of this property based on the
correlations of the real vectors is presented.

Definition 1. A random signal vector x(t) ∈ Sp is said to be Hα0-proper if, and only if, there
exists a value α0 > 0 such that the functions Γ1

xxη (α0, t, s), η = i, j, k, vanish ∀t, s ∈ Z.
In a similar manner, two random signal vectors x(t) ∈ Sp and y(t) ∈ Sq are cross Hα0 -proper

if, and only if, there exists a value α0 > 0 such that the functions Γ1
xyη (α0, t, s), η = i, j, k, vanish

∀t, s ∈ Z. Finally, x(t) and y(t) are jointly Hα0-proper if, and only if, are Hα0-proper and cross
Hα0 -proper.

A similar definition about Eα0 -properness can be given by relplacing α0 > 0 by α0 < 0,
Γ1

xxη (α0, t, s) by Γ2
xxη (α0, t, s), and Γ1

xyη (α0, t, s) by Γ2
xyη (α0, t, s).

Remark 1. The T1-properness condition introduced in [24] is a particular case of Eα0-properness
for α0 = −1.

From Table A1, we have the following characterization result.

Proposition 1. Let x(t) ∈ Sp be a random signal vector. Then

1. x(t) is Hα0 -proper if, and only if, the correlation of their real vectors verifies

Γa(t, s) = Γc(t, s) = α0Γd(t, s), Γb(t, s) = Γd(t, s)

Γab(t, s) = Γba(t, s) = Γcd(t, s) = Γdc(t, s)

Γac(t, s) = Γca(t, s) = α0Γdb(t, s), Γbd(t, s) = Γdb(t, s)
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Γad(t, s) = Γbc(t, s) = Γcb(t, s) = Γda(t, s)

with α0 > 0.
2. x(t) is Eα0 -proper if, and only if, the correlation of their real vectors verifies

Γa(t, s) = Γc(t, s) = −α0Γd(t, s), Γb(t, s) = Γd(t, s)

−Γab(t, s) = Γba(t, s) = −Γcd(t, s) = Γdc(t, s)

Γac(t, s) = Γca(t, s) = −α0Γdb(t, s), Γbd(t, s) = Γdb(t, s)

−Γad(t, s) = Γbc(t, s) = −Γcb(t, s) = Γda(t, s)

with α0 < 0.

From an experimental standpoint, it becomes necessary to develop a method for
checking whether a random vector x ∈ Sp is proper and devise an estimate of the associated
α0. Specifically, based on the information supplied by a random sample, we aim to test if x
is Hα0 -proper (or Eα0 -proper) and we wish to estimate the suitable value of α0 under which
such properness properties could be satisfied by x, if possible. To this end, we consider the
following statistical hypotheses test:

H0 : ∃ α0 such that x is Hα0 -proper (respectively, x is Eα0 -proper)

H1 : @ α0 such that x is Hα0 -proper (respectively, x is Eα0 -proper)
(8)

The following result derives two generalized likelihood ratio tests (GLRT), Wilks’
statistics, for the problem (8). These statistics are denoted by φν(x1, . . . , xn). The value
assigned to the letter “ν” as subscript, superscript or in any other role will indicate when
Hα0-properness (ν = 1) or Eα0-properness (ν = 2) should be assumed. This convention is
applied henceforth. Notice that, these tests generalize the one given in ([24], Theorem 1) to
the GSQs domain. The main difference between them lies in the choice of the appropriate
α0 to achieve properness conditions.

Theorem 1. Given n independent and identically distributed random samples x1, . . . , xn of a
random vector x ∈ Sp such that xr follows a Gaussian distribution then, the GLRT statistics for (8)
are given by

φν(x1, . . . , xn) = −n
[

ln
(

det
(
Γ̂ν

x̄(α0)
)

α0

)
− ln

(
det

(
Γν
S(α0)

)
α0

)]
, ν = 1, 2

where det(·)α0 denotes the determinant under the product associated to α0,

Γ̂ν
x̄(α0) = TpΓ̂xrT

H3−2ν
p , ν = 1, 2

Γ̂xr is the sample autocorrelation matrix and

Γν
S(α0) = diag

(
Γ̂ν

x(α0), Γ̂νi
x (α0), Γ̂

νj
x (α0), Γ̂νk

x (α0)
)

, ν = 1, 2

The parameter α0 can be estimated as

α0 = max
α,α>0

[
c1 −

n
2
[ln(det(Γ1

S(α))α) + 4p]
]
, ν = 1

α0 = max
α,α<0

[
c1 −

n
2
[ln(det(Γ2

S(α))α) + 4p]
]
, ν = 2

(9)

with c1 = −2np ln(2π) + np ln(16|α|).
Further, assuming that H0 is true, the distributions of the statistics φ1(x1, . . . , xn) and

