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Abstract: Game theory is a powerful tool in modeling strategic interaction among rational players.
However, as practical problems become more complex, uncertainty inevitably appears in the game.
Due to the advantages of probabilistic linguistic term sets (PLTSs) in comprehensively and flexibly
portraying uncertainty, fuzziness and hesitancy, this paper uses PLTSs to express players’ payoff
values, and aims to develop an integrated method based on fuzzy envelope and prospect theory (PT)
under a probabilistic linguistic environment for solving matrix games. In this method, an improved
probabilistic ordered weighted averaging (POWA) operator is defined. Then, a novel trapezoidal
fuzzy envelope for PLTSs is proposed and some related theorems are analyzed. Next, based on
the defined cosine distance measure for PLTSs, the players’ psychological behavior in the game is
considered by establishing the prospect value function. Besides, the applicability and practicability of
the proposed method is verified with an example from the development strategy of Sanjiangyuan
National Nature Reserve (SNNR) in China. Finally, some comparative analyses are carried out to
illustrate the superiority of the proposed method. In order to improve the application of this proposed
method, a decision support system (DSS) based on it is designed.

Keywords: probabilistic linguistic term sets; trapezoidal fuzzy envelope; prospect theory; matrix
game; decision support system

MSC: 03E72; 91A35; 91B06

1. Introduction

Nowadays, human society is faced with a variety of decision-making problems, which
are usually characterized by complexity, diversity and uncertainty. Fortunately, game theory
has a powerful ability to handle such complex decision-making problems. Compared
with other theories, game theory is prominent in revealing the inherent laws of socio-
economic phenomena and the essential characteristics of human behavior. Game theory
is a useful tool in studying the interaction between groups, individuals or players [1]. It
has been widely applied in many fields, such as politics [2], economics [3], military [4]
and environmental decision-making [1]. As we all know, to create a game model, some
assumptions are required about the type of game, the strategies of players and the payoff
values. With the increase in the number of players and strategies, the number of payoff
values given by players in a game will increase significantly, which will undoubtedly bring
a heavy burden to them [5]. Moreover, due to the increasing complexity of the game
environment and the inevitable uncertainty that arises in the game, finding a suitable
method to describe inaccuracy is urgent [6]. This research focuses on a matrix game with
uncertain information.

Generally, there are three commonly-used representations that can depict the inaccu-
racy of the payoff values in a matrix game model: intervals [7], fuzzy information [8–16]
and linguistic information [5,6,17–19]. Considering the ambiguity of human thinking and
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the lack of available information, players may prefer to express their opinions with lin-
guistic information rather than interval numbers or fuzzy numbers [20]. For example,
teachers prefer to use linguistic terms (e.g., “medium”, “good” and “excellent”) to evaluate
children’s performance in kindergarten. In fact, a single linguistic term is insufficient to
perfectly express the decision-makers’ (DMs’) evaluation. To handle this shortcoming,
Rodríguez et al. [21] put forward the concept of the hesitant fuzzy linguistic term set
(HFLTS), which can improve the richness and flexibility of linguistic information acqui-
sition. However, HFLTS does not reflect the probability of linguistic terms, which may
result in the loss of original information. To overcome this issue, Pang et al. [22] proposed
the concept of the probabilistic linguistic term set (PLTS).A PLTS permits players to select
multiple linguistic terms from a linguistic term set (LTS) and assign them with probabilities,
which can describe players’ judgments more exactly [23]. A PLTS combines fuzziness,
hesitancy and accurate information in a comprehensive form. Therefore, it is appropriate
to use PLTSs to represent the payoff values of a matrix game. PLTS has been widely used
by investigators [24–28] since it was proposed. However, to the best of our knowledge,
probabilistic linguistic information is rarely used to depict the payoff values of matrix
games. This is the first of the research gaps intended to be narrowed.

There are many defuzzification techniques which deal with uncertain information in
matrix games, such as membership function [5], membership function and non-membership
function [12], similarity degree [13], value function and fuzzy function [14], ranking func-
tion [15], cut sets [16], etc. For matrix games with linguistic information, the semantics
of linguistic terms may be lost by substituting symbolic computation for the operation of
membership functions during computation [5]. The use of membership function is very
important in the defuzzification of probabilistic linguistic information [6], but these meth-
ods [18,29] integrate the linguistic terms in the game without introducing the membership
function. However, as far as we know, there is no research on the trapezoidal membership
function of probabilistic linguistic information. This is the second research gap intended to
be covered.

Prospect theory (PT) [30] was used to portray the psychological behavior of DMs
under risk. Although the PT has been extended into various fuzzy environments [31–34] to
solve multi-attribute decision making (MADM) problems, the PT was first studied in [6] to
solve a matrix game under a hesitant fuzzy linguistic environment. However, to the best
of our knowledge, there is no research on introducing PT under a probabilistic linguistic
environment to solve a matrix game problem. This is the third research gap that needs to
be filled.

There are three challenges to overcome in the process of filling the above research
gaps: (i) how to build a matrix game model under a probabilistic linguistic environment
is the first challenge; (ii) how to defuzzify the probabilistic linguistic information with
trapezoidal membership function is the second challenge; (iii) how to introduce the PT to
solve a matrix game under probabilistic linguistic environment is the third challenge.

Motivated by the aforesaid analysis, this study aims to propose a probabilistic linguis-
tic matrix game (PLMG) method based on fuzzy envelope and PT, and the effectiveness
and practicality of the proposed method is verified by an example from the development
strategy of Sanjiangyuan National Nature Reserve (SNNR).It is essential to propose such
a method due to the following reasons. Firstly, the study of matrix games under a proba-
bilistic linguistic environment expands the scope of application of game theory. Secondly,
the definition of trapezoidal fuzzy envelop for probabilistic linguistic information enriches
the defuzzification technology for linguistic information. Moreover, the fusion of PT com-
mendably captures the DMs’ psychological behavior regarding gain and loss, which makes
the proposed method more suitable for solving practical decision-making problems. In
addition, the proposed method provides feasibility for solving MADM problems without
weight information from the perspective of the game between DM and Nature. Finally,
the proposed method not only fills the aforementioned research gaps, but has important
practical value.
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The rest of the paper is organized as follows: Section 2 briefly recalls the literature
review of fuzzy matrix games, PLTSs and prospect theory (PT), and extracts the research
gaps dealt with in this paper. Section 3 provides the essential preliminaries on trapezoidal
fuzzy number (TrFN), HFLTS, PLTS, ordered weighted averaging (OWA) operators and PT;
a research flow is also provided in this section. Section 4 gives the definitions of improved
probabilistic ordered weighted averaging (POWA) operator, fuzzy envelope and cosine
similarity measure for PLTSs, and then their related theorems are analyzed. Section 5
develops a probabilistic linguistic matrix game method based on fuzzy envelope and PT.
Section 6 deals with an example fromthe development strategy of SNNR. Section 7 ends
this paper with concluding remarks and prospects for the future research.

2. Literature Review and Research Gaps

This section recalls the reported progress on fuzzy matrix games, PLTSs and prospect
theory. Afterwards, the research gaps dealt with in this paper are sketched.

2.1. Fuzzy Matrix Games

Up to now, fuzzy matrix games have been widely considered by scholars. Li [7–9]
extended the matrix game into intervals, triangular fuzzy numbers and trapezoidal fuzzy
numbers, separately. Yang et al. [10] developed a parametric linear programming method to
deal with an intuitionistic fuzzy matrix game. Li [11] extended the matrix game method into
an interval-valued intuitionistic fuzzy environment, and proved that each interval-valued
intuitionistic fuzzy matrix game has a solution, which can be obtained through solving a
pair of auxiliary linear/nonlinear programming models. Based on the definition of novel
similarity measure, Jana and Roy [12] proposed four algorithms to seek the optimal value
of the dual hesitant fuzzy matrix game with one restriction. Karmakar et al. [13] developed
a matrix game under a type-2 intuitionistic fuzzy environment based on a new distance
measure. Xue et al. [14] proposed the Ambika method of hesitant fuzzy matrix games to
find the optimal solutions of mixed strategies by solving the converted linear programming
models. As for matrix games with linguistic information, Singh et al. [18] put forward a
two-tuple linguistic matrix game method to solve a MADM problem, which can generate
the optimal weights for the attributes in an intermediate step. Verma and Aggarwal [19]
developed a two-tuple intuitionistic fuzzy linguistic matrix game and gave the solution
method. Xue et al. [6] studied the hesitant fuzzy linguistic matrix game method and solved
it by constructing a two-objective programming model, which filled the theoretical gap
in the game theory under a hesitant fuzzy linguistic environment. Although the above
achievements have extended matrix games into various fuzzy and linguistic environments,
there are few studies on extending matrix games into a probabilistic linguistic environment.
Thus, the first research gap emerges.

2.2. PLTSs

PLTS was originally defined by Pang et al. [22] in 2016, and can provide players
with multiple possible linguistic terms and corresponding probability information. So
far, the research on PLTS has achieved fruitful results. As for the applications of PLTSs,
Lin et al. [23] proposed a new score function for PLTSs (named as ScoreC-PLTS), based on
which, the VIKOR and TOPSIS methods were respectively developed. You and Hou [24]
put forward a novel feedback mechanism for probabilistic linguistic preference relations to
solve a group decision-making problem. Xian et al. [25] developed an improved approach
to comparing PLTSs and proposed a new decision-making method for solving the selection
of a public opinion monitoring system. In addition, PLTSs have also been extended into
numerous classical MADM methods to solve practical decision-making problems, such
as TODIM [26], MULTIMOORA [27], ELECTRE [28], etc. In the applications of PLTS, the
biggest challenge is how to address probabilistic linguistic information while minimizing
the loss of original information. To overcome this challenge, the defuzzification techniques
of PLTSs play a crucial role. Methods in [14,24–27] adopted the approach of ranking
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function by defining the score function, distance measure or similarity measure. Mi et al. [6]
studied the defuzzification technology of PLTS by using a triangular fuzzy membership
function. Based on the above analysis, it can be found that there is no research on the
trapezoidal fuzzy membership function of probabilistic linguistic information. Therefore,
the second research gap appears.

2.3. Prospect Theory

In many practical decision-making problems, the DMs’ psychological behavior re-
garding loss and gain is often ignored. Prospect theory (PT) [30] is an appropriate tool
to portray the DMs’ psychological behavior under risk. The PT has been widely used
by investigators since it was put forward. Metzger and Rieger [35] studied a framework
for non-cooperative games in normal form where players have behavioral preferences
following PT. To study the issue of watershed ecological compensation in Taihu Lake Basin,
Shen et al. [36] established an evolutionary game model between local government and
polluting enterprises based on PT. However, the above-mentioned research was conducted
in a precise environment. In order to enrich the application of PT, it has been extended into
various fuzzy environments, such as intuitionistic fuzzy environment [31], hesitant fuzzy
environment [32], hesitant fuzzy linguistic environment [6,33], probabilistic linguistic envi-
ronment [34], etc. Based on the above review, it can be found that there is no research on
introducing PT under a probabilistic linguistic environment to solve matrix game problems.
Thus, the third research gap arises.

