
����������
�������

Citation: Navarro, M.C.; Castaño, D.;

Herrero, H. Spiral Thermal Plumes in

Water under Conventional Heating:

Numerical Results on the Effect of

Rotation. Mathematics 2022, 10, 1052.

https://doi.org/10.3390/

math10071052

Academic Editor: James M. Buick

Received: 28 February 2022

Accepted: 23 March 2022

Published: 25 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Spiral Thermal Plumes in Water under Conventional Heating:
Numerical Results on the Effect of Rotation
María Cruz Navarro 1,* , Damián Castaño 2 and Henar Herrero 1

1 Departamento de Matemáticas, Facultad de Ciencias y Tecnologías Químicas-IMACI,
Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain; henar.herrero@uclm.es

2 Departamento de Matemáticas, Escuela de Ingeniería Industrial y Aeroespacial-IMACI,
Universidad, de Castilla-La, Mancha, 45004 Toledo, Spain; damian.castano@uclm.es

* Correspondence: mariacruz.navarro@uclm.es

Abstract: In this paper, we study numerically the effect of rotation within a sample of water in a
cylindrical container subject to rotation which is heated with a constant temperature at the bottom
and lateral wall. We analyze the temporal behavior of temperature and flow velocity of the solvent.
The thermal plumes developed at lower levels, already observed in the case without rotation, begin
to spiral spreading outwards by the effect of rotation, increasing the azimuthal velocity of the fluid.
No significant increases in the radial and vertical velocity components are observed which do not
favor the mixture of hotter and colder flows in the sample and a faster heating of the solvent. In the
rotation range studied, the state loses the axisymmetry and becomes fully 3D earlier in time as the
rotation rate increases. To perform simulations, we use a 3D temporal model that couples momentum
and heat equations and is based on spectral element methods.
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1. Introduction

Rayleigh-Bénard convection (RBC) is a classical system to study thermally driven
flows in confined space where the fluid is cooled from above and heated from below [1,2].

In rotating Rayleigh-Bénard convection (RRBC) the fluid is, in addition, subject to
background rotation about its vertical axis. Flows in RRBC are present in nature and
technology, as geophysical flows [3,4], astrophysical flows [5,6], and flows in technological
applications [7,8]. The wide range of applicability of rotating thermal convection is the
reason this problem has been widely studied in laboratory experiments and numerical
simulations, especially in turbulent regimes. In Refs. [9–11], experimental and numerical
measurements of velocity and temperature fields in a cylindrical Rayleigh-Bénard convec-
tion cell in steady rotation are presented, describing the vortex sheets developed depending
on the rotation rate.

Variations of RBC and RRBC include, besides the vertical gradient, horizontal temper-
ature gradients which play a relevant role in the flow, being of particular importance in the
development of thermoconvective vortices [12,13].

Thermal plumes are a key feature in both RBC and RRBC. Plumes are found in
industrial applications [14] and in natural events, like in oceanic and atmospheric cir-
culations [15–18], and mantle convection [19,20]. They have been studied in the case of
turbulent flows [21–23] and also in laminar regimes [19,20,24].

In Ref. [24], we reported the development of thermal plumes in a cylindrical con-
tainer filled with water subject to a fixed temperature in the lateral and bottom of the
vessel. Thermal plumes qualitatively similar are shown experimentally in [25], who report

Mathematics 2022, 10, 1052. https://doi.org/10.3390/math10071052 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10071052
https://doi.org/10.3390/math10071052
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-2388-5350
https://orcid.org/0000-0002-2106-165X
https://orcid.org/0000-0002-8598-0217
https://doi.org/10.3390/math10071052
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10071052?type=check_update&version=1


Mathematics 2022, 10, 1052 2 of 11

measurements of a rising thermal plume in a cubical tank filled in with corn syrup. Ex-
perimental and numerical results in Ref. [26] show the formation of pure thermal plume
structures in the near-hot-wall region very similar to those shown in Ref. [24].

The configuration formed by a cylindrical container filled in with a solvent subject
to a fixed temperature in the lateral and bottom of the vessel is used in chemical devices
to heat solvents by conventional heating. It typically used a bath or any other device that
assures a fixed temperature at the bottom and lateral wall. Since the experiments in RBC
and RRBC by Rossby [27], it is known that rotation can enhance heat transport. In this
work, we add rotation to the system and study, in a vessel of sample-size typically used in
chemical applications, the effect that moderate rotation has on thermal distribution and
the velocity of heating. Results are of interest in the understanding and prediction of the
thermal evolution of a solvent under conventional heating, with applications in physics
and chemistry, where it is useful to have a full spatio-temporal description of the velocity
and temperature in the flow.

