
Citation: Lopez-Franco, C.; Diaz, D.;

Hernandez-Barragan, J.;

Arana-Daniel, N.; Lopez-Franco, M.

A Metaheuristic Optimization

Approach for Trajectory Tracking of

Robot Manipulators. Mathematics

2022, 10, 1051. https://doi.org/

10.3390/math10071051

Academic Editor: Ioannis G.

Tsoulos

Received: 11 February 2022

Accepted: 20 March 2022

Published: 25 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Metaheuristic Optimization Approach for Trajectory Tracking
of Robot Manipulators
Carlos Lopez-Franco , Dario Diaz, Jesus Hernandez-Barragan, Nancy Arana-Daniel and Michel Lopez-Franco *

Computer Sciences Department, Universidad de Guadalajara, Guadalajara 44430, Mexico;
carlos.lopez@cucei.udg.mx (C.L.-F.); dario.diaz5983@alumnos.udg.mx (D.D.);
josed.hernandezb@academicos.udg.mx (J.H.-B.); nancy.arana@academicos.udg.mx (N.A.-D.)
* Correspondence: michel.lopez@academicos.udg.mx

Abstract: Due to the complexity of manipulator robots, the trajectory tracking task is very chal-
lenging. Most of the current algorithms depend on the robot structure or its number of degrees of
freedom (DOF). Furthermore, the most popular methods use a Jacobian matrix that suffers from
singularities. In this work, the authors propose a general method to solve the trajectory tracking of
robot manipulators using metaheuristic optimization methods. The proposed method can be used
to find the best joint configuration to minimize the end-effector position and orientation in 3D, for
robots with any number of DOF.

Keywords: path tracking; manipulator robot; inverse kinematics; metaheuristic optimization; end-
effector pose

MSC: 68T20; 68T40

1. Introduction

During the last decades, robot manipulators have seen a massive increase in industrial
applications. This increment of robots also comes with a tremendous challenge, since each
robot has a different structure and therefore each one requires a different algorithm to
achieve its tasks. One of the most important of such tasks is trajectory tracking. In trajectory
tracking the robot must follow a given path with a desired position and orientation. In
this work, we propose a general approach to solve the trajectory path tracking problem for
manipulator robots using metaheuristic optimization algorithms. The proposed method is
independent of the structure of the robot and independent of the DOF of the robot.

Manipulator robots work in the joint space. However, to interact with the 3D world
its trajectory is defined with respect to a 3D coordinate frame, Figure 1. For such reason, a
transformation between the desired 3D trajectory in the 3D space to the joint space of the
joint variables is required. To solve the trajectory tracking problem robots must be able to
solve the inverse kinematic problem. The objective of inverse kinematics is to obtain the
required manipulator joint values for a given end-effector position and orientation. The
inverse kinematic problem is complex to solve since it depends on the robot structure. If
the robot has more degrees of freedom than the required degrees of freedom to perform a
task (redundant robot) then there could be infinite solutions. Traditionally there are three
methods used to solve the inverse kinematics problem: algebraic, geometric, and iterative.
These methods have some disadvantages, for example in the case of the geometric method,
a closed-form solution for the first three joints must exist. There is no guarantee to find a
closed-form solution with the algebraic methods. The problem with iterative methods is
that they converge to a single solution, and the solution depends on the starting point.

The most common approach to solve the inverse kinematic problem is by obtaining
a closed-form solution. Unfortunately, this approach is only applicable to robots with a
simple kinematics structure. When the inverse kinematics of a robot are unsolvable with

Mathematics 2022, 10, 1051. https://doi.org/10.3390/math10071051 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10071051
https://doi.org/10.3390/math10071051
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-8122-3799
https://doi.org/10.3390/math10071051
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10071051?type=check_update&version=1


Mathematics 2022, 10, 1051 2 of 23

a closed form, traditional numeric techniques are used. However, these methods can not
converge to the correct solution if the initialization of the method is not properly estimated.
In addition, multiple solutions may exist or no solution could be found if the Jacobian
matrix has a singular configuration [1].

Figure 1. Trajectory tracking with a robot manipulator.

Overall, our work makes the following contribution:

• We present a novel path tracking method (MetaPAT) based on metaheuristic opti-
mization methods for manipulator robots. The proposed method does not suffer from
singularities when solving the inverse kinematics problem.

• The proposed approach is a general method, that can be used to solve the path tracking
task, with robots of any number of DOF. The experiments were performed with robots
with 5 DOF, 6 DOF, and a redundant robot with 7 DOF.

• We propose a novel objective function that combines effectively the position, orienta-
tion, and joint angles objectives functions. We show how to normalize each of these
objective functions in order to define a weight objective function.

• To the best of our knowledge, this is the first work that uses quaternions in the objective
function to solve the end-effector orientation error with metaheuristic optimization
algorithms. Quaternions allow us to represent the orientation error effectively and can
be combined with the position and joint objectives to solve the path tracking problem
without singularities.

Related Work

There are different methods to solve the inverse kinematic (IK) problem. However, the
most popular numeric approach is to use the Jacobian matrix to find a linear approximation
to the IK problem. Several methodologies have been proposed for the computation or
approximation of the Jacobian inverse, such as the Jacobian Transpose [2,3], the Damped
Least Squares [4,5], Damped Least Squares with Singular Value Decomposition (SVD-DLS),
and Selectively Damped Least Squares (SDLS) [4–7]. These solutions produce smooth
postures, however many of these approaches suffer from high computational cost and
singularity problems. Geometric methods depend on the structure of the robot and the
number of its DOFs [8]. Another approach is the use of iterative methods, these meth-
ods suffer from redundant solutions or singularity problems. Due to such limitations,
metaheuristic optimization methods appear as an interesting solution for the IK problem.

In [9–12] the authors propose the solution of the IK problem using metaheuristic
methods. In [13], the authors propose a method called DEMPSO, which is a hybrid strategy
based on Differential Evolution (DE) and Particle Swarm Optimization (PSO) for a 3-RPS
parallel manipulator. In [14], the authors present a hybrid biogeography-based optimization
(HBBO) algorithm, the proposed method is based on BBO and differential evolution (DE).



Mathematics 2022, 10, 1051 3 of 23

2. Problem Definition

A manipulator robot is created from a series of rigid bodies (links), which are connected
through joints. The whole structure of a manipulator robot forms a kinematic chain. The
beginning of the chain is constrained to the base, and the end-effector (tool or gripper) is
connected to the end of the chain, Figure 2.

The structure of the manipulator robot is defined by the number of degrees of freedom
(DOFs). Each DOF is associated with a robot joint, and each joint represents a joint variable.
The pose (position and orientation) of the end-effector can be computed from the joint
variables, this process is known as forward kinematics, see Figure 2. The opposite problem
is known as the inverse kinematics problem which consists of the computation of the joint
variables that correspond to a desired position and orientation. In the case of forward
kinematics, a configuration of joint variables produces a unique pose. On the other hand, the
inverse kinematic problem is more complex since there can be multiple joint configurations
for the same pose. In the case of redundant robots, there can be infinite solutions. The
equations to solve the inverse kinematics are in general nonlinear, and therefore is not
always possible to find a closed-form solution.

Figure 2. Manipulator robot, with relationship between forward and inverse kinematics.

2.1. Forward Kinematics

The forward kinematics for the joints parameters r = [r1, r2, r3, . . . , rn] can be computed
as

T0
n (r) = A0

1(r1) A1
2(r2) A2

3(r3) · · · An−1
n (1)

where n is the total number of degrees of freedom, and the Ai−1
i(ri) is a transformation

matrix for each i-joint. The Ti−1
n represents a homogeneous matrix that contains the

position and orientation of the end effector pose.
Based on the Denavit-Hartenberg convention, the transformation matrix Ai−1

i(ri)
is the transformation from the coordinate frame Bi to the coordinate frame Bi−1, this
transformation is defined using the parameters of the joint i and link i, the transformation
matrix is



Mathematics 2022, 10, 1051 4 of 23

Ai−1
i =


cos θi − sin θi cos αi sin θi sin αi ai cos θi
sin θi cos θi cos αi − cos θi sin αi ai sin θi

0 sin αi cos αi di
0 0 0 1

 (2)

where the variables θi, ai, di and αi are the Denavit-Hartenberg (DH) parameters associated
with each joint and link i. The parameter θi represents the joint angle, the parameter ai
represents de link length, the parameter di represents the link offset, and αi represents the
link twist.

The pose of the end-effector can be written as

T0
n =

[
R t
0 1

]
(3)

where t is a vector representing the position of the end-effector and R is a rotation matrix
representing the orientation of the end-effector.

