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Abstract: In this paper, a generalized nonlinear Schrödinger (gNLS) equation with time-varying
coefficients is analytically studied using its Lax representation and the associated Riemann-Hilbert
(RH) problem equipped with a symmetric scattering matrix in the Hermitian sense. First, Lax
representation and the associated RH problem of the considered gNLS equation are established so
that solution of the gNLS equation can be transformed into the associated RH problem. Secondly,
using the solvability of unique solution of the established RH problem, time evolution laws of the
scattering data reconstructing potential of the gNLS equation are determined. Finally, based on the
determined time evolution laws of scattering data, the long-time asymptotic solution and N-soliton
solution of the gNLS equation are obtained. In addition, some local spatial structures of the obtained
one-soliton solution and two-soliton solution are shown in the figures. This paper shows that the
RH method can be extended to nonlinear evolution models with variable coefficients, and the curve
propagation of the obtained N-soliton solution in inhomogeneous media is controlled by the selection
of variable–coefficient functions contained in the models.

Keywords: gNLS equation with time-varying coefficients; Lax representation; RH problem; scattering
data; long-time asymptotic solution; N-soliton solution

MSC: 37K40; 37K10; 35Q15; 35C08

1. Introduction

Nonlinear problems are full of challenges, and these have attracted the extensive
attention of researchers. One of the important achievements of nonlinear mathematical
physics in recent decades is the discovery of certain nonlinear partial differential equations
(PDEs) with important applications and analytical solutions. For example, the classical
NLS equation has practical applications in many fields [1], including optics, oceanography,
biology, economics and so on. There are many effective methods for solving nonlinear
PDEs analytically, such as inverse scattering method [2], Darboux transformation [3], Hirota
bilinear method [4] and other methods [5–14].

When an inhomogeneous medium is considered, the variable–coefficient model is
usually closer to the essence of the phenomenon. Generally, solving variable–coefficient
equations is more difficult than solving constant-coefficient ones. In most cases, it is
necessary to embed appropriate coefficient functions in the solution process of the existing
analytical methods, see [15] for an ingenious work extending inverse scattering method
to deal with a variable–coefficient NLS equation. Owing to the fact that Schrödinger-
type equations are widely used in many fields and differential equations with variable–
coefficient functions often model dynamic processes in non-uniform media, this paper
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considers a model in nonlinear fiber optics, namely the following gNLS equation with
gain [16]:

iψz =
β(z)

2
φττ − γ(z)|ψ|2ψ + i

g(z)
2

ψ, (1)

where ψ = ψ(z, t); the three functions β(z), γ(z) and g(z) of propagation distance z
represent the group velocity dispersion parameter, nonlinearity parameter and distributed
gain function, respectively; |ψ| denotes the module of ψ; and i is the imaginary unit. For
convenience, we take the transformations:

ψ(z, τ) = u(x, t), β(z) = −β(t), γ(z) = β(t), g(z) = 2iα(t). (2)

Then, Equation (1) is converted to the gNLS equation with time-varying coefficients:

iut +
β(t)

2
uxx + β(t)|u|2u + α(t)u = 0. (3)

Here, α(t) and β(t) are assumed to be real integrable functions, while u and all its
partial derivatives with respect to x and t approach zero quickly enough as |x| → ∞ .

The analytical method adopted in this paper for Equation (3) is the RH method [17],
which was developed based on the IST [2]. The RH method is an analytical method that
does not need to solve the Gel’fand-Levitan-Marchenko integral equation and can also
analyze the long-time asymptotic behavior of the obtained implicit analytical solutions.
In recent years, the RH method has achieved many applications, such as [17–28]. One
of the important developments of RH method is Deift-Zhou’s nonlinear steepest descent
method [18].

The basic idea of the RH method is to establish the relationship between the solution
of nonlinear PDE to be solved and the solution of associated solvable RH problem using the
eigenfunction, then to solve the RH problem, and finally obtain the solution of nonlinear
PDE. In the literature, there are some results, such as [8,16,29–35], that have been obtained
for the gNLS Equation (3). However, as far as we know, there is still no research on the
RH problem of Equation (3), and the relevant work is worth exploring. Equation (3) is
integrable; the Lax presentation, which provides a basis of the study of the associated RH
problem is given in Section 2.

