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Abstract: Online portfolio selection (OLPS) is a procedure for allocating portfolio assets using only
past information to maximize an expected return. There have been successful mean reversion
strategies that have achieved large excess returns on the traditional OLPS benchmark datasets. We
propose a genetic mean reversion strategy that evolves a population of portfolio vectors using a
hybrid genetic algorithm. Each vector represents the proportion of the portfolio assets, and our
strategy chooses the best vector in terms of the expected returns on every trading day. To test our
strategy, we used the price information of the S&P 500 constituents from 2000 to 2017 and compared
various strategies for online portfolio selection. Our hybrid genetic framework successfully evolved
the portfolio vectors; therefore, our strategy outperformed the other strategies when explicit or
implicit transaction costs were incurred.

Keywords: 68W50; 91G80

1. Introduction

In equity markets, mean reversion assumes that stocks that recently produced higher-
than-average returns will tend to generate lower-than-average returns, and vice versa. The
overreaction hypothesis states that the mean reversion occurs when stock prices overreact
to information [1]. In recent decades, there have been controversial findings on the existence
of the mean reversion. Fama and French [2] found the evidence of negative autocorrelations
in stock returns, Balvers et al. [3] provided the empirical support for the mean reversion
across national stock markets, and Gropp [4] showed that it is possible to earn excess
returns by exploiting the mean reversion property. However, Kim et al. [5] reported that
evidence of mean reversion in U.S. stock returns was weak, and Booth et al. [6] suggested
that mean reversion assumption is not needed because the small-firm effect alone can
explain the anomaly.

In contrast to mean reversion, the momentum effect documented in Jegadeesh and
Titman [7] states that stocks that have performed well in the past tend to generate better
returns at 3 to 12-month horizons than stocks that have performed poorly in the past.
Jegadeesh and Titman [8] demonstrated the existence of the momentum effect on the U.S.
stock markets from 1965 to 1998, and Fama and French [9] found strong momentum returns
in international stock markets. The momentum effect is attributable to investors’ delayed
overreactions [8] or underreactions to new information [10].

Online portfolio selection (OLPS) is a procedure of selling stocks with low expected
returns and purchasing stocks with high expected returns. OLPS aims to maximize cumula-
tive return by periodically adjusting the weights of stocks in an portfolio using the historical
prices of the stocks. There are two representative types of OLPS strategies. The follow-
the-leader methods [11–13] pursue the best strategy so far, whereas the follow-the-loser
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methods [14–17] exploit the mean reversion property. Refer to [18] for a comprehensive
survey of he OLPS.

There are three types of mean reversion strategy that outperform other OLPS strate-
gies on traditional benchmark datasets: a passive aggressive mean reversion (PAMR)
strategy [15], an online moving average reversion (OLMAR) strategy [16], and a transac-
tion cost optimization (TCO) strategy [17]. The PAMR uses the daily prices of a stock to
determine if the stock is mean-revertible, whereas OLMAR utilizes the moving average of
daily prices. The TCO can use either the daily prices or the moving average of daily prices
to exploit the mean reversion property.

Investors pay transaction costs when they trade securities. Explicit transaction costs
include taxes and commissions, and implicit transaction costs include price-impact costs
and bid–ask spreads. Based on institutional trading data, Keim and Madhavan [19] found
that explicit and implicit transaction costs were at least 0.13% and 0.11%, respectively. They
also reported that the total transaction costs incurred by the transaction initiators were at
least 0.26% on the New York Stock Exchange (NYSE) and NYSE American. As transaction
costs depend on the trading volume, it is desirable to avoid unnecessary transactions.

The genetic algorithm (GA) is a metaheuristic inspired by biological evolution. To
simulate natural selection, the GA evolves a population of candidate solutions through se-
lection, crossover, mutation, and replacement operations. The behavior of GA is determined
by the exploration and exploitation relationship [20]. Here, exploration is the process of
visiting entirely new regions of a search space, and exploitation is the process of visiting the
neighborhood of previously visited regions [21]. The GA has many successful real-world
applications, including bioinformatics [22,23], operational research [24,25], medical image
processing [26,27], and financial engineering [28–30].

The GA has been used extensively to solve the Markowitz mean-variance portfolio
optimization problem [31], which maximizes expected return while minimizing risk. For
example, Chang et al. [32] used GA to find the cardinality constrained efficient frontier,
Skolpadungket et al. [33] compared various multi-objective GAs for solving portfolio opti-
mization with multiple constraints, Chen et al. [34] proposed a non-dominated sorting and
local search based multi-objective evolutionary framework to solve cardinality constrained
portfolio optimization, and Kalayci et al. [35] used a hybrid metaheuristic that embeds GAs
to find the cardinality-constrained efficient frontier.

A GA hybridized with a local search heuristic is called a hybrid GA (HGA). Using
an HGA, we propose a mean reversion strategy for an OLPS. The HGA uses historical
price information to evolve a population of portfolio vectors representing proportions of
portfolio assets, and our strategy selects the most prominent mean-revertible vector on
every trading day. We tested our strategy using 10 datasets from S&P 500, and compared
the results with those obtained using state-of-the-art mean reversion strategies from other
researches [15–17]. We believe that this is the first application of GA to OLPS.

The rest of this paper is organized as follows: In Section 2, we present some prelimi-
naries on OLPS. In Section 3, we provide the details of the genetic mean reversion strategy.
In Section 4, we present the experimental setup and results. Finally, in Section 5, we draw
some concluding remarks and discuss future research directions.