2.4. Research Gaps

Although the abovementioned achievements are powerful in dealing with real decision
problems, some research gaps still exist as follows:

1. PLTS permits players to select multiple linguistic terms from a linguistic term set
(LTS) and assign them with probabilities, which can describe players’ judgments more
exactly [23]. A PLTS combines fuzziness, hesitancy and accurate information in a
comprehensive form. Although PLTSs have been widely used by investigators [24–28]
since they were proposed, probabilistic linguistic information is rarely used to depict
the payoffs in matrix games. This is the first research gap intended to be narrowed.

2. There are many defuzzification techniques [5,12–16,18,29] to address uncertain in-
formation. For matrix games with linguistic information, the semantics of linguistic
terms may be lost by substituting symbolic computation for the operation of mem-
bership functions during computation [5]. The use of membership function is very
important in the defuzzification of probabilistic linguistic information [6], but these
methods [18,29] integrated the linguistic terms in the game without introducing the
membership function. However, to the best of our knowledge, there is no research on
the trapezoidal membership function of probabilistic linguistic information. This is
the second research gap intended to be filled.

3. Although PT has been extended into many fuzzy environments [6,31–34], most of
them [31–34] are applied to solve MADM problems. The PT applied to solve a matrix
game problem was first studied in [6]. However, as far as we know, there is no
research on introducing PT under a probabilistic linguistic environment to solve a
matrix game problem. This is the third research gap intended to be filled.

3. Methodology

This section recalls the basic concepts related to TrFNs, HFLTSs, PLTSs and the ordered
weighted averaging (OWA) operator. Then, the prospect theory is also outlined.
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3.1. Preliminaries
3.1.1. Related Concepts for TrFNs, HFLTSs and PLTSs

Definition 1 ([37]). A TrFN can be represented by a four-tuple ẽ = (e1, e2, e3, e4), where ei
(i = 1, 2, 3, 4) are real numbers and meet e1 ≤ e2 ≤ e3 ≤ e4. According to cut set theory, a TrFN
ẽ = (e1, e2, e3, e4) is equivalent to the following interval:

ẽ(α) = [e−(α), e+(α)] = [e1 + (e2 − e1)α, e4 − (e4 − e3)α] α ∈ [0, 1] (1)

It can be observed that if e1 = e2 = e3 = e4 = e, then TrFN ẽ reduces to a crisp number
e; If e2 = e3, then TrFN ẽ generates to a triangular fuzzy number (TFN) ẽ = (e1, e2, e4).
Hence, TrFNs have the ability to generalize TFNs and crisp numbers.

Definition 2 ([21]). Let S = {s0, s1, · · · , sτ} be a linguistic term set. A HFLTS (denoted by HS)
is an ordered subset of the consecutive linguistic terms in S.

The following example is used to further understand the meaning of HFLTSs as
defined above.

Example 1. Let S = {s0 : extremelybad, s1 : verybad, s2 : bad, s3 : medium, s4 : good,
s5 : verygood, s6 : extremelygood} be a linguistic term set. Then, H1

S = {s2}, H2
S = {s0, s1, s2},

H3
S = {s3, s4, s5} and H4

S = {s4, s5, s6} are four HFLTSs.

Although Rodríguez et al. [21] proposed a context-free grammar GH = (VN , VT , I, P)
to produce comparative linguistic expressions, GH is not available in the computational
process. Thus, a transformation function is defined as TGH : Sll → HS to transform linguis-
tic expressions into HFLTSs, where Sll is the term domain yielded by GH . Hence, four types
of HFLTSs can be defined as follows:

1. TGH (si) = {si|si ∈ S};
2. TGH (at most si) =

{
sj
∣∣sj ∈ S and sj ≤ si

}
= {s0, s1, · · · , si−1, si};

3. TGH (at least si) =
{

sj
∣∣sj ∈ S and sj ≥ si

}
= {si, si+1, · · · , sτ};

4. TGH (between si and sj) =
{

sk
∣∣sk ∈ S and si ≤ sk ≤ sj

}
=
{

si, si+1, · · · , sj−1, sj
}

.

Definition 3 ([22]). Let S = {s0, s1, · · · , sτ} be a linguistic term set. A PLTS is defined as

PLS = {sk(pk)|sk ∈ S, k = 1, 2, · · · , #PLS, 0 ≤ pk ≤ 1, ∑#PLS
k=1 pk ≤ 1} (2)

where sk(pk) denotes the linguistic term sk assigned with a probability pk, #PLS is the number of
linguistic terms in PLS.

In order to facilitate subsequent calculations, this paper assumes that the linguistic
terms in PLTSs are consecutive and have corresponding probabilities. Therefore, based on
Definition 3 and four types of HFLTSs defined in [21], the four types of PLTSs also can be
defined as follows.

Definition 4. PLTSs can be divided into the following four types according to the implications of
linguistic expressions

1. PTGH (si) = {si(pi)|si ∈ S, 0 ≤ pi ≤ 1} ;

2.
PTGH (at most si) = {sj(pj)|sj ∈ S, sj ≤ si, 0 ≤ pj ≤ 1, ∑i

j=0 pj ≤ 1}
= {s0(p0), · · · , si−1(pi−1), si(pi)}

;

3.
PTGH (at least si) = {sj(pj)|sj ∈ S, sj ≥ si, 0 ≤ pj ≤ 1, ∑τ

j=i pj ≤ 1}
= {si(pi), si+1 (pi+1) , · · · , sτ(pτ)}

;
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4.
PTGH (between si and sj) = {sk(pk)|sk ∈ S, si ≤ sk ≤ sj, 0 ≤ pk ≤ 1, ∑

j
k=i pk ≤ 1}

=
{

si(pi), · · · , sj(pj)
} .

3.1.2. Ordered Weighted Averaging Operator

Definition 5 ([38]). Let U = {u1, u2, · · · , un} be a set of arguments and ak be the k-th largest
argument among set U. An ordered weighted averaging (OWA) operator can be defined as

OWAW(u1, u2, · · · , un) = ∑n
k=1 wkak (3)

where wk is the weight of ak, meeting 0 ≤ wk ≤ 1 and ∑n
k=1 wk = 1.

Definition 6 ([39]). Let λ ∈ [0, 1] be a parameter. The first and second kinds of OWA weight
vectors Wo = (wo

1, wo
2, · · · , wo

n)
T and Wp = (wp

1 , wp
2 , · · · , wp

n)
T

are respectively defined as
wo

1 = λ, wo
2 = λ(1− λ), · · · , wo

k = λ(1− λ)k−1, · · · , wo
n = (1− λ)n−1 and wp

1 = λn−1,
wp

2 = (1− λ)λn−2, · · · , wp
k = (1− λ)λn−k, · · · , wp

n = 1− λ.

Especially, when n > 2, the orness degrees of Wo and Wp are respectively higher and
lower than the value of the parameter λ. Filev and Yager [39] termed the Wo and Wp as
optimistic and pessimistic exponential OWA operators, respectively.

3.1.3. Prospect Theory

In order to make up the shortage that DMs are entirely rational in the traditional
“expected utility theory”, Kahneman and Tversky [30] first put forward PT to portray
the psychological behavior of DMs under risk. PT is a descriptive model based on the
hypothesis of bounded rationality, which validly reveals the practical decision-making
behavior of individuals under risk and uncertainty.

PT is normally divided into editing and assessing stages. In the editing phase, DMs
judge gains and losses by comparing the evaluation value with the reference point. A
change in the reference point will result in a change in the DM’s perception of gains or
losses. In the assessing phase, the gains and losses are converted into prospect values by
the prospect value function. The prospect value function in the form of a power law is
given as follows:

v(x) =
{

xφ, if x ≥ 0
−ε(−x)ϕ, if x < 0

(4)

where x can be seen as the deviation between the reference point and assessment value.
x ≥ 0 means that the assessment value is greater than the reference point, and DMs will
perceive gains. Conversely, x < 0 indicates that the assessment value is smaller than
the reference point, and DMs will perceive losses. v(x) stands for the prospect value.
Exponent parameters φ (φ ∈ [0, 1]) and ϕ (ϕ ∈ [0, 1]) are the risk aversion coefficient and
risk preference coefficient, respectively. ε (ε ≥ 1) represents the individual’s risk aversion
grade, the larger the value of ε, the higher the individual’s aversion to risk. It has been
verified that when φ = ϕ = 0.88 and ε = 2.25, the experimental results are consistent with
the original data [40,41].

3.2. Research Flow

In order to give readers a general understanding of the proposed method, this paper
provides a flowchart of the proposed method as shown in Figure 1.



Mathematics 2022, 10, 1070 7 of 30

Mathematics 2022, 10, x FOR PEER REVIEW 7 of 33 
 

 

nent parameters φ ( [0,1])φ ∈  and ϕ ( [0,1])ϕ ∈  are the risk aversion coefficient and risk 

preference coefficient, respectively. ε ( 1)ε ≥  represents the individual’s risk aversion 
grade, the larger the value of ε , the higher the individual’s aversion to risk. It has been 

verified that when 0.88φ ϕ= =  and 2.25ε = , the experimental results are consistent 
with the original data [40, 41]. 

3.2. Research Flow 
In order to give readers a general understanding of the proposed method, this pa-

per provides a flowchart of the proposed method as shown in Figure 1. 

Fuzzy envelope and cosine similarity 
measure for PLTSs

Comparative analyses

A probabilistic linguistic matrix game based 
on fuzzy envelope and PT

Results Solving the case by the proposed method

An example for the development strategy of SNNR

Sensitivity analysis for the parameter

Comparison with triangular fuzzy envelope

Comparison with the method without considering 
players’ psychological factor

Comparison with hesitant fuzzy linguistic information

η

Solving the models

Model formulation

Framework

A new fuzzy envelope for PLTSs

An improved probabilistic ordered 
weighted averaging operator

A new cosine similarity measure for PLTSs

 
Figure 1. Flowchart of the proposed method. 

4. Fuzzy Envelope and Cosine Similarity Measure for PLTSs 
In this section, an improved POWA operator is defined. Then, based on the im-

proved POWA operator, an approach is developed to generate a fuzzy envelope for 
PLTS by using trapezoidal fuzzy membership functions. Ultimately, a cosine similarity 
measure for PLTSs is put forward. 

4.1. AnImprovedProbabilistic Ordered Weighted AveragingOperator 
Based on Definition 5 and inspired by the POWA operator [42], an improved 

POWA operator is defined as follows: 

Definition 7.Let 1 2{ , , , }nU u u u=   be a set of arguments and ka  be the k-th largest argument 
among set U . An improved POWA operator can be defined as 

ˆ 1 2 1
ˆ( , , , ) n

n k kW k
POWA u u u w a

=
=  (5)

where 
1

ˆ / n
k k k k kk

w w p w p
=

=  , kw ( kp ) is the weight (probability) associated with argument ka . 