2.2. Inverse Kinematics

The inverse kinematic problem can be defined as the computation of the joint pa-
rameters given a desired end-effector pose (position and orientation). Mathematically,
inverse kinematics can be defined as the search for the elements of the vector r when a
transformation is given as a function of the joint variables r1, r2, r3 . . . , rn, that is

T0
n (r) = A0

1(r1) A1
2(r2) A2

3(r3) · · · An−1
n (4)

Manipulator robots are commonly actuated in the joint variable space, whereas trajec-
tories to be followed, or objects to be manipulated are expressed in the global coordinate
frame. Therefore, the transformation between 3D pose information and joint variables is a
fundamental process for any manipulator robot.

The aim of this work is the computation of the joint variables given the desired 3D
pose, i.e., the computation of the inverse kinematics of a manipulator robot.

2.3. Metaheuristic Algorithms

As we can notice, the computation of the inverse kinematic for a robot is a complex
problem. This complexity can be increased by the kinematic structure of the robot and also
by the constraints of the desired task. In our case, we want to compute the joint variables
of the robot for the desired pose and in addition, as the robot is following a path we will
require that the new pose of the end-effector is also close to the previous pose. This last,
requirement will help to avoid abrupt changes in robot joint variables.

To solve this problem we propose to use a metaheuristic algorithm. Metaheuristic
optimization is an impressive research area for the solution of intractable optimization
problems.

The use of metaheuristic algorithms has become more common in recent years. Some of
the most used algorithms are: Genetics Algorithms (GA) [15], Particle Swarm Optimization
(PSO) [16], Differential Evolution (DE) [17], Artificial Bee Colony (ABC) [18]. There are
more recent algorithms like the proposed in [14], in this work the authors use an approach
which is a hybrid combination of the Biogeography-Based Optimization (BBO) and DE, the
approach is named Hybrid Biogeography-Based Optimization (HBBO). Another method
used to solve inverse kinematics is the imperialist competitive algorithm (ICA) [19]. The
Whale Optimization Algorithm (WOA), is a metaheuristic optimization algorithm that
mimics the social behavior of humpback whales [20]. In [21], the authors present a Sine
Cosine Algorithm (SCA) for solving optimization problems.

The time complexity of evolutionary algorithms can be defined as O(Nd), where N is
the number of iterations and d is the population size. Therefore, the time complexity for
evolutionary algorithms is in the order of O(n2) [22]. In the computational intelligence



Mathematics 2022, 10, 1051 5 of 23

field, it is generally agreed to use nonparametric tests to analyze the results obtained by
swarm intelligence or evolutionary algorithms.

In this work, we compare the DE, PSO, DEMPSO, HBBO, ICA, OE, WOA and SCA
algorithms for robot manipulator trajectory tracking.

3. Methodology

To solve the trajectory tracking problem we have to take into account three components.
The first component is the distance from the end-effector to the desired position. The second
component is the difference between the end-effector orientation and the desired orientation.
Finally, the third component is the difference between the current joint variables and the
previous joint variables. Is clear, that the first component can be computed using the
Euclidean distance between the two positions. On the other hand, the computation of the
orientation difference has many more options. The last component is defined in the joint
variable space, and it is different from the two previous components.

As we can notice, there are different metrics in each of the three components that we
want to solve. This difference in the metrics must be taken into account when we define
the objective function.

3.1. Position Error

In order to compute the difference between the current end-effector position t and the
desired position td we use the Euclidean distance

derr = ‖t− td‖2 (5)

where ‖‖2 denotes a 2-norm.

3.2. Orientation Error

The selection of the orientation error is not clear as the position error. There are many
representations

Given two coordinates systems B1 and B2 and let R1 and R2 denote the rotation
matrices that describe the orientation of each system referenced to a common base frame
B0. The relative orientation between the frames B1 and B2 is defined by the rotation matrix

R21 = R2R>1 (6)

The rotation matrix R21 has 9 elements while only 3 are independent, this represen-
tation is hard to manipulate, and for this reason, there are representations with fewer
parameters. One effective way to represent a rotation is a quaternion. A quaternion [23]
can be defined as

η = cos(φ/2) (7)

q = sin(φ/2)u (8)

where φ represents the rotation angle, and u represents the axis of rotation [23].
The quaternion obeys [23] the following

η2 + q>q = 1 (9)

Now, let us define the two corresponding quaternions for each rotation as {η1, q1} and
{η2, q2}, respectively. The quaternion of the rotation matrix R21 is given by

{η, q} (10)

where
η = η1η2 + q>1 q2 (11)

and where



Mathematics 2022, 10, 1051 6 of 23

q = η1q2 − η2q1 + q1 × q2 (12)

When the two frames coincide then η1 = η2 and q1 = q2 and from (9) we get

η = 1 (13)

q = 0 (14)

From the previous equation, we can notice that the element q can be used to compute
the orientation error. In particular, the norm of q is 0 when the frames coincide and is 1
when they do not coincide. Therefore, we can define the orientation error with the following
equation

qerr = ‖q‖2 (15)

3.3. Joint Variables Error

The last component to take into account is the difference between the previous joint
variables ri−1 and the current joint variables ri. The objective of this component is to avoid
abrupt changes between the previous joint variables and the current joint variables. To
achieve this, let us analyze how the joint variable ri is defined. In general, the joint variable
is defined within a range from −π to π. The difference between the joint variables ri−1 and
ri can be defined as

rabs = abs(ri − ri−1).

From this equation we can notice that the maximum difference between the joint
variables ri−1 and ri is rabs = [π1, π2, π3, . . . , πN ]. With that in mind, we propose to
compute the joint variables error with the following equation

rerr =
‖ri − ri−1‖1

nπ
. (16)

where ‖‖1 denotes a 1-norm, and where n represents the number of DOF of the robot. This
equation provides us a normalized measurement of the difference between consecutive
joint variables in a range from 0 to 1.

3.4. Objective Function

The objective function for the path tracking task will be defined by using the three
components of the previous subsections. As we can notice the tracking problem has
three functions to be optimized. To solve this, we use a weighted sum method, selecting
scalar weights and minimizing the composite objective function. The proposed composite
objective function is the following:

f = κderr + λqerr + µrerr (17)

where derr is the position error defined in (5), qerr is the orientation error (15), and rerr is
the error between consecutive joint variables (16). The constants κ, λ, and µ represent
the weight scalar factors. The three weight scalar factors are positive and are chosen to
give more weight to the position, then to the orientation, and finally to the previous joint
variables difference. The reason for choosing such weights is because the highest priority
of the robot is to position the end-effector on the desired position, then the robot should
reduce the orientation error, and finally, if it is possible, we may choose the new joint
variables close to the previous joints variables. If for example, the value of µ is bigger than
the other weights then the robot will not move. If the value of lambda is bigger than the
other two weights then the robot end-effector will match the current orientation with the
desired orientation. However, it can be far from the desired position, which is not what
we want. Therefore, for the path tracking problem that we want to solve in this work, the
weights must satisfy µ < λ < κ.



Mathematics 2022, 10, 1051 7 of 23

There are several methods to solve the inverse kinematics problem using metaheuristic
optimizations algorithms like [24–29]. However, most of these methods are designed for
a specific robot. In addition, and more important the objective function of these methods
only considers the position error, which is only one term of our proposed objective function.
In our approach we can set κ = 1, λ = 0, and µ = 0, to consider only the position error.
However, we are interested in a more general problem that not only considers the position
error. In the results section, we show that the proposed approach can effectively solve
the path tracking problem, which not only takes into account the position error, but also
the orientation and joint errors. In addition, we present a general methodology to apply
the proposed approach to robot manipulators with different structures and DOFs, using
different metaheuristic optimization algorithms, see Algorithms 1 and 2.

3.5. Solution of the Path Tracking Problem

To solve the path tracking problem every metaheuristic algorithm will optimize the
objective function (17). Where each individual of the metaheuristic algorithm will represent
a possible joint variable solution r = [r1, r2, r3, . . . , rn]. The metaheuristic algorithm will
find the best solution to minimize the objective function (17).

Before the computation of the objective function, we compute the forward kinemat-
ics (4) of the proposed individual. This operation will provide us with the current pose of
the end-effector, which is what we want to minimize with respect to a desired pose.

We also must take into account that the range of a joint variable is constrained to the
robot joint range constraints. For this reason, we must define the joints constraints as

rlow = [θmin1, θmin2, θmin3, . . . , θmin 1]

rup = [θmax1, θmax2, θmax3, . . . , θmax 1]

The optimal joint configuration can be found by solving the following constrained
optimization:

min
r

f (r),

subject to rlow < r < rup

4. Proposed Approach

To solve the path tracking problem we use Algorithm 1. The algorithm obtains the
desired pose from the path, then it passes the desired pose to the metaheuristic algorithm
which will compute the corresponding joint variables.

