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Abstract: With the rapid advancements of the internet of things (IoT), several applications have
evolved with completely dissimilar structures and requirements. However, the fifth generation
of mobile cellular networks (5G) is unable to successfully support the dissimilar structures and
requirements. The sixth generation of mobile cellular networks (6G) is likely to enable new and
unidentified applications with varying requirements. Therefore, 6G not only provides 10 to 100 times
the speed of 5G, but 6G can also provide dynamic services for advanced IoT applications. However,
providing security to 6G networks is still a significant problem. Therefore, in this paper, a hybrid
image encryption technique is proposed to secure multimedia data communication over 6G networks.
Initially, multimedia data are encrypted by using the proposed model. Thereafter, the encrypted data
are then transferred over the 6G networks. Extensive experiments are conducted by using various
attacks and security measures. A comparative analysis reveals that the proposed model achieves
remarkably good performance as compared to the existing encryption techniques.

Keywords: internet of things; e-healthcare; hyper-chaotic map; 6G; 5G

MSC: 68-04

1. Introduction

Motivated by the higher requirements of several applications, internet of things (IoT)
networks are growing at a rapid rate. Due to higher demands of bandwidth and resources,
5G networks are unable to fulfill the requirements of ubiquitous connectivity, wide coverage,
significantly high capacity, etc., needed by IoT devices. Therefore, to achieve the real-time
processing of massive data of IoT devices, 6G cellular networks would be used. However,
providing security to 6G-enabled IoT networks is still an open area of research [1–3].

In 6G enabled IoT networks, massive amounts of multimedia data will be transferred
in every single second. These massive data will be communicated over public 6G cellular
networks [4,5]. Therefore, these data are prone to various security threats. There are other
challenges that exist while transferring e-healthcare data over the network. As one might
imagine, bringing so many data together and using them to make decisions is not without
its challenges. Fragmented data, ever-changing data, privacy/security regulations, and

Mathematics 2022, 10, 1071. https://doi.org/10.3390/math10071071 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10071071
https://doi.org/10.3390/math10071071
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-4981-4657
https://orcid.org/0000-0002-9925-112X
https://orcid.org/0000-0002-7277-4377
https://doi.org/10.3390/math10071071
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10071071?type=check_update&version=1


Mathematics 2022, 10, 1071 2 of 16

patient expectations are four of the primary data challenges facing the healthcare industry
today. In this paper, to secure such data, we have considered the use of hyper-chaotic
maps to encrypt the multimedia data [6–8]. Thus, the encrypted data will be transferred
over the public 6G network, and also the same encrypted data will be stored on a cloud
server. Recently, many image encryption techniques have been proposed to provide secure
communication of multimedia data [9].

Figure 1 shows the proposed 6G-enabled secure IoT framework for multimedia ap-
plications. Initially, data will be collected at the perception layer by different kinds of IoT
sensors. The proposed encryption algorithm is applied to encrypt the sensed data. There-
after, the encrypted multimedia data are then transmitted over the 6G public networks
to the data processing and storage layer for further processing. At the network layer, the
different applications and users can only retrieve the extracted data if they have the exact
secret key. If the secret key is wrong, even by a single bit, then the proposed model returns
completely noisy data without any kind of statistical information about the actual data.
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The main contributions of this paper are as follows:

1. We develop a hybrid technique to encrypt the confidential data related to e-healthcare.
2. The hyper-chaotic method and zero-watermarking techniques along with the Rivest–

Shamir–Adleman (RSA) algorithm are hybridized to encrypt the data.
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3. The proposed technique is used to secure multimedia data communications over
6G networks.

The remaining paper is organized as follows: A literature review is presented in Section 2.
Section 3 discusses the proposed model. Section 4 presents the experimental analysis.

2. Literature Review

There are various multimedia data that are used for sharing over networks. Images
play an important role in various fields, such as healthcare, agriculture, science, and
engineering. Healthcare images contain some sensitive information or data related to
patient privacy. Hence, there is several security breaching attacks that can affect the secrecy
of images [11,12]. Therefore, to prevent these attacks, there are various security algorithms
that can be applied.