2. Mathematical Model

We consider a rotating cylindrical container of height H = 0.022 m and radius
R = 0.017 m filled with water, Ω being the rotation rate (Figure 1a). The dimensions
chosen for the setup correspond to the common sample size in experimental studies in
chemistry [28]. The bottom and lateral boundaries are at a fixed temperature Te. The upper
surface is assumed to be isolated. In laboratory experiments the lost of heat through the
top boundary is usually avoided by locating a Teflon piece.
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Figure 1. (a) Numerical setup; (b) Distribution of monitored points in the slice φ = 0 of the sample.

The equations governing the system are [29,30]

ρ0Cp
∂T
∂t

+ ρ0Cpu · ∇T = κ∇2T (1)

∇ · u = 0, (2)

∂u
∂t

+ u · ∇u = −αgTez −
1
ρ0
∇p + ν∇2u + 2u×Ωez, (3)

where u is the velocity, T is the temperature, p is the hydrodynamic pressure, ρ0 is the
density, κ is the thermal conductivity, Cp is the specific heat, ν is the kinematic viscosity, g
is the gravity constant, Ω is the rotation rate and ez is the unit vector in the z direction. The
operators are expressed in cylindrical coordinates (r, φ, z).

Regarding boundary conditions, an insulating boundary condition is considered on
the top, and at bottom and lateral walls, temperature is fixed at Te:

∂T
∂z

= 0 at z = H, T = Te at r = R and z = 0. (4)
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Null velocity is imposed at the bottom, top and lateral walls,

u = 0 at r = R, z = 0, and z = H. (5)

We obtained boundary conditions for pressure from the projection of the momentum
Equation (3) at r = R and z = H and the continuity Equation (2) at z = 0. We consider the
following initial conditions at t = 0:

T = T0, u = 0, p = p0(z), (6)

being p0 the initial pressure obtained from Equation (3) with T = T0 and u = 0.

Numerical Implementation

The time-dependent governing Equations (1)–(3) and boundary and initial condi-
tions (4)–(6) were solved by direct numerical simulation (DNS) using a second-order
time-splitting method based on spectral element methods developed and tested for a
cylindrical configuration in [31,32]:

3Tn+1 − 4Tn + Tn−1

2∆t
= −2un · ∇Tn + un−1 · ∇Tn−1 +

κ

ρ0Cp
∇2Tn+1 (7)

∇ · un+1 = 0 (8)

3un+1 − 4un + un−1

2∆t
= −2un · ∇un + un−1 · ∇un−1 − 1

ρ0
∇pn+1 − αgTn+1ez+

ν∇2un+1 + 2(2un+1 ×Ωez)− 2un ×Ωez

(9)

where n is the index for time.
The fractional steps of the method are the following:

1. Tn+1 is obtained from Equation (7).
2. Applying ∇ to Equation (9) and using Equation (8), a preliminary pressure field p̄

is obtained.
3. A predictor velocity field u∗ is calculated from Equation (9) by including the predictor

pressure p̄.
4. Finally, in the correction step, the system

3
2Pr∆t

(
un+1 − u∗

)
= −∇

(
pn+1 − p̄n+1

)
, (10)

∇ · un+1 = 0, (11)

is solved to obtained un+1 and pn+1.

A pseudo-spectral method is used for the spatial discretization, with a Fourier ex-
pansion in the azimuthal coordinate φ and Chebyshev collocation in r and z. Each field is
expanded in the following way

x(r, φ, z) =
K/2−1

∑
k=−K/2

Fk(r, z)eikφ, (12)

where F0(r, z) and F−K/2(r, z) are real and F−k(r, z) = F̄k(r, z) for k = 1,. . . , K/2− 1, where
F̄k denotes the complex conjugate of Fk.

The coefficients Fk are expanded in Chebyshev polynomials

Fk(r, z) =
L

∑
l=0

N

∑
n=0

flnTl(r)Tn(z), (13)
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where Tn is the nth Chebyshev polynomial. We evaluate at the Gauss–Lobatto collocation
points rj = Γ cos π j

L for j = 0,. . . , L and zj = cos π j
N for j = 0,. . . , N.

