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Abstract: Fuzzy sets and interval-valued fuzzy sets are two kinds of fuzzy information expression
forms in real uncertain and vague environments. Their mixed multivalued information expression
and operational problems are very challenging and indispensable issues in group decision-making
(GDM) problems. To solve single- and interval-valued fuzzy multivalued hybrid information expres-
sion, operations, and GDM issues, this study first presents the notion of a single- and interval-valued
fuzzy multivalued set/element (SIVFMS/SIVFME) with identical and/or different fuzzy values. To
effectively solve operational problems for various SIVFME lengths, SIVFMS/SIVFME is converted
into the interval-valued fuzzy and entropy set/element (IVFES/IVFEE) based on the mean and
information entropy of SIVFME. Then, the operational relationships of IVFEEs and the expected
value function and sorting rules of IVFEEs are defined. Next, the IVFEE weighted averaging and
geometric operators and their mixed-weighted-averaging operation are proposed. In terms of the
mixed-weighted-averaging operation and expected value function of IVFEEs, a GDM method is de-
veloped to solve multicriteria GDM problems in the environment of SIVFMSs. Finally, the proposed
GDM method was utilized for a supplier selection problem in a supply chain as an actual sample
to show the rationality and efficiency of SIVFMSs. Through the comparative analysis of relative
decision-making methods, we found the superiority of this study in that the developed GDM method
not only compensates for the defects of existing GDM methods, but also makes the GDM process
more reasonable and flexible.

Keywords: single- and interval-valued fuzzy multivalued set; interval-valued fuzzy and entropy
set; interval-valued fuzzy and entropy element weighted averaging operator; interval-valued fuzzy
and entropy element weighted geometric operator; mixed-weighted-averaging operation; group
decision making

MSC: 03E72; 91B06

1. Introduction

Fuzzy sets (FS) [1] and interval-valued fuzzy sets (IVFSs) [2] are two important tools
of fuzzy information expressions in real uncertain and vague environments. A bag/fuzzy
multiset [3,4] or an interval-valued fuzzy multiset (IVFM) [5] was proposed as the extension
of FS or IVFS, where each element in a universe set can occur more times with different
and/or identical fuzzy values or interval-valued fuzzy values. Therefore, they have been
used in various areas [6–10]. In a hesitant situation, a hesitant fuzzy set (HFS) [11] can
represent a set of a few of different fuzzy values of each element in the set. To express the
hybrid information of HFS and IVFS, some researchers presented cubic HFSs and applied
them to medical assessments of prostatic patients [12] and multicriteria decision-making
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problems [13]; then, other researchers introduced hesitant cubic fuzzy sets (HCFSs) and
applied them to multicriteria (group) decision-making problems [14,15]. However, their
hesitant information does not contain the same fuzzy values corresponding to the hesitant
characteristics/concept [11], which is different from the fuzzy multiset concept.

Regarding the probability of an element belonging to a set, hesitant probabilistic fuzzy
sets (HPFSs) [16,17] were introduced and applied to hesitant probabilistic fuzzy decision-
making problems. However, an HPFS only contains the probabilistic values of a few of the
same values, resulting in probabilistic distortion. Since the probabilistic method requires
a lot of fuzzy data (more sample data) to maintain reasonable probabilistic values, the
probabilistic values of small samples of data lead to irrationality/distortion. Therefore,
it is difficult to apply the probabilistic method in actual group decision making (GDM)
applications because the evaluation values of a lot of decision makers are required to ensure
the rationality of the probabilistic values. Hence, it is obvious that the use of HPFSs may
have some flaws from the perspective of probability.

Recently, Turkarslan et al. [18] introduced a consistency fuzzy set/element (CFS/CFE)
based on the mean of a fuzzy sequence and the complement of the standard deviation of
a fuzzy sequence in a fuzzy multiset to reasonably simplify the information expression
and operation of different fuzzy sequence lengths, and then proposed a cosine similarity
measure of CFSs for medical diagnosis in the case of fuzzy multisets. Furthermore, Du
and Ye [19] presented cubic fuzzy multivalued sets (CFMSs) and converted them into cubic
fuzzy consistency sets with the help of the mean of a fuzzy sequence and the complement
of the standard deviation of a fuzzy sequence. Then, they developed a hybrid weighted
arithmetic and geometric aggregation operator for GDM with CFMSs. In general, the
concept of standard deviation is only applicable to the calculation of fuzzy sequences
containing normal distributions, which exposes its limitations.

In real GDM problems, single- and interval-valued fuzzy hybrid multivalued informa-
tion expression and operation problems are very challenging issues, due to the uncertainty
and incompleteness of each decision-maker’s judgement/cognition of the evaluated object.
However, existing fuzzy multiset/HFS/HPFS/IVFM/CFMS cannot represent the single-
and interval-valued fuzzy hybrid multivalued information with identical and/or different
fuzzy values that are given by a group of decision makers in the GDM process. In the
GDM problem, one of the experts/decision makers can assign his/her single-valued or
interval-valued fuzzy evaluation value in terms of his cognition of the evaluated object in
the assessment process. For example, five experts evaluate a car’s “comfort” with a group
of fuzzy values (0.5, 0.5, 0.6, [0.6, 0.7], [0.7, 0.8]). The fuzzy values 0.5, 0.5, and 0.6 are given
by three of the five experts, and the interval-valued/uncertain fuzzy values [0.6, 0.7] and
[0.7, 0.8] are given by the two of the five experts. In this issue, the existing fuzzy multi-
set/HFS/HPFS/IVFM/CFMS can only represent a fuzzy sequence or an interval-valued
fuzzy sequence, but they cannot express such a group of single- and interval-valued fuzzy
hybrid values (the hybrid set of two different fuzzy sequences) simultaneously. Meanwhile,
there is no research on a single- and interval-valued fuzzy multivalued framework in the
existing literature. Therefore, it is necessary to propose a new expression form to effectively
express the single- and interval-valued fuzzy hybrid multivalued information to overcome
the defect of existing various fuzzy expressions. Motivated by this new idea, this paper first
puts forward the concept of a single- and interval-valued fuzzy multivalued set/element
(SIVFMS/SIVFME). Then, a new information entropy measure of SIVFME is proposed
to transform SIVFMS/SIVFME into an interval-valued fuzzy and entropy set/element
(IVFES/IVFEE) based on the mean and information entropy of SIVFME, and then some
operations of IVFEEs and the expected value function and sorting rules of IVFEEs are
defined. Next, the IVFEE weighted averaging (IVFEEWA) and IVFEE weighted geometric
(IVFEEWG) operators and their mixed-weighted-averaging operation are proposed to
overcome the flaws of the IVFEEWA operator, which mainly attends to group arguments,
and the IVFEEWG operator, which mainly attends to individual arguments [19], in the
IVFEE aggregation process. According to the proposed mixed-weighted-averaging opera-



Mathematics 2022, 10, 1077 3 of 15

tion and the expected value function, a GDM method is developed to solve multicriteria
GDM problems with SIVFMSs. Finally, the proposed GDM method is utilized for an actual
supplier selection problem in a supply chain to show the rationality and effectiveness in
the setting of SIVFMSs. The results indicate that the proposed GDM method makes the
GDM process more reasonable and flexible.