In [13], Y.Ding et al. implemented deep learning-based biomedical image encryption
techniques along with a cycle generative adversarial network (CGAN) were used to en-
crypt the images. In [14], Wang and Zhang designed a GPU-accelerated homomorphism
encryption technique for obtaining faster results with encryption techniques. In [15], Liu
et al. discussed a verifiable multi-keyword search (VMKS) encryption technique. For
biomedical images, it generated an anonymous key. To scramble electronic health records,
a convergence key was also utilized.

In [16], Hadded et al. used joint watermarking-encryption-JPEG-LS (JJL) for healthcare
data. For encryption, bit substitution watermarking modulation with JPEG-LS was also
used. In [17] Qiu et al. utilized a secure communication model by using a selective
encryption technique (SET) combined with fragmentation and dispersion.

In [18], Jiang et al. outlined homomorphic encryption (SHE) for single instruction
multiple data, which encrypts data with fewer overheads. In [19], Puriwat et al. invented a
revocable, privacy-preserving, fine-grained data sharing technique with keyword search to
encrypt the healthcare data. For data authenticity, a pseudo-identity-based signature ap-
proach was also used. In [20], Ross depicted a blind batch encryption technique to encrypt
the healthcare data. It has been found that this technique can resist six typical attacks.

In [21–27], the authors found that attribute-based encryption can ensure data confiden-
tiality and user privacy in the healthcare environment. Partially policy-hidden and large
universe-based encryption techniques were also used. In [28–35], the authors designed an
efficient access policy expression approach by considering 0–1 coding in CNN. In [36–39],
Ma et al. designed an efficient access control technique and a fine-grained data sharing
model. This approach is suitable for resource-constrained mobile devices. A couple of
exploration systems were designed for image watermarking. The authors of [40–45] pro-
posed a multi-reason image-watermarking framework for ownership checking. DWT was
used to decompose the image into the wavelet domain. The authors of [46–49] presented a
square-based outwardly disabled watermarking technique using DWT and DCT. Quantiza-
tion index modulation was also implemented to reduce the bit error rate (BER) of expelled
watermarks. Artificial bee colony-based LSB [50,51] was used to embed the watermark.
Erivelton et al. presented a novel image encryption scheme based on the pseudo-orbits
of a 1D chaotic map by using the difference of two pseudo-orbits to generate a random
sequence. The generated sequence has been successful in all NIST tests, which implies that
it has adequate randomness to be employed in encryption processes [52–55].The fractional
order Lorenz chaotic system is used to generate the chaotic sequence. The article outlines
the characteristic of the chaotic sequence. Two examples with plain texts and plain images
were shown for using the approach that we introduced [56–59]. According to the results of
the analyses, an interesting image encryption algorithm was proposed. Multiple grayscale
images were fused into a color image using different channels. Then, the color image was
scrambled and diffused in order to obtain a more secure cipher image [60].The authors
compared symmetric and asymmetric discretization approaches, applying them to several
examples of Hamiltonian systems. In particular, they suggested symmetric modifications
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of Chirikov and H’enon maps and show explicitly that the implied symmetric integration
procedure yields reflectional symmetry in the phase space [61,62].

3. Proposed Model

In this section, the proposed encryption technique is presented for healthcare data.
A hyper-chaotic system is used to obtain more chaotic keys. These keys are then usedto
permute and diffuse the biomedical images. Zero-watermarking temper is used to detect
the attacks attempt on the biomedical data. The ‘Rivest–Shamir–Adleman’ algorithm (RSA)
is used to encrypt or decrypt the confidential data of e-healthcare data in the form of images
with the use of two different keys.

3.1. Hyper-Chaotic System

In a hyper-chaotic system, there are four dimensional states that can be mathematically
defined as Equation (1):

xi+1 = a(yi − xi)
yi+1 = bxi − xizi − ui

zi+1 = −czi + xiyi
ui+1 = d(xi + yi)

(1)

Here, xi, yi, zi, and ui denote the main factors of a hyper-chaotic system. There are
legitimate parameters, i.e., a, b, c, and d. For experimental purpose, the values of a, b, c,
and d are 33.8, 43.33, 2.4, and 10.4, respectively. The corresponding chaotic behavior is
shown in Figure 2.
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3.2. Image Encryption Algorithm

To achieve better results, initially, gray code conversion is used. It has a single en-
coding rule which utilizes the slightest bit distinction between two contiguous codes. The
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technique for changing the common parallel code of bit j to a run-of-the-mill dim code can
be represented as Equation (2):