We considered 41 grid points in the radial and vertical directions and 32 in the az-
imuthal. The time step used in our computations is ∆t = 0.001 s. We used the scientific
software package Matlab (R2021b, The MathWorks, Inc.: Natick, MA, USA). Table 1 sum-
marizes thermal properties and input parameters used for computations.

Table 1. Input parameters for water used for computations [33,34].

Parameter Value

Density, ρ0 (kg/m3) 993
Conductivity, κ (W/(m◦C)) 0.63
Specific heat, Cp (J/(kg ◦C)) 4179

Kinematic viscosity, ν (m2/s) 6.5× 10−7

Volumetric expansion coefficient, α (◦C−1) 2.14× 10−4

Initial temperature, T0 (◦C) 20
Bath temperature, Te (◦C) 40–60

Rotation rate, Ω (s−1) π
120 , π

100 , π
80 , π

60

3. Results and Discussion
3.1. State-Character Depending on Ω

The initial conditions are T0 = 20 ◦C and u = 0 m/s. We study the evolution of this
initial unstable axisymmetric state depending on the rotation rate Ω and the time t. In
Figure 2, it is displayed the evolution of the character of the flow (axisymmetric or non-
axisymmetric) for Te = 40 ◦C when Ω and t are varied. As observed, the loss of axisymmetry
occurs earlier in time as larger the rotation rate is.

Figure 3 shows the spectral decomposition of the kinematic energy EK with the az-
imuthal wavenumber k for different values of Ω. The modal kinetic energy Ek

K is calculated
as Ek

K = 1
2

∫ z=H
z=0

∫ r=R
r=0 uk · u∗k rdrdz, where uk is the Fourier mode k of the velocity field and

u∗k its complex conjugate. Figure 3 a corresponds to Ω = 0 s−1. As shown, for t = 45 s
the energy of the mode k = 1 begins to grow significantly. Some seconds after that, other
modes grow as well. The flow becomes non-axisymmetric, i. e.; fully 3D. For Ω = π

120 s−1,
the energy for modes different from k = 0 starts growing after 25 s of heating (Figure 3b),
earlier than in the case Ω = 0 s−1. As Ω increases, the state becomes fully 3D earlier in time.
This is shown in Figure 3c–e for Ω = π

100 s−1, Ω = π
80 s−1 and Ω = π

60 s−1, respectively.
A similar behavior is obtained for larger values of Te.
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Figure 2. Diagram of the state-character varying the rotation rate Ω and t, for Te = 40 ◦C. The shaded
region corresponds to the zone where fully 3D states develop.
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Figure 3. Spectral decomposition of the kinematic energy EK with the azimuthal wave number k for
different values of Ω. (a) Ω = 0 s−1. (a1) Kinematic energy for k = 0; (a2 ) Kinematic energy for k ≥ 1;
(b) Ω = π

120 s−1. (b1) Kinematic energy for k = 0; (b2) Kinematic energy for k ≥ 1; (c) Ω = π
100 s−1.

(c1) Kinematic energy for k = 0; (c2) Kinematic energy for k ≥ 1; (d) Ω = π
80 s−1. (d1) Kinematic

energy for k = 0; (d2) Kinematic energy for k ≥ 1; (e) Ω = π
60 s−1. (e1) Kinematic energy for k = 0;

(e2) Kinematic energy for k ≥ 1.

3.2. Effect of Ω in the Temperature Profile and Velocity Flow

Experiments in the non-rotation case, Ω = 0 s−1, show the formation of thermal
plumes at the lower part of the cell that spread from the center toward the lateral wall, along
which hot flow rises to upper levels [24]. Figure 4 displays, for the case Ω = 0 s−1, contours
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of temperature at z = 0.0017 m and in the r − z plane at φ = 0 (φ = π) for Te = 40 ◦C
(Figure 4a) and Te = 60 ◦C (Figure 4b), at t = 40 s. When the state is axisymmetric, as in
Figure 4a, hotter rings are observed corresponding to the regions where thermal plumes
are localized. When the axisymmetry is broken for a higher Te, a disorganized distribution
of hot spots along the bottom of the cell is reported that shows the regions where thermal
plumes are developed. This is shown in Figure 4b. Figure 4a,b shows examples of the
thermal plumes developed at lower levels that move displacing toward the lateral wall till
collide with it, favoring thermal convection in that zone. This convective motion through
the formation of thermal plumes moving at lower levels was reported in numerical [26,35]
and experimental works [25,36].