2. Preliminaries

Let m be the number of securities in a portfolio, and n be the number of total trad-
ing days. On the tth day, the closing prices of the securities are represented by pt =
(pt(1), pt(2), ..., pt(m)) ∈ Rm

+, where pt(i) is the closing price of the ith security. The daily re-
turns of the securities are represented by a price relative vector, xt = (xt(1), xt(2), ..., xt(m)) ∈
Rm
+, where xt(i) = pt(i)/pt−1(i). Before the start of the tth trading day, we decide a port-

folio vector, bt = (bt(1), bt(2), ..., bt(m)) ∈ Rm
+, where bt(i) denotes the weight of the ith

security and ∑m
i=1 bt(i) = 1. After the tth trading day, the daily return is calculated as bt · xt,

and the cumulative return for the n trading days is calculated as ∏n
t=1 bt · xt.
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The objective of OLPS is to maximize the cumulative return for investors. We as-
sume that all securities can be divided into fractional shares that can be traded at their
closing prices on every trading day. These notation and assumptions are common in OLPS
studies [11,13,15–17,36].

A buy-and-hold strategy (BAHb) is a passive strategy in which an investor buys stocks
according to the portfolio vector b on the first day and holds them for the entire period.
The uniform BAH is denoted by BAHU, where U = (1/m, ..., 1/m). A constant rebalanced
portfolio (CRPb) is a strategy that reallocates the wealth of the investor according to the
portfolio vector b on every trading day. In hindsight, the best portfolio vector b∗ for CRP
can be determined as follows:

b∗ = arg max
b∈Rm

+

n

∏
t=1

b · xt

subject to ‖b‖1 = 1.

(1)

Universal portfolios (UPs) [11] asymptotically achieve the performance of b∗ by
dividing its initial wealth among all possible CRPs. Good approximation algorithms can
efficiently implement a UP [37,38]. In this study, BAHU and a UP were used as benchmark
measures of performance.

Passive aggressive mean reversion (PAMR) [15] exploits the single-period mean rever-
sion because it generates the next portfolio vector using xt, the daily returns of stocks in
the portfolio. The PAMR utilizes the passive aggressive online learning algorithm [39] to
generate the next portfolio vector that is mean-revertible and close to the current portfolio
vector; that is,

bt+1 = arg min
b∈Rm

+

1
2
‖b− bt‖2

subject to b · xt ≤ ε

‖b‖1 = 1.

(2)

To benefit from the single-period reversion (b · xt ≤ ε), this strategy seeks a portfolio
vector whose latest return is confined to ε. We set ε to 0.5 as in Li et al. [15].

Another state-of-the-art mean reversion strategy is online moving average reversion
(OLMAR) [16], which is a multi-period mean reversion strategy. Unlike PAMR, the OLMAR
uses a simple moving average (SMA) to generate the next portfolio vector. The SMA is the
arithmetic average of the closing prices. Here, SMAt(w) ∈ Rm

+ denotes the SMA on the tth

day; that is,

SMAt(w) =
1
w

t

∑
i=t−w+1

pi, (3)

where w ∈ Z+ is the window length. The OLMAR produces the next portfolio vector that
is mean-revertible and close to the current portfolio vector; that is,

bt+1 = arg min
b∈Rm

+

1
2
‖b− bt‖2

subject to b · x̃t+1 ≥ ε and ‖b‖1 = 1,

(4)

where ε ∈ R+ is the reversion threshold, and x̃t+1 ∈ Rm
+ is the predicted relative price;

that is,

x̃t+1(w) = SMAt(w)� pt, (5)
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where � represents the Hadamard (element-wise) division. As in Li et al. [16], we set ε to
10 and w to 5.

The other state-of-the-art mean reversion strategy is the transaction cost optimization
(TCO) [17], which aims to perform well even in the presence of non-zero transaction costs.
The TCO does not allow trivial trades to reduce transaction costs. Let b̂t ∈ Rm

+ be the
closing price adjusted portfolio vector on the the tth day, and b̃t+ 1

2
∈ Rm be the proportions

to be reallocated after the tth day. The TCO then uses the predicted relative price to calculate
b̃t+ 1

2
; that is,

b̃t+ 1
2
= η

(
x̃t+1

b̂t · x̃t+1
− 1

m
1 · x̃t+1

b̂t · x̃t+1

)
, (6)

where b̂t = (bt � xt)/(bt · xt), � denotes the Hadamard (element-wise) product, and
η ∈ R+ is a smoothing parameter. The positive elements of b̃t+ 1

2
have above-average

expected returns, and thus their weights will be increased on the (t + 1)th day day, and
vice versa; that is,

bt+1(i) = b̂t(i) +
(
I
[
b̃t+ 1

2
(i) ≥ 0

]
− I
[
b̃t+ 1

2
(i) < 0

])
·max

(∣∣∣b̃t+ 1
2
(i)
∣∣∣− λ, 0

)
, (7)

for all 1 ≤ i ≤ m, where λ ∈ R+ is a trade-off parameter. Only changes larger than λ are
used to determine the next portfolio vector. We set η to 10 and λ to 10× η × γ, where γ
is the transaction cost rate. (Li et al. [17] stated that they set λ to 10× γ. However, their
implementation set λ to 10× η× γ, which produces better results than 10× γ and coincides
with the results of their study.) As the elements of bt+1 may not summed to 1, bt+1 needs
to be normalized; that is,

bt+1 = arg min
b∈Rm

+

‖b− bt+1‖2

subject to ‖b‖1 = 1.
(8)

The TCO calculates the predictive relative prices using either the single-period or the
multi-period mean reversion property. The TCO-1 uses the daily returns, whereas TCO-2
utilizes the moving average of closing prices; that is,

x̃t+1 =

{
1� xt in TCO-1
SMAt(5)� xt in TCO-2.

(9)

3. Methods

We used a steady-state hybrid genetic algorithm (HGA), whose pseudocode is given
in Algorithm 1. Each individual is represented by a real-valued chromosome, which is a
portfolio vector b ∈ Rm

+. The chromosome is a point in the m-dimensional simplex ∆m,
specifying the proportions of a portfolio with m assets. We set the population size to 100
and generated the initial population by sampling 100 chromosomes uniformly from ∆m.
The population of candidate portfolio vectors evolved through a hybrid genetic framework.
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Algorithm 1 The outline of our HGA.