Gr(i) = Bn(i) i = j − 1
Gr(i) = Bn(i + 1) ⊕ Bn(i), 0 ≤ i < j − 1

Gr(i) = Bn(i) i = j − 1
(2)

Here, Gr(i) is a common dim code. Bn(i) is a characteristic paired code. ⊕represents
an elite operator. An average n-bit dark code can be changed into a characteristic paired
code as Equation (3):

Bn(i) = Gr(i) i = N − 1
Bn(i) = Gr(i) ⊕ Bn(i + 1), 0 ≤ i < N − 1

(3)

The main scrambled gray code cycle change times are determined by the size of the
shading image, as Equation (4):

So = mod ((Le + Wd), 7) + 1 (4)

Here, Le and Wd denote the length and width of the image pixels, respectively.
As per the boundaries a, b, c, and m, the starting characteristics, i.e., xo, yo, zo, and

uo, and the four scattered authentic worth groupings of x, y, z, and u are evaluated. Four
tumult real-worth groupings are changed over into a 1D system. To diminish the impact
of basic motivation on the model, the past no outcomes are avoided, and a 1D tumult
progression Chi could be delivered (C = 1, 2,........., n × m × 3). It can be computed as
Equation (5):

no = [(R′ + G′ + B′) × ro] (5)

Here, R, G, and B represent the ordinary pixel estimations. A 3D diminish code is
changed over to a 1D cross-section Pi; by then, a 1D dislocated system Ci in a state of
harmony is orchestrated and Pi changes positions at the same time. It scrambles the entire
image For the spread image of Sanchi, there is a correlation among neighboring pixels
and every shading segment part. The diffusion process disturbs the connection between
closed pixels, and yet it modifies the association among color shading segment parts to
obtain an unrivaled scrambling sway. Regardless of the way that the histograms of each
shading segment part have been altered to some degree, the histogram estimations of
the image with everything taken into account are not modified. The histograms of each
section are not uniform; subsequently, further encryption is, up until now, required. To
adjust the histogram and hide the quantifiable data of plain text, this count utilizes the
progression created by a hyper-wild structure to diffuse the pixel estimation of the image.
With hyper-plane succession, changing the pixel involves discretizing it as Equation (6) to
obtain the key stream.

De = mod((round(abs(Ce)), 256) (6)

3.3. ZeroWatermarking for the Cover Image

In zero watermarking, let F be the parallel substance highlight framework of the first
cover image I. In powerful zero watermarking, let Fm be the paired substance including
the lattice of the first cover image C, let L be the first double watermark image, and Fm′ be
the twofold substance highlight grid of the assaulted cover image C′, and at that point the
checked, paired watermark image is L′. It can be computed as in Equation (7):

L′ = (L ⊕ Fm) ⊕ Fm′ = Zw ⊕ Fm (7)

This zero-watermarking computation can be portrayed by using the zero-watermark
age strategy and revelation process. Disregard C and L, and let the main concealing image
have a size of m × n and the matched watermark image have the size R × S, exclusively.
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ZW is the signal of the zero-watermark technique and⊕ implies the prohibition of action.
The restriction of activity is utilized in the zero-watermark age process (L ⊕Fm) and the
robust zero-watermark proof-distinguishing procedure (Zw⊕ Fm). Fm, F′m, L, and L′ are
all in all twofold structures with a comparable size. If Fm and F′ m are closer, by then, L and
L′ are closer. Ideally, L’ is undefined from L when F′m is equal to Fm. This region delineates
every movement using our proposed technique, i.e., the zero-watermarking technique. The
implemented zero-watermarking computation will be depicted by two strategies: the first
one is the robust zero-watermark age and the second one is the revelation method. The
first hiding images, gives the images a size of m × n, while the coordinated size of the
watermark image/image is R × S only.

The stream diagram is represented in Figure 3, and the crucial advances are portrayed as:

• Stage 1: Decompose the color image into R, G, and B channels.
• Stage 2: With the rotting of DWT, the sub-gatherings and division, which computes the

color channels, are decomposed using 2DDWT with the Haar channel and 3 related
low-repeat parts, RLL1, GLL1 and BLL1,with a size of (m/2) × (n/2). Thereafter, the
computed DWT channels are parceled into non-covering squares Bi,k with sizes b ×
b and k = 1, 2, 3,..., R × S, while I has a spot with the color channels. The amount of
non-covering squares is R × S.