In order to apply Equation (5) to aggregate the arguments, the values of kp  and kw  
should be determined first. Generally, the former can be derived from DMs’ subjective 
judgments, and the latter can be calculated by using a series of approaches. Since the 
OWA operator weight-determining approach in [39] has the powerful ability to identify 
the pessimistic and optimistic OWA operator weights by orness measure, this paper in-

Figure 1. Flowchart of the proposed method.

4. Fuzzy Envelope and Cosine Similarity Measure for PLTSs

In this section, an improved POWA operator is defined. Then, based on the improved
POWA operator, an approach is developed to generate a fuzzy envelope for PLTS by using
trapezoidal fuzzy membership functions. Ultimately, a cosine similarity measure for PLTSs
is put forward.

4.1. An Improved Probabilistic Ordered Weighted Averaging Operator

Based on Definition 5 and inspired by the POWA operator [42], an improved POWA
operator is defined as follows:

Definition 7. Let U = {u1, u2, · · · , un} be a set of arguments and ak be the k-th largest argument
among set U. An improved POWA operator can be defined as

POWAŴ(u1, u2, · · · , un) = ∑n
k=1 ŵkak (5)

where ŵk = wk pk/∑n
k=1 wk pk, wk(pk) is the weight (probability) associated with argument ak.

In order to apply Equation (5) to aggregate the arguments, the values of pk and wk
should be determined first. Generally, the former can be derived from DMs’ subjective
judgments, and the latter can be calculated by using a series of approaches. Since the
OWA operator weight-determining approach in [39] has the powerful ability to identify the
pessimistic and optimistic OWA operator weights by orness measure, this paper intends
to employ it to determine the OWA operator weights with probability information (called
POWA weights hereafter).

For the convenience of the following calculation, denote Ŵo = (ŵo
1, ŵo

2, · · · , ŵo
n)

T

with ŵo
k = wo

k pk/∑n
k=1 wo

k pk and Ŵp = (ŵp
1 , ŵp

2 , · · · , ŵp
n)

T
with ŵp

k = wp
k pk/∑n

k=1 wp
k pk

(k = 1, 2, · · · , n), where the wo
k and wp

k are decided by Definition 6.

Remark 1. Merigo and Wei [42] proposed a POWA operator by introducing ŵk = βwk + (1− β)pk.
When the probabilities of all arguments are equal, the POWA operator (see Equation (2) in [42])
should be reduced into the classical OWA operator (see Equation (3) in Definition 5), namely, for all
k = 1, 2, · · · , n it holds that ŵk = wk if pk is a non-zero constant. However, it cannot be deduced
ŵk = wk from ŵk = βwk + (1− β)pk, which indicates that Merigo and Wei’s [42] POWA operator
failed to consider the case that the probabilities of all arguments are equal. Fortunately, the proposed
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improved POWA operator can tackle this issue perfectly, since ŵk = wk pk/∑n
k=1 wk pk can reduce to

ŵk = wk when all pk (k = 1, 2, · · · , n) equal a non-zero constant.

Remark 2. In the traditional methods [24–28], the probability information is incomplete (i.e.,
∑n

k=1 pk < 1), yet it is required to normalize the PLTSs for further calculation. However, in the
proposed improved POWA operator, there is no need to normalize the PLTSs in this paper, which
can preserve more of the initial information from the DMs.

4.2. A New Fuzzy Envelope for PLTSs

PLTSs have powerful capability to tackle linguistic decision-making problems flexibly.
To facilitate the calculation process based on PLTSs, a new fuzzy envelop of PLTS employing
trapezoidal fuzzy membership function is proposed. To achieve such a fuzzy representation,
the following factors should be considered:

1. The different probabilities of linguistic terms imply the different importance of such terms.
2. Trapezoidal fuzzy membership function has strong ability to portray the fuzziness of

the comparative linguistic terms.
3. The parameters of the trapezoidal fuzzy membership function are calculated by an

aggregation operator, which can embody the different importance of the linguistic
terms in PLTS.

A LTS can be defined as S = {si|i = 0, 1, · · · , τ}, where si stands for a possible value
for a linguistic variable and τ is an even and positive integer. Let S = {s0: extremely bad,
s1: very bad, s2: bad, s3: medium, s4: good, s5: very good, s6: extremely good} be a LTS
(i.e., τ = 6). Afterwards, S with its semantics depicted by triangular fuzzy membership
function can be visually displayed in Figure 2 [43].
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Presume that all the linguistic terms sk ∈ S can be represented as a triangular fuzzy number
Ã = {al

k, am
k , au

k } (k = 0, 1, · · · , τ). Particularly when τ = 6, the linguistic terms can be shown in
Figure 2. Hence, PLTS PHS can be formed as Ã = {al

0, am
0 , al

1, au
0 , am

1 , al
2, · · · , al

τ , au
τ−1, am

τ , au
τ}.

The elements contained in Ã can be further simplified as Ã = {al
0, am

0 , am
1 , am

2 , · · · , am
τ , au

τ} due
to au

k−1 = am
k = al

k+1. Then, a fuzzy envelope of PLTS based on the proposed improved POWA
operator is defined as follows.

Definition 8. For a PLTS PLS, its fuzzy envelope env(PLS) can be defined as a trapezoidal fuzzy
membership function Tr(b1, b2, b3, b4), i.e., env(PLS) = Tr(b1, b2, b3, b4).

In order to obtain the fuzzy envelope env(PLS), it is required to determine the values
of the parameters b1, b2, b3 and b4. Next, the following laws are presented to determine the
values of the parameters b1, b2, b3 and b4 for different situations.

• Fuzzy envelope for PTGH (si). The parameters b1, b2, b3 and b4 are determined as

(b1, b2, b3, b4)= (al
i , am

i , am
i , au

i

)
;



Mathematics 2022, 10, 1070 9 of 30

• Fuzzy envelope for PTGH (at most si). TGH (at most si) can be transformed into Ã =

{al
0, am

0 , am
1 , · · · , am

i , au
i }. The parameters b1, b2, b4 and b3 are determined as b1 = b2 =

min{al
0, am

0 , am
1 , · · · , am

i , au
i } = al

0, b4 = max{al
0, am

0 , am
1 , · · · , am

i , au
i } = au

i and

b3 = POWAŴo (am
0 , am

1 , · · · , am
i ) (6)

Herein, n = i + 1. Then, wo
1 = λ, wo

2 = λ(1− λ), · · · , wo
k = (1− λ)λk−1, · · · , wo

i+1 =

(1− λ)i.

Theorem 1. Parameter b3 determined by Equation (6) owns the following properties.

1. 0 = am
0 ≤ b3 ≤ am

i ≤ 1;
2. For fixed si and Wo, if the probability of am

i is closer to 1, then b3 is closer to am
i ; if the

probability of am
0 is closer to 1, then b3 is closer to am

0 ;
3. Let pk = r (k = 0, 1, 2, · · · , i), where 0 < r < 1. For a fixed si, if λ→ 0 , then b3 → am

0 ; if
λ→ 1 , then b3 → am

i .

Proof of Theorem 1.

1. Since min
{

am
0 , am

1 , · · · , am
i
}

= am
0 = 0, max

{
am

0 , am
1 , · · · , am

i
}

= am
i ≤ 1 and b3 is

derived by the operator POWAŴo , b3 is between the minimum and maximum aggre-
gated values (i.e., am

0 and am
i ).

2. For convenience, the probability of am
i is denoted by p0. For a fixed weight vector

Wo = (wo
1, wo

2, · · · , wo
n)

T , the closer the value of p0 is to 1, the larger the value of ŵo
0,

which will result in the value of ŵo
0am

i being closer to am
i . Hence, for fixed si and Wo, if

p0 is closer to 1, then b3 is closer to am
i . It can be deduced that the property “for fixed

si and Wo, if pi+1 is closer to 1, then b3 is closer to am
0 ” also holds.

3. Since pk = r (k = 0, 1, 2, · · · , i), where 0 < r < 1, it holds that ŵo
k = wo

k. In this
case, if λ→ 0 , then ŵo

1 → 0, ŵo
2 → 0, · · · , ŵo

i → 0 and ŵo
i+1 → 1 , which indicates that

b3 → ŵo
i+1am

0 → am
0 . The property “if λ→ 1, then b3 → am

i ” can be proven similarly.

This completes the proof of Theorem 1. �

• Fuzzy envelope for PTGH (at least si). TGH (at least si) can be transformed into
Ã = {al

i , am
i , am

i+1, · · · , am
τ , au

τ}. The parameters b1, b3, b4 and b2 are determined as
b1 = min{al

i , am
i , am

i+1, · · · , am
τ , au

τ} = al
i , b3 = b4 = max{al

i , am
i , am

i+1, · · · , am
τ , au

τ} = au
τ ,

b2 = POWAŴp(am
i , am

i+1, · · · , am
τ ) (7)

Herein, n = τ − i + 1. Then, wp
1 = λτ−i, wp

2 = (1 − λ)λτ−i−1, · · · , wp
k =

(1− λ)λτ−i−k+1, · · · , wp
τ−i+1 = 1− λ.

Theorem 2. Parameter b2 determined by Equation (7) owns the following properties:

1. 0 ≤ am
i ≤ b2 ≤ am

τ = 1;
2. For fixed si and Wp , if the probability of am

τ is closer to 1, then b2 is closer to am
τ ; if the

probability of am
i is closer to 1, then b2 is closer to am

i ;
3. Let pk = r (k = 0, 1, 2, · · · , τ − i), where 0 < r < 1. For a fixed si, if λ→ 0 , then

b2 → am
i ; if λ→ 1 , then b2 → am

τ .

Proof of Theorem 2.

1. Since min
{

am
i , am

i+1, · · · , am
τ

}
= am

i ≥ 0, max
{

am
i , am

i+1, · · · , am
τ

}
= am

τ = 1 and b2
is obtained by the POWAŴp operator, b2 is between the minimum and maximum
aggregated values.
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2. For convenience, the probability of am
τ is denoted by p0. For a fixed weight vector

Wp = (wp
1 , wp

2 , · · · , wp
n)

T
, the closer the value of p0 is to 1, the larger the value of ŵp

0 ,
which will cause the value of ŵp

0 am
τ to be closer to am

τ . Hence, for fixed si and Wp, if p0
is closer to 1, then b2 is closer to am

τ . It also can be inferred that the property “for fixed
si and Wp, if pτ−i+1 is closer to 1, then b2 is closer to am

i ”.
3. Since pk = r (k = 0, 1, 2, · · · , τ − i), where 0 < r < 1, it holds that ŵp

k = wp
k . In

this case, if λ→ 0 , then ŵp
1 → 0, ŵp

2 → 0, · · · , ŵp
τ−i → 0 and ŵp

τ−i+1 → 1 , which
shows that b2 → ŵp

τ−i+1am
i → am

i . The property “if λ→ 1 , then b2 → am
τ ” can also

be proven.

This completes the proof of Theorem 2. �

• Fuzzy envelope of PTGH (between si and sj). TGH (between si and sj) can be transformed
into Ã = {al

i , am
i , am

i+1, · · · , am
j , au

j }. The parameters b1 and b4 are determined as b1 =

min{al
i , am

i , am
i+1, · · · , am

j , au
j } = al

i and b4 = max{al
i , am

i , am
i+1, · · · , am

j , au
j } = au

j ; For
determination for the parameters b2 and b3, it is required to consider the parity of i + j.