This original study demonstrates the following main contributions and highlights:

(i). The proposed SIVFMS/SIVFME forms single- and interval-valued fuzzy multivalued
framework to reasonably express the mixed information of the single-valued/certain
fuzzy sequence and interval-valued/uncertain fuzzy sequence, which are given by
different decision makers in the GDM process.

(ii). The IVFEE transformed based on the mean and information entropy of SIVFME
can reasonably simplify the information expression and operation of different fuzzy
sequence lengths in SIVFMEs; then, the proposed transformation method using
the mean and information entropy of SIVFME can reveal the average level and
consistency/consensus degree of the single- and interval-valued fuzzy sequence in
SIVFME to keep much more useful information in the transformation process.

(iii). The mixed-weighted-averaging operation of the IVFEEWA and IVFEEWG operators
can provide a useful modeling tool for their GDM method in the environment of
SIVFMSs and overcome the flaw of having a single aggregation operator [19].

(iv). The developed GDM method can solve multicriteria GDM problems and make the
decision results more flexible and more reasonable for SIVFMSs.

The remainder of this article is made up of the following structures. In Section 2,
we present the concepts of SIVFMS, SIVFME, information entropy, and IVFEE. Then, we
define the operational laws of IVFEEs, and the expected value function and sorting rules
of IVFEEs. The IVFEEWA and IVFEEWG operators and their mixed-weighted-averaging
operation are presented in Section 3. In Section 4, a GDM method is given by using the
mixed-weighted-averaging operation and the expected value function. In Section 5, the
proposed GDM method is applied to an actual supplier selection problem in a supply
chain to show its rationality and effectiveness when dealing with SIVFMSs, and then the
superiorities of the proposed method are indicated by comparative analysis. Section 6
depicts conclusions and future research.

2. SIVFMS and IVFES

Definition 1. Let U = {u1, u2, . . . , us} be a finite universe set U. Then, a single- and interval-valued
fuzzy multivalued set H in U is defined as follows:

H = {〈uk, FH(uk)〉|uk ∈ U} (1)

where FH(uk) for uk∈ U (k = 1, 2, . . . , s) is a single- and interval-valued fuzzy sequence of the
element uk in the set H, denoted as an increasing fuzzy sequence FH(uk) = (λ1

H(uk), λ2
H(uk), . . . ,

λ
ak
H (uk), [λL1

H (uk), λU1
H (uk)], [λL2

H (uk), λU2
H (uk)], . . . , [λLbk

H (uk), λ
Ubk
H (uk)]) with identical and/or

different fuzzy values, such that 0 ≤ λ1
H(uk) ≤ λ2

H(uk), . . . ,≤ λ
ak
H (uk) ≤ 1 with ak single-valued

fuzzy values and [λL1
H (uk), λU1

H (uk)] ⊆ [λL2
H (uk), λU2

H (uk)] ⊆, . . . ,⊆ [λ
Lbk
H (uk), λ

Ubk
H (uk)] ⊆

[0, 1] with bk interval-valued fuzzy values.

Especially when all bk = 0 or ak = 0 for k = 1, 2, . . . , s, SIVFMS degenerates to a fuzzy
multiset or an IVFM.

For simplicity, the kth element FH(uk) in H is denoted as the kth SIVFME: FHk =

(λ1
Hk, λ2

Hk, . . . , λ
ak
Hk, [λL1

Hk, λU1
Hk], [λ

L2
Hk, λU2

Hk], . . . , [λLbk
Hk , λ

Ubk
Hk ]).

To solve the difficult conversions between different single- and interval-valued fuzzy
sequence lengths, it is necessary to convert SIVFMS into IVFES in terms of the mean and
information entropy of SIVFME.

First, the concept of the Shannon/probability entropy [20] is introduced below.
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Set R = {r1, r2, . . . , rs} as a probability distribution on a set of random variables. Thus,
the Shannon entropy of the probability distribution R is denoted as [20]

E(R) = −
s

∑
i=1

ri ln(ri) (2)

where ri ∈ [0, 1] and
s
∑

i=1
ri = 1.

If all probability values of ri (i = 1, 2, . . . , s) in R are the same, the probability entropy
can reach the maximum value of E(R), which reflects the perfect consistency (the same
probabilities) of all ri. Generally, the larger the probability entropy measure value, the
better the consistency level of all probability values.

According to the probability entropy notion, the interval-valued entropy concept
of SIVFME (an information entropy measure of SIVFME) is proposed, and SIVFMS is
converted into IVFES based on the mean and information entropy of SIVFME, which is
given by the following definition.

Definition 2. An IVFES Z of a SIVFMS H in a finite universe set U = {u1, u2, . . . , us} is defined as

Z = {(uk, mZ(uk), eZ(uk))|uk ∈ U},

where mZ (uk) ⊆ [0, 1] and eZ(uk) ⊆ [0, 1] (k = 1, 2, . . . , s) are the interval-valued mean and
interval-valued entropy of SIVFME, which are obtained by using the following formulae:

mZ(uk) = [mL
Z(uk), mU

Z (uk)] =


1

ak+bk

(
ak
∑

i=1
λi

H(uk) +
bk
∑

i=1
λLi

H (uk)

)
,

1
ak+bk

(
ak
∑

i=1
λi

H(uk) +
bk
∑

i=1
λUi

H (uk)

)
, mZ(uk) ⊆ [0, 1], (3)

eZ(uk) = [eL
Z(uk), eU

Z (uk)]

=



min



− 1
ln(ak+bk)


ak
∑

i=1

(
λi

H(uk)

∑
ak
i=1 λi

H(uk)+∑
bk
i=1 λLi

H (uk)
ln λi

H(uk)

∑
ak
i=1 λi

H(uk)+∑
bk
i=1 λLi

H (uk)

)
+

bk
∑

i=1

(
λLi

H (uk)

∑
ak
i=1 λi

H(uk)+∑
bk
i=1 λLi

H (uk)
ln λLi

H (uk)

∑
ak
i=1 λi

H(uk)+∑
bk
i=1 λLi

H (uk)

)
,

− 1
ln(ak+bk)


ak
∑

i=1

(
λi

H(uk)

∑
ak
i=1 λi

H(uk)+∑
bk
i=1 λUi

H (uk)
ln λi

H(uk)

∑
ak
i=1 λi

H(uk)+∑
bk
i=1 λUi

H (uk)

)
+

bk
∑

i=1

(
λUi

H (uk)

∑
ak
i=1 λi

H(uk)+∑
bk
i=1 λUi

H (uk)
ln λUi

H (uk)

∑
ak
i=1 λi

H(uk)+∑
bk
i=1 λUi

H (uk)

)



,

max



− 1
ln(ak+bk)


ak
∑

i=1

(
λi

H(uk)

∑
ak
i=1 λi

H(uk)+∑
bk
i=1 λLi

H (uk)
ln λi

H(uk)

∑
ak
i=1 λi

H(uk)+∑
bk
i=1 λLi

H (uk)