With the help of the given Lax presentation, the associated RH problem is estab-
lished in Section 3 to connect the solution of Equation (3) and that of the established
RH problem, and then the time evolution laws of scattering data in the RH problem are
determined. In Section 4, the long-time asymptotic solution and N-soliton solution of
Equation (3) are obtained. At the same time, some spatial structures of the obtained one-
soliton solution and two-soliton solution are shown by selecting several special cases of the
time-varying functions.

2. Lax Presentation and RH Problem

We introduce, in this section, the linear spectral problem in the matrix forms:

Fx + iξσ3F = φF, (4)

Ft + i[ξ2β(t)− 1
2

α(t)]σ3F = ϕF, (5)
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where ξ is the complex spectral parameter; F = F(x, t, ξ) is the eigenfunction in matrix
form; the notations σ3, φ and ϕ stand for

σ3 =

(
1 0
0 −1

)
, φ =

(
0 u
−u∗ 0

)
and

ϕ =

 i
2 β(t)

∣∣∣u∣∣∣2 i
2 β(t)ux

i
2 β(t)u∗x − i

2 β(t)
∣∣∣u∣∣∣2

+ ξβ(t)φ;
(6)

and the symbol * is complex conjugate.
It is easy to check that the compatibility condition Fxt = Ftx is equivalent to Equation (3).

Therefore, we say that the gNLS Equation (3) has Lax integrability, and its Lax representa-
tions are Equations (4) and (5).

Considering the asymptotic condition of the previously assumed boundary value that
u and all its partial derivatives, with respect to x and t, approach zeros quickly as |x| → ∞ ,
we have the asymptotic Jost solution of Equations (4) and (5):

F → e−iϑ(x,t,ξ)σ3 , |x|→ ∞, (7)

with

ϑ(x, t, ξ) = ξx +
∫ t

0
[ξ2β(τ)− 1

2
α(τ)]dτ. (8)

By the transformation:
K(x, t, ξ)→ Feiϑ(x,t,ξ)σ3 , (9)

we transform Equations (4) and (5) into the following forms:

Kx + iξ[σ3, K] = φK, (10)

Kt + i[ξ2β(t)− 1
2

α(t)][σ3, ϕ] = ϕK, (11)

so that the eigenfunction K has the boundary condition:

K± → I , x → ±∞, (12)

where K± means the boundary conditions of K at the positive infinity and negative infinity
respectively, and I denotes the second-order identity matrix. In the case where the boundary
conditions (12) hold, the x-part of the Lax representation, that is, Equation (10) has the
solutions [17]:

K− = I +
∫ x

−∞
e−iξ(x−y)σ3 φ(y)K−(y, ξ)eiξ(x−y)σ3dy, (13)

K+ = I −
∫ ∞

x
e−iξ(x−y)σ3 φ(y)K+(y, ξ)eiξ(x−y)σ3dy, (14)

which enable the following relationships to be established:

K− = K+e−iξσ3 M(ξ)eiξσ3 , ξ ∈ R, (15)

by means of the scattering matrix:

M(ξ) =

(
m11(ξ) m12(ξ)
m21(ξ) m22(ξ)

)
. (16)
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Since the determinant detK± = 1 [17], which shows that the matrix K± is reversible,
we can see from Equation (15) that detM(ξ) = 1 and then obtain the inverse matrix of the
scattering matrix M(ξ):

M−1(ξ) =

(
m̂11(ξ) m̂12(ξ)
m̂21(ξ) m̂22(ξ)

)
=

(
m22(ξ) −m12(ξ)
−m21(ξ) m22(ξ)

)
. (17)

Due to KH
±(x, ξ∗) = K−1

± (x, ξ), with H standing for the Hermitian conjugate, one knows
that the symmetric relation MH(ξ∗) = M−1(ξ) leads to the equalities m∗11(ξ

∗) = m22(ξ) and
m∗12(ξ

∗) = −m21(ξ).