(i) If i + j is odd, then

b2 = POWAŴp (am
i , am

i+1 · · · , am
i+j−1

2
) and b3 = POWAŴo (am

i+j+1
2

, am
i+j+1

2 +1
· · · , am

j ) (8)

(ii) If i + j is even, then

b2 = POWAŴp (am
i , am

i+1 · · · , am
i+j
2
) and b3 = POWAŴo (am

i+j
2

, am
i+j
2 +1
· · · , am

j ) (9)

Theorem 3. Parameters b2 and b3 determined by Equation (8) or Equation (9) own the following
properties:

1. am
i ≤ b2 ≤ b3 ≤ am

j ;
2. For fixed si, sj, Wo and W p, it holds that

(i) If the probability of am
i+j−1

2
(or am

i+j
2

) is closer to 1, then b2 is closer to am
i+j−1

2
(or am

i+j
2

);

(ii) If the probability of am
i is closer to 1, then b2 is closer to am

i ;
(iii) If the probability of am

i+j+1
2

(or am
i+j
2

) is closer to 1, then b3 is closer to am
i+j+1

2
(or am

i+j
2

);

(iv) If the probability of am
j is closer to 1, then b3 is closer to am

j ;

3. For fixed si and sj, if both arguments am
i , am

i+1 · · · , am
i+j−1

2
(or am

i , am
i+1 · · · , am

i+j
2

) and argu-

ments am
i+j+1

2
, am

i+j+1
2 +1

· · · , am
j (or am

i+j
2

, am
i+j
2 +1
· · · , am

j ) have the same probabilities, respec-

tively, then it holds that

(i) If λ→ 0 , then b2 → am
i ; if λ→ 1 , then b2 → am

i+j−1
2

(or am
i+j
2

);

(ii) If λ→ 0 , then b3 → am
i+j+1

2
(or am

i+j
2

); if λ→ 1 , then b3 → am
j .

Proof of Theorem 3.

1. Since min{am
i , am

i+1, · · · , am
j } = am

i ≥ 0, max{am
i , am

i+1, · · · , am
j } = am

j ≤ 1 and b2 is
obtained by the POWAŴp operator, b3 is obtained by the POWAŴo operator, b2 and
b3 are between the minimum and maximum aggregated values.

2. For convenience, the probability of am
i+j−1

2
(or am

i+j
2

) is denoted by p0. For fixed weight

vectors Wp, the closer the value of p0 is to 1, the larger the value of ŵp
0 , which will

cause the value of ŵp
0 am

i+j−1
2

(or ŵp
0 am

i+j
2

) to be closer to am
i+j−1

2
(or am

i+j
2

). Hence, for fixed
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si, sj and Wp, if p0 is closer to 1, then b2 is closer to am
i+j−1

2
(or am

i+j
2

). Similarly, (ii)–(iv)

also can be proven.
3. Since all the arguments have the same probabilities, if λ→ 0, then ŵp

1 → 0, ŵp
2 → 0, · · · ,

ŵp
j−i−1

2
(or ŵp

j−i
2
) → 0 and ŵp

j−i+1
2

(or ŵp
j−i+2

2
)→ 1, which shows that b2 → ŵp

j−i+1
2

am
i

(or ŵp
j−i+2

2
am

i )→ am
i . If λ→ 1, then ŵp

1 → 1, ŵp
2 → 0, · · · , ŵp

j−i−1
2

(or ŵp
j−i
2
)→ 0, ŵp

j−i+1
2

(or ŵp
j−i+2

2
) → 0, which indicates that b2 → ŵp

1 am
i+j−1

2
(or ŵp

1 am
i+j
2

)→ am
i+j−1

2
(or am

i+j
2

).

(ii) can be also proven similarly.

This completes the proof of Theorem 3. �

In the sequel, a numerical example is given to understand the aforesaid process of
obtaining the fuzzy envelope for the PLTSs.

Example 2. Let S = {s0, s1, · · · , s6} be a linguistic term set with its triangular fuzzy membership
function shown in Figure 2 . In order to grasp the proposed fuzzy envelope determining approach,
an example is conducted as follows:

• Fuzzy envelope for PLTS PL1
S = {s1(1)} can be obtained as env(PL1

S) = Tr(0, 0.17, 0.17, 0.33).
• Fuzzy envelope for PLTS PL2

S = {s0(0.2), s1(0.3), s2(0.4)} is obtained as follows: b1 =

b2 = min{al
0, am

0 , am
1 , am

2 , au
2} = al

0 = 0, b4 = max{al
0, am

0 , am
1 , am

2 , au
2} = au

2 = 0.5. Since
si = s2, according to [43], λ = 2/6, then

b3 =
1

2
6 × 0.4 + 2

6 (1−
2
6 )× 0.3 + (1− 2

6 )
2 × 0.2

(
2
6
× 0.4× am

2 +
2
6
(1− 2

6
)× 0.3× am

1 + (1− 2
6
)

2
× 0.2× am

0 ) = 0.192.

Therefore, env(PL2
S) = Tr(0, 0, 0.192, 0.5).

• Fuzzy envelope for PLTS PL3
S = {s4(0.5), s5(0.2), s6(0.3)} is obtained as follows: b1 =

min{al
4, am

4 , am
5 , am

6 , au
6} = al

4 = 0.5, b3 = b4 = max{al
4, am

4 , am
5 , am

6 , au
6} = au

6 = 1. Since
si = s4, according to [43], λ = 4/6, then

b2 =
1

( 4
6 )

2 × 0.3 + 4
6 (1−

4
6 )× 0.2 + (1− 4

6 )× 0.5
((

4
6
)

2
× 0.3× am

6 +
4
6
(1− 4

6
)× 0.2× am

5 + (1− 4
6
)× 0.5× am

4 ) = 0.818.

Thus, env(PL3
S) = Tr(0.5, 0.818, 1, 1).

• Fuzzy envelope for PLTS PL4
S = {s3(0.2), s4(0.3), s5(0.5)} is obtained as follows: b1 =

min{al
3, am

3 , am
4 , am

5 , au
5} = al

3 = 0.33, b4 = max{al
3, am

3 , am
4 , am

5 , au
5} = au

5 = 1. Since
si = s3 and sj = s5, according to [43], λ1 = 4/5 (for determining b2) and λ2 = 1/5 (for
determining b3), then b2 = 1

4
5×0.3+(1− 4

5 )×0.2
( 4

5 × 0.3× am
4 + (1− 4

5 )× 0.2× am
3 ) = 0.646

and b3 = 1
1
5×0.5+(1− 1

5 )×0.3
( 1

5 × 0.5× am
5 + (1− 1

5 )× 0.3× am
4 ) = 0.717.

Thus, env(PL4
S) = Tr(0.33, 0.646, 0.717, 1).

The fuzzy envelopes obtained above are shown in Figure 3.
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When the probabilities of all linguistic terms in PLi
S (i = 2, 3, 4) are equal and continue,

then PLi
S (i = 2, 3, 4) can be regarded as the hesitant fuzzy linguistic term sets (HFLTSs).

In this case, the fuzzy envelopes for PLi
S (i = 2, 3, 4) are exactly the same as those pre-

sented in [43], namely, env(PL2
S) = Tr(0, 0, 0.15, 0.5), env(PL3

S) = Tr(0.5, 0.85, 1, 1) and
env(PL4

S) = Tr(0.33, 0.64, 0.7, 1).
Hence, the approach to determining the fuzzy envelope for PLTS proposed by this

paper can generalize that proposed by [43], which shows the effectiveness and flexibility of
the proposed approach.

4.3. A New Cosine Similarity Measure for PLTSs

Currently, the cosine similarity measure has received popular attention in retrieving
information and collecting data. Liao and Xu [44] defined a cosine similarity measure for
HFLTSs, as shown in Definition 9.

Definition 9 ([44]). Let S′ = {s−τ , · · · , s−1, s0, s1, · · · , sτ} be a subscript-symmetric linguistic
term set. Given any two HFLTSs Hi

S′ =
{

sγi
l

∣∣∣sγi
l
∈ S′, l = 1, 2, · · · , #Hi

S′

}
(i = 1, 2), the cosine

similarity measure between them is formulated as

Scos(H1
S′ , H2

S′) =
∑

#HS′
l=1

|γ1
l |

2τ+1 ·
|γ2

l |
2τ+1√

∑
#HS′
l=1 (

|γ1
l |

2τ+1 )
2
∑

#HS′
l=1 (

|γ2
l |

2τ+1 )
2

(10)

where #HS′ = max
{

#H1
S′ , #H2

S′
}

. If #H1
S′ > #H2

S′ , H2
S′ should be converted to a new one with the

same length as #H1
S′ by adding the smallest ones in H2

S′ and the probabilities of them are zero.

Inspired by Definition 9 and according to the fuzzy envelopes for PLTSs, the cosine
similarity measure for PLTSs is defined as follows.

Definition 10. Let PLi
S (i = 1, 2) be any two PLTSs and env(PLi

S) = Tr(bi1, bi2, bi3, bi4)
(i = 1, 2) be their fuzzy envelopes. The cosine similarity measure between PL1

S and PL2
S is

formulated as

Scos(PL1
S, PL2

S) =
∑4

k=1 b1kb2k√
∑4

k=1 (b1k)
2∑4

k=1 (b2k)
2

(11)

According to the relationship between distance and similarity measure mentioned in [44], the
corresponding cosine distance measure can be defined as

dcos(PL1
S, PL2

S) = 1− Scos(PL1
S, PL2

S) = 1− ∑4
k=1 b1kb2k√

∑4
k=1 (b1k)

2∑4
k=1 (b2k)

2
(12)

The above Equations (11) and (12) satisfy boundness (i.e., 0 ≤ Scos(PL1
S, PL2

S) ≤ 1) and
reflexivity (i.e., Scos(PL1

S, PL2
S) = Scos(PL2

S, PL1
S)). Generally, the greater the cosine similarity

measure between two PLTSs, the more analogous they are, and the smaller the distance.
Based on the relative repetition degree and the diversity degree of probabilities for

linguistic terms, Xian et al. [25] proposed a similarity measure for PLTSs. In order to compare
with the similarity measure defined in [25], a numerical example is given as follows.