)
+

bk
∑

i=1

(
λLi

H (uk)

∑
ak
i=1 λi

H(uk)+∑
bk
i=1 λLi

H (uk)
ln λLi

H (uk)

∑
ak
i=1 λi

H(uk)+∑
bk
i=1 λLi

H (uk)

)
,

− 1
ln(ak+bk)


ak
∑

i=1

(
λi

H(uk)

∑
ak
i=1 λi

H(uk)+∑
bk
i=1 λUi

H (uk)
ln λi

H(uk)

∑
ak
i=1 λi

H(uk)+∑
bk
i=1 λUi

H (uk)

)
+

bk
∑

i=1

(
λUi

H (uk)

∑
ak
i=1 λi

H(uk)+∑
bk
i=1 λUi

H (uk)
ln λUi

H (uk)

∑
ak
i=1 λi

H(uk)+∑
bk
i=1 λUi

H (uk)

)






, eZ(uk) ⊆ [0, 1] (4)

It is obvious that the IVFES Z consists of interval-valued fuzzy average values and
entropy values to reasonably solve the expression and operation problems of different
sequence lengths in SIVFMEs.
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Remark 1.

(1) The entropy value indicates a degree of difference among various fuzzy values in the SIVFME
FH(uk). The larger the entropy value, the better the consistency of various fuzzy values in the
SIVFME FH(uk).

(2) All fuzzy values in FH(uk) are identical when eZ(uk) =
[
eL

Z(uk), eU
Z (uk)

]
= [1,1], which can

indicate the complete consistency of the multiple fuzzy values.
(3) In GDM problems, the larger the average value and entropy value of the group evaluation, the

better the group evaluation values and their consistency/consensus. When the entropy value
of the group evaluation values is equal to one, this reflects complete consistency/consensus of
the group evaluation values.

Example 1. Let us consider a GDM problem. When a group of four decision makers/experts is
asked to assess product quality (u1) and service quality (u2) in U = {u1, u2} regarding a supplier A,
they can give two groups of fuzzy assessment values, (u1, 0.7, 0.8, [0.6, 0.8], [0.7, 0.9]) and (u2,
[0.6, 0.7], [0.6, 0.7], [0.6, 0.7], [0.6, 0.7], [0.6, 0.7]). Therefore, using Equations (2) and (3), their
interval-valued fuzzy average values and entropy values are [0.7, 0.8] and [0.9963, 0.9972] for u1
and [0.6, 0.7] and [1, 1] for u2, respectively, which are expressed as the IVFES Z = {(u1, [0.7, 0.8],
[0.9963, 0.9972]), (u2, [0.6, 0.7], [1, 1])} in the GDM example.

In this example, it can be seen that the average values and entropy values can reflect the
magnitude and consistency/consensus degree of the group evaluation values. The larger
the entropy value, the better the consistency/consensus of the group evaluation values.

Then, the simplified expression form of a basic element z(uk) =
(
uk, mZ(uk), eZk(uk)

)
for [mL

Z(uk), mU
Z (uk)] ⊆ [0, 1] and [eL

Z(uk), eU
Z (uk)] ⊆ [0, 1] in the IVFES Z can be denoted as

zk = (mZk, eZk) for
[
mL

Zk, mU
Zk
]
⊆ [0, 1] and

[
eL

Zk, eU
Zk
]
⊆ [0, 1], which is named IVFEE.

Definition 3. Set two IVFEEs as z1 = ([mL
Z1, mU

Z1], [e
L
Z1, eU

Z1]) and z2 = ([mL
Z2, mU

Z2], [e
L
Z2, eU

Z2]).
Thus, their operational relationships are defined as follows:

(1) z1 ⊇ z2 if and if then mL
Z1 ≥ mL

Z2, mU
Z1 ≥ mU

Z2, eL
Z1 ≥ eL

Z2, and eU
Z1 ≥ eU

Z2;
(2) z1 = z2 if and if then z1 ⊇ z2 and z2 ⊇ z1;
(3) z1 ∪ z2 =

(
[mL

Z1 ∨mL
Z2, mU

Z1 ∨mU
Z2], [e

L
Z1 ∨ eL

Z2, eU
Z1 ∨ eU

Z2]
)
;

(4) z1 ∩ z2 =
(
[mL

Z1 ∧mL
Z2, mU

Z1 ∧mU
Z2], [e

L
Z1 ∧ eL

Z2, eU
Z1 ∧ eU

Z2]
)
.

Definition 4. Set two IVFEEs as z1 = ([mL
Z1, mU

Z1], [e
L
Z1, eU

Z1]) and z2 = ([mL
Z2, mU

Z2], [e
L
Z2, eU

Z2]).
Thus, their operational laws are defined as follows:

(1) z1 ⊕ z2 =

(
[mL

Z1 + mL
Z2 −mL

Z1mL
Z2, mU

Z1 + mU
Z2 −mU

Z1mU
Z2],

[eL
Z1 + eL

Z2 − eL
Z1eL

Z2, eU
Z1 + eU

Z2 − eU
Z1eU

Z2]

)
;

(2) z1 ⊗ z2 = ([mL
Z1mL

Z2, mU
Z1mU

Z2], [e
L
Z1eL

Z2, eU
Z1eU

Z2]);

(3) zλ
1 = ([(mL

Z1)
λ, (mU

Z1)
λ
], [(eL

Z1)
λ, (eU

Z1)
λ
]) for λ > 0;

(4) λz1 = ([1− (1−mL
Z1)

λ, 1− (1−mU
Z1)

λ
], [1− (1− eL

Z1)
λ, 1− (1− eU

Z1)
λ
]) for λ > 0.

However, it is obvious that the above operational results are still IVFEEs.
To compare two IVFEEs zk = ([mL

Zk, mU
Zk], [e

L
Zk, eU

Zk]) for k = 1, 2, the expected value
function is defined as

Q(zk) = (mL
ZkeL

Zk + mU
ZkeU

Zk)/2 for Q(zk) ∈ [0, 1] (5)

Then, the sorting rules of the two IVFEEs are given as follows:

(1) If Q(z1) > Q(z2), then z1 > z2;
(2) If Q(z1) = Q(z2), then z1 ∼= z2.
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Example 2. Assume that two IVFEEs are z1 = ([0.7, 0.8], [0.8, 0.9]) and z2 = ([0.6, 0.7], [0.7, 0.8]).
Then, their sorting is yielded below:

Using Equation (5), there are Q(z1) = (0.7 × 0.8 + 0.8 × 0.9)/2 = 0.56 and Q(z2) = (0.6 × 0.7
+ 0.7 × 0.8)/2 = 0.54. Since Q(z1) > Q(z2), their sorting is z1 > z2.

3. Two Weighted Aggregation Operators of IVFEEs and Their
Mixed-Weighted-Averaging Operation

In this section, we propose the IVFEEWA and IVFEEWG operators according to
the operational laws in Definition 4, and then define their mixed-weighted-averaging
operation to make up for their flaws in aggregating IVFEEs; that is, the weighted averaging
aggregation operator mainly tends to group arguments, and the weighted geometric
aggregation operator tends to group personal arguments.