• Stage 3: Computation of the square vitality highlights and the normal vitality high-
lights of the single channel: The single value decomposition (SVD) method has utilized
three segments (RLL1, GLL1, and BLL1) and all squares Bi,k. SVD method decom-
poses the RGB channels. It has some algebraic properties that give insights into linear
transformations. The vitality includes the EFi,k of every square Bi,k, and is processed
by its solitary qualities, as indicated by (8). The normal vitality feature AEFi of every
part is determined by relating the solitary qualities as far as (9), which is obtained
from the traditional force mean.

EFik =
√

∑r
ij(σ

ik
j ) 2 k = 1, 2, 3; . . . . . . . . . . . . . . . . . . .R× S; ie{R, G, B} (8)

AEFi =

√
∑5

j=1 (σ
i
j)

2

√
R× S

i ε{R, G, B} (9)

where σj is the singular value of the corresponding matrix. Here, the singular numbers of
the values is R and S, which are put in the equation.

• Stage 4: Comparison between the square vitality and normal vitality highlights of the
single channel: To investigate the neural affective activations during handshakes, we
demonstrated that a handshake conveying gentle or aggressive tactile vitality forms
produces a stronger activation of the dorso-central insula.The dorso-central insula
is activated during imagining as well as during the execution of actions conveying
a gentle or rude vitality form. The insula controls autonomic functions through the
regulation of the sympathetic and parasympathetic systems. It has a role in regulating
the immune system. For each channel, a double trademark network is produced by
looking at the vitality, including the EFi,k of each square and the traditional vitality
highlight AEFi of the comparing channel, as in (10). The rise of convolution neural
networks, accompanying residual learning, has paved the way for the development
of single image super resolution (SISR). With the massive number of stacked resid-
ual blocks (RBs), the existing deep single image super resolution (SR) models have
achieved a great breakthrough in accuracy. However, they cannot be easily utilized
to real applications, given their high computational complexity and memory storage.
Three channels can be delivered twofold attribute grids as (1) BCHR,(2) BCHG, and
(3) BCHB.
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BCHi =

{
1 if EFi,k > AEFi

0 otherwise
k = 1, 2, 3, . . . . . . . . . R× S, i ∈ R, G, B (10)

• Stage 5: Construction of parallel element network: Two parallel attention modules are
used to model the semantic interdependencies in position and channel dimensions,
respectively, for scene segmentation. Due to the effectiveness of attention models,
we also embed the attention mechanism into the lattice block to combine the RBs
adaptively. For a unique cover image, a double component network bond fluctuation
model (BFM) (Equation (11)) can be obtained by the larger part casting a ballot of three
twofold trademark frameworks using the Bose–Chaudhuri–Hochquenghem code
(BCH code) Equation (12). BCHR (BCH-Red), BCHG(BCH-Green), and BCHB(BCH-
Blue) are used as in [19,20].

BCHmean(i,j) = [BCHR(i,j) + BCHG(i,j) + BCHB(i,j)]/3 (11)

BFM (i, j) =

{
0 BCHmean(i, j) < 0.5

1 BCHmean(i, j) ≥ 0.5
(12)

Here, (i,j) states the situation of a section in the parallel lattice. Most of Votes parts
are chosen.

• Stage 6: Copyright images disarray: The parallel copyright image WO of size P ×
Q is mixed with WS utilizing two decimal hyper-turbulent groupings produced by
arrangements of the reasonable introductory states (xo, yo, zo, and wo) and parameter
denotations (r); those are viewed as keys K1 and K2.

• Stage 7: The mixed image is additionally encoded to WE by a Wo fold hyper-disorganized
succession created by appropriate introductory state (xo, yo, zo, wo). Additionally,
where the parameters have (r), i.e., denotes the Key K3.

• Stage 8: The signal WZW of the zero watermark is delivered and checked by the
performance of the elite -OR (XOR) process between the encoded watermark WE and
the equal component of the element network organizer BFM, as shown by (13). Along
these lines, WZW corresponds to the primary spread image. Finally, the obtained WZW,
K1, K2, and K3 are selected and spared in the authorized advancement database for
copyright affirmation. It can be evaluated as:

Wzw = WE⊕ BFM (13)
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Figure 3. Block Diagram of Watermark Detection Process.