Example 3. Let PL1
S = {s5(1)}, PL2

S = {s3(0.1), s4(0.4), s5(0.5)} and PL3
S = {s4(0.4), s5(0.5),

s6(0.1)} be three PLTSs. Their fuzzy envelopes can be calculated as env(PL1
S) = Tr(0.67, 0.83, 0.83, 1),

env(PL2
S) = Tr(0.33, 0.66, 0.708, 1) and env(PL3

S) = Tr(0.5, 0.782, 1, 1). Then, in the light of
Equation (11), the cosine similarity measures between them can be computed as Scos(PL1

S, PL2
S) = 0.98

and Scos(PL1
S, PL3

S) = 0.99. By using the formula of Xian et al. [24], it can be calculated that
Scos(PL1

S, PL2
S) = Scos(PL1

S, PLH3
S) = 0.861.
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Due to the fact that s6 is closer to s5 than s3, it is more in line with humanintuition that
the similarity between PL1

S and PL3
S is higher than that between PL1

S and PL2
S. In addition,

it was mentioned that there is no need to normalize the PLTSs when determining their
fuzzy envelopes. Thus, the proposed similarity measure has strong ability to preserve
more initial information from the PLTSs. Nevertheless, it is necessary to normalize the
PLTSs when using the similarity measure of Xian et al. [25]. Hence, the similarity measure
proposed in this paper is more reasonable than the one proposed in [25].

5. A Probabilistic Linguistic Matrix Game Based on Fuzzy Envelope and PT

In this section, a probabilistic linguistic matrix game (PLMG) is formulated. After-
wards, based on fuzzy envelope and considering the player’s psychological behavior, an
effective method is developed to solve the PLMG. The framework of the proposed method
is also presented.

5.1. Model Formulation

Due to the fact that PLTSs have the strong ability to describe uncertain and imprecise
payoff values, the formal description of the PLMG is given to construct the programming
models. In this PLMG, the pure strategy spaces of players PI and PI I are denoted as SPI =

{ξ1, ξ2, · · · , ξr} and SPI I = {ς1, ς2, · · · , ςt}, respectively. The vectors y = (y1, y2, · · · , yr)
T

and z = (z1, z2, · · · , zt)
T are the mixed strategies of players PI and PI I , where the yi

(i = 1, 2, · · · , r) and zj (j = 1, 2, · · · , t) are the probabilities for players PI and PI I that
choose pure strategies ξi ∈ SPI (i = 1, 2, · · · , r) and ς j ∈ SPI I (j = 1, 2, · · · , t), separately. The
mixed strategy spaces for player PI is Y = {y|∑r

i=1 yi = 1, yi ≥ 0} and the mixed strategy
spaces for player PI I is Z = {z|∑t

j=1 zj = 1, zj ≥ 0}. Suppose that the player PI takes the
pure strategy ξi to maximize his/her benefit, and the player PI I selects the pure strategy ς j to

minimize his/her loss (i.e., at situation (ξi, ς j)), the profit of player PI is PLij
S , where PLij

S is a
PLTS defined in Definition 4. Let S = (s0, s1, · · · , sτ) be a linguistic term set. For simplicity, the
payoff matrix of PLMG is denoted as P̃L = (PLij

S)r×t, which can be described as

ς1 ς2 · · · ςt

P̃L =

ξ1
ξ2
...

ξr


PL11

S PL12
S · · · PL1t

S
PL21

S PL22
S · · · PL2t

S
...

...
...

PLr1
S PLr2

S · · · PLrt
S


Hereinafter, the PLMG with mixed strategies is abbreviated as (SPI , X; SPI I , Y; P̃L).
If players PI and PI I take any mixed strategies y ∈ Y and z ∈ Z, then the ex-

pected payoff of player PI is Ẽ(y, z) = yT P̃Lz =
r
∑

i=1

t
∑

j=1
yiPLij

S zj = {
r
∑

i=1

t
∑

j=1
yis

ij
(1)(pij

(1))zj,

r
∑

i=1

t
∑

j=1
yis

ij
(2)(pij

(2))zj, · · · ,
r
∑

i=1

t
∑

j=1
yis

ij
(#PLS)

(pij
(#PLS)

)zj}, where #PLS is the length of PLij
S .

Let PI be the maximize player, PI I be the minimize player. From the perspective of
gain-floor and loss-ceiling, the goals of players PI and PI I can be constructed as follows,
respectively.

Player PI : max
y∈Y

min
z∈Z

yT P̃Lz and player PI I : min
z∈Z

max
y∈Y

yT P̃Lz.

Let Ũ represent the minimal fuzzy payoff value of player PI and Ṽ represent the
maximal fuzzy payoff value of player PI I [5]. The goals of players can be transformed as
yT P̃L≥̃Ũ for each strategy y ∈ Y and P̃Lz≤̃Ṽ for each strategy z ∈ Z. The symbols “≥̃” and
“≤̃” are the probabilistic linguistic version of the crisp order relation, meaning “essentially
not less than” and “essentially not larger than”, respectively. Now, to get the maximin
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strategy y∗ and the minimax strategy z∗, the following two fuzzy programming models
have to be solved.

maxŨ

s.t.

{
∑r

i=1 PLij
S yi≥̃Ũ, (j = 1, 2, · · · , t)

∑r
i=1 yi = 1, yi ≥ 0, (i = 1, 2, · · · , r)

(13)

and
minṼ

s.t.

{
∑t

j=1 PLij
S zj≤̃Ṽ, (i = 1, 2, · · · , r)

∑t
j=1 zj = 1, zj ≥ 0, (j = 1, 2, · · · , t)

(14)

5.2. Solving the Models

Since the payoff values PLij
S in the payoff matrix PL are expressed by PLTSs, the

traditional method failed to address the aforesaid game models. In this paper, a new
method is developed to find the optimal solution for the mathematical models. Firstly,
by using the approach presented in Section 4.2, all elements in the probabilistic linguistic
payoff matrix are represented by trapezoidal fuzzy membership function and a fuzzy
envelope-based payoff matrix is formed. Then, considering DMs’ psychological behavior,
the fuzzy envelope-based payoff matrix is transformed into an overall prospect payoff
matrix through applying PT. Finally, based on the prospect payoff matrix, two linear
programming models are constructed and solved.

Now, the specific and detailed processes for seeking the maximin and the minimax
strategies are profiled as follows:

Step 1. Convert the probabilistic linguistic payoff matrix P̃L = (PLij
S)r×t into the fuzzy

envelope-based payoff matrix F̃env = (Trij)r×t, where Trij = Tr(b1
ij, b2

ij, b3
ij, b4

ij)

(i = 1, 2, · · · , r; j = 1, 2, · · · t).
By using the technique presented in Section 4.2, the entire elements in the probabilistic

linguistic payoff matrix can be represented by their trapezoidal fuzzy membership functions.
As a result, the fuzzy envelope-based payoff matrix F̃env = (Trij)r×t can be obtained.

Step 2. Transform the fuzzy envelope-based payoff matrix into a prospect payoff
matrix through the application of PT.

(i) Define the reference point

The choice of reference point is the key and also the core of PT. When making a decision,
the DM will measure the gain or loss on the basis of the reference point. The selection of the
preference point is frequently dependent on the risk attitude and psychological behavior
of DMs [34]. In this paper, the positive ideal point and the negative ideal point are taken
as the double reference points. Suppose that the positive and negative ideal PLTSs are
Tr+ = {sτ(1)} = Tr(b+1 , b+2 , b+3 , b+4 ) and Tr− = {s0(1)} = Tr(b−1 , b−2 , b−3 , b−4 ), respectively.

(ii) Calculate the gain and loss of Trij on the negative and positive ideal PLTS

To characterize the “utility value” that the player perceives in gain and the “regret
value” that the player perceives in loss, the cosine distance between Trij and the negative
ideal PLTS is deemed as the gain and the cosine distance between Trij and the positive
ideal PLTS is viewed as the loss.

According to Definition 10, the gain of Trij on the negative ideal PLTS Tr− = {s0(1)} =
Tr(b−1 , b−2 , b−3 , b−4 ) is given as

dcos(Trij, Tr−) = 1− Scos(Trij, Tr−) = 1−
∑4

k=1 bk
ijb
−
k√

∑4
k=1 (b

k
ij)

2 ×∑4
k=1 (b

−
k )

2
(15)
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Similarity, the loss of Trij on the positive ideal PLTS Tr+ = {sτ(1)} = Tr(b+1 , b+2 , b+3 , b+4 )
is given as

dcos(Trij, Tr+) = 1− Scos(Trij, Tr+) = 1−
∑4

k=1 bk
ijb

+
k√

∑4
k=1 (b

k
ij)

2 ×∑4
k=1 (b

+
k )

2
(16)

(iii) Compute the overall prospect value of payoff value at situation (ξi, ς j) given by player PI

In the view of Equation (4), the negative and positive prospect value of payoff value
at situation (ξi, ς j) given by player PI on Tr− and Tr+ can be obtained as

v−ij = (dcos(Trij, Tr−))φ (17)

v+ij = −ε(dcos(Trij, Tr+))ϕ (18)

Therefore, the overall prospect value of payoff value at situation (ξi, ς j) given by
player PI can be obtained as

vij = ηv−ij + (1− η)v+ij (19)

where the risk attitude parameter η (0 ≤ η ≤ 1) indicates the different importance degrees
of the positive and negative ideal PLTSs.

Step 3. The acquired overall prospect payoff matrix v = (vij)r×t is considered as the

crisp equivalent of the given payoff matrix P̃L = (PLij
S)r×t. Now Equations (13) and (14)

are turned into the following two crisp linear programming models, respectively.

maxU

s.t.
{

∑r
i=1 vijyi ≥ U, (j = 1, 2, · · · , t)

∑r
i=1 yi = 1, yi ≥ 0, (i = 1, 2, · · · , r)

(20)

minV

s.t.

{
∑t

j=1 vijzj ≤ V, (i = 1, 2, · · · , r)
∑t

j=1 zj = 1, zj ≥ 0, (j = 1, 2, · · · , t)
(21)

where U and V represent the crisp equivalents of gain-floor and loss-ceiling for players,
respectively.

Step 4. Via solving the aforementioned two linear programming modelswith the
ordinary simplex method, the maximin strategy y∗ for player PI and the minimax strategy
z∗ for player PI I can be acquired. In addition, the optimal crisp equivalent of the gain-floor
U∗ and loss-ceiling V∗ for players PI and PI I are evaluated here, respectively.

Step 5. The aggregated expected payoff for player PI can be calculated by employing
the basic operations of PLTS introduced in [22].

5.3. Framework

Up to now, this paper has completed the method of solving the matrix game with
probabilistic linguistic information. The framework (Figure 4) is described below to clearly
explain the logic and organizational structure of the proposed method.
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6. Results

This section provides an example from the development strategy of SNNR to illustrate
the applicability of the proposed method. Then, sensitivity analysis and comparative
analyses are conducted to show the flexibility and superiorities of the proposed method.

6.1. An Example from the Development Strategy of SNNR

The Sanjiangyuan region (the headwater region of the Yangtze, Yellow and Lantsang
rivers) is located in the hinterland of the Qinghai-Tibet Plateau, south of Qinghai Province.
The region is called the “Water tower of China” and has an important water storage func-
tion [45]. The region is essential not only for ecological water supply and regulation services,
but also for ecological services of biodiversity conservation [46]. However, the ecosystem in
this region is fragile and the impact of climate change (especially global warming) on this
region is particularly obvious [47]. Rapid population growth, unconstrained economic de-
velopment and extensive human activities have enormously exacerbated the deterioration
of the ecological environment, including the degradation of grassland, soil erosion and the
loss of biodiversity [48]. In order to strengthen the ecological and environmental protection
of this region, the Chinese government established the Sanjiangyuan National Nature
Reserve (SNNR) in 2000 and launched the Sanjiangyuan ecological project in 2005 [49].
SNNR is the largest nature reserve in China covering an area of 363,000 square kilometers.
The establishment of the nature reserve aims to safeguard and preserve the biodiversity
and natural ecological balance of the region.