φ2(x1, . . . , xn) tend to a chi-squared distribution with degrees of freedom equal to 6p2 − 1 and
2p(3p + 1)− 1, respectively, as the sample size tends to infinity.
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Example

Consider a random vector x = [x1, x2]
T ∈ S2 such that the real vectors of x1 and x2

given by (3) verify

Γxir =


|α0|6 λ −|α0|0.4 ν

λ 6 µ −0.4
−|α0|0.4 µ |α0|6 λ

µ −0.4 λ 6

, i = 1, 2 (10)

and

Γx1rx2r =


2 (−1)ν+10.5 1.2 −(−1)ν+10.4

0.5 1 −0.4 0.6
1.2 −(−1)ν+10.4 2 (−1)ν+10.5
−0.4 0.6 0.5 1


The following two cases are studied:

1. Case 1: λ = −0.7 and µ = 0.8 in an hyperbolic quaternions algebra with α0 = 2.
From Proposition 1, we have that the vector x is H2-proper under these conditions.
Moreover, from Theorem 1, the GLRT statistic φ1(x1, . . . , xn) converges to a χ2(23).

2. Case 2: λ = µ = 0 in an elliptic quaternions algebra with α0 = −2. It follows that x is
E−2-proper. Further, φ2(x1, . . . , xn) converges to a χ2(27).

On the one hand, the behavior of the cumulative distribution functions (CDFs) of
φν(x1, . . . , xn), ν = 1, 2, is analyzed in both cases in terms of the sample size. For that, and
through Montecarlo simulations, 2000 values of the statistics φν(x1, . . . , xn), ν = 1, 2, have
been generated for n = 50, 100, 300, 500. The corresponding empirical CDFs are displayed
in Figure 1. At a glance, this figure shows the rapid convergence of the empirical CDFs to
the target chi-squared distributions.

On the other hand, we assess the accuracy of the estimations of α0 depending on the
sample size n. The maximization process in (9) can be achieved using the optimization
toolbox in Matlab (The Nelder–Mead search algorithm is used). Tables 2 and 3 depict the
95% confidence intervals for α0 obtained from 2000 simulated runs. As can be expected,
the amplitudes of the confidence intervals become narrower as the sample size grows.

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Wilks’ Statistic

F
(
x
)

H
α

0

−proper Case  

 

 

χ
2
(23)

n=50

n=100

n=300

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Wilks’ Statistic

F
(
x
)

E
α

0

−proper Case

 

 

χ
2
(27)

n=50

n=100

n=300

Figure 1. Wilks’ statistic for case 1 (left) and case 2 (right).

Table 2. The 95% confidence intervals for α0 in case 1.

n 50 100 300 500

C.I. [1.506, 2.615] [1.642, 2.433] [1.788, 2.236] [1.835, 2.190]
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Table 3. The 95% confidence intervals for α0 in case 2.

n 50 100 300 500

C.I. [−2.650, −1.512] [−2.443, −1.633] [−2.233, −1.777] [−2.181, −1.846]

4. Linear Estimation and Prediction

The objective of this section is to solve the linear estimation problem for proper GSQ
random variables. Since it is not possible to define a norm in the set of GSQs then, we
cannot apply the projection theorem to obtain the optimum linear estimator. So, we first
need to define a suitable metric and thus, we prove the existence and the uniqueness of
the projection.

Given the random variables x, y ∈ S, we define the product

〈x, y〉α = E[xyα] = Γ3
xy(α)

where Γ3
xy(α) is the scalar version of Γ3

xy(α) given in (2).
For any random variables x, y, u, v ∈ S and deterministic coefficients λ, β ∈ S, γ, δ ∈ R,

it follows that

1. 〈λx + βy, γu + δv〉α = λγ〈x, u〉α + λδ〈x, v〉α + βγ〈y, u〉α + βδ〈y, v〉α.
2. 〈x, x〉α = 0⇔ x = 0.

Thus, we can define a distance as

dα(x, y) = ‖x− y‖α (11)

where ‖x‖2
α = R{Γ3

x(α)}.
Consider the set of random vectors Cα = {x1, . . . , xm}, with xi ∈ Sp, i = 1, . . . , m, and

denote by GCα
the linear span of Cα, i.e., the set of all finite linear combinations of elements

of Cα. The issue of existence and uniqueness of the projection of a given random variable
y ∈ S onto the set GCα

is now briefly investigated. This projection is denoted by ŷα.
In a metric space, neither the existence nor the uniqueness of ŷα is assured; however,

following a reasoning similar to [24], the existence and uniqueness of ŷα can be proved.
Further, ŷα is the projection of y onto the set GCα

if, and only if, 〈y− ŷα, x〉α = 0, ∀x ∈ GCα
.