With the help of notations K± = ((K±)1, (K±)2) and K−1
± = ((K−1

± )1, (K−1
± )2)

T
, we

introduce the matrices:

φ+ = K−H1 + K+H2 = ((K−)1, (K+)2), (18)

φ− = H1K−1
− + H2K−1

+ =

(
(K−1
− )

1

(K−1
+ )

2

)
, (19)

where (K±)s and (K−1
± )

s
denote the vector in the s-th row and that in the s-th column of K±,

respectively, and H1 = diag(1, 0) and H2 = diag(0, 1) are two special diagonal matrices.
Clearly, φ+ and φ− enable Equation (10) and its adjoint equation to be true, that is to say:

φ+
x + iξ[σ3, φ+] = φφ+, (20)

φ−x + iξ[σ3, φ−] = φ−φ. (21)

The Taylor series of φ± gives:

φ± = I +
φ±1
ξ

+ O(ξ−2). (22)

We insert φ+ and φ− into Equations (20) and (21) and compare the coefficients of ξ−1, and
then one has

φ = i[σ3, K+
1 ] = −i[σ3, K−1 ]. (23)

Thus, solution u of the gNLS Equation (3) is converted to φ± by the following formula:

u = ±2i(φ±1 )12 = ±2i lim
λ→∞

(ξφ±)12, (24)

with (φ±1 )12 representing the element locations at the intersection of the first row and the
second column of φ±1 . Here, φ± will be determined by the matrix RH problem established
by Equations (18) and (19):

(i) φ±(x, ξ) are analytic in ξ ∈ C±;
(ii) φ−(x, ξ)φ+(x, ξ) = Ω(x, ξ) for ξ ∈ R;
(iii) φ±(x, ξ)→ I for ξ ∈ C± → ∞

(25)

where C+ and C− are the upper and lower half complex planes, respectively; R is the set of
real numbers; and Ω(x, λ) is the jump matrix:

Ω(x, ξ) = e−iξσ3

(
1 ŝ12(ξ)

s21(ξ) 1

)
eiξσ3 . (26)

3. Solvability of RH Problem and Time Evolution Laws for Scattering Data

The RH Problem (25) established above is solvable and always has a unique solution.
More detailed proof can be found in [17]; the difference is because the time evolution laws
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of the scattering data involved are different. In fact, from Equations (15), (18) and (19), we
can see that

detφ+ = m̂22(ξ) = m11(ξ), detφ− = m22(ξ) = m̂11(ξ), (27)

where the symmetry relation MH(ξ∗) = M−1(ξ) has been used.
When detφ±(λ) 6= 0, the RH problem (30) is regular. Then, Plemelj formula [36] can

be used to obtain a unique solution of Equation (25):

(φ+)
−1

(ξ) = I +
1

2iπ

∫ ∞

−∞

Ω̂(ξ)(φ+)
−1

(ξ)

s− ξ
ds, ξ ∈ C+, (28)

with

Ω̂(ξ) = I −Ω(ξ) = −e−iξσ3

(
0 m̂12(ξ)

m21(ξ) 0

)
eiξσ3 . (29)

In the case of detφ±(ξ) = 0, the relation MH(ξ∗) = M−1(ξ) makes the numbers of
the conjugate zeros of detφ+(ξ) = 0 and detφ−(ξ) = 0 must be equal. Thus, we suppose
that detφ+(ξ) = 0 has conjugate zeros ξ j, ξ2, · · · , ξN ∈ C+ and denote the conjugate zeros
of detφ−(ξ) = 0 as ξ j = ξ∗j ∈ C−(j = 1, 2, · · · , N). For the irregular case of the RH
Problem (25), we consider the systems of linear equations:

φ+(ξ j)vj(ξ j) = 0, (j = 1, 2, · · · , N), (30)

vj(ξ j)φ
−(ξ j) = 0, (j = 1, 2, · · · , N), (31)

where non-zero row vector vj(ξ j) and non-zero column vector vj(ξ j) are solutions of
Equations (30) and (31), respectively. The Hermitian conjugate of Equation (30), together
with the symmetry relation (φ+)

H
(ξ∗j ) = φ−(ξ j), gives

vH
j (ξ j)φ

−(ξ j) = 0. (32)

Then, Equations (31) and (32) lead to the symmetry relation vj(ξ j) = vH
j (ξ j). Based on

these preparations and theorem [37], the irregular RH Problem (25) with detφ±(ξ) = 0 can
be transformed into a regular one. Thus, we indirectly arrive at the proof that the irregular
RH Problem (25) has a unique solution, and therefore the solution of Equation (24) can be
determined as follows:

φ+
1 (ξ) =

N

∑
k=1

N

∑
j=1

vk(P−1)kjvj +
1

2iπ

∫ ∞

−∞
Q(s)Ω̂(s)Q−1(s)(φ̂+)

−1
(s)ds, (33)

with

(φ̂+)
−1

(ξ) = I +
1

2iπ

∫ ∞

−∞

Q(s)Ω̂(s)Q−1(s)(φ̂+)
−1

(s)
s− ξ

ds, ξ ∈ C+, (34)

Q(ξ) = I +
N

∑
k=1

N

∑
j=1

vk(P−1)kjvj

ξ − ξ j
, Q−1(ξ) = I −

N

∑
k=1

N

∑
j=1

vk(P−1)kjvj

ξ − ξk
, (35)

P = (pkj)N×N , pkj =
vkvj

ξk − ξ j
, (1 ≤ k, j ≤ N). (36)

The solvability of RH Problem (25) lays a theoretical foundation for the determination
of the corresponding scattering data.

Theorem 1. Let u(x, t) solve the gNLS Equation (3). Then, the scattering data:

{m21(ξ) , m21(ξ), m̂12(ξ), (ξ ∈ R); ξ j, ξ j, vj, vj, (j = 1, 2, · · · , N)}, (37)
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determined by the regular RH problem (30) have the time evolution laws:

m21(t, ξ) = m21(0, ξ)e2i
∫ t

0 [ξ2β(τ)− 1
2 α(τ)]dτ , (38)

m̂12(t, ξ) = m̂12(0, ξ)e−2i
∫ t

0 [ξ2β(τ)− 1
2 α(τ)]dτ , (39)

ξ j(t) = ξ j(0), ξ j(t) = ξ j(0), (40)

vj(x, t, ξ j) = e−i{ξ j(0)x+
∫ t

0 [ξ2
j (0)β(τ)− 1

2 α(τ)]dτ}σ3 vj(0, 0, ξ j(0)), (41)

vj(x, t, ξ j) = ei{ξ j(0)x+
∫ t

0 [ξ
2
j (0)β(τ)− 1

2 α(τ)]dτ}σ3 vj(0, 0, ξ j(0)). (42)

Proof of Theorem 1. It is necessary to rewrite Equation (15) as:

K−e−iξσ3 = K+e−iξσ3 M(ξ), ξ ∈ R. (43)

Differentiating the left side of Equation (48) with respect to t, we arrive at

K−,te−iξσ3 = −i[ξ2β(t)− 1
2

α(t)][σ3, K−]e−iξσ3 + ϕK−e−iξσ3 , (44)

by employing Equation (15). It is easy to see from Equation (44) that the left side of
Equation (43) solves Equation (11). We, therefore, know that the right side of Equation (43)
is a solution of Equation (11). Then, the substitution of the right side of Equation (43) into
Equation (11) together with the boundary condition (12) yields

dM(t, ξ)

dt
+ i[ξ2β(t)− 1

2
α(t)]K+e−iξσ3 [σ3, M(t, ξ)] = 0. (45)

Similarly, we easily see that K+e−iξσ3 = K−e−iξσ3 M−1(t, ξ) is also a solution of Equation (11).
Putting K−e−iξσ3 M−1(t, ξ) into Equation (11) and using the boundary condition (12) yields:

Considering Equations (16) and (17) and comparing the elements of Equations (45) and (46),
we gain

dM−1(t, ξ)

dt
+ i[ξ2β(t)− 1

2
α(t)]K+e−iξσ3 [σ3, M−1(t, ξ)] = 0 (46)

dm21(t, ξ)

dt
= 2i[ξ2β(t)− 1

2
α(t)]m21(t, ξ), (47)

dm̂12(t, ξ)

dt
= −2i[ξ2β(t)− 1

2
α(t)]m̂12(t, ξ), (48)

dm̂22(t, ξ)

dt
= 0,

dm22(t, ξ)

dt
= 0. (49)

Solving Equations (47) and (48), we reach Equations (38) and (39). Equation (27)
indicates that, if ξ j(t) and ξ j(t) are the zeros of detφ+(t, ξ) and detφ−(t, ξ), they are also
the zeros of m̂22(t, ξ) and m22(t, ξ). In view of Equation (49), one can see that ξ j(t) and ξ j(t)
are independent from t. This means that Equation (40) is true.