3.4. Rivest–Shamir–Adleman (RSA) Algorithm

In 1978, a paper was distributed by R. Rivest, A. Shamir, and L. Adleman. This cryp-
tosystem is known as the most famous cryptographic technique. This calculation method
uses incredibly large numbers, which makes it safe. Today, RSA is used in cryptographic
applications from banking and email security to online business on the internet.

From Figure 4, it is seen that if a cryptanalyst managed to break the key to the RSA
algorithm, at that point, the subsequent stage to obtain the first image is to unravel the
second encryption method, which is a chaos-based technique. This will cause the quality of
the image to be guaranteed. With the use of the RSA algorithm, sensitive data are encrypted,
which provides the best security from the other algorithm, and also it is very difficult to
crack. The RSA involves factorization with the use of prime numbers; hence, this is more
difficult to factorize as in Figure 5.

By applying RSA algorithm on a watermarked image, the robustness of the image
becomes enhanced. The experimental results also proved the high PSNR value. Hence,
RSA enhanced the security of the sensitive data shared over the network.
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4. Performance

The proposed method is implemented in MATLAB 2021a with 16GB RAM on an i7
processor. The main role is to encrypt the confidential data. If any government/private
department or any group wants to share their confidential data with the service of a CSP,
the security level will go down or become worthless. With our implemented technique,
we can share our data securely over the cloud and no hacker can crack or destroy/update
the data.

Hence, by following our implemented technique, anyone can share their confidential
data. Therefore, sharing images should be encrypted by our implemented technique.

To obtain the best results to share the data over the cloud securely, first, we downloaded
different collections of images, those that are freely available through the internet, and we
filtered the images, and we then selected the compatible image to use with the selected
tools that are used in the research.

4.1. Performance Parameters

Peak signal-to-noise ratio (PSNR) is utilized to quantify the quality of the watermarked
images. It can be computed as in Equation (14):

PSNR = 10 log10
2552

MSE
(14)
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Here, the mean-squared error (MSE) can be computed as in Equation (15):

MSE =
1

mn ∑m−1
i=0 ∑n−1

j=0 [I(i, j)−K(i, j)]2 (15)

Here, I shows the input image. K shows the encrypted image. (i, j) denotes the pixel
coordinates, and m, n shows size of the input image. Entropy is a well-known measure
which indicates thedegree of randomness in the image. The entropy (E) of an image can be
computed as in Equation (16):

E = ∑m−1
i=0 p(mi) log2

1
p(mi)

(16)

where, mi, ε, E, and mi together denote the probability of image occasion mi.
The attackers sometimes explore the relation among the adjacent pixels of an image for

statistical attacks. Actually, the adjacent pixels of the plain image are highly correlated to
each other in all three directions, such as horizontally (HC), vertically (VC), and diagonally
(VC). This relation should be minimum so that no statistical information should be disclosed
to the attackers. The relation among the adjacent pixels can be calculated as:

r =
∑ (xi − µx)(yi − µy)√
∑ (xi − µx)

2(yi − µy)2
(17)

Here, r is the correlation coefficient. x and y represent the adjacent pixels. µx and µy
are the means of x and y, respectively. For this experiment, we randomly selected 3000
pairs of adjacent pixels (x; y) from plain and encrypted images. A palm X-ray image is
taken for this test, as shown in Figure 6.
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4.2. Visual Analysis

This sub-portion shows the exploratory examination of the spread image. Figure 7
shows the spread image that was used for the image embeddings and isolating procedure.
Figure 7a is the Sanchi image, which is considered to be as spread image. Figure 7b is the
watermark image that is considered as a transmit image. The hyper-scattered key planned
shading watermark image is shown in Figure 7c. The zero watermarking is performed on
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the hyper-turbulent vital planned watermark image and the encoded Sanchi image, which
is shown in Figure 7d. Figure 7e shows the mixed image in the wake of executing the RSA
encryption estimation for the zero-watermarked image.
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To test the robustness with standard grayscale medical images, palm X-ray, brain
tumor, ultrasound, and chest X-ray images of size 256 × 256 are considered as the experi-
mental images, as shown in Figure 8.
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Using a secret key, a zero watermark is extracted from the attacked medical image and
then compared with the original watermark for authenticity. To match the extracted zero
watermark, normalized correlation coefficients (r) are estimated between the original and
extracted zero watermarks, as shown in Equation (17).