Nevertheless, as an underdeveloped region in China, the Sanjiangyuan region is facing
a series of problems under the combined effects of global climate change and increasingly
frequent human economic activities: the uncoordinated contradiction between humans
and Nature is gradually becoming prominent; the ecological environment is deteriorating;
the number of ecological refugees is increasing year by year; the contradiction between
population, resources, environment and development is becoming more and more serious;
the situation for ecological environment protection and natural resource development and
utilization are becoming increasingly grim [50]. How to sustainably develop the economy
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and steadily improve peoples’ lives without destroying the local ecological environment is
a difficult and urgent matter. Thus, it has highly significant academic value and practical
application to research the interaction between economy and ecology in the Sanjiangyuan
region, and formulate a development strategy for SNNR. In order to explore the balance
between economic development and ecological protection, Xue et al. [6] have used a hesitant
fuzzy matrix game method to study the development strategy of SNNR, considering that
PLTSs have more powerful and flexible capabilities than HFLTSs in disposing of uncertain
information, which is also more in line with human thinking. Therefore, this paper intends
to apply the PLMG method to solve the development strategy of SNNR.

In fact, different development goals may conflict with each other when formulating
the development strategy of SNNR. Compared with other objectives such as biodiversity,
water storage capacity and conserving wetland areas, the management department that
formulates the development strategy (hereinafter referred to as management department)
of SNNR may pay more attention to the goal of economic return. However, Nature and
the management department are contradictory in terms of economic returns. Thus, two
competitors are formed–the management department and Nature. In this paper, the
management department that formulates the development strategy of SNNR is regarded
as player PI and Nature as player PI I . ξ1: Forestry, ξ2: Manufacturing, ξ3: Tourism,
ξ4: Planting and ξ5: Livestock farming are five economic development schemes devised by
the management department for the economic development of SNNR. The five different
schemes can be viewed as the five strategies of player PI in the game. In a similar way,
ς1: Economic benefit, ς2: Biological diversity, ς3: Capacity of water storage and ς4: Lakes
and wetland area are four objectives considered by Nature for the coordinated development
of ecology and economy for SNNR. These four different objectives can be viewed as the
four strategies of player PI I in the game.

Let S = {s0: extremely poor (EP), s1: very poor (VP), s2: poor (P), s3: medium (M),
s4: good (G), s5: very good (VG), s6: extremely good (EG)}be a LTS. The payoff matrix values
with probabilistic linguistic information are shown in Table 1. These evaluation values
in the payoff matrix are given by the invited team of senior experts after field research,
consulting relevant historical materials and combining the current national policies.

Table 1. Payoff matrix values with probabilistic linguistic information.

Payoff Values ς1 ς2 ς3 ς4

ξ1 20%EP, 30%VP, 40%P 50%G, 20%VG, 30%EG 30%M, 50%G, 20%VG VG
ξ2 10%M, 40%G, 50%VG 30%VP, 70%P 50%P, 10%M, 20%G 30%P, 40%M, 30%G
ξ3 P 40%G, 50%VG, 10%EG 10%G, 90%VG 10%VP, 30%P, 50%M
ξ4 10%G, 20%VG, 70%EG 20%M, 30%G, 30%VG EG 40%G, 60%VG
ξ5 60%M, 40%G M 40%P, 60%M 20%M, 80%G

The evaluation information in Table 1 can be described in the forms of PLTSs in the
probabilistic linguistic payoff matrix P̃L.

ς1 ς2 ς3 ς4

P̃L =

ξ1
ξ2
ξ3
ξ4
ξ5


{s0(0.2), s1(0.3), s2(0.4)} {s4(0.5), s5(0.2), s6(0.3)} {s3(0.3), s4(0.5), s5(0.2)} {s5(1)}
{s3(0.1), s4(0.4), s5(0.5)} {s1(0.3), s2(0.7)} {s2(0.5), s3(0.1), s4(0.2)} {s2(0.3), s3(0.4), s4(0.3)}

{s2(1)} {s4(0.4), s5(0.5), s6(0.1)} {s4(0.1), s5(0.9)} {s1(0.1), s2(0.3), s3(0.5)}
{s4(0.1), s5(0.2), s6(0.7)} {s3(0.2), s4(0.3), s5(0.3)} {s6(1)} {s4(0.4), s5(0.6)}
{s3(0.6), s4(0.4)} {s3(1)} {s2(0.4), s3(0.6)} {s3(0.2), s4(0.8)}


6.2. Solving the Case by the Proposed Method

Step 1. Take the trapezoidal fuzzymembership function to represent the entire elements
in probabilistic linguistic payoff matrix P̃L. Then, a fuzzy envelope-based payoff matrix
F̃env = (Trij)5×4 can be obtained through the approach introduced in Section 4.2.
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F̃evn =


Tr(0, 0, 0.192, 0.5) Tr(0.5, 0.818, 1, 1) Tr(0.33, 0.648, 0.685, 1) Tr(0.67, 0.83, 0.83, 1)

Tr(0.33, 0.66, 0.708, 1) Tr(0, 0.17, 0.33, 0.5) Tr(0.17, 0.406, 0.557, 0.83) Tr(0.17, 0.473, 0.527, 0.83)
Tr(0.17, 0.33, 0.33, 0.5) Tr(0.5, 0.782, 1, 1) Tr(0.5, 0.67, 0.83, 1) Tr(0, 0.318, 0.38, 0.67)

Tr(0.5, 0.952, 1, 1) Tr(0.33, 0.646, 0.702, 1) Tr(0.83, 1, 1, 1) Tr(0.5, 0.67, 0.83, 1)
Tr(0.33, 0.5, 0.67, 0.83) Tr(0.33, 0.5, 0.5, 0.67) Tr(0.17, 0.33, 0.5, 0.67) Tr(0.33, 0.5, 0.67, 0.83)


Step 2. Determine the reference point.
Let Tr+ = {s6(1)} = Tr(0.83, 1, 1, 1) and Tr− = {s0(1)} = Tr(0, 0, 0, 0.17) be the

positive ideal PLTS and the negative ideal PLTS, respectively.
Step 3. The gain dcos(Trij, Tr−) and loss dcos(Trij, Tr+) can be computed by using

Equations (15) and (16). Afterwards, the obtained calculation results can form two cosine
distance matrices, separately.

d−cos = (dcos(Trij, Tr−))5×4 =


0.0665 0.4147 0.2925 0.4052
0.3008 0.1971 0.2401 0.2483
0.2905 0.4088 0.3529 0.1960
0.4371 0.2962 0.4793 0.3529
0.3216 0.3486 0.2675 0.3216


and

d+cos = (dcos(Trij, Tr+))5×4 =


0.3273 0.0148 0.0398 0.0040
0.0383 0.1639 0.0780 0.0706
0.0388 0.0160 0.0178 0.1453
0.0133 0.0393 0.0000 0.0178
0.0323 0.0159 0.0659 0.0323


Step 4. Based on Equations (17) and (18), the negative prospect value v−ij and positive

prospect value v+ij can be computed. After that, the negative and the positive prospect
matrices can be formed, respectively.

v− = (v−ij )5×4
=


0.0920 0.4609 0.3390 0.4516
0.3475 0.2395 0.2849 0.2935
0.3370 0.4552 0.3998 0.2383
0.4828 0.3428 0.5236 0.3998
0.3685 0.3956 0.3134 0.3685


and

v+ = (v+ij )5×4
=


−0.8421 −0.0552 −0.1318 −0.0176
−0.1275 −0.4582 −0.2384 −0.2183
−0.1289 −0.0591 −0.0650 −0.4120
−0.0501 −0.1303 0.0000 −0.0650
−0.1096 −0.0589 −0.2054 −0.1096


Step 5. Set the risk attitude parameter η = 0.5; the overall prospect value vij can be

obtained by Equation (19). Then, all the acquired overall prospect value can constitute an
overall prospect matrix.

v = (vij)5×4 =


−0.3750 0.2029 0.1036 0.2170
0.1100 −0.1094 0.0233 0.0376
0.1040 0.1980 0.1674 −0.0868
0.2163 0.1062 0.2618 0.1674
0.1294 0.1683 0.0540 0.1294


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Step 6. Now, to obtain the maximin strategy y∗ and the crisp equivalent of the gain-
floor U∗ for player PI , a crisp linear programming model can be constructed as follows in
the light of Equation (20).

maxU

s.t.


−0.3750y1 + 0.1100y2 + 0.1040y3 + 0.2163y4 + 0.1294y5 ≥ U
0.2029y1 − 0.1094y2 + 0.1980y3 + 0.1062y4 + 0.1683y5 ≥ U
0.1036y1 + 0.0233y2 + 0.1674y3 + 0.2618y4 + 0.0540y5 ≥ U
0.2170y1 + 0.0376y2 − 0.0868y3 + 0.1674y4 + 0.1294y5 ≥ U
∑5

i=1 yi = 1, yi ≥ 0, (i = 1, 2, · · · , 5)

(22)

Solving the above linear programming model, the maximin strategy and the crisp
equivalent of the gain-floor of player PI (i.e., management department) are obtained as
y∗ = (0.0406, 0, 0.0196, 0.4153, 0.5245)T and U∗ = 0.1445.

Step 7. To obtain the minimax strategy z∗ and the crisp equivalent of the loss-ceiling
V∗ for player PI I , a crisp linear programming model can be established by utilizing
Equation (21).

minV

s.t.



−0.3750z1 + 0.2029z2 + 0.1036z3 + 0.2170z4 ≤ V
0.1100z1 − 0.1094z2 + 0.0233z3 + 0.0376z4 ≤ V
0.1040z1 + 0.1980z2 + 0.1674z3 − 0.0868z4 ≤ V
0.2163z1 + 0.1062z2 + 0.2618z3 + 0.1674z4 ≤ V
0.1294z1 + 0.1683z2 + 0.0540z3 + 0.1294z4 ≤ V
∑4

j=1 zj = 1, zj ≥ 0, (j = 1, 2, · · · , 4)

(23)

Solving the above linear programming model, the minimax strategy and the crisp
equivalent of the loss-ceiling of player PI I (i.e., Nature) are obtained as z∗ = (0.0822, 0.6408,
0.1303, 0.1467)T and V∗ = 0.1445.