3.1. Weighted Averaging Aggregation Operator of IVFEEs

Based on the operational laws in Definition 4, the IVFEEWA operator is defined to
aggregate IVFEE information.

Definition 5. Let zk = ([mL
Zk, mU

Zk], [e
L
Zk, eU

Zk]) (k = 1, 2, . . . , s) be a group of IVFEEs and
IVFEEWA: Ωs → Ω. Then, the IVFEEWA operator is defined as

IVFEEWA(z1, z2, . . . , zs) =
s
⊕

k=1
λkzk (6)

where λk is the weight of zk with 0 ≤ λk ≤ 1 and ∑s
k=1 λk = 1.

Theorem 1. Let zk = ([mL
Zk, mU

Zk], [e
L
Zk, eU

Zk]) (k = 1, 2, . . . , s) be a group of IVFEEs with the
weight vector = (λ1, λ2, . . . , λn) for 0 ≤ λk ≤ 1 and ∑s

k=1 λk = 1. Then, the aggregated result of
the IVFEEWA operator is still IVFEE, which is obtained by the equation:

IVFEEWA(z1, z2, . . . , zs) =
s
⊕

k=1
λkzk

=

([
1−

s
∏

k=1
(1−mL

Zk)
λk , 1−

s
∏

k=1
(1−mU

Zk)
λk

]
,
[

1−
s

∏
k=1

(1− eL
k )

λk , 1−
s

∏
k=1

(1− eU
k )

λk

]) (7)

Proof. Regarding mathematical induction, Equation (7) can be proved.

(1) When s = 2, by the operational laws in Definition 4, the aggregation result is yielded
as follows:

IVFEEWA(z1, z2) = λ1z1 ⊕ λ1z2

=



 1− (1−mL
Z1)

λ1 + 1− (1−mL
Z2)

λ2 −
(

1− (1−mL
Z1)

λ1
)(

1− (1−mL
Z2)

λ2
)

,

1− (1−mU
Z1)

λ1 + 1− (1−mU
Z2)

λ2 −
(

1− (1−mU
Z1)

λ1
)(

1− (1−mU
Z2)

λ2
) , 1− (1− eL

Z1)
λ1 + 1− (1− eL

Z2)
λ2 −

(
1− (1− eL

Z1)
λ1
)(

1− (1− eL
Z2)

λ2
)

,

1− (1− eU
Z1)

λ1 + 1− (1− eU
Z2)

λ2 −
(

1− (1− eU
Z1)

λ1
)(

1− (1− eU
Z2)

λ2
) 


=

([
1−

2
∏

k=1
(1−mL

Zk)
λk , 1−

2
∏

k=1
(1−mU

Zk)
λk

]
,
[

1−
2

∏
k=1

(1− eL
Zk)

λk , 1−
2

∏
k=1

(1− eU
Zk)

λk

])
.

(8)

(2) When s = n, Equation (7) can keep the following result:

IVFEEWA(z1, z2, . . . , zn) =
n
⊕

k=1
λkzk =


[

1−
n
∏

k=1
(1−mL

Zk)
λk , 1−

n
∏

k=1
(1−mU

Zk)
λk

]
,[

1−
n
∏

k=1
(1− eL

Zk)
λk , 1−

n
∏

k=1
(1− eU

Zk)
λk

]
 (9)
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(3) When s = n + 1, by the operational laws in Definition 4 and Equations (8) and (9), the
aggregated result is given as follows:

IVFEEWA(z1, z2, . . . , zn, zn+1) =
n
⊕

k=1
λkzk ⊕ λn+1zn+1

=

([
1−

n
∏

k=1
(1−mL

Zk)
λk , 1−

n
∏

k=1
(1−mU

Zk)
λk

]
,
[

1−
n
∏

k=1
(1− eL

Zk)
λk , 1−

n
∏

k=1
(1− eU

Zk)
λk

])
⊕ λn+1zn+1

=


[

1−
n
∏

k=1
(1−mL

Zk)
λk (1−mL

Zn+1)
λn+1 , 1−

n
∏

k=1
(1−mU

Zk)
λk (1−mU

Zn+1)
λn+1

]
,[

1−
n
∏

k=1
(1− eL

Zk)
λk (1− eL

Zs+1)
λn+1 , 1−

n
∏

k=1
(1− eU

Zk)
λk (1− eU

Zs+1)
λn+1

]


=

([
1−

n+1
∏

k=1
(1−mL

Zk)
λk , 1−

n+1
∏

k=1
(1−mU

Zk)
λk

]
,
[

1−
n+1
∏

k=1
(1− eL

Zk)
λk , 1−

n+1
∏

k=1
(1− eU

Zk)
λk

])
.

(10)

Obviously, Equation (7) exists for any s. �

Theorem 2. The IVFEEWA operator implies these properties:

(1) Idempotency: Set zk = ([mL
Zk, mU

Zk], [e
L
Zk, eU

Zk]) (k = 1, 2, . . . , s) as a group of IVFEEs. There
is IVFEEWA(z1, z2, . . . , zs) = z if zk = z = ([mL

Z, mU
Z ], [e

L
Z, eU

Z ]) (k = 1, 2, . . . , s).
(2) Boundedness: Set zk = ([mL

Zk, mU
Zk], [e

L
Zk, eU

Zk]) (k = 1, 2, . . . , s) as a group of IVFEEs and let

zmin =

([
min

k

(
mL

Zk
)
, min

k

(
mU

Zk
)]

,
[

min
k

(
eL

Zk
)
, min

k

(
eU

Zk
)])

and

zmax =

([
max

k

(
mL

Zk
)
, max

k

(
mU

Zk
)]

,
[

max
k

(
eL

Zk
)
, max

k

(
eU

Zk
)])

be the minimum IVFEE

and the maximum IVFEE, respectively. Then, zmin ≤ IVFEEWA(z1, z2, . . . , zs) ≤ zmax exists.
(3) Monotonicity: Set zk = ([mL

Zk, mU
Zk], [e

L
Zk, eU

Zk]) and z∗k =
([

mL∗
Zk, mU∗

Zk
]
,
[
eL∗

Zk, eU∗
Zk
])

(k = 1, 2, . . . , s) as two groups of IVFEEs. Then, there exists IVFEEWA(z1, z2, . . . , zs) ≤
IVFEEWA(z∗1 , z∗2 , . . . , z∗s ) if zk ≤ z∗k .

Proof. (1) For zk = z = ([mL
Z, mU

Z ], [e
L
Z, eU

Z ]) (k = 1, 2, . . . , s), by Equation (7) the result is
yielded below:

IVFEEWA(z1, z2, . . . , zs) =
s
⊕

k=1
λkzk =


[

1−
s

∏
k=1

(1−mL
Zk)

λk , 1−
s

∏
k=1

(1−mU
Zk)

λk

]
,[

1−
s

∏
k=1

(1− eL
Zk)

λk , 1−
s

∏
k=1

(1− eU
Zk)

λk

]


=
([

1− (1−mL
Z)

∑s
k=1 λk , 1− (1−mU

Z )
∑s

k=1 λk
]
,
[
1− (1− eL

Z)
∑s

k=1 λk , 1− (1− eU
Z )

∑s
k=1 λk

])
=
([

mL
Z, mU

Z
]
,
[
eL

Z, eU
Z
])

= z.