Algorithm 1 Trajectory following algorithm.
1: for each pose Td in ∈ trajectory T do
2: r←metaheuristic_inverse_kinematics(Td)
3: Move robot to desired pose using joints variables r
4: end
5: Follow desired trajectory

In order to compute the inverse kinematics, we propose the use Algorithm 2. This
algorithm is a general scheme for the solution of the inverse kinematic problem that can be
adapted to any metaheuristic optimization algorithm.

We can observe in Algorithm 2 that before evaluating the fitness function we must
compute the forward kinematics using the current individual solution xi and x′i. This is
because the solutions provide us with the joint variables, and then the forward kinematics
transform these joint variables into a 3D pose. Using the computed 3D pose and the
desired 3D pose the fitness function evaluates how close is the current solution for the
robot joint angles that generate the desired pose. Therefore, the result of the metaheuristic
optimization is the joint variables r that solve the inverse kinematic problem.



Mathematics 2022, 10, 1051 8 of 23

Algorithm 2 Inverse kinematics algorithm.
1: Initialize the metaheurstic parameters, and population P
2: while stopping conditions not true do
3: for each individual xi ∈ P do
4: Ti ← compute_forward_kinematics(xi)
5: Evaluate the fitness, f (Ti)
6: Generate the new vector x′i
7: T′i ← compute_forward_kinematics(x′i)
8: if f

(
T′i
)
< f (Ti) then

9: xi ← x′i
10: end
11: end
12: end
13: end
14: Return the individual with the best fitness as the solution

In Figure 3, we summarize the proposed approach for manipulator trajectory tracking.
The proposed approach uses Algorithm 1 to follow the desired path. This algorithm,
requires the computation of the inverse kinematics (Algorithm 2). To solve the inverse
kinematic problem Algorithm 2 uses a metaheuristic algorithm, which objective is to find
the best joint variables that minimize the cost function (17).

Figure 3. Schematic representation of the path tracking problem for manipulator robots.

5. Results

In this section, we present the performance of the proposed approach, which is
analyzed and compared with the metaheuristic algorithms DE, PSO, DEMPSO, HBBO,
ICA, WOA, and SCA in terms of accuracy of the estimated position, orientation, and time
offsets. We also perform nonparametric statistical tests to contrast the results obtained in
the simulation studies of these metaheuristic algorithms. The common parameters for the
metaheuristic algorithms are the population size of 30 individuals, maximum iteration of
500, and a tolerance of 1× 10−4.

The parameters for the objective function (17), used in the tests, are: κ = 0.7143,
λ = 0.1786 and µ = 0.1071. These parameters correspond to the position, orientation, and
joint variables weights, respectively. The objective function is a weighted sum of the three
objectives (i.e., position, orientation, and joint errors). The weights κ, λ, and µ are subject to
κ + λ + µ = 1. In our case, the values for the weights are proportional to the importance
of the position (5), orientation (15), and joint (16) errors. As we can notice the position of
the end-effector has the highest priority, then the orientation, and lastly the joint variables
error. A good rule of thumb is to define the parameters λ and µ as



Mathematics 2022, 10, 1051 9 of 23

λ = (1− κ)0.6251 (18)

µ = (1− κ)0.3749 (19)

and the parameter κ with values from 0.6 to 0.8. In this way, the position error has the
highest priority, and the parameters will obey the constraint µ < λ < κ.

The DE algorithm used in these tests is the standard DE with mutation strategy
DE/rand/1/bin. The scaling factor F, controls the amplification of the differential vari-
ations, and it was set to F = 0.6. The cross-over factor CR, has a direct influence on the
diversity of DE, and it was set to CR = 0.9.

The PSO parameters are the cognitive components c1, which measures the performance
of a particle with respect to its previous performance, and the social component c2, which
quantifies the performance of a particle with respect to its neighbors. These parameters
were set to c1 = 1.1312 and c2 = 2.0149. The weight factor w is used to stabilize the motion
of the particles, and it was set to w = 0.53514. In the case of DEMPSO, the weight factor is
gradually decreased from 0.9 to 0.1, the cognitive factor c1 is gradually decreased from 2 to
0.1, and the cognitive factor c2 is gradually increased from 0.1 to 2.

In the ICA algorithm, the number of imperialists is 10, the selection pressure 1, and
the assimilation coefficient 1.5. Finally, the parameters settings for the HBBO algorithm are:
amplification factor F = 0.7, cross-over C = 0.8, the maximum immigration and emigration
are 1, the predetermined maximum mutation probability is 0.05. For the case of the WOA
algorithm, the parameter a is linearly decreased from 2 to 0. For the SCA the parameter a is
set to a = 2.

The experiments were performed with the robots Youbot, Puma 560, Baxter, and Fanuc
AM120iB. These robots have different kinematic structures which are summarized in the
Denavit–Hartenberg tables. Table 1 shows the Youbot DH parameters, this is a robot with 5
DOF. Table 2, shows the Puma 560 DH parameters, this is a robot with 6 DOF. The Baxter
DH parameters are shown in Table 3, this is a robot with 7 DOF. The last robot is the Fanuc
AM120iB and its DH parameters are shown in Table 4.

Table 1. DH table for KUKA Youbot manipulator.

Joint a [m] α [rad] d [m] θ [rad]

1 0.033 π/2 0.147 q1

2 0.155 0 0 q2

3 0.135 0 0 q3

4 0 π/2 0 q4

5 0 0 0.2175 q5

Table 2. DH table for KUKA Youbot manipulator.

Joint a [m] α [rad] d [m] θ [rad]

1 0 π/2 0 q1

2 0.4318 0 0 q2

3 0.0203 −π/2 0.15 q3

4 0 π/2 0.4318 q4

5 0 −π/2 0 q5

6 0 0 0 q6



Mathematics 2022, 10, 1051 10 of 23

Table 3. DH table for KUKA Youbot manipulator.

Joint a [m] α [rad] d [m] θ [rad]

1 0.069 −π/2 0.270 q1

2 0 π/2 0 q2

3 0.069 −π/2 0.364 q3

4 0 π/2 0 q4

5 0.01 −π/2 0.374 q5

6 0.01 π/2 0 q6

7 0.01 0 0.28 q7

Table 4. DH table for KUKA Youbot manipulator.

Joint a [m] α [rad] d [m] θ [rad]

1 0.1 −π/2 0 q1

2 0.7 π 0 q2

3 0.1 −π/2 0 q3

4 0 π/2 −0.96 q4

5 0 −π/2 0 q5

6 0 0 −0.1 q6

During the optimization process, the range of the joint variables r is constrained to the
robot joint limits. The robot joint limits are shown in Equations (20)–(27). For clarity, values
are shown in degrees, although in the optimization the algorithms use radians.

The joint limits for the Youbot robot are

rmin =
[
−169 −65 −150 −102.2 −167.5

]
(20)

rmax =
[
169 65 150 102.2 167.5

]
(21)

The joint limits for the Puma 560 robot are

rmin =
[
−160 −45 −225 −110 −100 −266

]
(22)

rmax =
[
160 225 45 170 100 266

]
(23)

The joint limits for the Baxter robot are

rmin =
[
−141 −123 −173 −3 −175 −90 −175

]
(24)

rmax =
[
51 60 173 150 175 120 175

]
(25)

The joint limits for the Fanuc AM 120iB robot are

rmin =
[
−185 −100 −185 −200 −140 −270

]
(26)

rmax =
[
185 160 273 200 140 270

]
(27)

5.1. Results of Test 1

In this study, we define a circle path for all the robots, the parameters of the circle
depending on the reachability constraint of the robot. For every pose (position, and
orientation) in the path, each metaheuristic algorithm runs 30 times. To qualify the results,
we take the median value from the 30 runs.

The parameters for the Youbot robot are the center C = (0.3, 0.2, 0.5) and the radius
r = 0.05. For the Puma robot C = (0.5, 0, 0.4) and the radius r = 0.3. The parameters for



Mathematics 2022, 10, 1051 11 of 23

the Fanuc robot are C = (1.4, 0, 0.25) and r = 0.5. Finally, the parameters for the Baxter
robot are center C = (0.6, 0.6, 0.5) and the radius r = 0.3.