We analyze the effect of including rotation to the system, focusing on the distribution
and evolution of thermal plumes and the improvement or not of the heating velocity in
the sample. We performed simulations for Te = 40 ◦C and Te = 60 ◦C and different
rotation rates: π

120 s−1, π
100 s−1, π

80 s−1 and π
60 s−1. Figure 5 shows contours of the predicted

temperature, velocity field, and streamlines for a top view at z = 0.0017 m for Te = 40 ◦C
and two different rotation rates Ω = π

100 s−1 and Ω = π
60 s−1. In the first temporal stages,

the behavior of the flow and temperature distribution is similar to that in the axisymmetric
case without rotation, with the formation of thermal plumes within concentric hot rings
as depicted in Figure 5(a1,b1) at t = 10 s, for Ω = π

100 s−1 and Ω = π
60 s−1, respectively.

When time evolves, the axisymmetry is broken and, by the effect of rotation, the hot
rings connect in a spiral of hotter fluid (Figure 5(a2,b2)) that becomes well-formed as time
evolves (Figure 5(a3,b3)). The velocity field at z = 0.0017 m shows a central clockwise
vortex coinciding with the central plume (center of the spiral). This central plume connects
with regions of counterclockwise motion that become also conduits for hotter fluid to flow.
For larger Ω, for which the temperature profile presents, in its axisymmetric form, several
concentric hot rings (Figure 5(b1)), the instability developed gives place to a multi-armed
spiral, as depicted in Figure 5(b3).
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Figure 4. Contour of the predicted temperature at t = 40 s for the case Ω = 0 s−1. (a) Te = 40 ◦C.
(a1) Top view at z = 0.0017 m; (a2) r− z section at φ = 0 (φ = π); (b) Te = 60 ◦C. (b1) Top view at
z = 0.0017 m; (b2) r− z section at φ = 0 (φ = π).
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Figure 5. Contour of the predicted temperature, velocity field and streamlines for a top view at
z = 0.0017 m for Te = 40 ◦C. (a) Ω = π

100 s−1. (a1) t = 10 s; (a2) t = 30 s; (a3) t = 50 s; (a4) t = 70 s;
(b) Ω = π

60 s−1. (b1) t = 10 s; (b2) t = 30 s; (b3) t = 50 s; (b4) t = 70 s.

Temperature contour plots, velocity fields in the r− z plane and streamlines complete
the description of the structures formed. This is displayed in Figure 6 at φ = 0 (φ = π)
for Te = 40 ◦C, Ω = π

100 s−1 and Ω = π
60 s−1, and different time instants. For smaller

rotation rates (Ω = π
100 s−1) the state found in the first temporal stages is a large thermal

plume localized along the cylinder’s axis. The typical mushroom shape is appreciated from
both temperature contour and velocity field, and streamlines. As time evolves, convection
reinforces along the lateral wall and at the bottom, where several convective rolls develop
(Figure 6(a2)). The hot fluid spiral depicted in Figure 5(a3) is fed mainly by a strong central
plume as shown in Figure 6(a3). For larger Ω, the temperature distribution is complex
with several thermal plumes growing from the bottom, as depicted in Figure 6(b1), which
corresponds to the formation of many convective rolls in the cell. As time evolves, a central
thermal plume is developed that consists of several hot fingers (Figure 6(b3)) being the
source of the multi-armed spiral shown in Figure 5(b3). The velocity fields and streamlines
displayed show a complex motion of the fluid with the presence of convective rolls all
along the cell. As time evolves, the sample becomes hotter (Figures 5(a4,b4) and 6(a4,b4))
until it achieves a homogeneous temperature in the sample equal to Te = 40 ◦C.