1: Create an initial population P
2: for t← 2 to n do . n is the last trading day
3: FitnessUpdate(P, xt−1, xt)
4: (parent1, parent2)← (Select(P, xt), Select(P, xt))
5: (offspring1, offspring2)← Crossover(parent1, parent2)
6: Mutation(offspring1, offspring2)
7: offspring← LocalSearch(offspring1, offspring2, xt)
8: Replace(P, offspring)

3.1. Fitness Update

Financial returns are assumed to be log-normal [40], and the objective of the portfolio
optimization is often set to maximize the expected log return [18,41]. Therefore, we used
the expected relative log return as the fitness of a chromosome. The benchmark of the
relative log return is a uniform portfolio vector u = (1/m, ..., 1/m), which has the average
return of all assets in the portfolio.

The uniform portfolio vector u also provides a baseline indicating whether each
chromosome is mean-revertible on the tth day. Let c ∈ ∆m be a chromosome and xt−1 be
the relative price vector on the (t− 1)th day. If the return of c is less than that of u, i.e.,
c · xt−1 < u · xt−1, c is mean-revertible on the tth day because its recent performance is
below the benchmark; otherwise, it is trend following on the tth day.

To effectively exploit the mean reversion property, we maintain two versions of fitness
for a chromosome: the mean-revertible fitness and trend-following fitness. Each fitness is
the expected relative log return parameterized by the mean and standard deviation, which
are initialized to 0. The mean-revertible fitness is used to select a promising individual for
a crossover, and the trend-following fitness is used to find an undesirable individual that
needs to be replaced.

When xt is revealed, log c·xt
u·xt

incrementally updates the parameters of the fitness, mean-
revertible chromosomes update their own mean-revertible fitness, and trend-following
chromosomes update their own trend-following fitness. The pseudocode of the fitness-
updating procedure is given in Algorithm 2. Here, µm(c) and σm(c) are the mean and
standard deviation of the mean-revertible chromosome c, and µn(c) and σn(c) are those of
the trend-following chromosome c.

Algorithm 2 FitnessUpdate (P, xt−1, xt).

1: for each c ∈ P do
2: rtn← log c·xt

u·xt
. relative log return

3: if c · xt−1 < u · xt−1 then . for mean-revertible chromosomes
4: Update µm(c), σm(c) incrementally using rtn
5: else . for trend-following chromosomes
6: Update µn(c), σn(c) incrementally using rtn

3.2. Selection

For the genetic algorithm, the selection is the source of exploitation [42], which is the
ability of the algorithm to move toward the direction of desired improvement [43]. After
each tth trading day, we select two prominent mean-revertible chromosomes as parents
for later breeding. Only chromosomes that produced below-average returns on the tth
day were considered. The fitness of the chromosome is its expected relative log return
when it is mean-revertible. To obtain the mean-revertible fitness of a chromosome c, we
sample a relative log return from N (µm(c), σ2

m(c)), using the Box-Muller transform [44].
The pseudocode of the selection function is given in Algorithm 3.
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Algorithm 3 Select (P, xt).

1: best← −∞ . best stores the best fitness
2: for each c ∈ P do
3: if c · xt < u · xt then . test whether c is mean-revertible
4: Sample rtn ∼ N (µm(c), σ2

m(c))
5: if rtn > best then
6: (best, b)← (rtn, c) . b stores the fittest chromosome
7: if best = −∞ then
8: Randomly sample b ∼ P . all chromosomes are trend following
9: return b

3.3. Crossover and Mutation

A crossover combines two parents to create new offspring. We used a uniform
crossover in which each gene was inherited from either parent with equal probability.
Figure 1 shows an example of a uniform crossover, which results in two offspring. The
crossover is exploitative because it recombines the material of promising parents; however,
it is also explorative because it generates new offspring [42].

After a crossover, each offspring undergoes a mutation. The mutation rate was set
to µ, and the mutated gene was multiplied by (1 + β) or (1− β). The multiplicand was
randomly selected with the same probability. We set µ to 0.05 and β to 0.5. A mutation can
also be seen as both explorative and exploitative because it introduces new offspring in an
unbiased manner while conserving most of the original chromosome [42].

AAPL ABC AMD AMZN CSCO EA EBAY FOX GE MMMPortfolio

Random

numbers
0.25 0.11 0.47 0.43 0.35 0.100.77 0.66 0.94 0.64

Parent1 0.03 0.28 0.21 0.12 0.03 0.060.15 0.02 0.09 0.01

Parent2 0.08 0.11 0.11 0.10 0.04 0.230.16 0.09 0.08 0.01

Offspring1 0.03 0.28 0.21 0.12 0.03 0.060.16 0.09 0.08 0.01

Offspring2 0.08 0.11 0.10 0.10 0.04 0.230.15 0.02 0.09 0.01

Figure 1. Example of a uniform crossover. Each gene was randomly selected from one of the
corresponding genes of the parents. If a random number is less than 0.5, Offspring 1 inherits a gene
from Parent 1; otherwise, it inherits a gene from Parent 2. Offspring 2 inherits genes from the opposite
parent of Offspring 1.
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3.4. Local Search Heuristic

The GA can explore a wide range of search spaces using explorative operators when
the hyperparameters are appropriately set. However, it is weak in fine-tuning capability
near the local or global optima, which can be alleviated by HGA [45]. Thus, we incorporated
a local search heuristic into the GA to improve the fine-tuning capability.