The desired orientation for all the robots is

Rd = Ry(
π

2
) (28)

The metaheuristic algorithms used for this test are DE, PSO, DEMPSO, ICA, HBBO,
WOA, and SCA, which were used with the four robots (Youbot, Puma, Fanuc, Baxter) in a
circular path tracking tasks. The results of the circle path tracking are shown using boxplots
(Figures 4–7); the position error results are also shown in the comparative Table 5.

We will start by analyzing the results of the Yobout robot, Figure 4. With respect to
the position error (Figure 4a), we can observe that the DE, ICA and HBBO algorithms
provide more consistent performance with smaller variance. From the distribution of the
solution, we can observe that SCA has the worst performance than all the other algorithms
its median is higher than all the algorithms and it also has the highest distribution. It is
important to notice that the Youbot has only 5 DOF, this kind of robot has a lower range of
motion. Despite that constraint, we can observe that the metaheuristics algorithms provide
good results.

DE
PSO

DEMPSO IC
A

HBBO
WOA

SCA

0

0.01

0.02

0.03

e
rr

o
r 

v
a

lu
e

 (
m

e
te

rs
)

Position error

(a)

DE
PSO

DEM
PSO

IC
A

HBBO
W

O
A

SCA

0.2

0.4

0.6

0.8
e

rr
o

r 
v
a

lu
e

Orientation error

(b)

DE
PSO

DEM
PSO

IC
A

HBBO
W

O
A

SCA

0

0.2

0.4

0.6

e
rr

o
r 

v
a

lu
e

Previous joint variable r
-1

(c)

DE
PSO

DEMPSO IC
A

HBBO
WOA

SCA

0.2

0.4

0.6

0.8

1

ti
m

e
 (

s
e
c
o
n
d
s
)

Execution time

(d)

Figure 4. Circle path tracking results for the Youbot robot. (a) Youbot end-effector position error (5);
(b) Youbot end-effector orientation error (15); (c) Youbot joint variables error (16); (d) Execution time
for each point in the path.

In Figure 4b, a boxplot of the orientation error is shown. From the distribution of
the solution in the boxplot, it could be seen that DE, PSO, ICA, HBBO, WOA, and SCO
have similar performance, where DE has a slightly better performance than the others. In
the orientation, the algorithm with the worst performance is the DEMPSO, which has the
highest orientation error, and the larger distribution.

Figure 4c shows the difference between the current ri solution and the previous
solution ri−1. Similar to the orientation error, the algorithms DE, PSO, ICA, and HBBO



Mathematics 2022, 10, 1051 12 of 23

have similar performance, with some outliers in the PSO and ICA. The algorithm with the
largest distribution is the SCA. The algorithm with the largest median error is the WOA.

The execution time of the trajectory following for the Youbot robot is shown in
Figure 4d. From this plot, we can observe that the best performance was obtained by
the PSO, where the PSO algorithm is slightly better than DE, WOA and SCA. We also have
to notice that PSO could be slightly faster than DE. However, its position error is much
higher. From the results of Figure 4, we can conclude that for the Youbot robot the DE
algorithm has the best execution time with the lowest pose errors.

The results for the Puma robot are shown in Figure 5. In this case, we can observe that
in the position error Figure 5a, the DE, and DEMPSOs have a more consistent performance
with smaller variance. The HBBO algorithm has a fewer distribution than the PSO and
ICA algorithms, but is higher than the DE and DEMPSO. The algorithm with the worst
performance is the SCA, which has the highest error, and the larger distribution.

DE
PSO

DEMPSO IC
A

HBBO
WOA

SCA

0

0.02

0.04

0.06

0.08

e
rr

o
r 

v
a
lu

e
 (

m
e
te

rs
)

Position error

(a)

DE
PSO

DEM
PSO

IC
A

HBBO
W

O
A

SCA

0

0.1

0.2

0.3

0.4

e
rr

o
r 

v
a

lu
e

Orientation error

(b)

DE
PSO

DEM
PSO

IC
A

HBBO
W

O
A

SCA

0

0.2

0.4

0.6

e
rr

o
r 

v
a

lu
e

Previous joint variable r
-1

(c)

DE
PSO

DEMPSO IC
A

HBBO
WOA

SCA

0

0.2

0.4

0.6

0.8

1

ti
m

e
 (

s
e
c
o
n
d
s
)

Execution time

(d)

Figure 5. Circle path tracking results for the Puma robot. (a) Puma end-effector position error (5);
(b) Puma end-effector orientation error (15); (c) Puma joint variables error (16); (d) Execution time for
each point in the path.

The orientation error of the Puma robot is shown in Figure 5b. In this case, the
algorithms DE, DEMPSO and ICA have the lowest median and lowest distribution with a
few outliers. The HBBO has a median very close to the median of those three algorithms,
but it has a higher distribution. In this case, the WOA algorithm has the worst performance,
with the highest median and distribution.

In the case of the joint variables error for the Puma robot, we can observe in Figure 5c
that the ICA and HBBO algorithms are the methods with lower median and lower distribu-
tion. The algorithms with the worst performance are the WOA and SCA. With respect to
the execution time Figure 5d, we can observe that the algorithm with the best performance
is the DE. From these boxplots, we can say that the DE algorithm has in general the best
results with the Puma robot.



Mathematics 2022, 10, 1051 13 of 23

In the case of the Fanuc robot Figure 6a, we can notice that DE, ICA and HBBO have
the best performance in the position error. With respect to the orientation error Figure 6b,
the algorithm with the best performance is the DE. In the joint variables error Figure 6c,
we have a very similar performance between the algorithms DE, PSO, ICA and HBBO,
where the median of the DE is slightly lower. The algorithms with the worst performance
are the WOA and SCA, which are the algorithms with the highest median error. In the
execution time Figure 6d, the DE and PSO have the lowest median, where PSO has the
lowest distribution. However, DE evolution performs better than PSO in the position and
orientation errors.

DE
PSO

DEMPSO IC
A

HBBO
WOA

SCA

0

0.05

0.1

e
rr

o
r 

v
a

lu
e

 (
m

e
te

rs
)

Position error

(a)

DE
PSO

DEM
PSO

IC
A

HBBO
W

O
A

SCA

0

0.2

0.4

0.6

0.8

e
rr

o
r 

v
a

lu
e

Orientation error

(b)

DE
PSO

DEM
PSO

IC
A

HBBO
W

O
A

SCA

0

0.2

0.4

0.6

0.8

e
rr

o
r 

v
a

lu
e

Previous joint variable r
-1

(c)

DE
PSO

DEMPSO IC
A

HBBO
WOA

SCA

0.2

0.4

0.6

0.8

1

ti
m

e
 (

s
e
c
o
n
d
s
)

Execution time

(d)

Figure 6. Circle path tracking results with the Fanuc robot. (a) Fanuc end-effector position error (5);
(b) Fanuc end-effector orientation error (15); (c) Fanuc joint variables error (16); (d) Execution time
for each point in the path.

Figure 7 shows the Baxter robot results. In Figure 7a we can observe that the perfor-
mance for the position error is very similar for all the algorithms, with the exception of
the PSO and SCA. In this case, the algorithm with the worst performance is the SCA. With
respect to the orientation error Figure 7b, the DE has the lowest median, and the lowest
dispersion, with some outliers that are lower than the median of all the others algorithms.

With respect to the joint variables error Figure 7c, we can observe that the algorithm
with the lowest median and lowest dispersion is ICA. In this case the algorithms with the
worst performance are the WOA and SCA. In the execution time for the Baxter robot tests
Figure 7d, we can observe that DE has the best performance. From these results, DE has in
general the best performance.



Mathematics 2022, 10, 1051 14 of 23

DE
PSO

DEMPSO IC
A

HBBO
WOA

SCA

0

0.02

0.04

0.06

e
rr

o
r 

v
a

lu
e

 (
m

e
te

rs
)

Position error

(a)

DE
PSO

DEM
PSO

IC
A

HBBO
W

O
A

SCA

0

0.1

0.2

0.3

0.4

0.5

e
rr

o
r 

v
a
lu

e

Orientation error

(b)

DE
PSO

DEM
PSO

IC
A

HBBO
W

O
A

SCA

0

0.2

0.4

0.6

e
rr

o
r 

v
a
lu

e

Previous joint variable r
-1

(c)

DE
PSO

DEMPSO IC
A

HBBO
WOA

SCA

0.2

0.4

0.6

0.8

1

ti
m

e
 (

s
e
c
o
n
d
s
)

Execution time

(d)
Figure 7. Circle path tracking results with the Baxter robot. (a) Baxter end-effector position error (5);
(b) Baxter end-effector orientation error (15); (c) Baxter joint variables error (16); (d) Execution time
for each point in the path.

Table 5. Position error comparative results for the circle path.