As a consequence, if {ϑ1, . . . , ϑr} is a basis of GCα
then,

ŷα =
r

∑
i=1

hiϑi (12)

where the deterministic coefficients hi ∈ S are obtained from the system

〈y, ϑj〉α =
r

∑
i=1

hi〈ϑi, ϑj〉α, j = 1, . . . , r

Now, we are prepared to introduce the notion of linear estimator in the GSQ domain.

Definition 2. The projection of y onto the set GCα
, ŷα, is called the Sα estimator of y respect to Cα

and, from now on, it is denoted by ŷSα. If the information set is formed by augmented vectors defined
in (5), i.e., if we consider C̄α = {x̄1, . . . , x̄m} with x̄i ∈ S4p, i = 1, . . . , m, then, the projection of y
onto the set GC̄α

is called SWL estimator of y respect to Cα and it is denoted by ŷSWLα .

These concepts are easily extended to the vectorial case. For example, the Sα estimator
of the random vector y ∈ Sq respect to Cα is ŷSα = [ŷS1α, . . . , ŷSqα], where ŷSjα is the projection
of the component jth of y onto the set GCα

.
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Theorem 2. Consider a random variable y ∈ S and the set of random vectors Cα = {x1, . . . , xm},
with xi ∈ Sp, i = 1, . . . , m. Then,

1. The SWL estimator of y respect to Cα is obtained as

ŷSWLα =
m

∑
i=1

(
hT

1i(α)xi + hT
2i(α)x

i
i + hT

3i(α)x
j
i + hT

4i(α)x
k
i

)
where the deterministic vectors hji(α) ∈ Sp are computed through the equation[

hT
11(α), . . . , hT

1m(α), hT
21(α), . . . , hT

2m(α),
hT

31(α), . . . , hT
3m(α), hT

41(α), . . . , hT
4m(α)

]
= Γ3

yz̄(α)Γ
3−1
z̄ (α)

(13)

with z̄ = [xT1 , . . . , xTm, xiT
1 , . . . , xiT

m , xjT
1 , . . . , xjT

m, xkT
1 , . . . , xkT

m ]T.
Moreover, this estimator and its associated error are independent of the value of α, i.e.,
ŷSWL = ŷSWLα and εSWL = εSWLα , ∀α 6= 0, where εSWLα = ‖y− ŷSWLα ‖2

α.
2. The Sα estimator of y respect to Cα is calculated as

ŷSα =
m

∑
i=1

gTi (α)xi

where the deterministic vectors gi(α) ∈ Sp are computed through the equation[
gT1(α), . . . , gTm(α)

]
= Γ3

yz(α)Γ
3−1

z (α) (14)

with
z = [xT1 , . . . , xTm]

T (15)

3. εSWL ≤ εSα = ‖y− ŷSα‖2
α, ∀α 6= 0.

4. If x1, . . . , xm are jointly Hα0-proper (respectively, Eα0-proper) and y is cross Hα0-proper
(respectively, Eα0 -proper) with each element of {x1, . . . , xm} then, ŷSWL = ŷSα0

.

Remark 2. Theorem 2 shows that whatever hypercomplex algebra you choose provides the same
SWL estimator. Likewise, the computational burden of the SWL estimator can be notably reduced
whenever hyperbolic or elliptic conditions of properness are fulfilled (compare (13) with (14)).
Effectively, while the computational complexity of SWL estimators is of order O(64p3m3), this
is of order O(p3m3) under hyperbolic or elliptic properness. More importantly, this reduction in
computational complexity cannot be achieved in the real numbers domain.

Now, we are concerned with the prediction problem for random signals. Consider a
random signal vector x(t) ∈ Sp. Our aim is to obtain the Sα one-stage predictor of x(t + 1)
from the information contained in the set C t

α = {x(1), . . . , x(t)}, denoted by x̂Sα(t + 1|t).
Analogously, the SWL one-stage predictor is denoted by x̂SWL(t + 1|t).

Note that a similar result to Theorem 2 can be stated for random signals, but we do not
include it here for the sake of brevity. It should be remarked, however, that a computational
problem remains still unsolved. Although the estimation problem is indeed simplified due
to the reduction in dimension implied by the properness conditions, we have to cope with
the inverse in (14) as the number of observations t grows. The following result overcomes
this problem for proper signals.