We first generated two additional chromosomes by taking the inverse of each gene
in the two offspring. We then manipulated each gene of the two offspring and the two
new chromosomes. On the tth day, each ith gene in the four chromosomes is multiplied by
(1 + β) if the return of the ith stock is below average; otherwise, it is multiplied by (1− β).
We set β to 0.5.

This heuristic makes the chromosomes perform worse on the tth day, which strength-
ens the mean reversion property on the next day. Each chromosome c is normalized such
that it belongs to the simplex—that is, c = c/‖c‖1—and the best mean-revertible chromo-
some is chosen for replacement. The pseudocode of the local search heuristic is given in
Algorithm 4.

Algorithm 4 LocalSearch (offspring1, offspring2, xt).

1: avg← ∑m
i=1 xt(i)/m . avg stores the average return

2: for i← 1 to m do
3: chromosome1(i)← o f f spring1(i)−1 . c(i) denotes the ith gene
4: chromosome2(i)← o f f spring2(i)−1

5: C ← {offspring1, offspring2, chromosome1, chromosome2}
6: for i← 1 to m do
7: if xt(i) < avg then
8: for each c ∈ C do
9: c(i)← c(i) ∗ (1 + β)

10: else
11: for each c ∈ C do
12: c(i)← c(i) ∗ (1− β)

13: for each c ∈ C do
14: c = c/‖c‖1 . normalization
15: b← argminc∈Cc · xt . select the best mean-revertible chromosome
16: return b

3.5. Replacement

The mean reversion property expects the current best strategy to fail. Therefore, we
replace the best trend-following chromosome with the best mean-revertible chromosome.
On the tth day, we choose an individual only from the chromosomes that produce above-
average returns. The fitness of a chromosome is its expected relative log return when it
is trend following. To obtain the trend-following fitness of a chromosome c, we sample a
relative log return from N (µn(c), σ2

n(c)). The pseudocode of the replacement procedure is
given in Algorithm 5.
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Algorithm 5 Replace (P, offspring).

1: best← −∞ . best stores the best fitness
2: for each c ∈ P do
3: if c · xt ≥ u · xt then . test whether c is trend following or not
4: Sample rtn ∼ N (µn(c), σ2

n(c))
5: if rtn > best then
6: (best, b)← (rtn, c) . b stores the best trend-following chromosome
7: if best = −∞ then
8: Randomly sample b ∼ P . all chromosomes are mean-revertible
9: P← (P \ {b}) ∪ {offspring}

3.6. Genetic Mean Reversion Strategy

Our strategy starts with a uniform portfolio vector—that is, b1 = (1/m, ..., 1/m). After
the tth day, a new portfolio vector is generated by combining the previous portfolio vector
with the most promising mean-revertible vector in the population P; that is,

bt+1 = (1− α)bt + α arg min
c∈P

c · xt, (10)

where α is a user-defined parameter that prevents excessive trading. We set α to 0.0005
γδ ,

where γ is the transaction cost rate and δ = ‖bt − c‖1. As γδ is proportional to the actual
transaction cost of changing the portfolio vector from bt to c, α is set adaptively to reduce
the transaction costs. We set α to 1 when there is no transaction cost.

Our hybrid genetic framework maintains profitable individuals with the mean re-
version property and tries to achieve higher returns than the benchmarks by selecting
the most mean-revertible portfolio vector according to the market conditions. The re-
sults of our strategy are compared with those of previous state-of-the-art mean reversion
strategies [15–17].

4. Results
4.1. Data

We used the historical daily prices of the companies in the S&P 500 from 2000 to 2017.
This dataset contains 389 stocks with price information for the entire period. The dataset
was used in our preliminary study [46], and generated in the following way: the stocks
were sorted in alphabetical order based on their ticker symbols, and 10 portfolios were
generated sequentially in that order. To the best of our knowledge, this is the largest dataset
used in an OLPS study. Our dataset is summarized in Table 1. (The dataset in .mat and .csv
formats is available at the following address: https://github.com/uramoon/mr_dataset
(Accessed on: 13 February 2022). A detailed description of the dataset is provided in the
README file.) Appendix A presents the experimental results on the single portfolio of all
389 stocks.

We also tested our strategy using traditional datasets, which have been widely used
by many researchers [12,14,15,36,47]. However, some of these datasets do not provide the
criteria for stock selection [15] and have abnormal patterns that can be easily exploited
using mean reversion strategies. Therefore, although we mainly used our own datasets, we
also provide the details of traditional datasets and the experimental results using them in
Appendix B.

https://github.com/uramoon/mr_dataset
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Table 1. Summary of the S&P 500 dataset.

Name Period Days Stocks a Max (xt(j)) b Min (xt(j)) c

SP500(0) 2000–2017 4527 39 1.6600 0.3921
SP500(1) 2000–2017 4527 39 1.5782 0.5494
SP500(2) 2000–2017 4527 39 1.6296 0.5402
SP500(3) 2000–2017 4527 39 1.6037 0.4133
SP500(4) 2000–2017 4527 39 2.0236 0.4844
SP500(5) 2000–2017 4527 39 1.5425 0.3948
SP500(6) 2000–2017 4527 39 1.8698 0.5873
SP500(7) 2000–2017 4527 39 1.7545 0.3195
SP500(8) 2000–2017 4527 39 1.5605 0.4096
SP500(9) 2000–2017 4527 38 2.0101 0.3811
a The number of stocks in the portfolio. b The highest daily return on a stock in the portfolio. c The lowest daily
return on a stock in the portfolio.

4.2. Experimental Setup

The genetic mean reversion (GMR) strategy was written in C#, and the results of
the GMR were averaged over 100 independent runs for all experiments. The averaged
results can be implemented in the real market by splitting the initial wealth evenly among
the 100 runs and prohibiting the transfer of money between runs [38]. When there are
transaction costs, the average performance can be improved by offsetting trades among the
runs [37].