Robot DE PSO DEMPSO ICA HBBO WOA SCA

Youbot

Mean 4.34× 10−18 5.74× 10−3 1.09× 10−3 1.44× 10−5 7.14× 10−5 8.55× 10−3 1.00× 10−2

Std 9.61× 10−18 1.72× 10−3 3.37× 10−4 1.02× 10−5 2.16× 10−4 6.17× 10−3 2.80× 10−3

Best 0 2.70× 10−3 0 2.10× 10−6 1.62× 10−16 1.21× 10−3 4.86× 10−3

Worst 2.78× 10−17 1.11× 10−2 1.77× 10−3 3.79× 10−5 1.05× 10−3 3.29× 10−2 1.44× 10−2

Puma

Mean 3.44× 10−5 1.80× 10−3 6.68× 10−5 2.59× 10−3 1.21× 10−3 1.65× 10−2 3.97× 10−2

Std 4.15× 10−6 2.66× 10−3 2.40× 10−5 4.52× 10−3 2.39× 10−3 1.37× 10−2 2.10× 10−2

Best 2.64× 10−5 7.65× 10−6 0 3.05× 10−5 1.74× 10−3 2.18× 10−5 1.66× 10−2

Worst 4.12× 10−5 1.29× 10−2 1.56× 10−4 1.84× 10−2 1.10× 10−2 6.09× 10−2 8.94× 10−2

Baxter

Mean 6.11× 10−5 2.72× 10−3 1.04× 10−7 2.33× 10−9 2.25× 10−16 1.50× 10−3 3.95× 10−2

Std 1.43× 10−4 2.16× 10−3 3.60× 10−7 5.10× 10−9 1.58× 10−16 1.07× 10−3 6.37× 10−3

Best 2.37× 10−5 1.81× 10−4 0 1.10× 10−13 0 3.06× 10−4 3.11× 10−2

Worst 8.43× 10−4 7.77× 10−3 1.82× 10−6 1.92× 10−8 8.43× 10−16 4.13× 10−3 5.81× 10−2

Fanuc

Mean 1.30× 10−5 7.62× 10−3 2.14× 10−2 1.60× 10−4 4.74× 10−4 3.27× 10−3 6.64× 10−2

Std 1.44× 10−5 3.08× 10−3 3.75× 10−2 6.84× 10−5 8.40× 10−4 3.21× 10−3 2.12× 10−2

Best 1.98× 10−15 5.64× 10−4 0 7.97× 10−5 1.04× 10−14 1.90× 10−4 2.45× 10−2

Worst 3.73× 10−5 1.45× 10−2 1.21× 10−1 3.35× 10−4 3.58× 10−3 1.61× 10−2 1.31× 10−1



Mathematics 2022, 10, 1051 15 of 23

Nonparametric Statistical Tests

Nonparametric statistical tests can be used to compare a significant improvement
between algorithms. The main concepts of nonparametric tests are the null hypothesis and
alternative hypothesis. The null hypothesis H0 is a statement of no difference, whereas the
alternative hypothesis H1 represents the presence of a difference. A level of significance α
is used to determine at which level the hypothesis may be rejected.

In this section, we present the nonparametric test results of the circle path tracking
task. To compare the performance of the algorithms we use the popular sign test. In these
test, we compare the DE against PSO, DEMPSO, ICA, HBBO, WOA and SCA with respect
to the objective function (17) results.

In Table 6, we can observe that DE shows a significant improvement over all the
metaheuristic algorithms with a level of significance of α = 0.05. In Table 7, we also
present the comparative results, we can observe that the DE mean is better than all the
other algorithms.

Table 6. Sign test results for the objective function for the circle path.

Robot DE PSO DEMPSO ICA HBBO WOA SCA

Youbot

Wins (+) 32 32 32 32 32 32

Loses (−) 0 0 0 0 0 0

p value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Puma

Wins (+) 32 32 32 32 32 32

Loses (−) 0 0 0 0 0 0

p value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Baxter

Wins (+) 32 32 32 32 32 32

Loses (−) 0 0 0 0 0 0

p value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Fanuc

Wins (+) 32 32 31 32 32 32

Loses (−) 0 0 1 0 0 0

p value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

5.2. Results of Test 2

The configuration parameters of the metaheuristics algorithm used for this test are
the same values used in test 1. The path used for this test is a lemniscate path, with the
equation r = a cos(θ). The parameter a varies for each robot. The results of the lemniscate
path tracking are shown using boxplots (Figures 8–11), the position error results are also
shown in the comparative Table 8.

In the case of the Youbot robot the path center is C = (0.3, 0.2, 0.5) and with a = 0.05.
The results of the Youbot are shown in Figure 8. Figure 8a shows the results of the
position error for the Youbot robot. Here we can observe that the algorithms with the best
performance correspond to the DE and ICA algorithms, where DE has a slightly lower
median and distribution.

The orientation error of the Youbot is presented in Figure 8b. In this case, the per-
formance of the DE, PSO, ICA and HBBO is very similar. The algorithm with the lowest
median is the DE, and the algorithm with the larger median and distribution is the DEMPSO.
Similarly, with respect to the joint error Figure 8c, we can observe a similar performance
with the DE, PSO, ICA and HBBO. Finally, with respect to the execution time, we can
observe that the best algorithm is the PSO. However, we also should notice that the PSO is
the algorithm with the worst performance in the position error. The second-best execution
time algorithm is the DE. Although the performance of the algorithms DE, ICA and HBBO
is similar, we could highlight that DE is the fastest of the three.



Mathematics 2022, 10, 1051 16 of 23

Table 7. Objective function comparative results for circle path.

Robot DE PSO DEMPSO ICA HBBO WOA SCA

Youbot

Mean 2.54× 10−2 3.59× 10−2 1.08× 10−1 2.74× 10−2 2.67× 10−2 5.12× 10−2 3.69× 10−2

Std 5.50× 10−3 5.81× 10−3 2.31× 10−2 6.04× 10−3 6.46× 10−3 7.19× 10−3 6.02× 10−3

Best 1.94× 10−2 2.75× 10−2 6.67× 10−2 2.02× 10−2 1.97× 10−2 3.69× 10−2 2.73× 10−2

Worst 3.41× 10−2 4.55× 10−2 1.51× 10−1 3.89× 10−2 3.95× 10−2 6.65× 10−2 4.84× 10−2

Puma

Mean 5.19× 10−5 1.32× 10−2 1.66× 10−3 2.01× 10−3 3.21× 10−3 7.74× 10−2 6.35× 10−2

Std 4.76× 10−6 1.45× 10−2 8.03× 10−3 3.25× 10−3 4.15× 10−3 1.29× 10−2 1.59× 10−2

Best 4.29× 10−5 7.00× 10−4 8.51× 10−5 9.64× 10−5 5.10× 10−2 9.94× 10−5 3.55× 10−2

Worst 6.12× 10−5 4.83× 10−2 4.54× 10−2 1.31× 10−2 1.77× 10−2 1.04× 10−1 1.06× 10−1

Baxter

Mean 7.39× 10−4 4.24× 10−2 1.40× 10−2 3.23× 10−2 2.03× 10−2 8.35× 10−2 7.62× 10−2

Std 2.67× 10−3 1.34× 10−2 1.07× 10−2 6.99× 10−3 7.11× 10−3 1.32× 10−2 1.51× 10−2

Best 4.88× 10−5 1.62× 10−2 2.48× 10−3 1.96× 10−2 7.50× 10−3 5.29× 10−2 4.73× 10−2

Worst 1.45× 10−2 6.78× 10−2 3.74× 10−2 5.17× 10−2 3.38× 10−2 1.05× 10−1 1.05× 10−1

Fanuc

Mean 9.90× 10−3 4.68× 10−2 4.69× 10−2 1.20× 10−2 2.59× 10−2 1.48× 10−1 1.21× 10−1

Std 1.25× 10−2 2.23× 10−2 6.37× 10−2 1.44× 10−2 1.97× 10−2 2.34× 10−2 2.66× 10−2

Best 4.64× 10−5 2.87× 10−2 2.09× 10−4 9.72× 10−5 5.11× 10−3 8.26× 10−2 7.42× 10−2

Worst 3.89× 10−2 1.48× 10−1 2.09× 10−1 3.94× 10−2 6.46× 10−2 1.79× 10−1 1.99× 10−1

DE
PSO

DEMPSO IC
A

HBBO
WOA

SCA

0

0.02

0.04

0.06

e
rr

o
r 

v
a

lu
e

 (
m

e
te

rs
)

Position error

(a)

DE
PSO

DEM
PSO

IC
A

HBBO
W

O
A

SCA

0.2

0.4

0.6

0.8

1

e
rr

o
r 

v
a

lu
e

Orientation error

(b)

DE
PSO

DEM
PSO

IC
A

HBBO
W

O
A

SCA

0

0.2

0.4

0.6

e
rr

o
r 

v
a

lu
e

Previous joint variable r
-1

(c)

DE
PSO

DEMPSO IC
A

HBBO
WOA

SCA

0.2

0.4

0.6

0.8

1

1.2

ti
m

e
 (

s
e
c
o
n
d
s
)

Execution time

(d)

Figure 8. Lemniscate path tracking results for the Youbot robot. (a) Youbot end-effector position error
(5); (b) Youbot end-effector orientation error (15); (c) Youbot joint variables error (16); (d) Execution
time for each point in the path.