(11)

(2) There exists the inequality zmin ≤ zk ≤ zmax when zmin and zmax are the minimum

and maximum IVFEEs. Thus, there also exists
s
⊕

k=1
λkzmin ≤

s
⊕

k=1
λkzk ≤

s
⊕

k=1
λkzmax. Then, the

inequality zmin ≤
s
⊕

k=1
λkzk ≤ zmax can be kept regarding the above property (1); i.e., there is

zmin ≤ IVFEEWA(z1, z2, . . . , zs) ≤ zmax.

(3) For zk ≤ z∗k , there is the inequality
s
⊕

k=1
λkzk ≤

s
⊕

k=1
λkz∗k ; i.e., IVFEEWA(z1, z2, . . . , zs)

≤ IVFEEWA
(
z∗1 , z∗2 , . . . , z∗s

)
exists.

Therefore, all the above properties are true. �
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3.2. Weighted Geometric Aggregation Operator of IVFEEs

Definition 6. Let zk = ([mL
Zk, mU

Zk], [e
L
Zk, eU

Zk]) (k = 1, 2, . . . , s) be a group of IVFEEs and
IVFEEWG: Ωs → Ω. Then, the IVFEEWG operator is defined as

IVFEEWG(z1, z2, . . . , zs) =
s
⊗

k=1
zλk

k (12)

where λk is the weight of zk with 0 ≤ λk ≤ 1 and ∑s
k=1 λk = 1.

Theorem 3. Let zk = ([mL
Zk, mU

Zk], [e
L
Zk, eU

Zk]) (k = 1, 2, . . . , s) be a group of IVFEEs along with
the weight vector λ = (λ1, λ2, . . . , λs) for 0 ≤ λk ≤ 1 and ∑s

k=1 λk = 1. Then, the aggregated
result of the IVFEEWG operator is still IVFEE, which is yielded by the equation:

IVFEEWG(z1, z2, . . . , zs) =
s
⊗

k=1
zλk

k =

([
s

∏
k=1

(mL
Zk)

λk ,
s

∏
k=1

(mU
Zk)

λk

]
,

[
s

∏
k=1

(eL
Zk)

λk ,
s

∏
k=1

(eU
Zk)

λk

])
(13)

Similarly to Theorem 1, Theorem 3 can easily be proved, which is omitted here.

Theorem 4. The IVFEEWG operator implies these properties:

(1) Idempotency: Let zk = ([mL
Zk, mU

Zk], [e
L
Zk, eU

Zk]) (k = 1, 2, . . . , s) be a group of IVFEEs. If
zk = z = ([mL

Z, mU
Z ], [e

L
Z, eU

Z ]) (k= 1, 2, . . . , s), then IVFEEWG(z1, z2, . . . , zs) = z.
(2) Boundedness: Let zk = ([mL

Zk, mU
Zk], [e

L
Zk, eU

Zk]) (k = 1, 2, . . . , s) be a group of IVFEEs, and let

zmin =

([
min

k

(
mL

Zk
)
, min

k

(
mU

Zk
)]

,
[

min
k

(
eL

Zk
)
, min

k

(
eU

Zk
)])

and

zmax =

([
max

k

(
mL

Zk
)
, max

k

(
mU

Zk
)]

,
[

max
k

(
eL

Zk
)
, max

k

(
eU

Zk
)])

be the minimum and maxi-

mum IVFEEs. Then, zmin ≤ IVFEEWG(z1, z2, . . . , zs) ≤ zmax exists.
(3) Monotonicity: Let zk = ([mL

Zk, mU
Zk], [e

L
Zk, eU

Zk]) and z∗k =
([

mL∗
Zk, mU∗

Zk
]
,
[
eL∗

Zk, eU∗
Zk
])

(k = 1, 2, . . . , s) be two groups of IVFEEs. Then, there exists IVFEEWG(z1, z2, . . . , zs) ≤
IVFEEWG(z∗1 , z∗2 , . . . , z∗s ) for zk ≤ z∗k .

Theorem 4 can be proved similarly to Theorem 2 (omitted).

3.3. Mixed-Weighted-Averaging Operation for the IVFEEWA and IVFEEWG Operators

Since the IVFEEWA operator and the IVFEEWG operator mainly tend to group ar-
guments and individual arguments, respectively, here we propose a mixed-weighted-
averaging operation for the IVFEEWA and IVFEEWG operators.

Definition 7. Set η ∈ [0, 1] as a weight parameter. Then, a mixed-weighted-averaging operation of
the IVFEEWA and IVFEEWG operators with a weight parameter η is defined below:

z(η) = η × IVFEEWA(z1, z2, . . . , zs)⊕ (1− η)× IVFEEWG(z1, z2, . . . , zs) (14)
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Theorem 5. Let η ∈ [0, 1] be a weight parameter. Then, the operational result of Equation (14)
with a weight parameter η is still IVFEE, which is obtained by the following equation:

z(η) = η × IVFEEWA(z1, z2, . . . , zs)⊕ (1− η)× IVFEEWG(z1, z2, . . . , zs)

=




1−

(
s

∏
k=1

(1−mL
Zk)

λk

)η(
1−

s
∏

k=1
(mL

Zk)
λk

)(1−η)

,

1−
(

s
∏

k=1
(1−mU

Zk)
λk

)η(
1−

s
∏

k=1
(mU

Zk)
λk

)(1−η)

,


1−

(
s

∏
k=1

(1− eL
Zk)

λk

)η(
1−

s
∏

k=1
(eL

Zk)
λk

)(1−η)

,

1−
(

s
∏

k=1
(1− eU

Zk)
λk

)η(
1−

s
∏

k=1
(eU

Zk)
λk

)(1−η)




(15)

Proof. Based on Equations (7), (13), and (14), along with the operational laws in Definition
4, the following result is obtained below:

z(η) = η × IVFEEWA(z1, z2, . . . , zs)⊕ (1− η)× IVFEEWG(z1, z2, . . . , zs)

=

([
1−

(
s

∏
k=1

(1−mL
Zk)

λk

)η

, 1−
(

s
∏

k=1
(1−mU

Zk)
λk

)η]
,
[

1−
(

s
∏

k=1
(1− eL

Zk)
λk

)η

, 1−
(

s
∏

k=1
(1− eU

Zk)
λk

)η])
⊕([

1−
(

1−
s

∏
k=1

(mL
Zk)

λk

)(1−η)

, 1−
(

1−
s

∏
k=1

(mU
Zk)

λk

)(1−η)
]

,

[
1−

(
1−

s
∏

k=1
(eL

Zk)
λk

)(1−η)

, 1−
(

1−
s

∏
k=1

(eU
Zk)

λk

)(1−η)
])

=




1−

(
s

∏
k=1

(1−mL
Zk)

λk

)η

+ 1−
(

1−
s

∏
k=1

(mL
Zk)

λk

)(1−η)