For the other strategies, we used the implementations of Li et al. [16,17,48]. Here,
BAHU and UP were used as benchmark measures of performance. We also compared our
strategy with the state-of-the-art mean reversion strategies: PAMR, OLMAR, TCO-1, and
TCO-2 [15–17].

Even if there is no commission, traders incur an implicit cost in the difference between
the actual transaction price and the benchmark price [49]. To incorporate all expenses
that can be incurred in actual trading, we used the proportional commission model [36]
in which an investor pays at a rate of γ ∈ [0, 1] for each buy and each sell such that the
daily return on the tth day is (bt · xt)× (1− γ · ‖bt − b̂t−1‖1). Here, b̂t−1 is the closing
price adjusted portfolio vector (i.e., b̂t−1 = (bt−1 � xt−1)/(bt−1 · xt−1)), and γ is set to
0%, 0.25%, and 0.5%, which are reasonable transaction cost rates for OLPS [17,50]. The
transaction on the tth day is profitable only when the excess profit from the transaction
(bt · xt − b̂t−1 · xt) outweighs the transaction costs (γ · ‖bt − b̂t−1‖1).

Cumulative wealth at the end of the trading period is our main performance criterion.
The cumulative wealth measures the wealth of a trading strategy with an initial wealth of 1.
We also calculated the average daily turnover ratio (0.5 · ‖bt − b̂t−1‖1) for each strategy,
which denotes the mean ratio of assets that have been replaced on every trading day. As
the transaction costs depend on the turnover ratio, it is desirable to avoid unnecessary
transactions.

We also compare the results of GMR with those of BAHU in terms of annualized
percentage yield (APY), annualized standard deviation (ASD), Sharpe ratio (SR), the maxi-
mum drawdown (MDD), alpha (α), t-statistics, and p-value. The APY is annual compound
return, and the ASD is the standard deviation of daily returns multiplied by the squared
root of the number of annual trading days. The SR measures the risk-adjusted performance
of a trading strategy compared to a risk-free asset, i.e., SR = (APY− R f )/ASD, where R f
is the risk-free return (U.S. Treasury bill rate). The MDD is the maximum observed loss
from a peak to a valley, which measures the downside risk over a certain period. α is the
intercept from the market model regression [51] that measures the excess daily return of
GMR against BAHU. The t-statistic is the test statistic for the null hypothesis that the α is
zero [52], and the p-value is computed from the t-statistic. A low p-value indicates that we
can reject the null hypothesis.
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4.3. Cumulative Wealth without Transaction Costs

We first conducted experiments to test the GMR strategy in the absence of the trans-
action costs. As transaction costs were not considered, it would be extremely difficult
to achieve a similar performance in the real market. Table 2 lists the cumulative wealth
achieved using various strategies. The results of BAHU show that there is a strong upward
trend in all datasets; the simple BAHU increased its wealth by over 6-fold on every dataset.
The other benchmark UP improved the performance of BAHU overall with a small turnover
ratio, but achieved less than half the wealth of BAHU on the SP500(6).

Table 2. Cumulative wealth achieved by various strategies on the S&P 500 datasets. The transaction
costs were not considered. The best values are shown in bold.

Data
Benchmarks Previous Mean Reversion Strategies

GMR
BAHU UP PAMR OLMAR TCO-1 TCO-2

SP500(0) 9.44 13.45 1.52 0.18 2.14 2.29 28.77
SP500(1) 8.31 9.80 5.45 3.96 11.68 4.33 56.51
SP500(2) 6.97 8.54 198.24 176.03 232.07 353.57 62.35
SP500(3) 6.68 9.15 103.52 3564.62 230.16 189.85 46.25
SP500(4) 7.54 8.67 95.58 33.24 93.28 84.79 54.40
SP500(5) 6.39 7.76 162.52 169.98 191.22 316.48 39.86
SP500(6) 24.29 11.15 9.48 4.46 12.80 9.93 55.05
SP500(7) 7.92 11.95 16.24 14.67 40.62 73.39 58.35
SP500(8) 8.90 12.39 154.65 81.66 88.85 22.59 160.27
SP500(9) 6.49 9.16 101.82 103.66 52.32 155.14 103.03

Average 9.29 10.20 84.90 415.25 95.51 121.24 66.48
Turnover * N/A 0.0159 0.8261 0.6191 0.5496 0.3333 0.5892
Win ratio ** N/A N/A 0.7 0.7 0.8 0.7 1.0
* Average daily turnover ratio. ** The odds of winning against both benchmarks.

Although previous mean reversion strategies largely outperformed the benchmarks
on many datasets, they showed a poor performance on the SP500(0), SP500(1), and SP500(6),
all of which failed to beat BAHU on these three datasets, except for TCO-1, which per-
formed better than BAHU on SP500(1). Although the OLMAR produced the best average
performance by achieving tremendous wealth on SP500(3), it lost 82% of its wealth on
SP500(0). In general, the multi-period mean reversion strategies (OLMAR and TCO-2)
worked better than their single-period counterparts (PAMR and TCO-1) in terms of the
average wealth and turnover ratio.

We also tested whether the results from GMR are significantly better than those from
BAHU. Table 3 presents further details on the performance of both strategies. Although the
GMR had higher risks (ASDs and MDDs) than BAHU, it exhibited higher returns (APYs)
and risk-adjusted returns (SRs) on all datasets. The p-values indicate that the excess returns
(α) of GMR against BAHU are statistically significant on the eight datasets.

Our method produced the best results on the four datasets SP500(0), SP500(1), SP500(6),
and SP500(8), and outperformed the benchmarks on all datasets. To work well on unseen
datasets, it is desirable to produce stable results on many different datasets. It is also
worth noting that it showed the best results on the three datasets where the previous
strategies failed to outperform the benchmarks. Although the average performance of
GMR was below the previous strategies, its win ratio was the highest among the mean
reversion strategies.
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Table 3. APY, ASD, SR, MDD, and α, t-statistic, and p-value of GMR on the S&P 500 datasets. The
transaction costs were not considered, and the p-value less than 0.05 are denoted with an asterisk.