We studied the effect of the rotation rate on the velocity of heating in the sample and
on the velocity field structure. Figure 7 shows the evolution of T for water at Te = 40 ◦C at
different monitored points spread along the cell (Figure 1b) and different rotation rates. As
observed, there is not a significant effect of Ω on the temporal evolution of temperature in
the different regions of the cell. At lower levels (points p7, p8 and p9) the temperature suffers
fluctuations due to the spiral thermal plumes developed close to the bottom boundary. For
larger times (t > 50 s) it is seen a slightly increase of temperature at these lower levels
when ambient rotation is set in the system, as a result of the several hot fingers developed
and the strong convection (Figure 6).
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Figure 6. Contour of the predicted temperature, velocity field and streamlines in the r− z plane at
φ = 0 (φ = π) for Te = 40 ◦C. (a) Ω = π

100 s−1. (a1) t = 10 s; (a2) t = 30 s; (a3) t = 50 s; (a4) t = 70 s;
(b) Ω = π

60 s−1. (b1) t = 10 s; (b2) t = 30 s; (b3) t = 50 s; (b4) t = 70 s.
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Figure 7. Time evolution of the temperature T in the monitored points of Figure 1b for Te = 40 ◦C
for different values of the rotation rate Ω. (a) Temperature profiles for point p1; (b) Temperature
profiles for point p2; (c) Temperature profiles for point p3; (d) Temperature profiles for point p4;
(e) Temperature profiles for point p5; (f) Temperature profiles for point p6; (g) Temperature profiles
for point p7; (h) Temperature profiles for point p8; (i) Temperature profiles for point p9.
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The evolution of the average velocity |ua| and the average radial (|ur|), azimuthal
(|uφ|) and vertical (|uz|) velocity for different values of the rotation rate is displayed in
Figure 8. The average velocity |ua| has been calculated as

|ua| =
∫ ∫ ∫

D r|u(r, φ, z)| drdφdz
Vol(D)

(14)

where |u| =
√

u2
r + u2

φ + u2
z . For the computation of |ux|, x = r, φ, z, we use Equation (14)

with |u| = |ux|. The trapezoidal method has been used iteratively to compute the integrals.
As observed, there is no significant variation in the average values of radial and

vertical velocity components for the different values of Ω, observing only an increase on the
azimuthal velocity component that grows with Ω. This means that the fluid moves faster
azimuthally when the rotation rate increases, but not radially or vertically. Therefore, the
mixture of hotter and colder fluid in the cell is not improved by rotation and consequently
no increase in the velocity of heating of the sample is reported under moderated rotation
rates. The behavior described above is observed for any Te.
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Figure 8. (a) Time evolution of the average velocity |ua| and the average radial (|ur|), azimuthal (|uφ|)
and vertical (|uz|) velocity for Te = 40◦C and different values of the rotation rate Ω. (a) Ω = 0 s−1;
(b) Ω = π

120 s−1; (c) Ω = π
100
−1; (d) Ω = π

80 s−1; (e) Ω = π
60
−1.
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As we commented on in Section 3.1, for higher Te a disorganized distribution of hot
spots along the bottom of the cell is reported in the non-rotation case. It is remarkable the
effect of the rotation rate in this case. Figure 9 displays the evolution of temperature profile
at z = 0.0017 m for Te = 60 ◦C and Ω = π

100 s−1. In the first temporal stages, we observe a
chaotic distribution of hot spots at lower levels. However, as time evolves, rotation makes
the structure reorganize giving place to a spiral of hotter flow, as in the case of lower values
of Te.

Figure 9. Contour of the predicted temperature for a top view at z = 0.0017 m for Te = 60 ◦C and
Ω = π

100 s−1 at different times.

4. Conclusions

In this work, we studied numerically the effect of rotation during the heating process of
a sample of water in a cylindrical container of height H = 0.022 m and radius R = 0.017 m,
which is homogeneously heated at the bottom and at the lateral wall. This configuration is
usually used in chemical devices to heat solvents by conventional heating. We use a 3D
temporal model that couples heat and momentum equations based on spectral methods
to perform the simulations. Results show the development, at lower levels, of a spiral
thermal plume at the center of the cell moving clockwise and spreading hot flow toward
the lateral wall, along which it rises to upper levels. For the largest rotation rate considered,
the spiral thermal plume shows a multi-armed structure. The states lose the axisymmetry
and become fully 3D earlier in time as the rotation rate increases.

As rotation increases, the fluid moves faster in the azimuthal direction but it is not
observed a substantial increase in the radial and vertical velocity components that could
favor the mixture of hotter and colder flows in the sample inducing a faster heating of
the solvent.

For larger values of Te, corresponding to the case of an initial complex and chaotic
distribution of thermal plumes at lower levels, the evolution shows as well a reorganization
of the hot spots in one spiral of hotter flow.

These results are of interest for laboratory chemical experiments in order to fully
understand thermal processes in conventional heating when rotation is added to the
system, with a full description of temperature profiles and velocity fields.
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