4.3. Quantitative Analysis

Table 1 shows the performance evaluation of the proposed technique in terms of
the PSNR between the actual and decrypted images. The PSNR between the actual and
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decrypted images should be a maximum. It is clearly found that the proposed 185 technique
achieves remarkably better PSNR values as compared to the existing techniques. The
proposed techniques show an average improvement in terms of PSNR of 3.4587%.

Table 1. Performance evaluation of color images in terms of PSNR between actual and decrypted
images.

Technique Palm X-ray Brain Tumor Ultrasound Chest X-ray

CGAN [13] 56.62 47.31 40.16 51.86
VMKS [15] 56.52 43.77 47.51 52.99

PEC [4] 44.37 50.18 59.02 57.04
JJL [16] 58.21 52.55 51.12 59.32
SET [17] 57.12 56.94 43.53 57.02
SHE [18] 56.76 48.92 45.59 59.22
Proposed 59.41 58.14 60.22 60.52

Table 2 demonstrates the performance evaluation of the proposed technique in terms of
PSNR between the actual and encrypted images. The PSNR between actual and decrypted
images should be a minimum. It is clearly found that the proposed technique achieves
remarkably lower PSNR values as compared to the existing techniques. The proposed
techniques show an average reduction in terms of PSNR of 1.6478%.

Table 2. Performance evaluation of color images in terms of PSNR between actual and encrypted
images.

Technique Palm X-ray Brain Tumor Ultrasound Chest X-ray

CGAN [13] 6.18 4.25 2.44 3.73
VMKS [15] 4.32 5.12 2.17 2.42

PEC [4] 4.57 4.55 6.58 3.61
JJL [16] 1.64 3.45 5.99 8.55
SET [17] 5.05 6.92 4.61 4.32
SHE [18] 3.29 4.94 5.31 2.08
Proposed 1.44 2.25 1.97 1.88

Table 3 shows the performance evaluation of the proposed technique in terms of the
entropy of the encrypted images. It should be at its maximum. It is clearly found that the
proposed technique achieves remarkably better entropy values as compared to the existing
techniques. The proposed techniques show an average improvement in terms of entropy of
0.8978%.

Table 3. Performance evaluation of color images in terms of entropy.

Technique Palm X-ray Brain Tumor Ultrasound Chest X-ray

CGAN [13] 7.76 7.26 7.54 7.6
VMKS [15] 7.51 7.59 7.45 7.39

PEC [4] 7.21 7.72 7.5 7.07
JJL [16] 7.65 7.37 7.03 7.43
SET [17] 7.6 7.7 7.52 7.53
SHE [18] 7.16 7.53 7.55 7.14
Proposed 7.59 7.53 7.38 7.43

Table 4 shows that there is no correlation among the adjacent pixels of the encrypted
medical grayscale images. It can be seen that the pixels are loosely correlated to each other.
Hence, no attacker can extract the statistical information to recover the encrypted images.
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Table 4. Correlation coefficient of the encrypted medical images.

Encrypted Images Horizontal
Correlation Vertical Correlation Diagonal

Correlation

Palm X-ray 0.0045 0.0056 0.0034
Brain Tumor 0.0021 0.0015 0.0010
Ultrasound 0.0005 0.0013 0.0036
Chest X-Ray 0.0037 0.0088 0.0078

5. Conclusions

In this paper, we have proposed a hybrid technique to encrypt the confidential data
related to e-healthcare. The hyper-chaotic method and zero-watermarking techniques along
with RSA are hybridized to encrypt the data. The proposed technique has been used to
secure the communication of multimedia data over 6G networks. Initially, multimedia
data are encrypted by using the proposed model. Thereafter, the encrypted data are then
transferred over the 6G networks. The proposed techniques have significantly increased the
key size. Therefore, the proposed technique can resist various security attacks. Extensive
experimental analysis reveals that the proposed technique outperforms the competitive
techniques in terms of entropy and PSNR.

In future we will apply deep learning applications for developing secure and efficient
image encryption, authentication, and good imperceptibility of the watermarked images.
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