To prove Equations (41) and (42), it is necessary to differentiate Equation (30) with
respect to x and t, and then one has

φ+
x (x, t, ξ j)vj(x, t, ξ j) + φ+(x, t, ξ j)vj,x(x, t, ξ j) = 0, (j = 1, 2, · · · , N), (50)

φ+
t (x, t, ξ j)vj(x, t, ξ j) + φ+(x, t, ξ j)vj,t(x, t, ξ j) = 0, (j = 1, 2, · · · , N). (51)



Mathematics 2022, 10, 1043 7 of 15

Using Equations (11) and (18) yields

φ+
t (x, t, ξ j)vj(x, t, ξ j) = −i[ξ2β(t)− 1

2
α(t)][σ3, φ+(x, t, ξ j)] + ϕφ+. (52)

Substituting Equations (20) and (52) into Equations (50) and (51), we gain

φ+(x, t, ξ j)(vj,x(x, t, ξ j) + iξ jσ3vj(x, t, ξ j)) = 0, (j = 1, 2, · · · , N), (53)

φ+(x, t, ξ j)

{
vj,t(x, t, ξ j) + i[ξ2β(t)− 1

2
α(t)]σ3vj(x, t, ξ j)

}
= 0, (j = 1, 2, · · · , N), (54)

by the usage of Equation (30). Solving Equations (53) and (54), one can obtain Equation (41).
In a similar way, Equation (42) can be obtained using Equations (11), (21) and (31). �

4. Long-Time Asymptotic Solution and N-Soliton Solution

Based on Equations (38) and (39), the time evolution laws of the Jump matrix Ω̂(x, t, ξ)
can be determined as follows:

Ω̂(x, t, ξ) =

(
0 −m̂12(0, ξ)e−2iξϑ(x,t,ξ)σ3

m21(0, ξ)e2iξϑ(x,t,ξ)σ3 0

)
, (55)

where ϑ(x, t, ξ) is determined by Equation (8). Generally, with the above scattering data in
Equations (38)–(42), one can obtain solution of the gNLS Equation (3) theoretically. How-
ever, we still have difficulty in calculating the integral in Equation (33) for Ω̂(x, t, ξ) 6= 0. In
this case, the asymptotic solution of the gNLS Equation (3) when t→ ∞ can be derived
from Equation (24). For instance, if we let ξ̂ = ξt1/2γ and β(t) = t1/γ−1 for any 1 ≤ γ ∈ R,
the integral contained in Equation (38) tends to zero at a rate of t−1/γ. We, therefore, obtain
the following long-time asymptotic solution of the gNLS Equation (3):

u(x, t)→ 2i

(
N

∑
k=1

N

∑
j=1

vk(P−1)kjvj

)
12

, t→ ∞, (56)

where P and vk are calculated using Equations (36) and (41), while the calculation of vk can
restore to Equation (42) or the symmetry relation vj = vH

j .
In the reflectionless case, we next construct an N-soliton solution of the NLS Equation (3).

Setting m̂12(0, ξ) = 0 and m21(0, ξ) = 0, and then one has Ω̂(x, t, ξ) = 0. In this case,
Equation (33) is simplified as

φ+
1 (x, t) =

N

∑
k=1

N

∑
j=1

vk(P−1)kjvj. (57)

To determine P−1 in Equation (57), we further select the complex number cj and let
vj(0, 0, ξ j(0)) = (cj, 1). Then, Equations (41) and (42) give

vj(x, t, ξ j) =

(
cje

θj

e−θj

)
, (58)

vj(x, t, ξ j) = vH
j (x, t, ξ∗j ) = (c∗j e

θ∗
j , e
−θ∗

j ). (59)

where

θj = −iξ j(0)x− i
∫ t

0
[ξ2

j (0)β(τ)− 1
2

α(τ)]dτ, ξ j(0) ∈ C+, (60)
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Finally, with the help of Equations (24) and (58)–(60), one obtains the N-soliton solution
of NLS Equation (3):

u(x, t) = 2i

(
N

∑
k=1

N

∑
j=1

cke
θk−θ∗

j (P−1)kj

)
12

= −2i
detS
detP

. (61)

where θk and θ∗k can be determined by Equation (60),

S =


0 c1eθ1 · · · cNeθN

e−θ∗
1 p11 · · · p1N

· · · · · · · · · · · ·
e−θ∗

N pN1 · · · pNN

, P = (pkj)N×N , pkj =
c∗k cje

θj+θ∗
k + e−θj−θ∗

k

ξk(0)− ξ j(0)
. (62)