Theorem 3 (The innovations algorithm). Consider a Hα0-proper (respectively, Eα0-proper)
random signal vector x(t) ∈ Sp. If Γν

x(α0, t, s) is nonsingular for ν = 1, 2 then, x̂SWL(t + 1|t) =
x̂Sα0

(t + 1|t) and can be recursively obtained in the following way:

x̂Sα0
(t + 1|t) =

t

∑
i=1

Λ(t, i)
(
x(t + 1− i)− x̂Sα0

(t + 1− i|t− i)
)

t ≥ 1 (16)
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with x̂Sα0
(1|0) = 0p×1 and where

Λ(t, t− k) =
(

Γν
x(α0, t + 1, k + 1)−

k−1

∑
i=0

Λ(t, t− i)Π(i)ΛH3−2ν(k, k− i)
)

Π−1(k) (17)

for k = 1, . . . , t− 1, with Λ(t, t) = Γν
x(α0, t + 1, 1)Π−1(0) and

Π(t) = Γν
x(α0, t + 1, t + 1)−

t−1

∑
i=0

Λ(t, t− i)Π(i)ΛH3−2ν(t, t− i) (18)

with the initial condition Π(0) = Γν
x(α0, 1, 1). Moreover, the error associated to the component

xj(t + 1) is given by

εSWLj (t + 1|t) = 2|α0|+ 2
4|α0|

R{Πjj(t)} (19)

5. Proper ARMA Models

This section constitutes the core of the paper. Starting from the definition of proper
ARMA models in the GSQs domain we then solve the one-stage prediction problem.

5.1. ARMA Modeling

Next, we adapt the proper ARMA signal concept to the GSQs domain and extend
the Yule–Walker equations to this kind of signals. To do so, we first extend the concept of
stationarity to the GSQs domain in the proper signal scenario.

Definition 3. A Hα0-proper random signal vector x(t) ∈ Sp is said to be stationary if Γ1
x(α0, t +

h, t) = Γ1
x(α0, s + h, s), ∀t, s, h ∈ Z, i.e., Γ1

x only depends on the lag h for a given α0. In this case,
we denote Γ1

x(α0, h) = Γ1
x(α0, t + h, t). The concept of a Eα0-proper stationary signal is defined

analogously by replacing Γ1
x by Γ2

x.

Definition 4. A random signal vector x(t) ∈ Sp is said to be a Hα0 -proper ARMA signal of orders
p and q (ARMA(p, q)) if it is Hα0 -proper, stationary, and can be modeled by the following system:

x(t) =
p

∑
i=1

F(i)x(t− i) +
q

∑
i=0

G(i)v(t− i) (20)

where G(0) = Ip, F(i), G(i) ∈ Sp×p are deterministic matrices and v(t) is a Hα0-proper white
noise verifying

Γ1
v(α0, t, s) = Ωδts (21)

with Ω ∈ Sp×p a deterministic matrix.
The concept of a Eα0 -proper ARMA(p, q) signal is defined analogously by replacing Hα0 -proper

by Eα0 -proper, and Γ1
v by Γ2

v in (21).

The following result extends the Yule–Walker equations to the case of proper ARMA signals.

Proposition 2. Let x(t) ∈ Sp be a Hα0-proper (or Eα0-proper) ARMA(p, q) signal. Consider the
matrix-valued polynomial F(z) = I4p −∑

p
i=1 F̄(i)zi with F̄(i) = diag

(
F(i), Fi(i), Fj(i), Fk(i)

)
,

i = 1, . . . , p. If det(F(z))α0 6= 0, ∀z ∈ C such that |z| ≤ 1 then, Γν
x(α0, h), ν = 1, 2, obeys

the equation

Γν
x(α0, h)−

p

∑
i=1

F(i)Γν
x(α0, h− i) = ∑

h≤i≤q
G(i)ΩLH3−2ν(i− h), h ≥ 0 (22)
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where the matrices L(t) are determined by

L(0) = Ip, L(t) = 0p×p, t < 0

L(t) =
t

∑
i=1

F(i)L(t− i) + G(t), t ≥ 1

with F(t) = 0p×p, t > p and G(t) = 0p×p, t > q.

5.2. One-Stage Prediction

We aim to improve the recursive algorithm for x̂Sα0
(t + 1|t) given in Theorem 3 by

making use of the particular structure of proper ARMA(p, q) models.