Data

BAHU GMR

APY ASD SR MDD APY ASD SR MDD α
t-

Statistics
p-

Value

SP500(0) 0.1328 0.2092 0.5588 0.5503 0.2052 0.3158 0.5994 0.6921 0.0003 1.4095 0.0794
SP500(1) 0.1249 0.1979 0.5506 0.4695 0.2512 0.2875 0.8186 0.5313 0.0004 2.7085 0.0034 *
SP500(2) 0.1139 0.1940 0.5050 0.4850 0.2581 0.2601 0.9313 0.4606 0.0005 3.6514 0.0001 *
SP500(3) 0.1113 0.2002 0.4766 0.5211 0.2374 0.3030 0.7310 0.6308 0.0005 2.5172 0.0059 *
SP500(4) 0.1188 0.2123 0.4847 0.6277 0.2486 0.3013 0.7723 0.5351 0.0005 2.6804 0.0037 *
SP500(5) 0.1085 0.2143 0.4321 0.5838 0.2272 0.3169 0.6668 0.6203 0.0004 2.4057 0.0081 *
SP500(6) 0.1939 0.2643 0.6735 0.6226 0.2494 0.3460 0.6749 0.6455 0.0004 1.5566 0.0598
SP500(7) 0.1218 0.2067 0.5124 0.5013 0.2535 0.3899 0.6093 0.6403 0.0006 2.0393 0.0207 *
SP500(8) 0.1292 0.1911 0.5927 0.4974 0.3258 0.3546 0.8740 0.6797 0.0007 2.8101 0.0025 *
SP500(9) 0.1095 0.2007 0.4662 0.5566 0.2937 0.3323 0.8360 0.4898 0.0006 3.1257 0.0009 *

4.4. Cumulative Wealth with Transaction Costs

We tested the proposed strategy in the presence of transaction costs. The experimental
results with reasonable transaction costs suggest how well each strategy will be applied in
the real market. Table 4 shows the cumulative wealth achieved by various strategies when
the transaction cost rate is 0.25%. The performance of BAHU barely changed because it
pays the transaction costs only on the first day. However, the performance of UP was no
better than BAHU on most datasets; the transaction costs of 0.25% outweighed the benefits
of the asset reallocation.

Previous mean reversion strategies also did not perform well with transaction costs of
0.25%. The PAMR and OLMAR spent all their money on transaction costs because they
did not consider the transaction costs when changing the portfolio vectors. The TCOs
reduced their trading volumes by less than half, but failed to outperform the benchmarks
on most datasets; TCO-2 performed the best on two datasets, but failed to outperform the
benchmarks on the other eight datasets, and TCO-1 performed worse than the benchmarks
on all datasets.

Table 4. Cumulative wealth achieved by various strategies on the S&P 500 datasets. The transaction
cost rate was 0.25%. The best values are shown in bold.

Data
Benchmarks Previous Mean Reversion Strategies

GMR
BAHU UP PAMR OLMAR TCO-1 TCO-2

SP500(0) 9.41 9.18 0.00 0.00 0.01 0.04 25.73
SP500(1) 8.29 6.88 0.00 0.00 0.05 0.25 18.82
SP500(2) 6.95 5.92 0.00 0.00 1.07 5.19 9.19
SP500(3) 6.66 6.33 0.00 0.00 0.88 4.98 11.41
SP500(4) 7.52 6.04 0.00 0.00 0.43 1.55 13.38
SP500(5) 6.37 5.48 0.00 0.00 0.45 7.22 7.06
SP500(6) 24.23 7.69 0.00 0.00 0.07 0.62 24.00
SP500(7) 7.90 8.23 0.00 0.00 0.15 1.39 23.54
SP500(8) 8.88 8.69 0.00 0.00 0.09 0.19 18.96
SP500(9) 6.47 6.44 0.00 0.00 0.17 13.10 11.07

Average 9.27 7.09 0.00 0.00 0.34 3.45 16.32
Turnover * N/A 0.0159 0.8271 0.6206 0.2057 0.1396 0.0027
Win ratio ** N/A N/A 0.0 0.0 0.0 0.2 0.9
* Average daily turnover ratio. ** The odds of winning against both benchmarks.
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Similar to the previous mean reversion strategies, the transaction costs degraded the
performance of the GMR. However, it achieved relatively good results by significantly
reducing its turnover ratio and showed the best results on seven datasets, achieving the
highest average earning and a win ratio of 0.9.

Table 5 compares GMR with BAHU when the transaction cost rate was set to 0.25%.
Again, GMR had higher risks than BAHU, but produced better annual returns and risk-
adjusted returns on all datasets except SP500(5). On the nine datasets, GMR had positive
excess daily returns, but they were statistically significant on three datasets in the presence
of transaction costs.

We also tested the performance of each strategy with transaction costs of 0.5%. Table 6
lists the cumulative wealth achieved by the various strategies. The performance of BAHU
barely changed. At this transaction cost rate, the UP and the previous mean reversion
strategies did not exceed BAHU on all datasets. However, the GMR outperformed the
benchmarks on all datasets by maintaining a good population of portfolio vectors and
adaptively reducing the turnover ratio. Table 7 shows that the risk-adjusted returns of
GMR are overall higher than those of BAHU with transaction costs of 0.5%.

Table 5. APY, ASD, SR, MDD, and α, t-statistic, and p-value of GMR on the S&P 500 datasets. The
transaction cost rate was 0.25%, and the p-value less than 0.05 are denoted with an asterisk.