The path center for the Puma robot is C = (0.5, 0, 0.4), the parameter of the equation is
a = 0.3. Figure 9 shows the results for the Puma robot. In the position error Figure 9a we



Mathematics 2022, 10, 1051 17 of 23

can observe that DE, DEMPSO and ICA have similar performance. However, we can also
notice that the DE and DEMPSO do not have outliers.

In the case of the orientation error Figure 9b, the algorithms DE, DEMPSO and ICA
show similar performance, with very low medians, with DE without outliers. For the joint
error Figure 9c, we can observe that PSO, ICA, and HBBO have similar performance, the
median of DE and DEMPSO are slightly higher than the medians of those three algorithms.
Finally, with respect to the execution time the algorithm with the best performance is the
DE, Figure 9d.

DE
PSO

DEMPSO IC
A

HBBO
WOA

SCA

0

0.02

0.04

0.06

0.08

0.1

e
rr

o
r 

v
a
lu

e
 (

m
e
te

rs
)

Position error

(a)

DE
PSO

DEM
PSO

IC
A

HBBO
W

O
A

SCA

0

0.1

0.2

0.3

0.4

0.5

e
rr

o
r 

v
a

lu
e

Orientation error

(b)

DE
PSO

DEM
PSO

IC
A

HBBO
W

O
A

SCA

0

0.2

0.4

0.6

e
rr

o
r 

v
a

lu
e

Previous joint variable r
-1

(c)

DE
PSO

DEMPSO IC
A

HBBO
WOA

SCA

0

0.2

0.4

0.6

0.8

1

ti
m

e
 (

s
e
c
o
n
d
s
)

Execution time

(d)

Figure 9. Lemniscate path tracking results for the Puma robot. (a) Puma end-effector position error
(5); (b) Puma end-effector orientation error (15); (c) Puma joint variables error (16); (d) Execution time
for each point in the path.

The center of the path for the Fanuc robot is C = (1.4; 0; 0.25), and the lemniscate
parameter a = 0.5. The results of the Fanuc robot are shown in Figure 10. In the position
error Figure 10a, we can observe that the algorithms with the best performance are the DE
and ICA algorithms, which have the lowest median and distribution. In the orientation
error Figure 10b, we can notice that the algorithm with the best performance is the DE.
With respect to the joint error Figure 10c, all the algorithms, with exception of the DEMPSO
algorithm, have a similar performance with DE with a slightly lower median. Finally,
the best execution time is obtained by the PSO algorithm. However, the DE, which has
the second-best execution time performance, has a better performance in position and
orientation.

The path parameters for the Baxter robot are C = (0.6, 0.6, 0.5), and a = 0.3. The results
for the Baxter robot are shown in Figure 11. In the case of the position error Figure 11a, we
can observe that the algorithms DE, DEMPSO, ICA and HBBO have similar performance,
the DE has some outliers. In the orientation error the best performance was obtained with
the DE, which has the lowest median and a very narrow distribution. With respect to the



Mathematics 2022, 10, 1051 18 of 23

joint error Figure 11c, the best performance is obtained by the ICA algorithm. Finally, in
the execution time Figure 11d, the best performance was obtained by the DE algorithm.

DE
PSO

DEMPSO IC
A

HBBO
WOA

SCA

0

0.05

0.1

0.15

e
rr

o
r 

v
a
lu

e
 (

m
e
te

rs
)

Position error

(a)

DE
PSO

DEM
PSO

IC
A

HBBO
W

O
A

SCA

0

0.2

0.4

0.6

0.8

e
rr

o
r 

v
a

lu
e

Orientation error

(b)

DE
PSO

DEM
PSO

IC
A

HBBO
W

O
A

SCA

0

0.2

0.4

0.6

0.8

e
rr

o
r 

v
a

lu
e

Previous joint variable r
-1

(c)

DE
PSO

DEMPSO IC
A

HBBO
WOA

SCA

0.2

0.4

0.6

0.8

1

ti
m

e
 (

s
e
c
o
n
d
s
)

Execution time

(d)

Figure 10. Lemniscate path tracking results with the Fanuc robot. (a) Fanuc end-effector position
error (5); (b) Fanuc end-effector orientation error (15); (c) Fanuc joint variables error (16); (d) Execution
time for each point in the path.

DE
PSO

DEMPSO IC
A

HBBO
WOA

SCA

0

0.02

0.04

0.06

e
rr

o
r 

v
a
lu

e
 (

m
e
te

rs
)

Position error

(a)

DE
PSO

DEM
PSO

IC
A

HBBO
W

O
A

SCA

0

0.1

0.2

0.3

0.4

0.5

e
rr

o
r 

v
a

lu
e

Orientation error

(b)

DE
PSO

DEM
PSO

IC
A

HBBO
W

O
A

SCA

0

0.2

0.4

0.6

e
rr

o
r 

v
a

lu
e

Previous joint variable r
-1

(c)

DE
PSO

DEMPSO IC
A

HBBO
WOA

SCA

0.2

0.4

0.6

0.8

1

1.2

ti
m

e
 (

s
e
c
o
n
d
s
)

Execution time

(d)

Figure 11. Lemniscate path tracking results with the Baxter robot. (a) Baxter end-effector position
error (5); (b) Baxter end-effector orientation error (15); (c) Baxter joint variables error (16); (d) Execution
time for each point in the path.



Mathematics 2022, 10, 1051 19 of 23

Table 8. Position error results for the lemniscate path.

Robot DE PSO DEMPSO ICA HBBO WOA SCA

Youbot

Mean 2.78× 10−12 6.65× 10−3 1.48× 10−3 4.62× 10−5 7.94× 10−4 8.42× 10−3 1.04× 10−2

Std 2.37× 10−11 4.15× 10−3 1.49× 10−3 7.77× 10−5 1.48× 10−3 9.26× 10−3 2.61× 10−3

Best 0 1.09× 10−3 0 5.24× 10−8 0 2.64× 10−3 4.99× 10−3

Worst 2.03× 10−10 2.49× 10−2 6.96× 10−3 3.80× 10−4 7.89× 10−3 6.02× 10−2 1.86× 10−2

Puma

Mean 3.41× 10−5 1.01× 10−3 5.95× 10−5 7.43× 10−4 1.05× 10−3 1.43× 10−2 4.43× 10−2

Std 4.27× 10−6 1.69× 10−3 1.23× 10−5 1.99× 10−3 2.36× 10−3 1.15× 10−2 2.13× 10−2

Best 2.37× 10−5 4.49× 10−6 0 6.18× 10−6 1.92× 10−3 2.29× 10−5 1.57× 10−2

Worst 4.35× 10−5 8.35× 10−3 9.29× 10−5 8.87× 10−3 1.32× 10−2 5.33× 10−2 1.02× 10−1

Baxter

Mean 1.85× 10−4 1.23× 10−3 2.32× 10−7 4.05× 10−8 1.55× 10−7 1.33× 10−3 3.97× 10−2

Std 7.54× 10−4 1.36× 10−3 1.36× 10−6 1.25× 10−7 1.00× 10−6 1.06× 10−3 7.65× 10−3

Best 2.20× 10−5 6.50× 10−8 0 1.89× 10−12 1.11× 10−16 8.03× 10−5 2.63× 10−2

Worst 5.13× 10−3 5.78× 10−3 1.13× 10−5 9.53× 10−7 7.88× 10−6 6.10× 10−3 6.05× 10−2

Fanuc

Mean 1.01× 10−5 7.44× 10−3 4.28× 10−2 1.36× 10−4 1.04× 10−3 7.48× 10−3 7.66× 10−2

Std 1.45× 10−5 2.93× 10−3 4.95× 10−2 5.28× 10−5 1.68× 10−3 1.82× 10−2 3.28× 10−2

Best 2.22× 10−16 2.25× 10−3 0 4.34× 10−5 4.76× 10−16 3.22× 10−4 2.56× 10−2

Worst 4.24× 10−5 1.38× 10−2 1.45× 10−1 3.66× 10−4 8.67× 10−3 1.17× 10−1 1.74× 10−1

Nonparametric Statistical Tests

In this section, we present the nonparametric test results of the lemniscate path tracking
task. To compare the performance of the algorithms we use the sign test. In these tests, we
compare the DE against PSO, DEMPSO, ICA, HBBO, WOA, and SCA with respect to the
objective function (17) results.