Theorem 4. Let x(t) ∈ Sp be a Hα0 -proper (or Eα0 -proper) ARMA(p, q) signal. If det(F(z))α0 6=
0, ∀z ∈ C such that |z| ≤ 1 then, x̂SWL(t + 1|t) = x̂Sα0

(t + 1|t) and this predictor can be calculated
through the following recursive procedure:

x̂Sα0
(t + 1|t) =


t

∑
i=1

Λ(t, i)
(
x(t + 1− i)− x̂Sα0

(t + 1− i|t− i)
)
, 1 ≤ t < m

p

∑
i=1

F(i)x(t + 1− i) +
q

∑
i=1

Λ(t, i)
(
x(t + 1− i)− x̂Sα0

(t + 1− i|t− i)
)
, t ≥ m

(23)

with x̂Sα0
(1|0) = 0p×1, m = max(p, q) and the matrices Λ(t, i) are calculated by replacing Γν

x
in (17) and (18) by the following function:

Υν(t, s) =



Γν
x(α0, t− s), 1 ≤ t ≤ s ≤ m

Γν
x(α0, t− s)−

p

∑
i=1

Γν
x(α0, t + i− s)FH3−2ν(i), 1 ≤ t ≤ m ≤ s ≤ 2m

0p×p, 1 ≤ t ≤ m, s > 2m
q

∑
i=0

G(i)ΩGH3−2ν(i + s− t), m < t ≤ s ≤ t + q

0p×p, m < t, t + q < s
ΥνH3−2ν(s, t), s < t

(24)

with G(i) = 0p×p for i > q, Ω given in (21), and Γν
x(α0, t− s) obeys (22). Moreover, the error

associated to (23) coincides with (19).

Remark 3. The advantage of working with this algorithm is that Υν(t, s) = 0p×p for |s− t| > q
and thus, unlike the innovations algorithm given in Theorem 3, only Λ(t, i), for i = 1, . . . , q, have
to be computed in each recursion.

Corollary 1. For an ARMA(1, 1) signal it follows that

Υν(t, s) =


Γν

x(α0, 0), t = s = 1
ΩGH3−2ν(1), 1 ≤ t, s = t + 1
Ω + G(1)ΩGH3−2ν(1), 1 < t = s
0p×p, 1 ≤ t, t + 1 < s
ΥνH3−2ν(s, t), s < t

, ν = 1, 2

and the one-stage predictor is computed through

x̂Sα0
(t + 1|t) = F(1)x(t) + Λ(t, 1)

(
x(t)− x̂Sα0

(t|t− 1)
)
, t ≥ 1 (25)
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where

Λ(t, 1) = G(1)ΩΠ−1(t− 1)

Π(t) = Ω + G(1)ΩGH3−2ν(1)−Λ(t, 1)Π(t− 1)ΛH3−2ν(t, 1)
(26)

and Π(0) = Γν
x(α0, 0) is computed solving the following system of matrix equations:

Γν
x(α0, 0)− F(1)ΓνH3−2ν

x (α0,−1) = Ω + G(1)Ω(FH3−2ν(1) + GH3−2ν(1))

Γν
x(α0, 1)− F(1)Γν

x(α0, 0) = G(1)Ω

To conclude, a steady-state performance analysis for the one-stage predictor (23) and
its associated error is fulfilled.

Corollary 2. Under conditions of Theorem 4, if G(z) given in (A4) satisfies det(G(z))α0 6= 0,
∀z ∈ C such that |z| ≤ 1, then,

Λ(t, i)
t↑∞−−→ G(i), εSWLj (t + 1|t) t↑∞−−→ εj (27)

with

εj =
2|α0|+ 2

4|α0|
R{Ωjj} (28)

being Ωjj the jth diagonal entry of Ω given in (21).

5.3. Example

By way of illustration, we consider a proper ARMA(1,1) model. With this model, we
first carry out a performance comparative analysis between the Sα0 one-stage predictor (25),
and its counterpart in the HQ domain, x̂QSLα0 (t + 1|t). Our aim is to show the superiority
in terms of performance of the proposed approach respect to the usual HQ methodology
under different initial conditions. Finally, a steady-state performance analysis is carried out.

Let the ARMA(1,1) system be

x(t) = f x(t− 1) + v(t) + gv(t− 1)

with f = 0.3− 0.05j + 0.1k, g = 0.1 + 0.2j + 0.4k and v(t) a white noise whose real vector
(3) verifies Γvr (t, s) = Ωδts where Ω is the matrix given in (10).

Two scenarios are contemplated: in the first one, we consider that λ = −0.7 and
µ = 0.8 in Ω, and three different hyperbolic quaternion algebras are studied (α0 = 1, 2, 3).
In the second one, we set the value of the parameters λ and µ to be both 0 and three elliptic
quaternion algebras are analyzed (α0 = −1,−2,−3). These scenarios present an interesting
characteristic: from Proposition 1, x(t) is either Hα0-proper (in scenario 1) or Eα0-proper
(in scenario 2); however, the degree of improperness of x(t) in the HQ system increases as
|α0| grows.