−
(

1−
(

s
∏

k=1
(1−mL

Zk)
λk

)η)(
1−

(
1−

s
∏

k=1
(mL

Zk)
λk

)(1−η)
)

,

1−
(

s
∏

k=1
(1−mU

Zk)
λk

)η

+ 1−
(

1−
s

∏
k=1

(mU
Zk)

λk

)(1−η)

−
(

1−
(

s
∏

k=1
(1−mU

Zk)
λk

)η)(
1−

(
1−

s
∏

k=1
(mU

Zk)
λk

)(1−η)
)
,


1−

(
s

∏
k=1

(1− eL
Zk)

λk

)η

+ 1−
(

1−
s

∏
k=1

(eL
Zk)

λk

)(1−η)

−
(

1−
(

s
∏

k=1
(1− eL

Zk)
λk

)η)(
1−

(
1−

s
∏

k=1
(eL

Zk)
λk

)(1−η)
)

,

1−
(

s
∏

k=1
(1− eU

Zk)
λk

)η

+ 1−
(

1−
s

∏
k=1

(eU
Zk)

λk

)(1−η)

−
(

1−
(

s
∏

k=1
(1− eU

Zk)
λk

)η)(
1−

(
1−

s
∏

k=1
(eU

Zk)
λk

)(1−η)
)




=


[

1−
(

s
∏

k=1
(1−mL

Zk)
λk

)η(
1−

s
∏

k=1
(mL

Zk)
λk

)(1−η)

, 1−
(

s
∏

k=1
(1−mU

Zk)
λk

)η(
1−

s
∏

k=1
(mU

Zk)
λk

)(1−η)
]

,[
1−

(
s

∏
k=1

(1− eL
Zk)

λk

)η(
1−

s
∏

k=1
(eL

Zk)
λk

)(1−η)

, 1−
(

s
∏

k=1
(1− eU

Zk)
λk

)η(
1−

s
∏

k=1
(eU

Zk)
λk

)(1−η)
]

.

(16)

When η = 1, 0, z(η) degenerates into the IVFEEWA operator of Equation (7) and the
IVFEEWG operator of Equation (13), respectively. �

4. GDM Method Using the Mixed-Weighted-Averaging Operation and Expected
Value Function

Here we propose a multicriteria GDM method using the mixed-weighted-averaging
operation and expected value function for SIVFMSs.

A multicriteria GDM problem usually contains a set of alternatives Y = {Y1, Y2, . . . , Ym},
which is assessed by a set of criteria U = {u1, u2, . . . , us}. To consider the importance
of different criteria uk (k = 1, 2, . . . , s) in U, decision makers specify a weigh vector λ =
(λ1, λ2, . . . , λs) for the set of criteria. Regarding the uncertainty and certainty of decision
makers’ cognitions/judgments for the suitability assessment of alternatives over the criteria,
the single- and interval-valued fuzzy values of the alternatives Yj (j = 1, 2, . . . , m) over
the criteria uk (k = 1, 2, . . . , s) will be specified by various decision makers. Thus, the
multicriteria GDM method is depicted by the following decision steps.

Step 1. A group of decision makers/experts is invited to give their single- and
interval-valued fuzzy values of the alternatives Yj (j = 1, 2, . . . , m) over the criteria uk
(k = 1, 2, . . . , s) and to set up the SIVFME decision matrix D = (FHjk)m×s, where FHjk =

(λ1
Hjk, λ2

Hjk, . . . , λ
ajk
Hjk, [λL1

Hjk, λU1
Hjk], [λ

L2
Hjk, λU2

Hjk], . . . , [λ
Lbjk
Hjk , λ

Ubjk
Hjk ]) composed of ajk single-valued

fuzzy values and bjk interval-valued fuzzy values (j = 1, 2, . . . , m; k = 1, 2, . . . , s) are
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SIVFMEs, such that 0 ≤ λ1
Hjk ≤ λ2

Hjk, . . . ,≤ λ
ajk
Hjk ≤ 1 and [λL1

Hjk, λU1
Hjk] ⊆ [λL2

Hjk, λU2
Hjk] ⊆

, . . . ,⊆ [λ
Lbjk
Hjk (uk), λ

Ubjk
Hjk ] ⊆ [0, 1] with identical and/or different fuzzy values.

Step 2. Using Equations (3) and (4) for the decision matrix D = (FHjk)m×s, the interval-
valued fuzzy average values mZjk and entropy values eZjk are obtained and IVFEEs are

assembled by zjk = (mZjk, eZjk) for mZjk =
[
mL

Zjk, mU
Zjk

]
⊆ [0, 1] and eZjk =

[
eL

Zjk, eU
Zjk

]
⊆

[0, 1] (k = 1, 2, . . . , s; j = 1, 2, . . . , m), which are constructed as the IVFEE decision matrix
M = (zjk)m×s.

Step 3. Using Equation (15) with some values of η, the operational values of zj(η) for
Yj (j = 1, 2, . . . , m) are obtained by the following equation:

zj(η) = η × IVFEEWA(zj1, zj2, . . . , zjs)⊕ (1− η)× IVFEEWG(zj1, zj2, . . . , zjs)

=




1−

(
s

∏
k=1

(1−mL
Zjk)

λk

)η(
1−

s
∏

k=1
(mL

Zjk)
λk

)(1−η)

,

1−
(

s
∏

k=1
(1−mU

Zjk)
λk

)η(
1−

s
∏

k=1
(mU

Zjk)
λk

)(1−η)

,


1−

(
s

∏
k=1

(1− eL
Zjk)

λk

)η(
1−

s
∏

k=1
(eL

Zjk)
λk

)(1−η)

,

1−
(

s
∏

k=1
(1− eU

Zjk)
λk

)η(
1−

s
∏

k=1
(eU

Zjk)
λk

)(1−η)




(17)

Step 4. The expected values of Q(zj(η)) (j = 1, 2, . . . , m) are given by Equation (5).
Step 5. Alternatives are sorted in descending order of the expected values, and the

optimal one is selected depending on some specified value of η.
Step 6. End.

5. GDM Example of a Supplier Selection Problem and Comparative Analysis
5.1. Actual GDM Example

This section reports the application of the proposed GDM method to an actual example
of a supplier selection problem in a supply chain to show the rationality and effectiveness
of SIVFMSs.

Any enterprise tries to reduce the supply chain risks and uncertainty to improve cus-
tomer service, inventory levels, and cycle times, which will increasing its competitiveness
and profitability. Assume that a group of five suppliers is provided as a set of preliminary
alternatives Y = {Y1, Y2, Y3, Y4, Y5}. Then, a group of decision makers is invited to evaluate
the five suppliers with three criteria: performance (e.g., quality, delivery, and price) (u1),
technology (e.g., design capability, manufacturing capability, and ability to deal with tech-
nology changes) (u2), and organizational culture and strategy (e.g., external and internal
integration of suppliers, feeling of trust, compatibility across levels, and functions of the
supplier and buyer) (u3). The weight vector of the three criteria is specified as λ = (0.3, 0.33,
0.37). Thus, the proposed GDM method can be applied to this GDM problem, which is
depicted below.