Data

BAHU GMR

APY ASD SR MDD APY ASD SR MDD α
t-

Statistics
p-

Value

SP500(0) 0.1326 0.2092 0.5580 0.5503 0.1977 0.2556 0.7113 0.5253 0.0002 2.0164 0.0219 *
SP500(1) 0.1247 0.1979 0.5498 0.4695 0.1771 0.2261 0.7129 0.4674 0.0002 2.3986 0.0082 *
SP500(2) 0.1137 0.1941 0.5041 0.4850 0.1312 0.2117 0.5444 0.5148 0.0001 0.9636 0.1677
SP500(3) 0.1111 0.2002 0.4757 0.5211 0.1448 0.2392 0.5391 0.6147 0.0001 1.2266 0.1100
SP500(4) 0.1186 0.2123 0.4839 0.6277 0.1550 0.2657 0.5236 0.6349 0.0002 1.1554 0.1240
SP500(5) 0.1084 0.2143 0.4314 0.5838 0.1147 0.2460 0.4016 0.6155 0.0000 0.3240 0.3730
SP500(6) 0.1937 0.2643 0.6728 0.6226 0.1931 0.2595 0.6830 0.6015 0.0001 0.9534 0.1702
SP500(7) 0.1217 0.2067 0.5116 0.5013 0.1918 0.2873 0.6121 0.5069 0.0003 1.6460 0.0499 *
SP500(8) 0.1290 0.1911 0.5918 0.4974 0.1776 0.2648 0.6106 0.5424 0.0002 1.1534 0.1244
SP500(9) 0.1093 0.2008 0.4654 0.5566 0.1429 0.2572 0.4937 0.5657 0.0001 0.9977 0.1592

Table 6. Cumulative wealth achieved by various strategies on the S&P 500 datasets. The transaction
cost rate was 0.5%. The best values are shown in bold.

Data
Benchmarks Previous Mean Reversion Strategies

GMR
BAHU UP PAMR OLMAR TCO-1 TCO-2

SP500(0) 9.39 6.43 0.00 0.00 0.00 0.03 24.14
SP500(1) 8.27 4.83 0.00 0.00 0.09 0.46 17.91
SP500(2) 6.93 4.19 0.00 0.00 0.86 4.60 8.88
SP500(3) 6.65 4.45 0.00 0.00 3.22 4.13 10.29
SP500(4) 7.51 4.24 0.00 0.00 0.36 2.29 12.80
SP500(5) 6.36 3.82 0.00 0.00 0.14 1.99 6.84
SP500(6) 24.17 5.30 0.00 0.00 0.20 1.35 24.82
SP500(7) 7.88 5.78 0.00 0.00 0.11 1.54 23.76
SP500(8) 8.86 6.20 0.00 0.00 0.05 0.11 18.59
SP500(9) 6.46 4.50 0.00 0.00 0.12 4.76 9.65

Average 9.25 4.97 0.00 0.00 0.51 2.13 15.77
Turnover * N/A 0.0159 0.8281 0.6221 0.0920 0.0609 0.0014
Win ratio ** N/A N/A 0.0 0.0 0.0 0.0 1.0
* Average daily turnover ratio. ** The odds of winning against both benchmarks.
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Table 7. APY, ASD, SR, MDD, and α, t-statistic, and p-value of GMR on the S&P 500 datasets. The
transaction cost rate was 0.5%, and the p-value less than 0.05 are denoted with an asterisk.

Data

BAHU GMR

APY ASD SR MDD APY ASD SR MDD α
t-

Statistics p-Value

SP500(0) 0.1325 0.2092 0.5572 0.5503 0.1935 0.2458 0.7225 0.5235 0.0002 2.1368 0.0163 *
SP500(1) 0.1245 0.1979 0.5489 0.4695 0.1739 0.2179 0.7249 0.4542 0.0002 2.6515 0.0040 *
SP500(2) 0.1136 0.1941 0.5033 0.4850 0.1290 0.2052 0.5512 0.5133 0.0001 1.0541 0.1460
SP500(3) 0.1110 0.2002 0.4749 0.5211 0.1382 0.2307 0.5304 0.5937 0.0001 1.1308 0.1291
SP500(4) 0.1185 0.2123 0.4831 0.6277 0.1522 0.2598 0.5245 0.6290 0.0002 1.1473 0.1257
SP500(5) 0.1082 0.2144 0.4306 0.5838 0.1128 0.2333 0.4152 0.6057 0.0000 0.3376 0.3679
SP500(6) 0.1936 0.2644 0.6721 0.6226 0.1953 0.2546 0.7049 0.6136 0.0001 0.9649 0.1673
SP500(7) 0.1215 0.2068 0.5108 0.5013 0.1924 0.2811 0.6280 0.5003 0.0003 1.7297 0.0419 *
SP500(8) 0.1288 0.1911 0.5909 0.4974 0.1763 0.2548 0.6295 0.5469 0.0002 1.2351 0.1084
SP500(9) 0.1092 0.2008 0.4646 0.5566 0.1342 0.2454 0.4823 0.5727 0.0001 0.8436 0.1995

4.5. Comparisons of GA and Random Sampling

We compare a random sampling (RS) with a GA to examine how much the genetic
framework contributes to the quality of the solutions. An RS is a population-based heuristic
that produces a solution through random sampling. Instead of selecting two promising
parents from the population, two individuals were uniformly sampled from the simplex.
These individuals are processed through a local search, and the best solution replaces a
random individual of the population. The RS results were averaged over 100 independent
runs. The RS started with the same initial population as the GMR because it used the same
random seed numbers as the GMR. Figure 2 presents the experimental results. The GMR
outperformed the RS on every dataset, indicating that the GA successfully evolved the
population of portfolio vectors.