In Table 9, we can observe that DE shows a significant improvement over all the
metaheuristic algorithms with a level of significance of α = 0.05. In Table 10, we also
present the comparative results, we can observe that the DE mean is better than all the
other algorithms.

Table 9. Sign test results for the objective function for the lemniscate path.

Robot DE PSO DEMPSO ICA HBBO WOA SCA

Youbot

Wins (+) 73 73 49 51 73 73

Loses (−) 0 0 24 22 0 0

p value 0.0000 0.0000 0.0046 0.0009 0.0000 0.0000

Puma

Wins (+) 73 73 73 73 73 73

Loses (−) 0 0 0 0 0 0

p value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Baxter

Wins (+) 73 73 73 73 73 73

Loses (−) 0 0 0 0 0 0

p value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Fanuc

Wins (+) 66 66 54 58 73 73

Loses (−) 7 7 19 15 0 0

p value 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000



Mathematics 2022, 10, 1051 20 of 23

Table 10. Objective function comparative results for lemniscate path

Robot DE PSO DEMPSO ICA HBBO WOA SCA

Youbot

Mean 2.58× 10−2 3.45× 10−2 1.24× 10−1 2.68× 10−2 2.69× 10−2 4.60× 10−2 3.64× 10−2

Std 4.09× 10−3 7.45× 10−3 6.52× 10−2 5.00× 10−3 4.58× 10−3 7.21× 10−3 4.30× 10−3

Best 2.01× 10−2 2.43× 10−2 3.03× 10−2 1.98× 10−2 1.98× 10−2 3.27× 10−2 3.06× 10−2

Worst 3.55× 10−2 6.39× 10−2 3.97× 10−1 3.76× 10−2 3.97× 10−2 6.36× 10−2 4.62× 10−2

Puma

Mean 5.06× 10−5 5.40× 10−3 2.96× 10−4 5.84× 10−4 2.51× 10−3 6.48× 10−2 6.26× 10−2

Std 4.41× 10−6 4.57× 10−3 1.24× 10−3 1.41× 10−3 3.07× 10−3 1.71× 10−2 1.63× 10−2

Best 3.91× 10−5 4.76× 10−4 8.35× 10−5 9.37× 10−5 3.53× 10−2 9.45× 10−5 3.49× 10−2

Worst 6.09× 10−5 2.40× 10−2 8.38× 10−3 6.33× 10−3 1.42× 10−2 1.14× 10−1 1.04× 10−1

Baxter

Mean 1.63× 10−4 2.87× 10−2 1.04× 10−2 2.72× 10−2 1.59× 10−2 7.82× 10−2 7.66× 10−2

Std 5.37× 10−4 1.27× 10−2 5.35× 10−3 8.29× 10−3 6.09× 10−3 1.23× 10−2 1.71× 10−2

Best 4.68× 10−5 1.04× 10−2 3.27× 10−3 1.34× 10−2 7.32× 10−3 4.68× 10−2 4.35× 10−2

Worst 3.67× 10−3 6.35× 10−2 2.58× 10−2 6.40× 10−2 3.81× 10−2 1.01× 10−1 1.10× 10−1

Fanuc

Mean 8.44× 10−3 3.49× 10−2 7.73× 10−2 1.18× 10−2 2.26× 10−2 1.43× 10−1 1.19× 10−1

Std 1.12× 10−2 1.01× 10−2 8.18× 10−2 1.06× 10−2 1.65× 10−2 3.30× 10−2 3.60× 10−2

Best 4.50× 10−5 2.27× 10−2 2.40× 10−4 9.85× 10−5 3.20× 10−3 6.03× 10−2 5.87× 10−2

Worst 3.91× 10−2 8.90× 10−2 2.43× 10−1 3.74× 10−2 6.44× 10−2 2.35× 10−1 2.06× 10−1

5.3. Results of Test 3

In this section, we present the convergences curves for the metaheuristic algorithms DE,
PSO, DEMPSO, HBBO, ICA, WOA and SCA. For these tests, we have chosen an arbitrary
position for each robot, with the desired orientation of Rd = Ry(π

2 ). Each algorithm runs
30 times for each robot pose; we chose the best solution and plotted its convergence curve.

Figure 12a shows the convergence curves for the Baxter robot. In this case, we can
notice that all the algorithms, except for WOA and SCA, show an accelerated convergence
behavior. The SCA algorithm converges toward the optimum only in final iterations. The
WOA algorithm converges rapidly but it gets stuck in a local minimum. The desired
position of the end-effector for this test was xd = [0.6000, 0.6000, 0.8000].

In Figure 12b, we present the convergence curves for the Fanuc robot. In this case,
we can notice that all the algorithms, with the exception of SCA, show an accelerated
convergence behavior. The WOA algorithm converges toward the optimum only in final
iterations. For the Fanuc robot the desired position was xd = [1.4000, 0, 0.7500].

The results for the Puma robot are shown in Figure 12c. We can observe that all the
algorithms, with the exception of WOA and SCA, show a rapid convergence behavior. The
WOA and SCA converge to a local minimum, and the SCA converges at the final iterations.
In this test, the desired position was xd = [0.5000, 0, 0.7000]

Figure 12d shows the convergence curves for the Youbot robot. In this case, we can
notice that all the algorithms, with the exception of SCA, show an accelerated convergence
behavior. The SCA algorithm converges toward the optimum after passing almost half
of the iterations. We should notice that the Yobout robot has only five DOFs, and for this
reason, the robot is not able to achieve all the position and orientations in the 3D space.
However, the algorithm provides an acceptable solution. For this test, the desired position
was xd = [0.3000, 0.2359, 0.5348].



Mathematics 2022, 10, 1051 21 of 23

0 50 100 150 200 250 300 350 400 450 500

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

DE

PSO

DEMPSO

ICA

HBBO

WOA

SCA

(a)

0 50 100 150 200 250 300 350 400 450 500

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DE

PSO

DEMPSO

ICA

HBBO

WOA

SCA

(b)

0 50 100 150 200 250 300 350 400 450 500

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

DE

PSO

DEMPSO

ICA

HBBO

WOA

SCA

(c)

0 50 100 150 200 250 300 350 400 450 500

0

0.05

0.1

0.15

0.2

0.25

0.3

DE

PSO

DEMPSO

ICA

HBBO

WOA

SCA

(d)

Figure 12. Convergence curves for the four robots. (a) Convergence curves for the Baxter robot);
(b) Convergence curves for the Fanuc robot; (c) Convergence curves for the Puma robot; (d) Conver-
gence curves for the Youbot robot.

6. Conclusions

In this work, we have presented a new approach to solve the path tracking task for
robot manipulators using metaheuristic optimization. The proposed method does not
have singularities problems like the Jacobian method. The proposed approach is a general
method, that can be used to solve the path tracking task, with robots of any number of
DOF. The experiments were performed with robots with 5 DOF, 6 DOF, and a redundant
robot with 7 DOF. We have proposed a novel objective function that combines effectively
the position, orientation, and joint angles objectives functions. We have shown how to
normalize each of these objective functions in order to define a weight objective function.
To the best of our knowledge, this is the first work that uses quaternions in the objective
function to solve the end-effector orientation error with metaheuristic optimization algo-
rithms. This orientation representation allowed us to effectively combine the position and
joint objectives to solve the path tracking problem without singularities.

Author Contributions: Conceptualization, C.L.-F. and J.H.-B.; Data curation, D.D.; Formal analysis,
C.L.-F. and N.A.-D.; Investigation, C.L.-F. and J.H.-B.; Methodology, M.L.-F.; Software, M.L.-F.;
Validation, N.A.-D. and M.L.-F.; Visualization, D.D.; Writing—original draft, C.L.-F. All authors have
read and agreed to the published version of the manuscript.

Funding: This research has been supported by CONACYT México, through Project Cb-258068.

Data Availability Statement: The data analyzed are available from the authors upon request.

Conflicts of Interest: The authors declare no conflict of interest.