As a special case of Equation (61), N = 1 is selected, and then one has:

u(x, t) = −2i
−c1eθ1−θ∗1

c1c∗1eθ1+θ∗1 +e−θ1−θ∗1

ξ1(0)−ξ1(0)

. (63)

Further letting ξ1(0) = a + ib(a, b > 0 ∈ R) and c1 = e−2bδ0+iw0(d0, w0 ∈ R) yields
ξ1(0) = ξ∗1(0) = a− ib and c1c∗1 = e−2bδ0 . Thus, Equation (63) becomes

u(x, t) = 4b
e−2bδ0+iw0e−2iax−2i

∫ t
0 [(a2−b2)β(τ)− 1

2 α(τ)]dτ

e−4bδ0e−2bx−4ab
∫ t

0 β(τ)dτ−2bd0 + e2bx+4ab
∫ t

0 β(τ)dτ+2bd0
, (64)

which can be rewritten as:

u(x, t) = 4b
e−2iax−2i

∫ t
0 [(a2−b2)β(τ)− 1

2 α(τ)]dτ+iw0

e−2bx−4ab
∫ t

0 β(τ)dτ−2bδ0 + e2bx+4ab
∫ t

0 β(τ)dτ+2bδ0
. (65)

Finally, the one-soliton solution of the gNLS Equation (3) can be obtained as follows:

u(x, t) = 2be−2iηsec h[2b(x + 2a
∫ t

0
β(τ)dτ − δ0)], (66)

where

η = ax +
∫ t

0
[(a2 − b2)β(τ)− 1

2
α(τ)]dτ − 1

2
w0. (67)

In Figures 1–4, four spatial structures of the one-soliton solution (66) are shown by
selecting the same parameters a = 1, b = 0.1, δ0 = 6 and w0 = 0.5, however, with different
time-varying coefficients: α(t) = sin(t2) and β(t) = 1 + sec h(t) in Figure 1; α(t) = t2

and β(t) = 1 + sin(1 + 0.4t) in Figure 2; α(t) = tanh(t) and β(t) = 1 + cos(t) in Figure 3;
and α(t) = tanh(t) and β(t) = 1 in Figure 4. Figures 1–4 show that the four bell one-
solitons propagating along the negative x-axis have different velocities: variable velocities
in Figures 1–3 and uniform velocity in Figure 4. Form Equation (67), we can see that β(t)
and α(t) determine the frequency of the soliton vibration.
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Figure 1. Spatial structure of the one-soliton solution (66) with α(t) = sin(t2) and β(t) = 1+ sec h(t).

Figure 2. Spatial structure of the one-soliton solution (66) with α(t) = t2 and β(t) = 1+ sin(1+ 0.4t).

Figure 3. Spatial structure of the one-soliton solution (66) with α(t) = tanh(t) and β(t) = 1 + cos(t).
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Figure 4. Spatial structure of the one-soliton solution (66) with α(t) = tanh(t) and β(t) = 1.

When N ≥ 2, solution (61) cannot be written as a hyperbolic function like Equation (66).
For the selection of N = 2, Equation (61) gives

u(x, t) = −2i
c1eθ1−θ∗2 p12 + c2eθ2−θ∗1 p21 − c2eθ2−θ∗2 p11 − c1eθ1−θ∗1 p22

p11 p22 − p12 p21
, (68)

with

p11 =
c∗1c1eθ∗1+θ1 + e−θ∗1−θ1

ξ1(0)− ξ1(0)
, p12 =

c∗1c2eθ∗1+θ2 + e−θ∗1−θ2

ξ1(0)− ξ2(0)
, (69)