Step 8. Calculate the expected payoff of player PI .
By employing the normalized method and the basic operations of PLTSs (see [22]), the

expected payoff is calculated as follows:

E(y∗, z∗) =


0.0406

0
0.0196
0.4153
0.5245


T
{s0.8667, s0.3333, s0} {s2, s1.8, s1} {s2, s1, s0.9} {s5, s0, s0}
{s2.5, s1.6, s0.3} {s1.4, s0.3, s0} {s1.1333, s1.0667, s0.5} {s1.2, s1.2, s0.6}
{s2, s0, s0} {s2.5, s1.6, s0.6} {s4.5, s0.4, s0} {s1.6, s0.6667, s0.1333}
{s4.2, s1, s0.4} {s1.8333, s1.4667, s0.8} {s6, s0, s0} {s3, s1.6, s0}
{s1.8, s1.6, s0} {s3, s0, s0} {s1.8, s0.8, s0} {s3.2, s0.6, s0}




0.0822
0.6408
0.1303
0.1467


= {s2.7398, s0.7681, s0.2653}

6.3. Sensitivity Analysis for the Parameter η

In Equation (19), the parameter η (0 ≤ η ≤ 1) is considered in the overall prospect
value of payoff value at situation (ξi, ς j) given by player PI . Then, this subsection adopts
different values of parameter η to solve the aforementioned case. The corresponding game
results are shown in Table 2. Meanwhile, the optimal strategy y∗ and z∗ of players PI
(management department) and PI I (Nature) along with the variation tendencies of gain-
floor and loss-ceiling of players PI and PI I are drawn in Figures 5–7 with η varying from 0
to 1 at the interval 0.1.
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Table 2. Optimal solutions of Equations (22) and (23) and the corresponding expected payoffs.

η y∗ z∗ U* V* E(y∗,z∗)

0 (0.0205, 0, 0.0330, 0.5073, 0.4392)T (0.0353, 0.6703, 0.2029, 0.0915)T −0.0951 −0.0951 {s2.7939, s0.7804, s0.3104}
0.1 (0.0239, 0, 0.0303, 0.4892, 0.4566)T (0.0421, 0.6665, 0.1906, 0.1007)T −0.0471 −0.0471 {s2.7809, s0.7759, s0.3017}
0.2 (0.0276, 0, 0.0276, 0.4710, 0.4738)T (0.0499, 0.6618, 0.1774, 0.1108)T 0.0009 0.0009 {s2.7691, s0.7723, s0.2928}
0.3 (0.0316, 0, 0.0249, 0.4525, 0.4910)T (0.0590, 0.6560, 0.1631, 0.1218)T 0.0488 0.0488 {s2.7583, s0.7695, s0.2838}
0.4 (0.0359, 0, 0.0222, 0.4340, 0.5079)T (0.0696, 0.6491, 0.1475, 0.1338)T 0.0967 0.0967 {s2.7486, s0.7680, s0.2746}
0.5 (0.0406, 0, 0.0196, 0.4153, 0.5245)T (0.0822, 0.6408, 0.1303, 0.1467)T 0.1445 0.1445 {s2.7398, s0.7681, s0.2653}
0.6 (0.0459, 0, 0.0170, 0.3966, 0.5405)T (0.0972, 0.6312, 0.1111, 0.1605)T 0.1924 0.1924 {s2.7318, s0.7702, s0.2561}
0.7 (0.0518, 0, 0.0145, 0.3779, 0.5557)T (0.1154, 0.6200, 0.0896, 0.1750)T 0.2402 0.2402 {s2.7241, s0.7750, s0.2469}
0.8 (0.0587, 0, 0.0122, 0.3593, 0.5699)T (0.1377, 0.6073, 0.0650, 0.1900)T 0.2881 0.2881 {s2.7161, s0.7832, s0.2382}
0.9 (0.0668, 0, 0.0099, 0.3410, 0.5823)T (0.1658, 0.5931, 0.0365, 0.2046)T 0.3360 0.3360 {s2.7065, s0.7961, s0.2300}
1 (0.0767, 0, 0.0078, 0.3233, 0.5923)T (0.2022, 0.5777, 0.0026, 0.2175)T 0.3840 0.3840 {s2.6929, s0.8153, s0.2230}
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1. According to Table 2 and Figures 5–7, we can receive the following observations:

(i) The mixed strategies, gain-floor and loss-ceiling for players will change with the
change of the parameter η, which reflects the flexibility of the proposed method.

(ii) For the management department, when η takes a value between 0.3 and 1,
the probability ranking of each strategy in the selected mixed strategy keeps
constant totally, that is, ξ5 ≥ ξ4 ≥ ξ1 ≥ ξ3 ≥ ξ2. The stability of the probability
ranking shows that the management department should put ξ5: Livestock
farming in the first place and ξ2: Manufacturing should be the last considera-
tion when formulating the development strategy for SNNR.

(iii) For Nature, no matter how the parameter η changes, Nature should put ς2:
Biological diversity in first place since the probability of strategy ς2: Biological
diversity in the selected mixed strategy is always greater than 0.5.

(iv) The gain-floor and loss-ceiling for players are equal, whichis consistent with
the results obtained in [13], and the values of these increase with the increase
of the parameter η.

2. Strategic interventions

In response to the development strategy of SNNR, it is recommended that the man-
agement department adopts a mixed strategy instead of a pure strategy. The management
department is not to maximize short-term interests, but to pursue the sustainable develop-
ment of human needs and Nature in the long term. Thus, it is impossible to reach the goal
by relying on a single strategy. Using the information in the payoff matrix P̃L, if the players
believe that the positive ideal PLTS and negative ideal PLTS are of equal importance, then
the management department is recommended to adopt a mixed strategy, namely, 4.06%
Forestry, 1.96% Tourism, 41.53% Planting and 52.45% Livestock farming. If players believe
that the importance of positive ideal PLTS and negative ideal PLTS is not equal, then the
recommended strategy will be different. Besides, if the payoff matrix given by player
changes, the optimal strategy obtained may also be different.

6.4. Comparative Analyses
6.4.1. Comparison with the Method without Considering Players’ Psychological Factor

This subsection compares the proposed method with the method [13] regardless of the
players’ psychological behavior, which adopts the notion of composite relative similarity
degree to the positive ideal fuzzy solution. To make the comparison fair, we implement
the solution steps introduced in [13] on the basis of the trapezoidal fuzzy envelope matrix
F̃env, and the similarity degree adopts the cosine similarity degree defined in this paper.
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After a series of calculations, the final composite matrix M, which is regarded as the crisp
equivalent of the payoff matrix P̃L, is shown below.

M =


0.1776 0.2975 0.2652 0.3047
0.2783 0.2322 0.2412 0.2488
0.2728 0.2693 0.2568 0.2268
0.2900 0.2495 0.2637 0.2567
0.2722 0.2624 0.2407 0.2549


Based on the composite matrix M, Equations (20) and (21), two linear programming

models can be constructed as follows:

maxU1

s.t.


0.1776y1 + 0.2783y2 + 0.2728y3 + 0.2900y4 + 0.2722y5 ≥ U1
0.2975y1 + 0.2322y2 + 0.2693y3 + 0.2495y4 + 0.2624y5 ≥ U1
0.2652y1 + 0.2412y2 + 0.2568y3 + 0.2637y4 + 0.2407y5 ≥ U1
0.3047y1 + 0.2488y2 + 0.2268y3 + 0.2567y4 + 0.2549y5 ≥ U1

∑5
i=1 yi = 1, yi ≥ 0, (i = 1, 2, · · · , 5)

(24)

and
minV1

s.t.



0.1776z1 + 0.2975z2 + 0.2652z3 + 0.3047z4 ≤ V1
0.2783z1 + 0.2322z2 + 0.2412z3 + 0.2488z4 ≤ V1
0.2728z1 + 0.2693z2 + 0.2568z3 + 0.2268z4 ≤ V1
0.2900z1 + 0.2495z2 + 0.2637z3 + 0.2567z4 ≤ V1
0.2722z1 + 0.2624z2 + 0.2407z3 + 0.2549z4 ≤ V1

∑4
j=1 zj = 1, zj ≥ 0, (j = 1, 2, · · · , 4)

(25)

By solving the above two models, the optimal solution can be obtained as: y∗ =

(0.2183, 0, 0.1429, 0.6321, 0.0068)T , z∗ = (0.2839, 0.5053, 0.0525, 0.1582)T , U∗1 = V∗1 = 0.2629.
To stress the virtues of considering the psychological behavior of players, the results

obtained by the proposed method (see Table 2 and Figures 5–7) are compared with those
obtained by the method [13]. The conclusions are summarized as follows:

1. For player PI , the probability ranking of each pure strategy in the selected mixed strat-
egy y∗ = (0.2183, 0, 0.1429, 0.6321, 0.0068)T obtained by the method [13] is
ξ4 ≥ ξ1 ≥ ξ3 ≥ ξ5 ≥ ξ2, which is totally different from the probability ranking
obtained by the proposed method (see Table 2 and Figure 5). That is to say, the
probability ranking seems to change markedly if the game process does not include
the psychological behavior of players. In addition, the probability of ξ5: Livestock
farming is largest when formulating the development strategy for SNNR, which is
more in line with reality.

2. For player PI I , the probability ranking of each pure strategy in the selected mixed strat-
egy z∗ = (0.2839, 0.5053, 0.0525, 0.1582)T obtained by the method [13] is
ς2 ≥ ς1 ≥ ς4 ≥ ς3, which is slightly different from the probability ranking obtained
by the proposed method (see Table 2 and Figure 6). Although the pure strategies with
the largest probability obtained by the two methods are the same (i.e., ς2: Biological
diversity), if the psychological behavior of the players without considering in the
game process, the ranking of probability will change.

3. According to Table 2 and Figure 7, the obtained gain-floor of player PI and the loss-
ceiling of player PI I by the method [13] are less than those that acquired by the
proposed method when the parameter η is not smaller than 0.8. Besides, the proposed
method is also more flexible due to the consideration of players’ risk attitude.

Therefore, players’ psychological behavior will indeed have an impact on their op-
timal strategies. Specifically, players’ psychological behavior will change the ranking of
the probability in the selected mixed strategy, resulting in different game results. This
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phenomenon is consistent with reality. Each player has different perception of gain and loss
as a result of their psychological behavior, which will eventually change the game results.
Thus, it is reasonable and necessary to incorporate players’ psychological behavior into the
actual game process.

6.4.2. Comparison with Triangular Fuzzy Envelope

In order to highlight the advantages of trapezoidal fuzzy envelope used in this paper,
this subsection first replaces the trapezoidal fuzzy membership function with the triangular
membership function for PLTSs proposed by Mi et al. [5]. Then the proposed method is
used to solve the aforesaid development strategy of SNNR. The calculation results are
shown in Table 3. Simultaneously, the optimal strategies y∗ and z∗ of players PI and PI I
with η varying from 0 to 1 at the interval 0.1 are shown in Figures 8 and 9, separately.
Since the gain-floor of player PI and the loss-ceiling of player PI I are equal invariably, the
gain-floor U∗2 and U∗ of player PI obtained by triangular fuzzy envelope and trapezoidal
fuzzy envelope is plotted in Figure 10 only.

Table 3. Results obtained by using triangular fuzzy envelope for different values of η.