Step 1. Suppose that three decision makers are invited to evaluate a set of five suppliers
Y = {Y1, Y2, Y3, Y4, Y5} with a set of three criteria U = {u1, u2, u3}. For instance, the three
decision makers can declare the degree that an alternative Y1 should satisfy a criterion u1,
and these values could be a group of three single- and interval-valued fuzzy values (0.7, 0.8,
[0.7, 0.9]). In this manner, all their evaluation values of SIVFMEs are indicated in Table 1.
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Table 1. Evaluation values of SIVFMEs provided by the three decision makers.

u1 u2 u3

Y1 (0.7, 0.8, [0.7, 0.9]) (0.6, [0.6, 0.7], [0.7, 0.8]) (0.6, 0.7, [0.7, 0.8])
Y2 (0.7, 0.8, [0.6, 0.7]) (0.6, 0.7, [0.7, 0.8]) (0.7, 0.7, [0.6, 0.9])
Y3 (0.8, [0.8, 0.9], [0.8, 0.9]) (0.8, [0.7, 0.9], [0.8, 0.9]) (0.6, 0.7, [0.7, 0.9])
Y4 (0.6, 0.6, [0.7, 0.8]) (0.6, 0.8, [0.7, 0.9]) (0.8, 0.8, [0.7, 0.9])
Y5 (0.8, 0.9, [0.7, 0.8]) (0.8, 0.9, [0.7, 0.8]) (0.7, [0.6, 0.8], [0.7, 0.8])

Step 2. Using Equations (3) and (4) on Table 1, IVFEEs can be obtained based on the
average values and entropy values of various SIVFMVEs, and the IVFEE decision matrix
M = (zjk)5×3 is established as follows:

M =


([0.7333, 0.8000], [0.9952, 0.9981]) ([0.6333, 0.7000], [0.9938, 0.9975]) ([0.6667, 0.7000], [0.9938, 0.9977])
([0.7000, 0.7333], [0.9938, 0.9981]) ([0.6667, 0.7000], [0.9938, 0.9977]) ([0.6667, 0.7667], [0.9933, 0.9977])
([0.8000, 0.8667], [0.9986, 1.0000]) ([0.7667, 0.8667], [0.9983, 0.9986]) ([0.6667, 0.7333], [0.9870, 0.9977])
([0.6333, 0.6667], [0.9912, 0.9975]) ([0.7000, 0.7667], [0.9876, 0.9938]) ([0.7667, 0.8333], [0.9983, 0.9986])
([0.8000, 0.8333], [0.9952, 0.9986]) ([0.8000, 0.8333], [0.9952, 0.9986]) ([0.6667, 0.7667], [0.9977, 0.9983])


Step 3. Using Equation (17) with η = 0, 0.3, 0.5, 0.7, and 1, the operational values of

zj(η) for Yj (j = 1, 2, 3, 4, 5) and the decision results are indicated in Table 2.

Table 2. Decision results of the proposed GDM method with various weight values of η.

η
z1(η), z2(η),

z3(η), z4(η), z5(η)

E(z1(η)),
E(z2(η)), E(z3(η)),
E(z4(η)), E(z5(η))

Sorting Optimal One

0

([0.6745, 0.7286],
[0.9942, 0.9978]),
([0.6765, 0.7341],
[0.9936, 0.9978]),
([0.7374, 0.8147],
[0.9942, 0.9987]),
([0.7025, 0.7582],
[0.9926, 0.9967]),
([0.7478, 0.8080],
[0.9961, 0.9984])

0.6988, 0.7024,
0.7734, 0.7265,

0.7758

Y5 > Y3 > Y4 >
Y2 > Y1

Y5

0.3

([0.6756, 0.7303],
[0.9942, 0.9978]),
([0.6767, 0.7347],
[0.9936, 0.9978]),
([0.7399, 0.8187],
[0.9951, 1.0000]),
([0.7047, 0.7620],
[0.9933, 0.9969]),
([0.7510, 0.8090],
[0.9962, 0.9984])

0.7002, 0.7027,
0.7775, 0.7298,

0.7780

Y5 > Y3 > Y4 >
Y2 > Y1

Y5

0.5

([0.6764, 0.7315],
[0.9942, 0.9978]),
([0.6768, 0.7351],
[0.9936, 0.9978]),
([0.7416, 0.8213],
[0.9956, 1.0000]),
([0.7061, 0.7645],
[0.9937, 0.9970]),
([0.7532, 0.8096],
[0.9963, 0.9985])

0.7012, 0.7030,
0.7798, 0.7320,

0.7794

Y3 > Y5 > Y4 >
Y2 > Y1

Y3
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Table 2. Cont.

η
z1(η), z2(η),

z3(η), z4(η), z5(η)

E(z1(η)),
E(z2(η)), E(z3(η)),
E(z4(η)), E(z5(η))

Sorting Optimal One

0.7

([0.6772, 0.7326],
[0.9943, 0.9978]),
([0.6769, 0.7355],
[0.9936, 0.9978]),
([0.7433, 0.8239],
[0.9960, 1.0000]),
([0.7076, 0.7670],
[0.9940, 0.9971]),
([0.7553, 0.8103],
[0.9963, 0.9985])

0.7021, 0.7032,
0.7821, 0.7341,

0.7807

Y3 > Y5 > Y4 >
Y2 > Y1

Y3

1

([0.6783, 0.7344],
[0.9943, 0.9978]),
([0.6770, 0.7361],
[0.9936, 0.9978]),
([0.7458, 0.8277],
[0.9966, 1.0000]),
([0.7097, 0.7707],
[0.9946, 0.9973]),
([0.7584, 0.8112],
[0.9964, 0.9985])

0.7036, 0.7036,
0.7855, 0.7372,

0.7828

Y3 > Y5 > Y4 >
Y1 = Y2

Y3

Step 4. By Equation (5), the expected values of E(zj(η)) (j = 1, 2, 3, 4, 5) are given in
Table 2.

Step 5. The sorting orders of the alternatives are Y5 > Y3 > Y4 > Y2 > Y1, Y3 > Y5 > Y4
> Y2 > Y1, and Y3 > Y5 > Y4 > Y1 = Y2. The optimal one is Y5 or Y3, depending on some
specified value of η.

Regarding the decision results in Table 2, there are different sorting orders for the
IVFEEWA operator and the IVFEEWG operator when η = 0, 1 (two special cases), since
the IVFEEWA operator tends to group arguments and the IVFEEWG operator tends to
group personal arguments. The mixed-weighted-averaging operation of the IVFEEWA and
IVFEEWG operators can compensate for the different tendencies of both when η 6= 0, 1.

5.2. Comparative Analysis

To verify the efficiency of the proposed GDM method, the proposed GDM method is
compared with the existing consistency fuzzy decision-making method and various fuzzy
decision-making methods.