p21 =
c∗2c1eθ∗2+θ1 + e−θ∗2−θ1

ξ2(0)− ξ1(0)
, p22 =

c∗2c2eθ∗2+θ2 + e−θ∗2−θ2

ξ2(0)− ξ2(0)
, (70)

where θ1 and θ2 are determined by Equation (65), ξ1(0) = ξ∗1(0) and ξ2(0) = ξ∗2(0). In
Figures 5–7, a collision between bell two-solitons determined by solution (68) is shown
by setting the parameters c1 = 1, c2 = 1, ξ1(0) = 0.3 + 0.3i, ξ2(0) = 0.4 + 0.4i, α(t) = t
and β(t) = tanh(0.2t). It can be seen from Figures 5–7 that, after interaction, two solitons
moving in the opposite directions along the x-axis move away from each other in the
original opposite direction. This is different from the interaction between two solitons with
the variable coefficient α(t) = t and the constant coefficient β(t) = 1, which continue to
move forward after passing through each other as shown in Figures 8–10.

Figure 5. Spatial structure of the two-soliton solution (68) with α(t) = t and β(t) = tanh(0.3t).
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Figure 6. Contour of the two-soliton solution (68) with α(t) = t and β(t) = tanh(0.3t).

Figure 7. Interaction of the two-soliton solution (68) with α(t) = t and β(t) = tanh(0.3t): (a) t = −10,
(b) t = 0 and (c) t = 10.
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Figure 8. Spatial structure of the two-soliton solution (68) with α(t) = t and β(t) = 1.

Figure 9. Contour of the two-soliton solution (68) with α(t) = t and β(t) = 1.
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Figure 10. Interaction of the two-soliton solution (68) with α(t) = t and β(t) = 1: (a) t = −10,
(b) t = 0 and (c) t = 10.

5. Conclusions

Taking the gNLS Equation (3) as an example, this paper presented a positive answer
to the feasibility of extending the RH method [17] to nonlinear evolution equations with
variable coefficients. Due to the derived Lax representation in Equations (4) and (5) and
their transformation forms (10) and (11) with unit boundary values at infinity of spatial
independent variables, the solution of the gNLS Equation (3) is transformed into the
associated RH problem (30) via Equation (29).

Based on the solvability of the RH Problem (25), we determined the time evolution
laws (38)–(42) of the corresponding scattering data, recovered the potential function using
the RH method [17] and, finally, obtained the solution (56) with the long-time asymptotic
behavior and the N-soliton solution (61). It can be seen from Figures 1–4 that four bell
one-solitons propagating from the positive x-axis to the negative x-axis possess different
velocities, which make their peaks form different motion trajectories, including the kink
trajectory in Figure 1, periodic kink trajectory in Figure 2, straight turning trajectory in
Figure 3 and straight-line trajectory in Figure 4. This is due to the different selections of the
time-varying coefficient function β(t).

Whether the propagation trajectory of the bell soliton peak determined by the one-
soliton solution (66) shows a straight line or curve depends on the time-varying coefficient
β(t). For the multiple soliton solution (61) with N > 1, there will be similar peak curve
trajectory characteristics. In fact, for the one-soliton solution (66), this point can be verified



Mathematics 2022, 10, 1043 14 of 15

mathematically. Specifically, from Equation (66), we determined the modulus of the one-
soliton solution (66):

|u| = 2bsec h[2b(x + 2a
∫ t

0
β(τ)dτ − d0)], (71)

which is a bell soliton solution. The peak coordinates (x, t) of the bell soliton determined
by Equation (71) satisfy the equation:

x + 2a
∫ t

0
β(τ)dτ − d0 = 0. (72)

Clearly, the parameter controlling the peak trajectory of the above bell one-soliton
is the propagation velocity

.
x = −2aβ(t). Therefore, selecting β(t) = 1 as a constant is

the reason why the peak trajectory of the bell one-soliton in Figure 4 is a straight line. In
addition, it should be pointed out that, when α(t) = 0 and β(t) = 2, the gNLS Equation (3)
becomes the classical NLS equation, and the results obtained in this paper can degenerate
into the known ones [17]. Recently, some novel solutions [33–35] of NLS-type equations
with variable coefficients have been obtained. A comparison shows that both the long-
time asymptotic solution (63) and the N-soliton solution (61) are different from those
in [8,16,29–35].
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