η y∗ z∗ U*
2 V*

2

0 (0.0595, 0, 0.0768, 0.8637, 0)T (0.0643, 0.9120, 0, 0.0236)T −0.0314 −0.0314
0.1 (0.0726, 0, 0.0775, 0.8500, 0)T (0.0706, 0.9100, 0, 0.0194)T 0.0067 0.0067
0.2 (0.0861, 0, 0.0777, 0.8362, 0)T (0.0771, 0.9084, 0, 0.0145)T 0.0448 0.0448
0.3 (0.1002, 0, 0.0775, 0.8224, 0)T (0.0837, 0.9072, 0, 0.0090)T 0.0830 0.0830
0.4 (0.1148, 0, 0.0767, 0.8085, 0)T (0.0906, 0.9065, 0, 0.0029)T 0.1212 0.1212
0.5 (0.1772, 0, 0, 0.8228, 0)T (0.0974, 0.9026, 0, 0)T 0.1595 0.1595
0.6 (0.1931, 0, 0, 0.8069, 0)T (0.1041, 0.8959, 0, 0)T 0.1979 0.1979
0.7 (0.2093, 0, 0, 0.7907, 0)T (0.1110, 0.8890, 0, 0)T 0.2363 0.2363
0.8 (0.2258, 0, 0, 0.7742, 0)T (0.1180, 0.8820, 0, 0)T 0.2749 0.2749
0.9 (0.2426, 0, 0, 0.7574, 0)T (0.1251, 0.8749, 0, 0)T 0.3134 0.3134
1 (0.2598, 0, 0, 0.7402, 0)T (0.1324, 0.8676, 0, 0)T 0.3521 0.3521
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By comparing the results obtained by triangular fuzzy envelope method and trape-
zoidal fuzzy envelope method, the conclusions are summarized as follows:

1. It can be seen from Table 3 and Figure 8 that the probability ranking obtained by the
triangular fuzzy envelope method is completely different from that obtained by trape-
zoidal fuzzy envelope method. Moreover, the pure strategy with the highest probability
is ξ4: Planting, and the probabilities of selecting pure strategies ξ2: Manufacturing and
ξ5: Livestock farming are equal to 0. The probability of ξ3: Tourism is also equal to 0
when the parameter η ≥ 0.5, which appears to be inconsistent with reality.

2. According to Table 3 and Figure 9, the probability ranking of each pure strategy in
the selected mixed strategy z∗ is ς2 > ς1 > ς4 > ς3 when η < 0.5. The probability
ranking is ς2 > ς1 > ς4 = ς3 when η ≥ 0.5. The pure strategies with the largest
probability obtained by the two methods are ς2: Biological diversity, which is in line
with the concept of sustainable development. However, as shown in Figure 9, the
probability of selecting pure strategy ς3: Capacity of water storage is always equal
to 0 no matter how the parameter η changes, and the probability of ς4: Lakes and
wetland area is also equal to 0 when η ≥ 0.5, which does not conform to the actual
situation evidently.

3. In the light of Table 3 and Figure 10, we can find that when η varies from 0 to 1, the
variation tendency of the gain-floor U∗2 of player PI obtained by the triangular fuzzy
envelope method [5] is consistent with that obtained by the proposed method in this
paper. However, when 0 ≤ η ≤ 0.6, the gain-floor U∗ (loss-ceiling V∗) is smaller than
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the gain-floor U∗2 (loss-ceiling V∗2 ). When 0.7 ≤ η ≤ 1, the gain-floor U∗ is greater
than the gain-floor U∗2 . As mentioned earlier, the larger the value of the parameter
η, the more optimistic the player, the better the result will be, that is, the greater the
gain-floor and loss-ceiling. In reality, most players usually tend to ponder and solve
the problem with an optimistic attitude. Hence, the greater the value of η, the higher
the importance of the negative ideal PLTS, and the result obtained by the proposed
method is better than the triangular fuzzy envelope method. The proposed method is
more applicable for a situation in which the players are optimistic.

Thus, compared with triangular fuzzy envelope, the trapezoidal fuzzy envelope
can grasp players’ evaluation information more comprehensively, and describe players’
judgments more accurately. The trapezoidal fuzzy envelope is used to flexibly deal with
the linguistic information, which can make the game results more reliable.

6.4.3. Comparison with Hesitant Fuzzy Linguistic Information

If we get rid of the probabilities from PLTSs, then the PLTSs are transformed into the
HFLTSs. In order to emphasize the merits of using probabilistic linguistic information in this
paper, this subsection first directly removes the probabilities behind all linguistic terms in the
payoff matrix P̃L, and then the HFLTSs are represented by their fuzzy envelope by using the
method proposed in [43]; the subsequent solution steps are the same as those developed in
this paper. The results are shown in Table 4. Furthermore, the optimal strategy y∗ and z∗ of
players PI and PI I with η varying from 0 to 1 are shown in Figures 11 and 12, separately. The
gain-floor U∗3 and U∗ of player PI obtained by HFLTSs and PLTSs are plotted in Figure 13.

Table 4. Results obtained by hesitant fuzzy linguistic information for different values of η.

η y∗ z∗ U*
3 V*

3

0 (0.0180, 0, 0.0315, 0.5073, 0.44432)T (0.0359, 0.6622, 0.2027, 0.0992)T −0.0955 −0.0955
0.1 (0.0203, 0, 0.0287, 0.4893, 0.4617)T (0.0426, 0.6576, 0.1907, 0.1092)T −0.0475 −0.0475
0.2 (0.0228, 0, 0.0259, 0.4711, 0.4802)T (0.0503, 0.6519, 0.1778, 0.1200)T 0.0004 0.0004
0.3 (0.0254, 0, 0.0232, 0.4526, 0.4988)T (0.0592, 0.6450, 0.1640, 0.1318)T 0.0482 0.0482
0.4 (0.0283, 0, 0.0204, 0.4339, 0.5174)T (0.0696, 0.6369, 0.1490, 0.1445)T 0.0960 0.0960
0.5 (0.0315, 0, 0.0177, 0.4149, 0.5359)T (0.0817, 0.6273, 0.1328, 0.1582)T 0.1438 0.1438
0.6 (0.0351, 0, 0.0150, 0.3958, 0.5541)T (0.0960, 0.6161, 0.1150, 0.1729)T 0.1915 0.1915
0.7 (0.0391, 0, 0.0124, 0.3766, 0.5720)T (0.1132, 0.6032, 0.0953, 0.1884)T 0.2392 0.2392
0.8 (0.0437, 0, 0.0098, 0.3573, 0.5893)T (0.1340, 0.5883, 0.0732, 0.2045)T 0.2869 0.2869
0.9 (0.0491, 0, 0.0073, 0.3380, 0.6056)T (0.1598, 0.5715, 0.0481, 0.2206)T 0.3346 0.3346
1 (0.0556, 0, 0.0048, 0.3190, 0.6206)T (0.1926, 0.5526, 0.0190, 0.2357)T 0.3824 0.3824
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By comparing the results obtained by HFLTSs and PLTSs, the conclusions are summa-
rized as follows:

1. From Table 4, Figures 11 and 12, the probability rankings of each pure strategy in
the selected mixed strategies for player PI obtained by the HFLTSs and PLTSs are
almost the same. The probability rankings of each pure strategy in the selected mixed
strategies for player PI I obtained by the HFLTSs and PLTSs are exactly the same. This
seems to indicate the effectiveness of the proposed method in this paper.

2. According to Table 4 and Figure 13, it is not hard to discover that the variation
tendency of the gain-floor U∗3 of player PI obtained by the HFLTSs with the parameter
η varying from 0 to 1 is also consistent with that obtained by the proposed method
in this paper. However, the gain-floor U∗ (loss-ceiling V∗) is always larger than the
gain-floor U∗3 (loss-ceiling V∗3 ), which reveals the superiority of the method proposed
in this paper.

PLTS is a general concept to extend HFLTS via adding probabilities without losing any
original linguistic information offered by players [22]. Consequently, it is more scientific
to combine probability information with linguistic information. Probabilistic linguistic
information has the following three merits: (i) better handling of the uncertainty and
ambiguity in the game process; (ii) more accurate and comprehensive expression of players’
judgment; (iii) reduction in the burden and difficulty for players when giving the payoff
values. Therefore, probabilistic linguistic information is more suitable for solving the actual
game problem in this paper than hesitant fuzzy linguistic information.
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7. Conclusions

This paper proposes a probabilistic linguistic matrix game method based on fuzzy
envelope and PT, which can accept incomplete linguistic information as input. An example
of a development strategy for SNNR is offered to demonstrate the effectiveness of the
proposed method. The main advantages and contributions of the proposed method can be
summarized as follows:

1. From the perspective of decision-maker and Nature, we propose a new PLMG method
to solve decision-making problems. In order to defuzzify the probabilistic linguistic
information, this paper proposes a fuzzy envelope of PLTS by using a trapezoidal
fuzzy membership function. The parameters of the trapezoidal fuzzy membership
function are decided by applying the improved POWA operator. The proposal of the
improved POWA operator makes it unnecessary to normalize the PLTS in advance
when determining the fuzzy envelope of the PLTS. Therefore, the new fuzzy envelope
has a strong ability in polymerizing the original linguistic terms and avoiding the loss
of the initial information.

2. Since each player has a different perception of gain and loss, for depicting the psycho-
logical behavior of decision-makers regarding losses and gains, the PT is creatively
introduced into the PLMG method based on the predefined cosine distance measure.
By comparing with the method without considering psychological factors, it is con-
firmed that the player’s psychological behavior does lead to different game results,
which is consistent with reality. Thus, it is necessary to incorporate the psychological
behavior of players into the actual game process.

3. The sensitivity analysis and comparative analyses with other methods indicate the
flexibility and superiority of the proposed method. A DSS is developed based on the
proposed method to illustrate its practical value.

In order to show the practical value of the proposed method, a decision support
system (DSS) is designed, which is based on the platform of Windows 11 by combining
Microsoft SQL Server 2015 with Java. Figure 14 displays the framework of DSS based on
the proposed method.
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To further explain the practicality of the proposed method, the main interfaces are
shown as the following Figure 15 when using the developed DSS to solve the development
strategy of SNNR in Section 6.1. In real world decision-making, the DMs only input four
matrices and other parameters, then run the DSS, which can output the decision results.
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Remark 3. According to the DSS designed above, the decision-maker can quickly obtain the optimal
strategy only by inputting the numbers of pure strategies for players, the payoff values expressed by
trapezoidal membership function, double reference points and the risk attitude parameter. Thus, the
process of the proposed method can be simplified by using the DSS.

The proposed method not only narrows the theoretical gap of matrix games in the
context of probabilistic linguistic, but also has important practical value. Different from
other matrix game methods, the proposed method aims to realize the long-term harmonious
development of man and Nature. In addition, it is more practical for decision makers to
choose a mixed strategy rather than a single pure strategy. The limitation of this study
is that the developed method fails to investigate the multi-objective problems under a
probabilistic linguistic environment, which is a deserving and interesting topic for the
future. Besides, how to integrate other theories (e.g., regret theory and evidential theory)
into game theory to solve practical problems is another challenging research direction.
Moreover, the evolutionary game with natural language information is also a fascinating
research field.
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