First, the proposed GDM method is compared with the existing consistency fuzzy
decision-making method [19]. For a convenient comparison with the existing consistency
fuzzy decision-making method [19], assume that all interval-valued fuzzy values and
entropy values in the IVFEE decision matrix M are fuzzy average values and consistency
degrees as a special case of the actual example mentioned above. Thus, the IVFEE decision
matrix M is reduced to the decision matrix of CFEs:

M′ =


(0.7667, 0.9881) (0.6667, 0.9957) (0.6834, 0.9958)
(0.7167, 0.9960) (0.6834, 0.9958) (0.7167, 0.9955)
(0.8334, 0.9993) (0.8167, 0.9985) (0.7000, 0.9924)
(0.6500, 0.9944) (0.7334, 0.9907) (0.8000, 0.9985)
(0.8167, 0.9969) (0.8167, 0.9969) (0.7167, 0.9980)


Thus, the existing decision-making method [19] can be applied to the special case of

the above actual example by the following CFE weighted averaging (CFEWA) and CFE
weighted geometric (CFEWG) operators and score function [19]:
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z′j = CFEWA(z′j1, z′j2, . . . , z′js) =
s
⊕

k=1
λkz′jk =

(
1−

s

∏
k=1

(1−m′Zjk)
λk , 1−

s

∏
k=1

(1− e′Zjk)
λk

)
(18)

z′j = CFEWG(z′j1, z′j2, . . . , z′js) =
s
⊗

k=1
(z′jk)

λk =

(
s

∏
k=1

(m′Zjk)
λk ,

s

∏
k=1

(e′Zjk)
λk

)
(19)

F(z′j) = (m′Zje
′
Zj + (m′Zj + e′Zj)/2)/2 for F(z′j) ∈ [0, 1] (20)

Using Equations (18)–(20), the aggregated values of the CFEWA and CFEWG operators,
the score values of F(z′j) for Yi (i = 1, 2, 3, 4, 5), and the decision results were achieved. They
are shown in Table 3.

Table 3. Decision results of the existing decision-making method in the case of CFEs [19].

Aggregation
Operator z’

1, z’
2, z’

3, z’
4, z’

5
F(z’

1), F(z’
2), F(z’

3),
F(z’

4), F(z’
5)

Sorting Optimal
One

CFEWA

(0.7061, 0.9960),
(0.7061, 0.9957),
(0.7862, 0.9978),
(0.7399, 0.9958),
(0.7846, 0.9974)

0.7772, 0.7770, 0.8383,
0.8023, 0.8368

Y3 > Y5 > Y4
> Y1 > Y2

Y3

CFEWG

(0.7016, 0.9960),
(0.7055, 0.9957),
(0.7761, 0.9964),
(0.7304, 0.9946),
(0.7781, 0.9973)

0.7738, 0.7765, 0.8298,
0.7945, 0.8319

Y5 > Y3 > Y4
> Y2 > Y1

Y5

In the decision results in Table 3, there exists their sorting difference, since there are the
different tendencies for the CFEWA and CFEWG operators. The optimal alternatives are Y3
and Y5 according to the existing decision-making method with CFE information. Although
the optimal ones, Y3 and Y5, are the same according to the proposed GDM method and
the existing decision-making method [19] in the example, the superiorities of the proposed
GDM method over the existing decision-making method [19] are as follows:

(1) SIVFMSs can effectively express group evaluation values using identical and/or differ-
ent single- and interval-valued fuzzy values, whereas CFMS introduced in [19] cannot.

(2) IVFEEs can reasonably reflect the mean and consistency/consensus degrees of the
group evaluation values with the help of quantitative calculations corresponding to
the mean and information entropy of a SIVFME in a SIVFMS. The transformation
method introduced in [19] is only suitable for the normal distribution of fuzzy data,
and there is no distribution limitation for the new transformation method proposed
in this paper.

(3) The proposed GDM method not only demonstrated its decision flexibility, but also
overcomes the flaws of the existing decision-making method using the single CFEWA
operator or the CFEWG operator.

In comparison with the PFDM methods [16,17], the PFDM methods need a lot of
fuzzy data to maintain the rationality (no distortion) of probabilistic fuzzy values from
the probabilistic viewpoint; otherwise, the probabilistic fuzzy values are infeasible and
irrational, since a lot of fuzzy data are created with difficultly by several decision makers
and obviously unrealized in the GDM application. Hence, the PFDM methods cannot repre-
sent this decision example involving three decision makers and also cannot express single-
and interval-valued fuzzy data. In the case of SIVFMSs, the proposed GDM method with
the mean and information entropy only needs a few of decision makers to perform GDM
problems with several single- and interval-valued fuzzy data, which are easily handled
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in actual applications. In this case, the proposed GDM method showed its rationality and
efficiency and is superior to the existing PFDM methods regarding SIVFMSs.

Furthermore, with respect to the above GDM example in the SIVFMS setting, existing
fuzzy multiset/IVFM/HFS/CHFS [9–15,18] cannot express SIVFMS, and then they also
cannot be applied to this GDM problem with SIVFMS information.

However, our method not only solves the expression and operation problems of
SIVFMEs, but also enhances the flexibility and rationality of GDM, which serve to highlight
its advantages in the setting of SIVFMSs.

6. Conclusions

In this study, the presented SIVFMSs could effectively express single- and interval-
valued fuzzy sequences in hybrid fuzzy multivalued situations to solve the difficult prob-
lems of various existing fuzzy expressions. The proposed information entropy of SIVFME
provides a reasonable mathematical tool for converting SIVFMEs into IVFEEs when deal-
ing with SIVFMSs. IVFEEs converted by the mean and information entropy of SIVFMEs
in SIVFMS can reasonably reflect the average and consistency level of group evalua-
tion values and effectively solve the operational problems of different fuzzy sequence
lengths in SIVFMSs. In addition, the proposed mixed-weighted-averaging operation of the
IVFEEWA and IVFEEWG operators can reasonably and flexibly aggregate IVFEE informa-
tion with a changeable weight parameter and compensate for the flaws of the IVFEEWA
and IVFEEWG operators. Next, the multicriteria GDM method developed based on the
proposed mixed-weighted-averaging operation solved flexible decision-making problems
involving SIVFMSs. Furthermore, the proposed GDM method was utilized for an actual
example of a supplier selection problem to indicate its application. Through the compara-
tive analysis with existing relative decision-making methods, the proposed GDM method
demonstrated its rationality and effectiveness. However, this study not only effectively
solved the expression and operation problems of the mixed information of single- and
interval-valued fuzzy sequences with identical and/or different fuzzy values, but also
strengthened the GDM rationality and flexibility with the help of the presented information
entropy and the proposed mixed-weighted-averaging operation, which highlighted its
merits when dealing with SIVFMSs.

This original study demonstrated new contributions in mixed fuzzy information
expression, presented a transformation method based on the mean and information entropy
of SIVFME, and presented mixed aggregation operations of IVFEEs and their GDM method
in the environment of SIVFMSs. However, the new techniques proposed in this paper
can only handle GDM problems with SIVFMSs, but cannot solve GDM problems with the
fuzzy information of truth and falsity membership degrees. Regarding future research, this
study will be further extended to image processing, pattern recognition, clustering analysis,
and their applications in the setting of SIVFMSs. Then, the Aczel–Alsina operations and
aggregation operators [21,22], and their applications, will be further developed in the
intuitionistic and interval-valued intuitionistic fuzzy multivalued context.
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