Mathematics 2022, 10, 1051 22 of 23

References
1. Bingul, Z.; Ertunc, H.; Oysu, C. Comparison of inverse kinematics solutions using neural network for 6R robot manipulator with

offset. In Proceedings of the 2005 ICSC Congress on Computational Intelligence Methods and Applications, Istanbul, Turkey,
15–17 December 2005; p. 5. [CrossRef]

2. Balestrino, A.; De Maria, G.; Sciavicco, L. Robust Control of Robotic Manipulators. IFAC Proc. Vol. 1984, 17, 2435–2440. [CrossRef]
3. Wolovich, W.A.; Elliott, H. A computational technique for inverse kinematics. In Proceedings of the The 23rd IEEE Conference

on Decision and Control, Las Vegas, NV, USA, 12–14 December 1984; pp. 1359–1363. [CrossRef]
4. Wampler, C.W. Manipulator Inverse Kinematic Solutions Based on Vector Formulations and Damped Least-Squares Methods.

IEEE Trans. Syst. Man Cybern. 1986, 16, 93–101. [CrossRef]
5. Nakamura, Y.; Hanafusa, H. Inverse Kinematic Solutions With Singularity Robustness for Robot Manipulator Control. J. Dyn.

Syst. Meas. Control. 1986, 108, 163–171. [CrossRef]
6. Buss, S.R.; Kim, J.S. Selectively Damped Least Squares for Inverse Kinematics. J. Graph. Tools 2005, 10, 37–49. [CrossRef]
7. Baillieul, J. Kinematic programming alternatives for redundant manipulators. In Proceedings of the Proceedings, 1985 IEEE

International Conference on Robotics and Automation, St. Louis, MO, USA, 25–28 March 1985; Volume 2, pp. 722–728. [CrossRef]
8. Lee, C.; Ziegler, M. Geometric Approach in Solving Inverse Kinematics of PUMA Robots. IEEE Trans. Aerosp. Electron. Syst. 1984,

AES-20, 695–706. [CrossRef]
9. Yang, Y.; Peng, G.; Wang, Y.; Zhang, H. A New Solution for Inverse Kinematics of 7-DOF Manipulator Based on Genetic

Algorithm. In Proceedings of the 2007 IEEE International Conference on Automation and Logistics, Jinan, China, 18–21 August
2007; pp. 1947–1951. [CrossRef]

10. Pham, D.T.; Castellani, M.; Fahmy, A.A. Learning the inverse kinematics of a robot manipulator using the Bees Algorithm. In
Proceedings of the 2008 6th IEEE International Conference on Industrial Informatics, Daejeon, Korea, 13–16 July 2008; pp. 493–498.
[CrossRef]

11. Huang, H.C.; Chen, C.P.; Wang, P.R. Particle swarm optimization for solving the inverse kinematics of 7-DOF robotic manipulators.
In Proceedings of the 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Seoul, Korea, 14–17 October
2012; pp. 3105–3110. [CrossRef]

12. Nearchou, A.C. Solving the inverse kinematics problem of redundant robots operating in complex environments via a modified
genetic algorithm. Mech. Mach. Theory 1998, 33, 273–292. [CrossRef]

13. Mao, B.; Xie, Z.; Wang, Y.; Handroos, H.; Wu, H. A Hybrid Strategy of Differential Evolution and Modified Particle Swarm
Optimization for Numerical Solution of a Parallel Manipulator. Math. Probl. Eng. 2018, 2018, 1–10. [CrossRef]

14. Ren, Z.W.; Wang, Z.H.; Sun, L.N. A hybrid biogeography-based optimization method for the inverse kinematics problem of an
8-DOF redundant humanoid manipulator. Front. Inf. Technol. Electron. Eng. 2015, 16, 607–616. [CrossRef]

15. Goldberg, D.E. Genetic Algorithms in Search, Optimization and Machine Learning, 1st ed.; Addison-Wesley Longman Publishing Co.,
Inc.: Boston, MA, USA, 1989.

16. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural
Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [CrossRef]

17. Storn, R.; Price, K. Differential Evolution—A Simple and Efficient Heuristic for global Optimization over Continuous Spaces. J.
Glob. Optim. 1997, 11, 341–359. [CrossRef]

18. Karaboga, D.; Basturk, B. A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC)
algorithm. J. Glob. Optim. 2007, 39, 459–471. [CrossRef]

19. Bayati, M. Using cuckoo optimization algorithm and imperialist competitive algorithm to solve inverse kinematics problem for
numerical control of robotic manipulators. Proc. Inst. Mech. Eng. Part J. Syst. Control. Eng. 2015, 229, 375–387. [CrossRef]

20. Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [CrossRef]
21. Mirjalili, S. SCA: A Sine Cosine Algorithm for solving optimization problems. Knowl.-Based Syst. 2016, 96, 120–133. [CrossRef]
22. Tahyudin, I.; Haviluddin, H.; Nanb, H. Time Complexity Of A Priori Furthermore, Evolutionary Algorithm For Numerical

Association Rule Mining Optimization. Int. J. Sci. Technol. Res. 2019, 8, 483–485.
23. Kuipers, J.B. Quaternions and Rotation Sequences: A Primer with Applications to Orbits, Aerospace, and Virtual Reality; Princeton Univ.

Press: Princeton, NJ, USA, 1999.
24. Dereli, S.; Köker, R. A Meta-Heuristic Proposal for Inverse Kinematics Solution of 7-DOF Serial Robotic Manipulator: Quantum

Behaved Particle Swarm Algorithm. Artif. Intell. Rev. 2020, 53, 949–964. [CrossRef]
25. dereli, S. IW-PSO approach to the inverse kinematics problem solution of a 7-Dof serial robot manipulator. Int. J. Nat. Eng. Sci.

2018, 36, 75–85.
26. Çavdar, T.; Milani, M. A New Heuristic Approach for Inverse Kinematics of Robot Arms. New Heuristic Approach Inverse Kinemat.

Robot. Arms 2012, 19, 329–333. [CrossRef]
27. Rokbani, N.; Casals, A.; Alimi, A.M. IK-FA, a New Heuristic Inverse Kinematics Solver Using Firefly Algorithm. In Computational

Intelligence Applications in Modeling and Control; Azar, A.T., Vaidyanathan, S., Eds.; Springer International Publishing: Cham,
Switzerland, 2015; pp. 369–395. [CrossRef]

http://doi.org/10.1109/CIMA.2005.1662342
http://dx.doi.org/10.1016/S1474-6670(17)61347-8
http://dx.doi.org/10.1109/CDC.1984.272258
http://dx.doi.org/10.1109/TSMC.1986.289285
http://dx.doi.org/10.1115/1.3143764
http://dx.doi.org/10.1080/2151237X.2005.10129202
http://dx.doi.org/10.1109/ROBOT.1985.1087234
http://dx.doi.org/10.1109/TAES.1984.310452
http://dx.doi.org/10.1109/ICAL.2007.4338892
http://dx.doi.org/10.1109/INDIN.2008.4618151
http://dx.doi.org/10.1109/ICSMC.2012.6378268
http://dx.doi.org/10.1016/S0094-114X(97)00034-7
http://dx.doi.org/10.1155/2018/9815469
http://dx.doi.org/10.1631/FITEE.14a0335
http://dx.doi.org/10.1109/icnn.1995.488968
http://dx.doi.org/10.1023/A:1008202821328
http://dx.doi.org/10.1007/s10898-007-9149-x
http://dx.doi.org/10.1177/0959651814568364
http://dx.doi.org/10.1016/j.advengsoft.2016.01.008
http://dx.doi.org/10.1016/j.knosys.2015.12.022
http://dx.doi.org/10.1007/s10462-019-09683-x
http://dx.doi.org/10.1166/asl.2013.4700
http://dx.doi.org/10.1007/978-3-319-11017-2_15


Mathematics 2022, 10, 1051 23 of 23

28. Durmuş, B.; Temurtas, H.; Gün, A. An Inverse Kinematics Solution using Particle Swarm Optimization. In Proceedings of the
International Advanced Technologies Symposium, Elazig, Turkey, 16–18 May 2011; pp. 16–18.

29. Rokbani, N. Inverse Kinematics Using Particle Swarm Optimization, A Statistical Analysis. Procedia Eng. 2013, 64, 1602–1611.
[CrossRef]

http://dx.doi.org/10.1016/j.proeng.2013.09.242

	Introduction
	Problem Definition
	Forward Kinematics
	Inverse Kinematics
	Metaheuristic Algorithms

	Methodology
	Position Error
	Orientation Error
	Joint Variables Error
	Objective Function
	Solution of the Path Tracking Problem

	Proposed Approach
	Results
	Results of Test 1
	Results of Test 2
	Results of Test 3

	Conclusions
	References