Note that the conditions of Proposition 2 and Corollary 2 are fulfilled and hence,
x̂Sα0

(t + 1|t) can be obtained through the recursions (25) and (26) and the steady-state
results in (27) hold.

The errors associated to x̂Sα0
(t + 1|t) and x̂QSLα0 (t + 1|t) depend on the value α0 and thus,

they are denoted by εSWLα0
(t + 1|t) and εQSLα0 (t + 1|t), respectively. To assess the performance

of both approaches, the following measure is computed:

DPα0(t) = εQSLα0
(t + 1|t)− εSWLα0

(t + 1|t) (29)

Figure 2 depicts the measure DPα0(t) in (29), for t = 1, . . . , 100, in the above two sce-
narios. As can be seen, the Sα0 one-stage predictor outperforms the HQ one-stage predictor
in both scenarios. Furthermore, the measure becomes greater as |α0| grows, i.e., as the
degree of HQ improperness grows; being DPα0(t) slightly greater for the Eα0 -proper case.
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Figure 2. DPα0 (t) in scenarios 1 (left) and 2 (right).

Now, we analyze the steady-state performance of both the estimate (25) and its error.
The errors (28) computed for different values of α0 appear in Table 4. Further, Figure 3
shows as εSWLα0

(t + 1|t) converges toward their respective steady-state errors when t grows.
These plots indicate that the convergence is rapid.

Finally, Figure 4 displays the convergence performance of the components of Λ(t, 1) =
Λ1(t, 1) + Λ2(t, 1)i + Λ3(t, 1)j + Λ4(t, 1)k given in (26). As could be expected from (27),
we also obtain here a rapid convergence toward the target values and, in general, this
convergence is slightly slower as |α0| grows as well as in the Hα0 -proper case.

Table 4. Steady-state errors of the one-stage predictor for the different values of α0.
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Figure 3. εSWLα0
(t + 1|t) for α0 = −3,−2,−1, 1, 2, 3.
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Figure 4. Values of the components Λi(t, 1), i = 1, . . . , 4, for α0 = −3,−2,−1, 1, 2, 3.

6. Discussion

Recent investigations have shown that HQs are not always the best choice for pro-
cessing 4D hypercomplex signals. These results suggest distinct strategies depending on
whether properness conditions are complied with. As the main characteristic, they offer a
significant computational saving in relation to the real-valued processing. Unlike earlier
research, the approach described in this paper has the additional advantage of the flexibility
in the choice of the hypercomplex algebra. In our opinion, this research topic opens a
broad range of possibilities for studying new applications in signal processing. This paper
precisely proposes the time series analysis as a possible field of application of the proper
GSQ signal processing. Other potential areas include dynamic linear models, filtering and
smoothing, signal detection, etc.
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Appendix A

Table A1. Expressions for Γν
x(α, t, s) and Γν

xxk (α, t, s), ν = 1, 2, 3, in function of the correlation functions
of the components of xr(t) (3).

Γ3
x(α, t, s) = Γa(t, s) + Γb(t, s) + Γc(t, s) + Γd(t, s)

+i
( 1

α
Γab(t, s) + Γba(t, s) +

1
α

Γcd(t, s) + Γdc(t, s)
)

+j
(
Γac(t, s) + Γbd(t, s) + Γca(t, s) + Γdb(t, s)

)
+k
( 1

α
Γad(t, s) + Γbc(t, s) +

1
α

Γcb(t, s) + Γda(t, s)
)

Γ1
x(α, t, s) = Γ2

xxj (α, t, s) =

Γa(t, s) + αΓb(t, s) + Γc(t, s) + αΓd(t, s)

+i
(
Γab(t, s) + Γba(t, s) + Γcd(t, s) + Γdc(t, s)

)
+j
(
Γac(t, s) + αΓbd(t, s) + Γca(t, s) + αΓdb(t, s)

)
+k
(
Γad(t, s) + Γbc(t, s) + Γcb(t, s) + Γda(t, s)

)
Γ3

xxi (α, t, s) = Γa(t, s) + Γb(t, s)− Γc(t, s)− Γd(t, s)

+i
( 1

α
Γab(t, s) + Γba(t, s)− 1

α
Γcd(t, s)− Γdc(t, s)

)
+j
(
− Γac(t, s)− Γbd(t, s) + Γca(t, s) + Γdb(t, s)

)
+k
(
− 1

α
Γad(t, s)− Γbc(t, s) +

1
α

Γcb(t, s) + Γda(t, s)
)