4.6. Local Search Heuristic

The GMR embeds a local search heuristic to improve the fine-tuning capability of the
GA. To determine the effects of the local search, we tested the performance of GMR when
not employing the local search heuristic. We averaged the results of the experiments over
100 independent runs using the same random seed numbers as the original GMR. Figure 3
shows the results of the experiments. The local search heuristic improved the performance
of our genetic framework for every dataset.

4.7. Parameter Sensitivity

Strategies that are highly sensitive to their parameters are not likely to perform well on
unseen data. Experiments were conducted to determine the effect of the GMR parameters
on the experimental results. We varied µ, α, and β, which mutation, portfolio vector
calculation, and local search, respectively. For simplicity, we fixed the rate of transaction
costs to 0.5% and averaged the results of the experiments over 100 independent runs.
Figure 4 shows the experimental results. Overall, the value of each parameter did not
significantly affect the experimental results. As OLPS is used for online algorithms, we
deliberately did not fine-tune the parameters.
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Figure 2. Comparisons of GA and RS. (a) The rate of transaction costs: 0%; (b) The rate of transaction
costs: 0.25%; (c) The rate of transaction costs: 0.5%.
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Figure 3. Cumulative wealth with and without local search heuristic. (a) The rate of transaction costs:
0%; (b) The rate of transaction costs: 0.25%; (c) The rate of transaction costs: 0.5%.
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Figure 4. Cumulative wealth according to the values of the parameters. The values we used for
the GMR were centered on all graphs. The transaction cost rate is 0.5%. (a) µ: Probability of a gene
mutation; (b) α: Parameter used for portfolio vectors; (c) β: Parameter used in the local search.

5. Conclusions

In this paper, we proposed a mean reversion strategy that evolves a population of
portfolio vectors through the HGA. To exploit the mean reversion property, a local search
heuristic was devised and embedded in the GA. The experimental results obtained for the
S&P500 datasets revealed that our genetic framework and local search heuristic were able
to improve the performance of our strategy.
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We also investigated the performance of various mean reversion strategies on the
S&P500 datasets. When there were no transaction costs, previous mean reversion strategies
performed extremely well. However, they showed poor results with respect to the transac-
tion costs. As our strategy limited the turnover ratio to an appropriate level based on the
transaction costs, it outperformed the benchmarks on most of the datasets.

In the future, it would be worthwhile to develop a new strategy that incorporates
both trend following and mean reversion disciplines. On the SP500(6) dataset, BAHU
outperformed most of the mean reversion strategies; it might therefore, be helpful to adopt
a trend following strategy by identifying the market conditions.
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Appendix A. Scalability of GMR

We conducted experiments to test whether GMR scales well on the number of securities
in a portfolio. The GMR was compared to benchmark strategies using a portfolio consisting
of 389 securities in the S&P 500 datasets. Figure A1 shows that GMR can handle a large
number of securities in the portfolio.
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Figure A1. Cumulative wealth on the portfolio of 389 stocks according to the rate of transaction costs.

Appendix B. Experimental Results on Traditional Datasets

Appendix B.1. Traditional Datasets

We used traditional datasets that have been widely applied by many
researchers [12,14,15,36,47]. Table A1 summarizes these datasets. Some of these datasets
strongly favor mean reversion strategies. (The company “kin_ark” in the NYSE datasets

https://github.com/uramoon/mr_dataset
https://github.com/uramoon/mr_dataset
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has an exceptionally strong mean reversion tendency such that holding that company only
when its price had fallen in the previous day increased the initial wealth over two-billionfold
in NYSE(O) and nineteen-thousandfold in NYSE(N). However, holding “kin_ark” over the
entire period increased the initial wealth 2.05-fold for NYSE(O) and 4.13-fold for NYSE(N).)
Refer to Li et al. [15] for details of the datasets.

Table A1. Summary of traditional datasets.

Name Period Days Stocks a Max (xt(j)) b Min (xt(j)) c

NYSE(O) 1962–1984 5651 36 1.3529 0.7500
NYSE(N) 1985–2010 6431 23 1.8146 0.4545
TSE 1994–1998 1259 88 1.9392 0.3685
MSCI 2006–2010 1043 24 1.1663 0.8274
DJIA 2001–2003 507 30 1.2012 0.4027
SP500 1998–2003 1276 25 1.2439 0.6976
a The number of stocks in the portfolio. b The highest daily return on a stock in the portfolio. c The lowest daily
return on a stock in the portfolio.

Appendix B.2. Experimental Results

Experiments were conducted to test the GMR using traditional datasets. We inten-
tionally did not change the parameter values used in the main text to avoid an overfitting.
Table A2 shows the performance of the GMR with transaction costs of 0%, 0.25%, and
0.5%. When there were no transaction costs, the GMR outperformed the benchmarks on all
datasets. At transaction costs of 0.25%, GMR outperformed BAHU, whereas UP performed
the best on many datasets. At transaction costs of 0.5%, however, the GMR outperformed
both benchmarks overall.

Table A2. Cumulative wealth on traditional datasets. The best values are shown in bold.

Data
γ = 0% γ = 0.25% γ = 0.5%

BAHU UP GMR BAHU UP GMR BAHU UP GMR

NYSE(O) 14.50 26.68 1.30 × 1012 14.46 17.59 16.74 14.42 11.36 15.61
NYSE(N) 18.06 31.49 3.06 × 105 18.01 20.56 19.46 17.97 13.31 18.69
TSE 1.61 1.60 3.64 1.61 1.41 1.14 1.60 1.24 1.31
MSCI 0.91 0.92 17.99 0.90 0.87 0.94 0.89 0.81 0.92
DJIA 0.76 0.81 0.83 0.76 0.78 0.75 0.76 0.75 0.75
SP500 1.34 1.65 2.37 1.34 1.50 1.41 1.33 1.37 1.38
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