Γ1
xxi (α, t, s) = Γ2

xxk (α, t, s) =

Γa(t, s) + αΓb(t, s)− Γc(t, s)− αΓd(t, s)

+i
(
Γab(t, s) + Γba(t, s)− Γcd(t, s)− Γdc(t, s)

)
+j
(
− Γac(t, s)− αΓbd(t, s) + Γca(t, s) + αΓdb(t, s)

)
+k
(
− Γad(t, s)− Γbc(t, s) + Γcb(t, s) + Γda(t, s)

)
Γ3

xxj (α, t, s) = Γa(t, s)− Γb(t, s) + Γc(t, s)− Γd(t, s)

+i
(
− 1

α
Γab(t, s) + Γba(t, s)− 1

α
Γcd(t, s) + Γdc(t, s)

)
+j
(
Γac(t, s)− Γbd(t, s) + Γca(t, s)− Γdb(t, s)

)
+k
(
− 1

α
Γad(t, s) + Γbc(t, s)− 1

α
Γcb(t, s) + Γda(t, s)

)

Γ1
xxj (α, t, s) = Γ2

x(α, t, s) =

Γa(t, s)− αΓb(t, s) + Γc(t, s)− αΓd(t, s)

+i
(
− Γab(t, s) + Γba(t, s)− Γcd(t, s) + Γdc(t, s)

)
+j
(
Γac(t, s)− αΓbd(t, s) + Γca(t, s)− αΓdb(t, s)

)
+k
(
− Γad(t, s) + Γbc(t, s)− Γcb(t, s) + Γda(t, s)

)
Γ3

xxk (α, t, s) = Γa(t, s)− Γb(t, s)− Γc(t, s) + Γd(t, s)

+i
(
− 1

α
Γab(t, s) + Γba(t, s) +

1
α

Γcd(t, s)− Γdc(t, s)
)

+j
(
− Γac(t, s) + Γbd(t, s) + Γca(t, s)− Γdb(t, s)

)
+k
( 1

α
Γad(t, s)− Γbc(t, s)− 1

α
Γcb(t, s) + Γda(t, s)

)

Γ1
xxk (α, t, s) = Γ2

xxi (α, t, s) =

Γa(t, s)− αΓb(t, s)− Γc(t, s) + αΓd(t, s)

+i
(
− Γab(t, s) + Γba(t, s) + Γcd(t, s)− Γdc(t, s)

)
+j
(
− Γac(t, s) + αΓbd(t, s) + Γca(t, s)− αΓdb(t, s)

)
+k
(
Γad(t, s)− Γbc(t, s)− Γcb(t, s) + Γda(t, s)

)
Appendix B

Proof of Theorem 1. The proof is similar to that of Theorem 1 in [24].

Appendix C

Proof of Theorem 2. Point 1 is obtained from (12) and the fact that the SWL and the real
processing are isomorphic. Again, point 2 follows from (12). The proof of point 3 is
immediate due to GCα

⊆ GC̄α
, ∀α 6= 0.

Next, point 4 is demonstrated under the Hα0-properness condition. The proof of the
Eα0 -proper case is similar. From (2) and (6) we obtain

Γ3
yz̄(α0) = [1, i, j, k]ΓyrzrT

Hα0
p , Γ3

z̄(α0) = TpΓzrT
Hα0

p

Γ1
yz̄(α0) = [1, i, j, k]ΓyrzrT T

p , Γ1
z̄(α0) = TpΓzrT T

p

(A1)

with z given in (15). Then, since Γ3
yz̄(α0)Γ

3−1
z̄ (α0) = Γ1

yz̄(α0)Γ
1−1
z̄ (α0), the proof follows from

(A1), Definition 1 and (7).

Appendix D

Proof of Theorem 3. We carry out the demonstration for the Hα0-proper case. The Eα0-
proper case is analogous. Firstly, since x(t) is Hα0 -proper and applying Theorem 2 we have
that x̂SWL(t + 1|t) = x̂Sα0

(t + 1|t). Now, consider the next product respect to α0

〈x, y〉1 = E[xy] = Γ1
xy(α0), x, y ∈ S

and define the distance
d1(x, y) = ‖x− y‖1 (A2)
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where ‖x‖2
1 = R{Γ1

x(α0)}. Following a similar procedure to the one used with (11), the
existence and uniqueness of the projection of x(t + 1) onto the set GC t

α0
associated to the

metric (A2) is guaranteed. Further, this projection coincides with x̂Sα0
(t + 1|t), which is

obtained from (11).
Define the innovations as x̃Sα0

(i) = x(i)− x̂Sα0
(i|i− 1). Thus, the set {x̃Sα0

(1), . . . , x̃Sα0
(t)}

spans GC t
α0

and, from (4), it follows that

〈x̃Sα0
(i), x̃Sα0

(j)〉1 = 0, i 6= j

Then, (16) holds. Now, denoting Π(k) = Γ1
x̃Sα0

(α0, k + 1, k + 1), we obtain

Γ1
xx̃Sα0

(α0, t + 1, k + 1) = Γ1
x̂Sα0 x̃Sα0

(α0, t + 1, k + 1) = Λ(t, t− k)Π(k), 0 ≤ k < t (A3)

By using (16), Equation (A3) can be rewritten as

Λ(t, t− k)Π(k) = Γ1
x(α0, t + 1, k + 1)−

k−1

∑
i=0

Γ1
xx̃Sα0

(α0, t + 1, i + 1)ΛT(k, k− i)

Taking into account that Γ1
x(α0, t, s) is nonsingular and hence, Π(k) is also nonsingular,

we obtain (17).
Now, since Π(t) = Γ1

x(α0, t+ 1, t+ 1)− Γ1
x̂Sα0

(α0, t+ 1, t+ 1) and from (16), we obtain (18).

Finally, taking into account that x̃S(t + 1) is Hα0-proper and

‖x̃Sj (t + 1)‖2
α0

=
2α0 + 2

4α0
R{Γ1

x̃Sj
(α0, t + 1, t + 1)}

then (19) follows.

Appendix E

Proof of Proposition 2. From (20), we have

F(B)x̄(t) = G(B)v̄(t) (A4)

where B denotes the backward shift operator, G(z) = I4p + ∑
q
i=1 Ḡ(i)zi and Ḡ(i) =

diag
(
G(i), Gi(i), Gj(i), Gk(i)

)
, i = 1, . . . , q. Thus, post-multiplying (A4) by x̄H3−2ν(t −

h), taking expectations and taking into account the Hα0-properness (respectively, Eα0-
properness), (22) holds. The recursive expression for the matrices L(t) can be derived as
follows. Taking into account that det(F(z))α0 6= 0 ∀z ∈ C such that |z| ≤ 1, we have that
(Theorem 11.3.1 in [3]).

x̄(t) = F−1(B)G(B)v̄(t) =
∞

∑
j=0

L̄(j)v̄(t− j)

By comparing coefficients of zj in the power series ∑∞
j=0 L̄(j)zj after multiplying

through by F(z) and from the block diagonality of F̄(i) and Ḡ(i), the result follows.

Appendix F

Proof of Theorem 4. The proof is given for the Hα0-proper case and the Eα0-proper case
is similarly obtained. Since x(t) is Hα0-proper and from Theorem 2 we have that x̂SWL(t +
1|t) = x̂Sα0

(t + 1|t).
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Now, consider the transformed signal

w(t) = x(t), 1 ≤ t ≤ m

w(t) = x(t)−
p

∑
i=1

F(i)x(t− i), t > m

It is trivial that GC t
α0

= GDt
α0

with C t
α0

= {x(1), . . . , x(t)} and Dt
α0

= {w(1), . . . , w(t)}.
Then, defining ŵα0(1|0) = 0p×1 and denoting by ŵα0(t + 1|t) the Sα0 one-stage predictor
of w(t + 1) respect to Dt

α0
under (A2), we have

x̂Sα0
(t + 1|t) = ŵα0(t + 1|t), 0 ≤ t < m

x̂Sα0
(t + 1|t) =

p

∑
i=1

F(i)x(t− i) + ŵα0(t + 1|t), t ≥ m
(A5)

Thus, the problem of computing x̂Sα0
(t + 1|t) is equivalent to calculating ŵα0(t + 1|t).

It is not difficult to prove that Γ1
w(α0, t, s) = Υ1(t, s) given in (24). Since Υ1(t, s) = 0p×p if

t > m and |t− s| > q, then, from Theorem 3, we obtain Λ(t, i) = 0p×p for t ≥ m and i > q,
and hence,

ŵα0(t + 1|t) =


t

∑
i=1

Λ(t, i)
(
w(t + 1− i)− ŵα0(t + 1− i|t− i)

)
, 1 ≤ t < m

q

∑
i=1

Λ(t, i)
(
w(t + 1− i)− ŵα0(t + 1− i|t− i)

)
, t ≥ m

(A6)

with ŵα0(1|0) = 0p×1 and the matrices Λ(t, i) calculated from (17) and (18) for Υ1(t, s).
Finally, from (A5), (A6) and the following equality

x(t + 1)− x̂Sα0
(t + 1|t) = w(t + 1)− ŵα0(t + 1|t), t ≥ 0

(23) follows.
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